
University of Pennsylvania
ScholarlyCommons

Center for Human Modeling and Simulation Department of Computer & Information Science

March 1999

Smart Avatars in JackMOO
Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Jianping Shi
University of Pennsylvania

Thomas J. Smith
University of Pennsylvania

John P. Granieri
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/hms

Postprint version. Published in IEEE Proceedings of Virtual Reality 1999, March 1999, pages 156-163.
Publisher URL: http://dx.doi.org/10.1109/VR.1999.756946

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/hms/8
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Badler, N. I., Shi, J., Smith, T. J., & Granieri, J. P. (1999). Smart Avatars in JackMOO. Retrieved from http://repository.upenn.edu/
hms/8

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fhms%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fhms%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms/8?utm_source=repository.upenn.edu%2Fhms%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms/8?utm_source=repository.upenn.edu%2Fhms%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms/8
mailto:libraryrepository@pobox.upenn.edu

Smart Avatars in JackMOO

Abstract
Creation of compelling 3-dimensional, multi-user virtual worlds for education and training applications
requires a high degree of realism in the appearance, interaction, and behavior of avatars within the scene. Our
goal is to develop and/or adapt existing 3-dimensional technologies to provide training scenarios across the
Internet in a form as close as possible to the appearance and interaction expected of live situations with human
participants. We have produced a prototype system, JackMOO, which combines Jack, a virtual human system,
and LambdaMOO, a multiuser, network-accessible, programmable, interactive server. Jack provides the visual
realization of avatars and other objects. LambdaMOO provides the web-accessible communication,
programability, and persistent object database. The combined JackMOO allows us to store the richer semantic
information necessitated by the scope and range of human actions that an avatar must portray, and to express
those actions in the form of imperative sentences. This paper describes JackMOO, its components, and a
prototype application with five virtual human agents.

Comments
Postprint version. Published in IEEE Proceedings of Virtual Reality 1999, March 1999, pages 156-163.
Publisher URL: http://dx.doi.org/10.1109/VR.1999.756946

This working paper is available at ScholarlyCommons: http://repository.upenn.edu/hms/8

http://repository.upenn.edu/hms/8?utm_source=repository.upenn.edu%2Fhms%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages

Smart Avatars in JackMOO

Jianping Shi, Thomas J. Smith, John P. Granieri, and Norman I. Badler
Center for Human Modeling and Simulation

University of Pennsylvania
Philadelphia, PA 19104-6389

215-898-5862

Abstract

Creation of compelling 3-dimensional, multi-user virtual
worlds for education and training applications requires a
high degree of realism in the appearance, interaction, and
behavior of avatars within the scene. Our goal is to de-
velop and/or adapt existing 3-dimensional technologies to
provide training scenarios across the Internet in a form
as close as possible to the appearance and interaction ex-
pected of live situations with human participants. We have
produced a prototype system, JackMOO, which combines
Jack, a virtual human system, and LambdaMOO, a multi-
user, network-accessible, programmable, interactive server.
Jackprovides the visual realization of avatars and other ob-
jects. LambdaMOO provides the web-accessible commu-
nication, programmability, and persistent object database.
The combined JackMOO allows us to store the richer se-
mantic information necessitated by the scope and range of
human actions that an avatar must portray, and to express
those actions in the form of imperative sentences. This pa-
per describes JackMOO, its components, and a prototype
application with five virtual human agents.

1. Introduction

Emerging education and training applications across the
Internet require the delivery of distributed, interactive sim-
ulation scenarios with virtual human participants. Simula-
tions have long been used as a learning tool, particularly
in situations where there are safety and practicality con-
cerns. Such simulations should be extended to a training
environment in which the instructor and students are geo-
graphically dispersed across the Internet. Intuitively, build-
ing simulations supporting human-scale training scenarios
will demand a level of realism and inter-agent communi-
cation unavailable in currently available simulation (or vir-
tual reality) environments. In particular, we are interested
in providing full body virtual human avatars, capable of

sophisticated actions and interaction in a virtual environ-
ment [3, 1, 14]. Applications currently envisioned include
training for checkpoint operations with several real and au-
tonomous individuals, and complex multi-person aircraft
maintenance activities.

