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1. Introduction 

This paper discusses an application of of an agile camera system capable of measuring 

three-dimensional object locations to the problem of acquiring and relating multiple views of 

an unknown world. The following generic scenario indicates the importance of multiple 

views, and serves as the basis for our experiments. 

Imagine a device (for example, a gripper attached to a robot arm, a mobile robot, a mov- 

ing conveyor, etc) operating in a workspace crowded with unknown or only partially known 

obstacles, which may occlude themselves, each other, and the device. A vision system on or 

near the device is to assist this operation, perhaps by inspecting or recognizing objects of 

interest, perhaps by detecting impending collisions, perhaps by tracking the moving device, or 

perhaps by acquiring and maintaining a spatial "map" to be used for planning collision-free 

trajectories. For the vision system to function well in these and similar scenarios, a single 

view of the workspace is, in general, insufficient. For example, it may be impossible to recog- 

nize complex objects without seeing them from several aspects, and the spatial map may be 

incomplete (thus allowing dangerous collisions) because some objects are occluded from one 

viewpoint. 

Because of the complexity of the environment, it will be useful to acquire data from 

more than one viewing position. Multiple views allow exploration of a volume potentially 

much larger than the visual field of view, and enable otherwise occluded objects to become at 

least partially visible, thus increasing the completeness of the sampling of the environment. 

They also afford opportunities to authenticate the existence of objects seen again and again, 

thus increasing the density and reliability of the observations. 

This paper concentrates on one function in this scenario - constructing a spatial map of 

the location of objects - to take advantage of the benefits offered by multiple views. In the 

next section it presents the background for this work, and formally defines the problems to be 

solved. In section 3, it presents a method of identifying the inter-frame transformation param- 

eters together with their uncertainty. It reviews, in section 4, a method of visually identifying 



three-dimensional point locations together with their uncertainty. Next, section 5 describes a 

method of estimating the uncertainty on the object locations referred to a common coordinate 

frame. In section 6 it demonstrates the efficacy of these methods by showing quantitative 

experimental results for a real example. The paper concludes by critically analyzing the per- 

formance of the methods, appraising the approach, and identifying applications and extensions 

of the research. 

2. Background and Problem Definition 

This section presents the background for and an overview of our approach, describing the 

tools we use to move the sensors to different viewing positions, to acquire three-dimensional 

data, to merge data from multiple views, and to describe measurement uncertainty. It then 

formally defines two problems of particular interest, situating them in the literature. 

2.1. Background and Overview 

Multiple views could be acquired in many ways: with fixed, spatially distributed sensors; 

with freely wandering sensors; or with sensors attached to a mobile but constrained device 

such as a robot arm, or another manipulator. For the experimental purposes of this paper, the 

movement between different viewing positions is accomplished by the agile stereo camera 

system [16,20] illustrated in figure 1. Four servomotors position and orient the stereo cam- 

eras inside a supporting gantry, allowing horizontal and vertical translations, plus pan and tilt 

rotations. 

In addition to moving the sensors to different viewing positions, this apparatus allows the 

two cameras to converge and diverge, and provides control over focal length, aperture diame- 

ter, and focusing distance. Taking advantage of these features, this device can acquire three- 

dimensional point locations by using the technique of cooperative focus and stereo ranging 

(described in section 4), which has been selected as a matter of availability rather than 



necessity; it could be replaced by any of a wide variety of other techniques for three- 

dimensional data acquisition [12]. 

Perhaps the simplest method of analyzing data points from multiple views is to transform 

them into a common reference frame and merge them. With respect to the scenario, merging 

the data points amounts to adding them to the map. This approach has received considerable 

attention in the literature, which includes efforts to construct volumetric representations 

[7,11,22,29,30], and to recognize objects [13,14]. However, much of this work assumes that 

the inter-view transformations are known, and does not explicitly consider uncertainty. Other 

work on combining multiple stereo views [I] concentrates on identifying sensed data points 

belonging to the same physical entity (using a priori knowledge that points lie on a plane) and 

on "intelligently forgetting" objects seen before (by matching three-dimensional features, 

which also helps to refine the estimates of the inter-frame transformations), rather than simple 

merging without any knowledge. One criticism of using a global reference frame argues that 

it is not appropriate for mobile robots equipped with odometers, since the uncertainty on the 

vehicle position grows as the robot wanders, eventually reaching unmanageable proportions 

[6] .  However, it will be shown in section 3 that this criticism does not apply to positioning 

mechanisms like the camera system, which are agile but not truly mobile, so errors do not 

accumulate in the common reference frame. 

The scenario requires two kinds of measurements from the vision system: of the sensor 

location, and of object locations. Both of these problems require measuring a location param- 

eter, say Q, which represents the true, ideal location of sensor or object. Because of impre- 

cise and inaccurate sensing, each measurement Z of Q is inexact and uncertain. The meas- 

urements will be described by the additive error model: Z_ = @ + 41_, where represents the 

measurement error. Since calibration methods or techniques such as subtracting the mean can 

eliminate systematic errors, we assume that 41_ represents only a random error with mean zero. 



The literature on the estimation and representation of spatial uncertainty contains a 

number of different characterizations of random errors. They have been interpreted algebrai- 

cally as manifolds [5], and geometrically as spatial regions [27]. They have been treated pro- 

babilistically by using specific distributions (e.g., Gaussian [3,6]), and by a general multi- 

variate distribution (represented, e.g., by its covariance matrix [2,15,23,24] or its information 

mamx [lo]). The literature also documents a number of approaches to combining noisy 

measurements and propagating errors, including algebraic approaches [4,25] and probabilistic 

techniques which propagate errors differentially [a], and by using the partial derivative 

matrices of the inter-frame transformations [26]. 

For the purposes of this paper, V will be characterized by normal and uniform probabil- 

ity density functions (pdfs), whose second moments will be derived analytically for the joint 

position measurements, and empirically for the object position measurements. The propagated 

uncertainty will be derived directly from the first two moments of the random variables 

representing the measurements. 

2.2. Problem Definition 

Multiple views raise two particular problems that will receive attention in this paper, viz., 

identifying the transformation between two viewing positions, and understanding how uncer- 

tainties propagate as a result of applying the transformation. In the following fornlal problem 

statements, let A and B represent the sensor's position and orientation (it's pose), and let the 

point P_ referred to coordinate frame A be written AP_. The homogeneous transformation 

defining the rotation and translation referring A to B will be written A T B .  

Problem 1. For an object point visible as AP from A which may or may not be visible 

as P from B : (a) how can the transformation A T such that P = A T A P be computed 

from A and B ; and (b) what is its uncertainty U T ?  



If A and B are known, as they are for our camera system, then ATB is derivable from 

the forward kinematics of the positioning mechanism, as will be shown in section 3. Problem 

l a  is difficult if A and B are unknown. In this case, the rigid motion parameters can be 

determined from visual measurements by solving the structure from motion problem [28], or 

one of its variants. This may require identifying corresponding features from distinct views, 

which is a challenging task. The parameters can be more easily identified in some special 

cases, for example, by using a known target that is visible from every viewing position, and 

deducing the inter-frame transformation from the observed orientation of the target [21,31]. 

That the target be visible from every viewing position is an important restriction, and in com- 

plex environments this condition may be difficult to satisfy, thus limiting the generality of this 

approach. 

Problem l b  reduces to identifying the uncertainty on each of the coefficients of A T B .  

Facing the same problem, Grimson [9] derives theoretical bounds on the errors in a transfor- 

mation from object model coordinates to sensor coordinates. Our approach is to derive 

expected errors in the transformation from one sensor pose to another by analyzing the 

uansformation parameters as random variables to determine U T. 

Problem 2. Given that P = A T  A P and the uncertainty on A T  , (i-e., the solution to 

Problem I), what is the uncertainty Ys on P? - 

Note that this is a problem of identification, not of refinement or improvement, which 

decomposes into two sub-problems: (a) identifying the uncertainty UA on A c; and (b) iden- - 

tifying the propagated uncertainty on as a result of applying an uncertain transformation 

A T  to an uncertain point A P. Earlier work has provided a solution to Problem 2a that will 

be reviewed in section 4. Our approach to Problem Zb, addressed in section 5, is to directly 

derive the variance of the transformed point rather than to estimate its covariance matrix. 



In summary, according to the scenario of constructing a spatial map of the location of 

objects in a complex, static environment, the sensors move to a number of different 

viewpoints, and at each the vision system identifies three-dimensional object locations by 

cooperative ranging. Then the data points gathered from the multiple views are transformed 

(using the solution of Problem 1) into a common reference frame, and merged (using the solu- 

tion of Problem 2) into a single map, explicitly incorporating measurement errors. Modeling 

the data points at higher levels of abstraction is outside the scope of this investigation. 

3. Identification of the Transformation Parameters and Their Uncertainty 

This section presents a solution to Problem 1 for the agile camera system. First, for 

Problem la, it describes a procedure to use measured joint positions to identify the parameters 

of the transformation relating one viewing position to another. Then, for Problem lb, it 

analyzes the uncertainty of each of the identified parameters. 

3.1. Transformation Parameter Identification 

Let S be a coordinate frame representing the sensor pose, and C be the common coordi- 

nate frame to which all measurements are referred. The homogeneous transformation from S 

to C is 

where the Rij comprise an orthonormal rotation mamx R ,  and the ti constitute a vector t 

representing the position of the origin of S referred to C. This transformation can be used to 

refer measurements taken from any sensor pose to the common reference frame. 



For convenience, C will be attached to and aligned with a particular frame at the "origin" 

of the camera system. This is no restriction, since any frame F could be defined as the com- 

mon frame, as long as the transformation ' T such that s T F = s T c ' T  F is known. To 

specify the position of C ,  let x and y represent displacements along the horizontal and verti- 

cal axes (respectively) of the camera system gantry, with Cx = Cy = O  at the centers of the 

respective axes, x > O  and y > 0 for displacements to the left and the top (resp.), as seen from 

the front view in figure 1. We define the z-axis to make C left-handed, so that z > 0  for 

objects in the field of view, but note that no translation normal to the xy plane is mechani- 

cally possible for the camera system. To specify the orientation of C ,  let $, 8, and v be the 

Eulerian angles under the xylx" convention corresponding respectively to tilt, pan, and roll, 

with C + = C = 0 when the optic axes of the two unconverged cameras parallel the z -axis, i.e., 

look straight ahead. Since the cameras are mechanically unable to roll, v= 0. 

Potentiometers sense the position of each servomotor, returning measurements in motor 

units (number of motor steps). The task now is to identify each of the transformation parame- 

ters in equation (1) from measurements of motor positions, which for the particular device are 

linearly related to the sensor poses. 

Translation 

We determine the translation vector I = [r, ,$ , OIT from the camera system's horizontal 

and vertical servomotor positions. Let Qx and Qy (mrn) denote the maximum horizontal and 

vertical travels of the sensors; Mcx and Mcy (motor units) represent the motor positions at 

pose C ;  M, and My represent the motor positions sensed at pose S; Ma and Mq represent 

the number of possible motor positions. Defining unit steps per motor increment along each 

axis by 

sz, s X = - - - .  - 1.44 (mrn /step ), tiy = - Q~ = 1.00 (mmfstep ) , 
M a  MQY 



the horizontal and vertical translation components are 

tx = (Mx -Mcx, 6, (mm), ty = (My -Mcy 6y (rnm 1. 

Rotation 

We identify the rotation matrix R from the camera system's pan and tilt servomotor 

positions. Using definitions analogous to those in the preceding section, 

Q, 6,=-- - 0.20 (deg /step ), = - fie = 0.25 (deg /step ) , 
Mr4 Mn, 

$ =  (MQ-Mo4) 64 (deg), 0 = (Me-Moo) 6, (deg) . 

Under the xylxN Eulerian angle convention the rotation matrix is 

Abbreviating cos 8 by c 8 and sin 8 by s 0, and similarly for $, equation (5 )  expands to 

which is an orthonormal matrix with determinant +l. Thus, the rotation maintains the handed- 

ness of the coordinate frame S .  If the handedness of S and C differ, we can adapt R by rev- 

ersing the direction of any one of its eigenvectors. 

3.2. Uncertainty of the Transformation Parameters 

Following the approach to uncertainty described in section 2.1, we treat the measure- 

ments of the transformation parameters as random variables and derive their variances as 

functions of the limited resolution of the potentiometers sensing the se~omotors'  positions, 



which experiments have shown to be much lower than the servomotors' mechanical resolu- 

tion. These resolutions will be used to estimate the variances of the transformation parame- 

ters. Assembling all of these variances into one matrix, they can be expressed by 

where V R  is 3x3, and V, is 3x1. Note that V T is not a transformation matrix. The uncer- 

tainty of the transformation parameters will be defined by a matrix UT,  where UTij = G. 