We have developed a prototype system, JackMOO,
which provides us with an environment in which the inter-
esting questions of multi-user distributed training simula-
tions and language control of avatar animation and interac-
tion can be examined. While it is always possible to reduce
the complexity of the human model to gain rendering speed
or communication efficiency, we deliberately chose to work
with a fully articulated and modeled body to explore inter-
personal situations where participant avatars and synthetic
agents may be interchanged.

2. Smart Avatars

Animating virtual humans involves controlling their
parts at the graphical level via joint transformations (e.g.,
for limbs) or surface deformations (e.g., for face). Mo-
tion capture from live participants or algorithmically syn-
thesized motions may be used to animate the 3D model.
In real-time applications, avatars may be driven directly by
a person’s movements [9]. Directly captured motions are
natural but lock the user into sensing equipment that may
be cumbersome and limiting. Moreover, directly sensing
motion is difficult to modify on-the-fly to achieve contex-
tual sensitivity, and the user may be subject to common
symptoms such as “groping” for virtual objects, jerky loco-
motion, annoying head movements, and the overall poten-
tial for “simulator sickness.” Control without encumbrance
leads to vision-based sensing or, as we are interested in ex-
ploring, language-based instructions.

We call an avatar controlled via instructions asmart
avatar. Its actions may be portrayed through synthesized or
captured motions and replayed within the current context.
Proper movements require that the actions be parameterized
in space, manner, and intention and, in turn, that the param-

eters are appropriately specified. Low level, smooth motion
transitions are clearly important [21], but a higher level un-
derstanding (at the parameter level and beyond) will be es-
sential to sequence and blend motions in human-like ways.
Some parameters may come from the instruction itself, oth-
ers from the local object context, and yet others from the
avatar’s available capabilities and resources. As the avatar
becomes “smarter” it must make more contextual decisions
about actions it must perform in order to achieve the re-
quested goals.

We have explored the contextual control of virtual hu-
mans and increasingly smarter avatars in a number of ex-
periments including: two person animated conversational
“Gesture Jack” [10], Hide-and-seek game players [26], a
real-time animated “Jack Presenter” [19], emergency medi-
cal training [11] and multi-user “JackMOO” virtual worlds
[23]. In this last system we began to explore an archi-
tecture for interacting with virtual humans that was solely
language-based in order to explicitly approach a level of
interaction between virtual humans comparable to that be-
tween real people. We focused on instructions for physical
action to bound the problem, to empower interesting appli-
cations, and to refine a representation bridging language and
embodied action.

While simple interactions could be just menu-based, our
thesis is that the full power of natural language interfaces for
presenting instructions to smart avatars will provide benefits
beyond GUIs. This component is just starting to be explored
and is our focus here. Instructions are rich in directional
references, terminating conditions, manner, purposes, and
goals. Instructions are interpreted in a spatial context which
establishes (at execution time and without further user in-
put) appropriate access or locomotion paths, body and hand
orientation, and action timing. What we learn from a natu-
ral language instruction interface would likely be combined
with graphical or gestural interface components in a com-
plete simulation training system.

3. JackMOO Architecture

JackMOO is a multi-user distributed virtual environ-
ment (DVE) aimed at supporting educational simulation
and training scenarios. As shown in Figure 1, it adopts a
server/client model. There are two kinds of system compo-
nents on each client host:

� Jack– A 3-dimensional, articulated human figure cre-
ation and motion authoring system from Transom
Technologies ([3, 1]), and

� JackMOO Client – A Java applet running within
Netscape that mediates the flow of control between
Jack and the LambdaMOO server; and provides the
chief user interface to the system.

LambdaMOO
Server

HTTP
Server

Jack
Proxy

Server

JackMOO Client
(Java Applet

running in Netscape)

Jack

5

1

2
3

4

Client Host 1 Server Host

Client
Host 2

Client
Host n

Figure 1. The architecture of JackMOO.

Three kinds of servers are running on the server host:

� LambdaMOO – A multi-user, network-accessible, pro-
grammable, interactive system developed by Pavel
Curtis at Xerox Parc [12].

� HTTP Server – This server is used by the user to down-
load the JackMOO client written as a Java applet. Cur-
rently one of the Java applet security restrictions is that
an applet cannot make network connections except to
the host that it came from [25]. So to be able to con-
nect to the LambdaMOO server through the JackMOO
client, we have to set up the HTTP server exactly at the
same host where the LambdaMOO server is running.

� JackProxy Server – This server works around the strict
network connection restriction of Java applet. The
Jackproxy server resides at the same host as the HTTP
server, and is responsible for relaying messages be-
tween the JackMOO client and theJacksystem.

Provided that an end-user is using a workstation running
a Java-enabled Netscape andJack system, and all of the
servers are running at a known host and listening to certain
known ports, the procedure of initialization and logging into
the virtual JackMOO world is as follows (see Figure 1):

1. The user asks for the JackMOO client by providing the
URL to the HTTP server through Netscape.

2. The HTTP server sends back to Netscape the webpage
containing the JackMOO client applet that the user
asked for. Netscape then runs the applet.

3. The JackMOO client opens a network connection to
theJackproxy server.

4. Upon receiving the request from the JackMOO client,
the proxy server opens a network connection to the
Jacksystem, which is waiting for an external command

port connection. At this point, the JackMOO client
and theJacksystem are connected together through the
proxy server that simply relays every message between
them.

5. The JackMOO client opens another network connec-
tion to log in to the LambdaMOO server. After
the connection is successfully established, the Lamb-
daMOO server sends commands to the JackMOO
client to print out welcome messages in the text out-
put of the client, and to initialize theJacksystem.

After the session of initialization and logging-in, the user
can control his/her avatar in the JackMOO virtual world by
typing instructions in natural language imperatives through
the client. These instructions will then be sent to the Lamb-
daMOO server and, if recognized, trigger corresponding
LambdaMOO programs (called verbs) to execute. Verb ex-
ecution dispatches a sequence of commands to the relevant
JackMOO clients, which will do two things: execute non-
Jackcommands themselves, and send theJackcommands
to their associatedJacksystems through the proxy server.
The latter run in theJacksystems to drive the animation.

As additional players connect with the system, their
avatars appear on theJackscreens of all JackMOO-enabled
players. Actions of an avatar are broadcast to each of the
connectedJacksystems, reflecting activity in the JackMOO
world.

4. Database Model of DVE

The database of a distributed virtual environment con-
tains the state information of the virtual world, which is the
union of all the states of any avatars and physical objects it
contains. For any DVE system, where to put the database
is a very important issue, because it will affect the band-
width requirements, end-to-end latency, and scalability of
the system.

Figure 2 shows two typical database models for existing
DVE systems [17]: the replicated homogeneous database
and the shared centralized database.

SIMNET (SIMulator NETworking, the predecessor of
DIS, or Distributed Interactive Simulation) [18] uses the
replicated homogeneous database model, where in the be-
ginning of a simulation exercise, all participating clients are
provided a replica of the database containing the initial state
of the virtual world. Then each client is responsible for
sending state update information to other clients, and main-
taining its own replica of the database by receiving state up-
date information from other clients. The advantage of this
model is that the bandwidth requirement is relatively low,
because the amount of information flowing among clients
is relatively small. Additionally since each client accesses
only a local database, the end-to-end latency of a query to

Local Replica
of Database

Network
Local Replica
of Database

Local Replica
of Database

Local Replica
of Database

Client Client

Client

Client

Central
DatabaseClient

Client

Client

Client

(a) The model of replicated,
 homogeneous database.

(b) The model of shared,
 centralized database.

Figure 2. Two typical models for DVE
database.

the database is very small. However, this structure cannot
be easily extended to accommodate more participants, and
as more and more users join in a simulation exercise, the
database replica that each client maintains will get bigger
and bigger. Furthermore, the consistency of all database
replicas is not guaranteed by the model.

On the other hand, the shared centralized database model
has only a single database. To retrieve or modify the state of
an object, a client must send requests to the central database
manager, and wait for a response from it. The advantage
of this model is that it is easy to maintain, and is scalable
within certain limits with respect to the capacity of the cen-
tral server. The disadvantage is that the central server can
easily become the speed bottleneck as the number of clients
increases, and is the single point of failure. Heavy network
traffic is another drawback of this model. LambdaMOO
[12] is a distributed system that uses this model as its un-
derlying database structure.