Translation Uncertainty 

The vector Y, represents the variances of the components of translation vector I_, which 

are entirely due to the resolution of the horizontal and vertical potentiometers. Using equation 

(3), a reading M, of the horizontal motor position implies a translation x = (M, - M c x )  6, 

(rnrn) along the x-axis. But because of the limited resolution of the potentiometer, the sensors 

could be at position x *  bounded by x - 6, /2 I x * I x + 6,/2, and still produce the same 

motor position reading M,. 

Let us treat the actual position x*  as a random variable X .  Although it is convenient to 

assume a normal distribution on X (reference [17, Chap. 61 considers this case), this is not 

particularly plausible, because there is no physical reason for the actual positions to cluster 

around a central value. It is more natural to assume that the actual sensor position lies, with 

uniform probability, anywhere within a certain interval defined by the resolution, suggesting 

that the pdf of X is uniform. 

The uniform pdf is 

(b-a)-' a I x  I b  
Otherwise. 



A random variable X sampled from a uniform distribution has the following properties: 

From these properties, and the relation 6 = b -a ,  it follows that the variances of the transla- 

tion components are 

where 6, and 6, are given by equation (2). Using the numerical values from equation (2), 

= [0.17 , 0.08, 0 ,  OIT (mm2), Yt = [0.42, 0.28, 0 ,  OIT (mm) . 

Rotation Uncertainty 

The matrix V R  represents the variances of the rotation matrix coefficients, which are 

entirely due to the resolution of the pan and tilt potentiometers. As in the case of translation, 

this suggests a uniform probability distribution on the random variables describing the actual 

Eulerian angles. But a complication arises here, which does not occur in the translation case: 

while the motor positions are linearly related to the magnitude of the rotation angles, this is 

not the case for the sines and cosines of the angles which appear in the rotation matrix, since 

these trigonometric mappings are non-linear. 

Using the uniform distribution, we derive the variance of cos(@) and sin(@) in appendix 

A. This suffices for the terms R 11, R22, Rz3, and R31 in equation (6), but not for R 12, R 13, 

R32, and R33, which are products of trigonometric terms. In general, if X I  and X2 are 

independent random variables, then 

Var(X1X2) = Var(X1)Var(X2) + v ~ ~ ( x ~ ) E ~ [ x ~ ]  + v ~ ~ ( x ~ ) E ~ [ x ~ ]  . (9) 



Since 8 and $ are independent, equation (9) can be used to compute the variance of the pro- 

duct terms. Using this relation, the components of V R  are 

Var (c 8 )  Var (-s 8 s $) Var (s 0 c $) 

Var (c 0) 
8 )  Var (-c 8 s $1 Var (c 6 c $1 

concluding the identification of the uncertainty on the transformation parameters. 

In this formulation, the uncertainty of the transformation parameters U T  varies with the 

magnitudes of the rotations, but does not depend on the magnitudes of the translations. Note, 

however, that U T  does not vary with time. For a mobile robot equipped with odometric sen- 

sors, its position uncertainty accumulates with each instance of wheel slippage, so UT would 

vary with time, and the formulation would have to incorporate this. For the agile camera sys- 

tem, the potentiometers encoding position can not "slip;" thus, identifying the transformation 

parameters is not a cumulative process, and the uncertainty does not depend on past parameter 

values. 

4. Identification of Object Locations and Their Uncertainty 

This section reviews a procedure solving Problem 2a presented elsewhere 1171, but 

described here for completeness. First, it briefly presents a method for identifying three- 

dimensional object locations from one viewing position. Then, it presents a model of their 

uncertainty, again analyzing the components one by one. The final outcome is a set 

{(P , U p  )) of estimated three-dimensional points, together with their estimated uncertainties. 

4.1. Object Location Identification 

The method for identifying point locations is a computer vision procedure in which focus 

ranging [18] and stereo ranging [19] operate together, cooperatively computing the three- 



dimensional location of small patches of arbitrarily-shaped objects. It assumes that the scene 

is stationary and populated by multiple structured (not featureless) objects lying at unknown 

locations. 

Preprocessing extracts features at positions (u , v )  in the image. Focusing and stereo 

processes both make estimates Zf and Z,, respectively, of the range to the object point 

P = [X , Y , Z  , llT projecting to (u ,v). If one of the processes is unable to verify the range - 

estimate of the other, both estimates are discarded; this increases the reliability of the position 

measurements by enforcing measurement consistency via mutual constraint. The Z com- 

ponent of p is then computed as the maximum likelihood estimate given Zf and Z, ; this pro- 

vides an estimate of lower variance than either of the measurements alone. The X and Y 

components of P are computed using the pin-hole lens model for a lens of focal length f as 

The procedure produces a set of points P = [X , Y ,Z , llT referred to the sensor frame. 

Experiments on 75 different scenes have shown that the measurements are highly reliable and 

reasonably accurate. 

4.2. Uncertainty of the Computed Locations 

The variance oz of the normally distributed computed ranges Z has been experimentally 

determined [17, p. 1161; the square root of this figure - the expected range error o~ - is 

approximately one percent per meter: GZ = 0.01 z2 (m). The measurement error is distance- 

dependent, and an uncertainty of 1 percent/m is to be interpreted as follows: for an object 

point 1 m away the uncertainty on its range is 1 percent, or 1 cm; for an object at 2 m dis- 

tance the relative error is 2 percent, resulting in 4 cm uncertainty. 

This range error propagates through to the computed X and Y components of P. From 

equation (11) it can be shown [17, p. 1341 that a range error oz introduces errors in the 



computed X and Y positions: 

Interpreting the squares of ox and ay as the variances of the measurements of X and Y ,  

the variance & and uncertainty U p  of each point P located by cooperative ranging is 

xp = [c$ , a # ,  ~ 2 ,  OIT , U, = [ox , o y  , % , OIT . (13) 

5. Estimation of the Uncertainty on the Transformed Positions 

The position 'Q referred to the common coordinate frame C of a point SF in sensor 

coordinate frame S is 

The transformed position vector 'Q is thus the product of an uncertain mamx and an uncer- 

tain vector. This section derives the propagated uncertainty on the transformed point. 

(Appendix E derives a first-order approximation of the propagated uncertainty from the 

covariance mamx of all the parameters.) Just as the components of 'Q depend on 'T and 

'P, so do the variances 4IQ depend on the variances of the transformation parameters V T  

(equation 7), and the variances of the point location parameters V p  (equation 13). 

Let us begin with the X component of 'Q. From equation (14), 

Qx = T 11 Px + T 12 Py + T PZ + Ti4, which is abbreviated under the obvious substitutions 

to Qx = X 1  + X 2  + X3 + X,. If the Xi are independent, then the variance of their sum is the 

sum of their variances. However, the terms Px, Py, and PZ all depend on a common param- 

eter Z (cf. equation 1 I), and the terms T l j  , 1 1 j 1 3 ,  depend on the common parameters Q 

and 8 (cf. equation 6). Thus, the Xi are not independent, and consequently, we must 



incorporate the covariances between the Xi.  

For this, let X = [X 1 , ~ 2 ~ 3 , ~ 4 ] T  and its 4x4 covariance matrix 

'A = E [ ( X  - E [XI) ( X  - E [XJT]. The variance of Qx is 

The terms on the diagonal of 'A are Var (Xk) , 1 1 k 1 4 .  Since the point and transformation 

components are independent, each of the Xk, 1 1 k 1 3 ,  are products of independent variables, 

and equation (9) computes their variances. For k =4, Var (X4) = Var (T14). The off-diagonal 

terms involving T 14 (i.e., and hi4 , 1 5 i 5 3) are zero, since the translation components 

are independent of the rotation components. The terms 'Aij , i t j , 1 Si, j 1 3 ,  are derived 

in appendix B. Now 'A is completely defined, and equation (15) can be used to compute 

Var(Qx). The derivations of the variances of the Y and Z components proceed identically, 

and appendix B presents the details of their covariances. 

The structure of equation (15) and the sinilar equations for Var (Qy) and Var (Qz) allow 

them to be expressed more descriptively by 

This formulation explicitly delineates the contributions of different error sources to the resul- 

tant uncertainty of the point position in the common reference frame. The term V T  

represents the combined contributions of the uncertainties in the transformation and the com- 

puted point. The term E ~ [ T ]  Vp represents the uncertainty due to applying the nominal 

transformation to an uncertain point. The term VT E2[I'] represents the uncertainty due to 

applying an uncertain transformation to the nominal point position. The term C represents 

the covariance of the parameters. This formulation is consistent with the interpretation in pre- 

vious sections, that the vector I& represents the variances of the components of 'Q, and the 



vector & represents their uncertainties: 

Because Q is the product of T ,  whose components are (in the limit of perfect poten- 

tiometer resolution) uniformly distributed, and P, whose components are normally distributed, 

the pdf of Q is unknown. In a sense, this information has been lost by combining uniformly 

and normally distributed measurements. But for our purposes this loss is unimportant, since 

we use only the first two moments, which are explicitly available. 

6. Experimental Results 

The methods presented in the last three sections have been implemented as procedures 

and tested. This section presents experimental results on real data corresponding to the 

scenario of using multiple views to visually map a cluttered workspace in which a robot mani- 

pulator is operating. Specifically, it demonstrates the efficacy of the procedures performing 

multiple view analysis by observing the workspace from a number of different viewing posi- 

tions, transforming the data points into the common reference frame C (cf, section 3.1), and 

analyzing their uncertainties. 

Figure 2 illustrates the workspace used in the experiments: a gripper mounted on a robot 

arm, and a table cluttered with boxes. To name these objects with respect to the front view 

(figure 2a): the "LowBox" and "TopBox" are the two boxes lying to the left of the "Gripper;" 

the "Parcel" (really a parcel and the carton supporting it) lies to the right; and the "Base" (the 

base of the robot) lies below the Gripper. We manually measure the distances from the cam- 

era system gantry to the front surfaces of all of these objects in order to compare them as 

"ground truth" to the computed distances. 



The experimental procedure begins by servoing the sensors to eight selected poses Si, 

1 I i 1 8 ,  providing different views of the workspace. Figure 3 illustrates images digitized at 

each of the S i ,  where S coincides with C . Note that the Gripper is partially occluded by the 

TopBox from pose 5. Also note that some of the objects are either invisible (out of the com- 

mon field of view) or partially visible in several of the images; for example, the Base is visi- 

ble only from pose 8. 

Equations (3), ( 3 ,  and (6) derive mamces of the form of equation (1) for the transforma- 

tions ''TF Table 1 shows the computed transformation parameters for each of the eight 

poses. Only negative pan and tilt angles appear because of the geometry of the experimental 

setup; rotations in a positive sense would have moved the field of view away from the 

workspace. 

At each S ;, the cooperative sensing procedure described in section 4.1 computes a set of 

three-dimensional points "E,. Over the eight poses, it locates a total of 156 points, some of 

which are ranged again and again (e.g., the Gripper), while others are visible with sufficient 

contrast from only one vantage point (e.g., the Base). 

Equation (14) refers each of these points to C ,  creating a composite of the eight different 

views merged together. For the purposes of illustration, a clustering procedure [17, Chap. 71 

fits bounding three-dimensional boxes around spatially coherent collections of points. (It 

might equally well have fit ellipsoids to the clusters, but these correspond poorly to the struc- 

ture of the box-shaped objects.) Figures 4 and 5 illustrate side and top views of this compo- 

site, including both the points and their enclosing boxes. These graphs show that the structure 

of the scene has been preserved under all of the different transformations; they have not intro- 

duced systematic errors or bias. 

However, the fidelity of the map to the workspace is not complete. Close inspection of 

the two figures reveals that some of the points do not line up exactly with the corresponding 



labels on the ordinate axis. To quantify this "misalignment" for the Z component of the 

transformed points, let the range error be Az = IZ -QZ I ,  where Z represents the manually 

measured object distance expressed in frame C (we did not accurately manually measure the 

X and Y object positions). Table 2 presents the mean error of the N computed ranges for 

each object, over all eight sensor poses, as well as the standard deviation of the distribution of 

empirical errors. The table shows that the mean range errors increase with object distance, 

except for the Parcel. That this is an anomaly can be seen from the relatively large standard 

deviation, and can be explained by observing that some of the points on the sides of the Par- 

cel are measured (appearing as the two points the top left of the Parcel in figure 4, which are 

visible from pose 2), and these points lie at different distances than the front surfaces, which 

are the distances labeled on the ordinate axes of the graphs, and used in the error calculation. 

The table also shows that the actual range errors are considerably smaller than the expected 

range error of one percentlm. This is a pleasant surprise, but to the extent that that figure is 

derived from experiments on approximately 3000 object points, we conclude that the present 

data comes from eight particularly accurate runs (perhaps due to the highly textured objects) 

rather than that the figure is too high. 