Table 1 gives a comparison between these two database
model extremes. Based on the comparison, we employ a
‘dual-database’ model for our JackMOO system (Figure 3).
The model divides the whole database into two parts: the
object-oriented database, which contains thesemantic state
information of all the objects in the virtual world; and the
graphical database, which contains thegraphical statein-
formation of all of the objects:

� Semantic State – the state of an object that is propo-
sitional; for example, avatarAi is in roomRj and in

Database Replicated Shared
Model Homogeneous Centralized

Bandwidth
Requirement low high

Speed
Bottleneck no yes

Single Point
of Failure no yes

Scalability hard easy
End-to-end

Latency low high

Maintainability hard easy

Consistency weak strong

Table 1. Comparison of two database models.

Object−Oriented
Database

LambdaMOO Server

Local Replica
of Graphical

Database

Local Replica
of Graphical

Database

Local Replica
of Graphical

Database

Local Replica
of Graphical

Database

Client Client

Client

Client

Figure 3. The dual-database model for Jack-
MOO.

posture ‘standing.’

� Graphical State – the state of an object that defines its
appearance, location, or orientation; for example, the
virtual world coordinates of avatarAi, the joint angle
of his left elbow, etc.

In JackMOO, we use the built-in OO database of Lamb-
daMOO (see Section 6) as the OO database containing se-
mantic states of our model, since the messages associated
with semantic states are usually small. Meanwhile, each
client maintains a local graphical database replica in order
to minimize the latency of exchanging graphical state in-
formation (usually substantial chunks of bytes) between the
client and the database.

The following sections describe the JackMOO main
components in detail.

5. Jack

Our virtual human modelJack includes a program-
ming language interface called Parallel Transition Networks
(PaT-Nets) [3]. Intuitively, PaT-Nets are state transition di-
agrams in which nodes represent executable processes and
edges contain conditions which when true cause transitions
to another node (process). Combined with message pass-
ing and global memory, PaT-Nets provide coordination and
synchronization across multiple parallel processes. PaT-
Nets provide the mechanism necessary for the realization
of complex actions and behaviors on virtual humans.

Of central importance to JackMOO is the association
of human action verbs with (possibly several) PaT-Nets.
Fundamental movements such as step-forward, walk, reach,
turn-around, and look-at are specified in theJackenviron-
ment in the form of executable programs which are them-
selves invoked through PaT-Nets. PaT-Nets thus function
as a high-level API accessing underlyingJackbehavior and
functionality.

6. LambdaMOO

LambdaMOO is a network-accessible, multi-user, pro-
grammable, interactive system well suited for the con-
struction of text-based conferencing systems, educa-
tional/training systems and other collaborative software
[12]. LambdaMOO’s roots are in multi-user, collabora-
tive game environments in which users are represented by a
character possessing certain distinguishing attributes. Char-
acters are placed within a virtual reality where they may in-
teract with other users and objects that may be encountered
([7], [8], [13], [20], and [24]), and general virtual society
applications ([6], [15], and [22]).

The interface to the LambdaMOO world is text-based.
Users communicate with the world by typing one line com-
mands resembling imperative English sentences, for exam-
ple, “Take the ball,” “Strike dragon on the head,” etc. Such
commands are parsed and executed by the system and re-
sult in changes in the virtual reality, such as location of
the user’s character, the appearance of some object, inter-
actions with other users, etc. Such changes are communi-
cated to the user by means of text: “You pick up the ball,”
“The dragon appears to be angry and is coming toward you
menacingly!” etc. In addition, each of the other players
in the user’s immediate neighborhood receives text notifica-
tion of the user’s actions: “John has picked up the ball,”
“The dragon is angrily advancing on Norm,” etc. Users
may interact with each other on at least two levels: they
may “talk” to one or all of the other players; and they may
“emote,” i. e., reveal emotions to one or more players: “John
laughs at Norm’s predicament.”

LambdaMOO consists of two major components: the
server and the database. The server is a program written
in a standard programming language that manages multi-
ple network connections, maintains queues of commands to
be executed, controls all access to the database, and exe-
cutes programs written in the LambdaMOO programming
language.

The database contains objects representing all compo-
nents of the virtual reality. Each object consists of proper-
ties containing data intrinsic to the object and verbs: pro-
grams written in the LambdaMOO programming language
that provide the objects with their particular behaviors. A
LambdaMOO virtual world is organized as a series of room
objects, connected by entrance and exit objects. Rooms pro-
vide the containers for other objects in the world. Players,
themselves objects, move about the LambdaMOO world,
room by room, interacting with objects and other players
they may encounter.

Objects are organized into single-inheritance hierarchies.
When objects are created, they inherit the properties and
verbs of their ancestors. Additional properties and verbs
as well as specializations of inherited components may be
defined to give the new object its unique behavior and ap-
pearance. In particular, the JackMOO world contains a spe-
cialization of the LambdaMOO generic room object called
aJackRoom. This object contains properties and verbs that
implement the interface between the LambdaMOO server
and the remainder of the JackMOO system. Each Lamb-
daMOO room that has a JackMOO realization is a special-
ization (child) of theJackRoom object containing, in par-
ticular, visualization properties with scene information to be
loaded intoJackfor the room and its contents. Specializa-
tions (children) of the LambdaMOO generic player object,
theJackPlayer, provide the properties and verbs necessary
to define and control the individual avatar representation for
a player in the JackMOO system. Default avatar properties
are provided in the parentJackPlayer object for those Jack-
MOO users having no unique avatar representation.

The interface to the JackMOO system is activated when
a JackPlayer enters aJackRoom. Verbs and properties de-
fined on the instance of theJackPlayer issue commands to
the user’sJackprocess. The new arrival’s avatar appears
on theJackdisplays of all of the room occupants who are
JackMOO users and each JackMOO occupant’s avatar is
displayed on the new arrival’sJackscreen. Avatar position
and orientation information saved as property values on the
JackPlayer object is used to locate the avatars “where they
belong” in the scene. Executing appropriate verbs on the
JackMOO objects through the JackMOO client moves and
controls the avatar.

Each of the JackMOO avatar behavior verbs has the fol-
lowing responsibilities:

� Update the persistent information maintained for the

avatar, e. g., change its stored position when a “move”
command is received.

� Perform any actions with other objects in the room that
may be affected by the verb. If my avatar picks up the
red ball, the ball moves from its original location to my
avatar’s hand.

� Issue commands to theJackcomponent of the system
to display avatar change to the end user.

� Broadcast changes to all of the connected JackMOO
clients. This provides the synchronization of each of
the JackMOO displays as the avatar moves around and
interacts in the JackMOO world.

� Broadcast a textual description of the action and its
effect on the environment to all players in the room.
JackMOO can thus be accessed as a “standard” text-
only LambdaMOO world.

These features permit Internet simulation at low (text)
bandwidth rates. Text also yields robust communications
and minimal transmission latency. The “intelligence” for
executing actions is embedded in each client and is there-
fore independent of network bandwidth once a command is
received. Tasks are synchronized by sending text strings in-
forming others that an action is in progress (“Norm is walk-
ing across the room”), an action has finished (“Norm stops
walking”), or possibly interrupted (“Norm bumped into the
obstacle”). More experimentation is planned in this area.

7. JackMOO Client

The JackMOO client is a Java applet, loaded into the
user’s Netscape session from the HTTP server after the user
provides the correct URL to the server. The client has the
following functions:

� Establishes a socket connection from the client ma-
chine to the LambdaMOO server. This allows the end-
user to send commands affecting his avatar’s actions
and behavior as well as the “standard” MOO interac-
tions.

� Provides the text-oriented user interface to the Lamb-
daMOO server. This interface consists of a text area
for commands to be sent to the MOO, and a scrolled
text area in which textual responses from the MOO are
displayed.

� Mediates the communication between the client ma-
chine and the LambdaMOO server. Text messages
from the MOO may be in the form of “standard” tex-
tual responses displayed in the client’s text area; or
commands toJack and/or the client which are text
strings distinguished by a special prefix.

Figure 4. User interface of JackMOO.

8. Example: Jack’s MOOse Lodge

In this section, we will discuss an example called “Jack’s
MOOse Lodge”, implemented in the JackMOO environ-
ment. The scene is inside a wooden mountain lodge. There
is a big room with a dining area with a table and four chairs.
To one side of the dining area is a loft, with a ladder lead-
ing to it. The loft is surrounded by railings and has a bed
on it. Below the loft is an open doorway leading to a
kitchen. The main entrance of the lodge has a door with
a knob. The test scenario includes five virtual humans: four
are user-instructed avatars and one is a semi-autonomous
waiter “agent”. The four avatars are named ‘Bob’, ‘Norm’,
‘Sarah’, and ‘David’. They are all ‘smart avatars’, and are
controlled by different users using computers at different
geographical sites. In the following we will use the quoted
name (‘Bob’) to refer to the avatar and the unquoted name
(Bob) to refer to the live user who is issuing commands to
his/her avatar.