For each point 'Q, equation (17) computes the uncertainty Q = lofi , op, , op, , O I T .  

We will illustrate these uncertainties graphically and analyze them numerically. For the pur- 

poses of illustration, we represent the uncertainty on a transformed point 'Q by adding six 

"satellite" points to the map, viz., 

Figures 6 and 7 show top and side views of the boxes computed with and without the satellite 

points, i.e., with and without considering uncertainty. The figures show that the uncertainties 

increase with object distance, and that the Z uncertainties are considerably larger than for X 



and Y .  

To analyze the uncertainties numerically we compute the mean X, Y, and Z uncertainties 

over the N measurements of the same object at all poses, as well as the standard deviation of 

the uncertainty distribution. Table 3 records these statistics before applying the transforma- 

tion, and table 4 records them after. Comparing these two tables in the mean uncertainty 

columns reveals that applying the transformation increases the X and Y uncertainties, but 

slightly decreases the Z uncertainty. That the uncertain transformation introduces position 

errors, as expected, accounts for the former. To account for the latter, surprising result, we 

observe that since the camera system can neither translate along nor rotate about the z axis, 

the Z uncertainty depends exclusively on the Z component of the object distance, which 

referring measurements to the common reference frame must in all cases decrease. 

Both tables 3 and 4 show that the Z uncertainty is in all cases larger than the X and Y 

uncertainties; this is expected, since the angular resolution of the lenses is considerably better 

than the resolution of the cooperative ranging procedure. The mean Z uncertainties are con- 

sistent with the figure one percenvm quantified in table 2. The magnitude of the X and Y 

uncertainties, both before and after applying the transformation, without exception increase 

with Z ,  which reflects the dependence of the uncertainty on object distance. Before the 

transformation, the X and Y uncertainties depend only upon the sensed point locations in the 

local frame of reference; table 3 shows that this varies from object to object, as it should. 

After the transformation, the X and Y uncertainties depend also upon the transformation 

uncertainties. For example, since all points on the Base are measured from pose 8, which has 

a large tilt angle (cf. table I), the mean Y uncertainty of the Base in table 4 is relatively large. 

As another example, the Gripper and TopBox have X uncertainties larger than Y in table 4, 

due to the fact that they are observed from a variety of poses where one transformation uncer- 

tainty is dominant; in the end the X uncertainty is larger, since both the horizontal and pan 



axes have lower resolution than the vertical and tilt axes, respectively (cf. equations 2 and 4). 

We can explain the relative magnitudes of the X and Y uncertainties of the other objects sirni- 

larly. 

Finally, we observe that the contribution of the covariance terms C in equation 16 is 

quantitatively negligible. Thus, the dependence on common variables of the point components 

and the transformation parameters has little effect on the uncertainty of the points referred to 

the common reference frame. 

To summarize the experimental results, the empirical range errors are Iess than the 

expected range uncertainty, but consistent with the distance-dependent uncertainty model. The 

observed effect of applying the uncertain transformations to uncertain points is to increase 

their X and Y uncertainties, while changing the Z uncertainties relatively little, where ,the 

uncertainty magnitudes of all components are distance-dependent. 

7. Discussion 

For many visual tasks, a single view of a complex environment is not enough. This 

paper has formulated and presented solutions to two problems arising in the context of acquir- 

ing and merging uncertain information from multipIe views of a static scene using the agile 

camera system as experimental support. 

The solution to the first problem - how to identify the transformation between two 

viewing positions and its uncertainty - requires first identifying the forward kinematics of 

the agile camera system in order to convert motor positions into metric units, and then analyz- 

ing the position and orientation measurements as uniformly distributed random variables 

whose variance is related to the potentiometers' resolutions in order to quantify the transfor- 

mation uncertainty. The experimental results confirm that the conversions are correctly imple- 

mented, since no systematic errors in the positions referred to the common frame appear. The 



results also show a concrete example of gaining information about objects (the gripper) that 

are partially occluded from one viewpoint, but are visible from another, illustrating one practi- 

cal benefit of multiple view analysis. 

The solution to the second problem - how to estimate the uncertainty on a transformed 

point - requires analyzing the expected values of random variables to arrive at an estimate of 

the resultant uncertainty, which is the sum of terms representing (i) the combined transforma- 

tion and point uncertainties; (ii) the uncertainty due to applying the nominal transformation to 

an uncertain point; (iii) the uncertainty due to applying an uncertain transformation to the 

nominal point; and (iv) the covariance between the transformation and point components. For 

the scenes studied, the mean uncertainties on the computed ranges are about two percent of 

the object distances, or approximately one percendm. Perhaps more important than the actual 

values is that realistic quantitative estimates of the uncertainty in meaningful metric units are 

computed, in contrast to the often more theoretical results reported in the literature that still 

have to be proven in practice. 

Although the implementation adequately demonstrates the principles of the approach to 

acquiring and merging uncertain information from multiple views, it is by no means a finished 

product. The remainder of this section discusses some improvements and extensions that 

might make it a more powerful system for applications such as inspecting or recognizing 

objects, detecting impending collisions, tracking moving objects, and visual mapping for plan- 

ning collision-free trajectories. 

The general approach to transformation parameter identification extends to positioning 

devices other than the agile camera system. For fixed sensors, one (manual) measurement of 

their relative positions suffices to determine the transformation parameters. For a mobile 

robot equipped with odometric sensors, they can be determined by trajectory integration. For 

sensors attached to positioning mechanisms, they are derivable from the forward kinematics of 



the mechanism. 

The use of the cooperative ranging technique for three-dimensional data acquisition 

imposes two important limitations: that the scene be static, and that the maps are quite sparse. 

Both of these limitations can be circumvented by using other data acquisition techniques that 

accommodate object motion and provide more dense data, perhaps with richer primitives than 

points. The basic machinery for processing multiple views would be unaffected by this. 

The basic premise of referring all measurements to a global coordinate frame is inap- 

propriate for devices equipped with odometric sensors, since the uncertainty on the transfor- 

mation parameters may grow to unmanageable proportions over time. Further, to simply 

merge all measurements into a common reference frame is inadequate for most real applica- 

tions of multiple view analysis, which may require object modeling at higher levels of 

abstraction. The clustering procedure illustrated in section 5 suggests one possible approach; 

it is not difficult to imagine using its box-like output for detecting and avoiding collisions. 