Each user controls his/her avatar via an interface running
on the client computer. As shown in Figure 4, there is a
Netscape window running the JackMOO client applet on
the left side, and aJackwindow used to display the virtual
world on the right side.

The actions that a smart avatar can perform in the lodge
include: walking, sitting down (on a chair or on the bed),
standing up, talking to others, climbing ladder, opening
door, shaking hands, bowing, and drinking. The waiter
agent carries a pitcher with some kind of liquid, and acts
according to the following rules:

� if an avatar is sitting at the table, and the glass in front
of him/her is empty, the waiter will approach the glass,
and pour the liquid into it from the pitcher; or

� if the pitcher is empty, the waiter will go into the
kitchen through the open doorway, refill the pitcher,

and come back out; or

� if nothing needs to be done, the waiter will just stand
by the doorway and stay idle.

8.1. Contextual Behavior

The scene begins with ‘Bob’ entering the lodge while
‘Norm’, ‘Sarah’, and ‘David’ are seated at the table, drink-
ing and talking to each other. To be polite, Bob should issue
commands such as “greeththe name of an avatari” to greet
other people. Since ‘Bob’ is a smart avatar, upon receiving
the command, he will take different actions suited to differ-
ent situations:

� “greet Norm”. ‘Bob’ approaches ‘Norm’, puts for-
ward his right arm, and waits for the response from
‘Norm’. Assume that Norm sees the initiating ac-
tion of ‘Bob’, and so Norm issues a command “greet
Bob”. Then ‘Norm’ will stand up from the chair, turn
to ‘Bob’, grab his right hand, and shake hands with
him.

� “greet Sarah”. ‘Bob’ approaches ‘Sarah’, turns to face
her, and bows to her. Upon receiving the command
“greet Bob” from Sarah, ‘Sarah’ will stand up, face
‘Bob’, and bow back to him.

From these cases we can see that not only ‘Bob’ shows
his contextual behavior by executing different actions to dif-
ferent targets on the same command “greet somebody”, but
also ‘Norm’ and ‘Sarah’ show their contextual behaviors by
greeting back in corresponding ways to avatar ‘Bob’ who
has initiated the greetings.

8.2. Preparatory Actions

We have already remarked that a smart avatar may have
to execute some preparatory actions before performing the
main (requested) action. Now, let us take a look at a more
complex case (see Figure 5): suppose that David issues a
command “go to bed”. The command actually consists of
two sub-actions: “walk to the bed”, and “sit down on the
bed”. To be able to walk, ‘David’ should be in the “stand-
ing” posture, so he stands up from the chair first. Then he
realizes the bed is on the second floor, and the only way
leading to the second floor is via the ladder. So his subse-
quent preparatory actions should be “walk to the ladder”,
and “climb the ladder”. Thereafter, he can walk to the bed
and sit down on it.

In general, preparatory actions may involve the full
power of motion planning [4]. The commands, after all,
are essentially goal requests and the smart avatar must then
figure out how (if at all) it can achieve them. Presently we
just use PaT-Nets with hand coded conditionals to test for

Figure 5. Jack’s MOOse Lodge: a scene from
the example.

likely (but generalized) situations and execute appropriate
intermediate actions [26].

8.3. Leader-Follower Relationship

As the example proceeds, ‘Norm’ invites ‘Sarah’ to go
out for a walk. Sarah accepts the invitation by instruct-
ing ‘Sarah’ to “follow Norm”. Then as ‘Norm’ walks to
the door, opens the door, and exits the room, ‘Sarah’ trails
along behind. In this case, a leader-follower relation is es-
tablished between the avatars. A pursuit locomotion condi-
tion is established between the avatars which causes ‘Sarah’
to follow ‘Norm’ temporarily.