Given the computed uncertainties, a natural extension is to use them to reason about the 

possibility or probability that a task can be successfully accomplished. We compute the frrst 

two moments of the pdf, and assume that they sufficiently describe the random errors for 

decision-making purposes. For some applications, more moments may be necessary, requiring 

probabilistic studies leading to more complete measurement models. 

In summary, this work develops and demonstrates one approach to acquiring and merg- 

ing uncertain three-dimensional information from multiple views. With refinement and 

development, it may allow the many applications of machine vision to profit from the practi- 

cal advantages of processing information from multiple views. 



Appendix A. Variances of Cosine and Sine, Uniformly Distributed 

This appendix derives the variances of the functions cosine and sine of a uniformly dis- 

tributed random variable O. In addition, it derives the first moment of their product. 

Definition 1. The expectation of the random variable X with pdf p (X) is 

Definition 2. The expectation of the function g applied to the random variable X is 

Definition 3. The variance of g (X) is 

Definition 4. The pdf of a random variable O uniformly distributed on the interval [a, b ]  is 

(b-a)-' a I 8  <-b  
U ( O , a , b ) =  Otherwise. 

6 Definition5. b - a  = 6 ; A = - ; a  = 8 - A ; b  = 8 + A .  
2 

Identity 1. sin(x +y)  = sinx cosy kcosx siny . 

Identity 2. cos (x +y ) = cosx cosy - sinx siny ; cos (x -y ) = cosx cosy + sinx siny . 

Identity 3. sin 2x = 2 sinx cosx . 

Identity 4. cos 2x = cos2x - sin2x . 

Let us start by considering the first moment of the cosine function. By definition 2, 



Substituting the uniform pdf from definition 4 and integrating yields 

1 
b 

sin b - sin a 
E[cosO] =- J c o s e d 0 =  

b - a  a b -a  

Using definition 5, then identity 1, followed by algebraic manipulation leads to 

sinb - sina = sin(0+A) - sin(0-A) = 2cos8sinA ? 

2 cos 8 sin A 
E [cos O] = 

6 (A.1) 

Now we consider the second moment of the cosine function. By definition 2, 

Substituting the uniform pdf from definition 4 and integrating yields 

b 
1 b -a  + sinb cosb - sina cosa 

E [cos20] = - cos20 d 0 = 
b - a  a 2(b - a )  

Using definition 5, plus identities 1, 2, and 3, algebraic manipulation arrives at 

sinb cosb - sina cosa = cos20sin2A , 

Finally, using equations (A.l) and (A.2) and definition 3, the variance of cos O is 

Var (cos O) = E [cos20] - E 2[cos O] . 



The derivation of Var (sin 0) is quite similar to the derivation of Var (cos 0). Omitting 

the details, the results are 

2 sin 8 sin A 
E [sin O] = 

6 9 

Var (sin @) = E [sin2@] -   sin @I . (A.6) 

This concludes the derivations of the variances. Now we consider the first moment of 

the product cos O sin 0. From definition 2, 

Substituting the uniform pdf and integrating yields 

Some simplification of this equation results from considering the order of magnitude of cer- 

tain variables in the experimental setup. As described in section 3.1, the value of A (half the 

potentiometer resolution) does not exceed 0.125". The difference 

sin0.125" - 0.125" < 1 . 8 ~  thus, the small angle approximation that sinA = A is 

extremely accurate. Similarly, the value of cos 0.125' = 1 - 2 . 4 ~  lo4; for most purposes, this 

can be safely treated as unity. Making the small angle approximation that sin A = A, 

E [cos 0 sin 01 = sin 8 cos 8 cos A , 

and approximating cos A = 1, this reduces to 

E [cos @ sin 01 = cos 8 sin 0 , 

with an accuracy on the order of one part in one million. 



Appendix B. Covariances for the Transformed Point 

This appendix derives the covariances required to compute the variances of the com- 

ponents of the transformed point, as described in section 5. It uses results on the covariance 

between the point components (appendix C) and between the transformation parameters 

(appendix D). Appendix E develops another approach, which approximately computes the 

covariance benveen the transformed point coordinates. 

Definition 6. Let Ai represent any random variables. The covariance of Ai and A, is 

Note that if Ai and A, are independent, then Cov(Ai,Aj) = 0. If i =j ,  then 

Cov (Ai,Aj) = Var (Ai). Also, it follows from the definition that the relation is reflexive, i.e., 

COV (Ai, A,) = COV (Aj ,Ai). 

Definition 7. Let A = [A ,A 2 ,  A 3]T. The covariance matrix for A is defined by 

A A = E [(A - E [A]) ( A  - E [A])~]. In matrix form, the covariance matrix is 

Note that if the Ai  are pairwise independent, then A A is a diagonal matrix. If our notation is 

to be consistent with section 5, then A should have four elements. However, as described 

there, the covariances due to the fourth component are zero, so for simplicity we treat A as a 

three-vector. 

The diagonal terms of the covariance matrix are derived in section 5. The task here is to 

compute the off-diagonal terms, , hi, , 'hi, , i + j , 1 5 i , j 5 3. 

Let us begin with the covariances for the X component of the transformed point. From 



section 5, 

We proceed to compute Cov (X ,,X2), Cov (X2,X3),  and Cov (X 1,X3). 

First we consider Cov (X 1,X2) = COV ( T 1  Px , T 1 2  Py  ). Since the transformation parame- 

ters and the location parameters are independent, 

E[XlIE[X, l  = E[T,,P,l ECTl,PY1 = E~T,,1E[Px1E[T1,1E[P,1 . 

Since the covariance of T l l  and T12  is very small (as in appendix D, on the order of 

the product of the expectations closely approximates the expectation of the products, and the 

previous expression can be rewritten approximately as 

E[X1 lE tX21  = E [ T 1 1 1 E t ~ X l E [ T 1 2 1 E [ P Y l  = E[Tl1T l21  EIPXIEIPYI  . (B.1) 

Since the transformation and point location parameters are independent, it follows that 

E[T, ,PxT12PyI = ECT117-121 E[PxPyI  

Subtracting (B . l )  from (B.2) and applying definition 6 yields 

Cov(X1,X2)  = E[Tl1T l21  C O V ( P ~ , P ~ )  , 

where equations A.1, A4, and A.7 derive the expectation, and appendix C derives 

c o v  (Px 7 py 1. 

Analyses parallel to the above for Cov (XI ,X3)  and Cov ( X 2  ,X3)  arrive at 

completing the analysis for the X component. Using the reflexive property of definition 6, 



and writing Cij for Cov (i , j), the covariance matrix is 

Derivations of the covariances for the Y and Z components of the transformed point fol- 

low the same pattern, yielding 

concluding the identification of the covariances for the transformed point. 



Appendix C. Covariances Between the Point Components 

This appendix derives the covariances between the point components 

described in section 4. From this equation, and the fact that u and f are constants, the first 

U  U  moment of Px can be written E [Px] = E [- Z] = - E  [Z], and the first moment of PZ is 
f f 

u 2  E [PZ] = E [Z]. It follows that the product of the first moments is E [Px] E [PZ] = - E [Z], 
f 

U  
and that the frst  moment of the product is E [Px PZ] = -E [Z2]. Subtracting the two previ- 

f 
ous equations yields 

which, using the definitions of variance (definition 3) and covariance (definition 6), can be 

rewritten as 

Analysis of the YZ and XY covariances proceeds as above, and yields 



Appendix D. Covariances Between the Transformation Parameters 

This appendix derives the covariances between the transformation parameters, which we 

assume are functions of uniformly distributed random variables. As in section 3, the transfor- 

mation matrix is 

Since components only from the first row of T contribute to the variance of the X component 

of the transformed point (cf. section 5 and appendix B), and similarly for the other rows and 

point components, it suffices to consider the covariance between parameters in the same row 

of T .  In addition, since the translation component (the last element of the fust three rows) is 

independent of the rotation terms, the covariance between these terms must be zero, so we can 

restrict the analysis to the first three columns of the first three rows of T .  Thus, the analysis 

proceeds in three steps, one for each row. 

It will be useful to fust calculate the covariance between sin 0 and cos 0 ,  since many of 

the derived covariances will contain this term. From equations (A.l) and (A.4), and the 

small-angle approximation of sinA (which appendix A has shown to be highly accurate), the 

product of the first moments is 

E [cos O] E [sin 01 = 
4 cos 8 sin 0 sin2 A = cos sin 

- m 

Equation (A.8) expresses the first moment of the product. Subtracting the two yields 

Cov (COS O , sin 0 )  = cos 8 sin 8 (1 - cos A) . 03.3) 

As in appendix A, cos A = 1, so Cov (cos 0 , sin 0 )  = 0. 



With the preliminaries finished, let us turn to the covariances between the terms in the 

first row of equation (D.1). The covariance of the first and second components is by defini- 

tion Cov (T 11 , T 12) = COV (COS O , -sin O sin a ) .  Since O and are independent, the product 

of the expectations is 

- E [cos O] E [sin O sin a ]  = - E [cos O] E [sin O] E [sin a ]  . 

Again using the independence of O and cP, the expectation of the product is 

- E [cos O sin O sin cP] = - E [cos O sin 01 E [sin a] . 

Subtracting the product of the expectations from the expectation of the product and substitut- 

ing the numerical value from equation (D.3) gives 

Cov(T11,T12) = -E[sin@] Cov(cosO,sin@) = 0 . (D.4) 

The covariance of the first and third components is by definition 

Cov (TI , T 13) = Cov (cos O , sin O cos a), which using the same kind of analysis as above, 

yields 

The covariance between the second and third components is by definition 

Cov (T 12, T 13) z COV (-sin O sin 0, sin O cos a ) .  Since O and 0 are independent, the product 

of the expectations is 

- E [sin O sin a] E [sin O cos a ]  = - E 2[sin O] E [sin a ]  E [cos a] . 

Again using this independence, the expectation of the product is 

- E [sin O sin cP sin O cos cP] = - E [sin2 01 E [sin a] E [cos a] . 



Subtracting the product of the expectations from the expectation of the product gives 

Cov (T 12, T 13) = - E [sin a] E [cos a] Var (sin O) , 

completing the identification of the covariances between terms in the first row. 

In the second row of equation (D.l), the covariances of the first and second components 

and the first and third components are zero, since T21 = 0. From equation (D.3), the covari- 

ance between the second and third components is approximately zero. 

In the third row of equation (D.l), the covariances of the first and second components 

and the first and third components are the same as for the first row (equations D.4 and D.5) 

but with a sign change. The covariance between the second and third components is the same 

as for the first row (equation D.6), but with Var (sin O) replaced by Var (cos 0). 



Appendix E. First-Order Uncertainty of the Transformed Positions 

As an alternative approach to Problem 2 (defined in section 2), this appendix derives a 

first-order approximation of the propagated uncertainty on the transformed point. The 

approach involves what Ayache and Faugeras call "linearizing the problem," [2] and what 

Smith and Cheeseman call "approximating to first-order" [26], by working with the (approxi- 

mate) covariance mamx of measured parameters. This differs from the approach taken in sec- 

tion 5, which works with the (exact) covariance matrices using derived parameters (e.g., cos8 

rather than 8). Since we investigated the approximate approach, we devote this appendix to 

its formulation, but have not experimentally studied it in any detail. One reason for this is 

some unresolved questions, which appear at the end of the appendix. 

First, developing the formalism, we can rewrite equation (14) as 

where f is the nonlinear function described by the right-hand side of equation (14). The 

first-order Taylor series expansion off is 

af @ I  (J). where J is the Jacobian matrix of partial derivatives J E - 
ax 

The mean, to first order, is the function applied to the parameter means 

By definition, the covariance matrix is C (y) = E [(y - 2)(y - j)T]. From equations 

(E.l) and (E.2), C (y) = E [(J (z - i) (J @ - z ) ~ ] .  Using a transpose identity, this can be 

T T  rewritten as C (y) = E [(J (J - 9 )  (2 - 8) J 1. If the Jacobian is independent of the param- 

eters, then the product of the expectations is identical to the expectation of the products: 



From the definition of covariance, this is equivalent to C (y) = E [ J ]  C &) E [ J ~ ] .  The expec- 

tation of the Jacobian is equal to the Jacobian, since J does not depend on the statistical pro- 

perties of x, so 

Now we apply this formalism to the problem of computing the propagated uncertainty on 

the transformed point. Differentiating, the Jacobian is 

The covariance between the parameters is described by the matrix 

where 

Var (t, ) 0 var (4)) 
4 = [ 0 var(t,,) ] , = [ 0 va:(e)] 

Var (Px ) Cov (X ,Y ) Cov (X ,Z ) 

Var(Py) Cov(Y,Z) . 