Note that this leader-follower relationship is totally dif-
ferent from that of pilot/drone, defined in [16]. A pilot is the
graphical version of the avatar controlled on the user’s own
client; the drones are the avatar copies executing on other
clients. In the leader-follower model one temporarily yields
some aspects of the control of one’s avatar to another’s lead.
Sarah could still instruct her avatar to wave good-bye even
as she follows ‘Norm’ out the door.

9. Future Work

Virtual environments appear natural for training, but a
number of complex problems remain to be addressed. A
project for team training in checkpoint operations is being
undertaken under ONR sponsorship through the University
of Houston, the University of Pennsylvania, LinCom Cor-
poration, and Transom Technologies. JackMOO will evolve
into a new system to support the additional requirements for
multiple human participants.

A distributed virtual environment used for training pur-
pose is likely to have three different types of virtual humans:
live participants, semi-autonomous virtual human agents,
and smart avatars. The live participants will be one or more

trainees. The semi-autonomous agents will be agents that
follow a few simple rules. For example, there might be
an agent that supervises the trainee; her only responsibil-
ity could be to stay in a position which allows her to view
both the trainee and the person the trainee is communicat-
ing with. The smart avatars will be able to display a more
varied repertoire of actions, perhaps initiated by verbal in-
structions or situation circumstances. These agents may in-
clude a subordinate helper or a person who tries to distract
the trainee.

Semi-autonomous virtual human agents will need rules
to guide their behavior. A good example of a rule-based
training agent is the Steve system [14]. Smart avatars will
also have a number of context-dependent actions associated
with them, but they will be given a sense of role, action-
planning, situation, and culture. For example, the waiter in
the MOOse lodge might eventually be programmed through
natural language instructions that generate the underlying
PaT-Net code. Smart avatars from different cultures will act
differently in the same situation, as was simply illustrated in
the greeting scenarios in the MOOse Lodge. Furthermore,
a user interface is necessary to allow users to enter goals
and instructions, or to change properties (e.g., culture) for
the smart avatars. A natural language interface may be a
fruitful medium for specifying these behavioral parameters.

A Parameterized Action Representation (PAR) is the key
structure that mediates language-level concepts and smart
avatar actions. A PAR includes slots to indicate the agent,
the involved objects, applicability conditions, termination
conditions, purpose, spatiotemporal terms, and agent man-
ner [5, 2]. The database of PAR prototypes is a dictionary
of action definitions: anActionary. The new PAR execu-
tion architecture will replace LambdaMOO with a full nat-
ural language parser, use the Actionary for interpreting in-
structions, and make PaT-Nets the virtual parallel machine
underlying the simulation process.

The PAR architecture will also be extended for a server-
less distributed scenario, in which multiple participants at
different geographic sites can participate in a common task
and interact with each other. The issues of this distributed
virtual environment architecture include coordination, syn-
chronization, real-time interaction, and consistency. We are
exploring the use of semantic information packets and PARs
to accomplish greater scalability and multi-site coordination
while minimizing network traffic.

10. Acknowledgments

This research is partially supported by Office of Naval
Research (through Univ. of Houston) K-5-55043/3916-
1552793, DURIP N0001497-1-0396, and AASERTs
N00014-97-1-0603 and N0014-97-1-0605; Army Research
Lab HRED DAAL01-97-M-0198; DARPA SB-MDA-97-

2951001; NSF IRI95-04372; NASA NRA NAG 5-3990;
and JustSystem Japan.

References

[1] N. Badler. Virtual humans for animation, ergonomics and
simulation.Proc. Pacific Graphics ’97, 1997.

[2] N. Badler, R. Bindiganavale, J. Bourne, M. Palmer, J. Shi,
and W. Schuler. A parameterized action representation for
virtual human agents. InWorkshop on Embodied Conversa-
tional Characters, Lake Tahoe, CA, Oct. 1998.

[3] N. Badler, C. Phillips, and B. Webber.Simulating Humans:
Computer Graphics Animation and Control. Oxford Univer-
sity Press, New York, NY, 1993.

[4] N. Badler, B. Webber, W. Becket, C. Geib, M. Moore,
C. Pelachaud, B. Reich, and M. Stone. Planning for anima-
tion. In N. Magnenat-Thalmann and D. Thalmann, editors,
Computer Animation. Prentice-Hall, 1996.

[5] N. Badler, B. Webber, M. Palmer, T. Noma, M. Stone,
J. Rosenzweig, S. Chopra, K. Stanley, J. Bourne, and B. D.
Eugenio. Final report to Air Force HRGA regarding feasi-
bility of natural language text generation from task networks
for use in automatic generation of Technical Orders from
DEPTH simulations. Technical report, CIS, University of
Pennsylvania, 1997.

[6] Baymoo. A social Moo with the San Francisco Bay Area as
a backdrop, telnet baymoo.sfsu.edu 8888.

[7] Biomoo. BioMOO is a professional community of Biology
researchers. It is a place to come meet colleagues in Biology
studies and related fields and brainstorm, to hold colloquia
and conferences, telnet bioinformatics.weizmann.ac.il 8888.

[8] Cafemoolano, a multi-language educational moo. used
and developed by a variety of humanities courses from UC
Berkeley and beyond, telnet moolano.berkeley.edu 8888.

[9] T. Capin, H. Noser, D. Thalmann, I. Pandzic, , and N. Mag-
nenat Thalmann. Virtual human representation and com-
munication in vlnet networked virtual environments.IEEE
Computer Graphics and Applications, 17(2):42–53, 1997.

[10] J. Cassell, C. Pelachaud, N. Badler, M. Steedman,
B. Achorn, W. Becket, B. Douville, S. Prevost, and
M. Stone. Animated conversation: Rule-based generation
of facial expression, gesture and spoken intonation for mul-
tiple conversational agents. InComputer Graphics, Annual
Conf. Series, pages 413–420. ACM, 1994.

[11] D. Chi, B. Webber, J. Clarke, and N. Badler. Casualty mod-
eling for real-time medical training.Presence, 5(4):359–
366, 1995.

[12] P. Curtis. LambdaMOO, 1997. Xerox PARC Ftp site: par-
cftp.xerox.com/pub/MOO.

[13] Diversity university, the first moo to be designed specifically
for classroom use. telnet moo.du.org 8888.

[14] W. L. Johnson and J. Rickel. Steve: An animated pedagog-
ical agent for procedural training in virtual environments.
SIGART Bulletin, 8(1-4):16–21, 1997.

[15] Lambdamoo, the original social moo. telnet
lambda.moo.mud.org 8888.

[16] Living Worlds, 1997.
http://www.livingworlds.com/draft1/index.htm.

[17] M. R. Macedonia and M. J. Zyda. A taxonomy for net-
worked virtual environments.the Second IEEE Workshop
on Networked Realities, October 1995.

[18] D. Miller and J. Thorpe. SIMNET: The advent of simulator
networking.Proceedings of the IEEE, 83(8), Aug. 1995.

[19] T. Noma and N. Badler. A virtual human presenter. InIJCAI
’97 Workshop on Animated Interface Agents, Nagoya, Japan,
1997.

[20] Pennmoo. telnet ccat.sas.upenn.edu 7777.
[21] C. Rose, B. Guenter, B. Bodenheimer, and M. Cohen. Effi-

cient generation of motion transitions using spacetime con-
straints. InACM Computer Graphics, Annual Conf. Series,
pages 147–154, 1996.

[22] Sensemedia moo. A MOO universe based on Neal Stephen-
son’s novel Snow Crash, telnet sapporo.sensemedia.net
9030.

[23] T. Smith, J. Shi, and N. Badler. Jackmoo, a prototype system
for natural language avatar control. InWebSim, San Diego,
CA, 1998.

[24] Tefcamoo. a virtual space for Educational Technology, Edu-
cation, Research and Life at TECFA, School of Psychology
and Education, University of Geneva,Switzerland, telnet tec-
famoo.unige.ch 7777.

[25] The java tutorial. http://java.sun.com/.
[26] T. Trias, S. Chopra, B. Reich, M. Moore, N. Badler, B. Web-

ber, and C. Geib. Decision networks for integrating the be-
haviors of virtual agents and avatars. InProceedings of Vir-
tual Reality International Symposium, 1996.

	University of Pennsylvania
	ScholarlyCommons
	March 1999

	Smart Avatars in JackMOO
	Norman I. Badler
	Jianping Shi
	Thomas J. Smith
	John P. Granieri
	Recommended Citation

	Smart Avatars in JackMOO
	Abstract
	Comments

	vr99.dvi