Cov (2 , Y )  Var (Pz) I 
The mamx C &) is diagonal because the translation, rotation, and point parameters are mutu- 

ally independent. The 3x3 covariance matrix representing the uncertainty of the transformed 



point is given by equation (E.4). 

The vector l& representing the variances of the components of 'Q (cf. section 5) is 

related to the diagonal terms of the covariance matrix C(y) by 

The two important differences between this approach and that presented in section 5 are 

that the former computes the off-diagonal terms while the latter does not, and that the former 

is approximate while the latter is exact. This leads us to some questions which we have not 

yet answered. With respect to the first difference, how are the off-diagonal terms to be used 

in the assessment of the uncertainty on the components of the transformed point? And if they 

are not, then why bother to compute them? With respect to the second difference, how good 

is the first-order approximation in equation (E.l)? Is the Jacobian independent of the pararne- 

ters, so that we can derive equation (E.3)? And finally, how do the results of the two 

approaches differ? 
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Table 1. Computed Transformation Parameters 

Pose x Y Q 8 Objects N 
[rnm] [mm] [deg] [deg] Visible 

1 0.0 0.0 0.0 0.0 Gripper 23 
2 153.0 0.0 0.0 0.0 Parcel, Gripper 11 
3 153.0 -130.0 0.0 0.0 Parcel, Gripper 22 
4 0.0 -130.0 0.0 0.0 TopBox, Gripper 25 
5 -174.0 -130.0 0.0 0.0 TopBox 19 
6 0.0 0.0 -3.4 0.0 TopBox, Gripper 17 
7 0.0 0.0 -11.6 -2.1 LOWBOX 16 
8 168.0 161.0 -11.6 -2.1 Base, Parcel 23 

The computed transformation parameters relating the different sensor poses, where x 
corresponds to horizontal translations, y to vertical translations, Q to tilt rotations, and 
8 to pan rotations. The number N indicates how many points are ranged at each pose. 
Pose 1 coincides with the common reference frame C. For pose 2, the camera 
translates to the right, for pose 3 it translates downward, for pose 4 it translates back 
to the left, and for pose 5 continues to the left. For pose 6, it returns to pose 1 and 
tilts downward, and for pose 7 tilts farther down, and pans to the left. For pose 8 it 
maintains this orientation, but translates up and to the right. 

Table 2. Mean Eror of Transformed Points 

Object Z 0; N P(Az) ~ ( A z )  
[mml rm1 Em1 [mml 

LowBox 1701 28.9 16 12.2 11.2 
TopBox 1701 28.9 36 10.6 10.6 
Parcel 2133 45.5 44 27.0 29.6 
Gripper 2510 63.0 56 20.4 13.7 
Base 2820 79.5 4 32.7 5.6 

The table first lists the Z component of the (manually measured) object dis~ances 
expressed in the common reference frame C,  and the expected range error oz of 1 
percentlm (cf. section 4.2) for that object distance. p(AZ) represents the mean empiri- 
cal error over the N points sensed on each object, taken over all eight sensor poses. 
o(AZ) represents the standard deviation of the distribution of errors over all sensed 
points. 



Table 3. Mean Uncertainty of Points in Local Frame 

Object N ~(0x1 p(oy) ~ ( 0 ~ 1   OX) ~(GY) W Z )  
[mml [ m l  Em1 Emn11 [mml [mml 

LowBox 16 0.7 0.6 30.0 0.4 0.3 0.5 
TopBox 36 0.9 0.5 29.2 0.4 0.2 0.5 
Parcel 44 0.8 0.9 45.3 0.5 0.4 1.7 
Gripper 56 1.2 1.3 62.7 0.8 0.6 1.2 
Base 4 2.7 1.3 81.5 1.0 0.4 1.2 

Table 4. Mean Uncertainty of Transformed Points 

Object N ~(0x1 PWY) p(oZ) W X )  W Y )  W Z )  
[mml [ m l  rmm1 [mml [mml [mml 

LowBox 16 4.5 7.0 29.4 0.1 0.1 0.5 
TopBox 36 4.5 3.6 29.2 0.1 0.2 0.5 
Parcel 44 5.6 6.9 44.8 0.1 2.8 1.7 
Gripper 56 6.5 5.5 62.7 0.2 0.4 1.2 
Base 4 8.2 17.4 79.8 0.3 0.2 1.2 

The tables list the mean uncertainties p(oX), p(oy), and p(oZ), over the N points 

sensed on each object, computed over all eight sensor poses, and the standard devia- 

tions of the distribution of uncertainties o(ox), o(oy), o(oZ), over all sensed points. 



Figure Captions 

Figure 1. The Agile Camera System. 

Figure 2. Photographs of the Test Scene. This figure illustrates the test scene: a 

gripper attached to a robot arm, and a table cluttered with objects. 

Figure 3. Digitized Images of the Test Scene. This figure illustrates images digitized at 

each of the eight sensor poses (described in table 1). The white overlaid box represents the 

field of view common to the focusing and stereo procedures; only object points inside the box 

are measured. The tape measure used for "ground truth" is visible at the bottom of the 

images from poses 7 and 8. 

Figure 4. Top View of Points Referred to the Common Frame. This figure plots a top 

view of the computed range map. As described in section 3, the origin of the underlying 

left-handed coordinate frame is at the center of the right camera lens; the positive z-axis 

increases toward the objects, the x-axis points from the left to the right of the digitized 

images, and the y-axis points from bottom to top. The rectangles represent the output of the 

clustering procedure. 

Figure 5. Side View of Points Referred to the Common Frame. This figure plots a side 

view of the computed range map, using the same coordinate frame as Figure 4. 

Figure 6. Measurement Uncertainties, Top View. Top view of the computed range map 

including measurement uncertainties. The solid rectangles represent the output of the cluster- 

ing procedure, and the dashed rectangles represent the worst-case uncertainties (the best-case 

is not illustrated for aesthetic reasons). 

Figure 7. Measurement Uncertainties, Side View. Side view of the computed range 

map including measurement uncertainties. 



Figure 1. The Agile Camera System. 
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Figure 2. Photographs of the Test Scene. 
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Figure 3. Digitized Images of the Test Scene. 
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Figure 3 (continued). Digitized Images of the Test Scene. 
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Figure 4. Top View of Points R e f d  to the Common Frame. 
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Figure 5. Side View of Points Refenred to the Cornman Frame. 
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Figure 6. ~eas 'mment  Uncertainties, Top View. 
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Figure 7. Measurement Uncertainties, Side View. 
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