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Abstract 

We provide new techniques for the analysis of the expressive power of query languages for nested 
collections. These languages may use set or bag semantics and may be further complicated by the 
presence of aggregate functions. We exhibit certain classes of graphs and prove that properties of 
these graphs that can be tested in such languages are either finite or cofinite. This result settles the 
conjectures of Grumbach, Milo, and Paredaens that parity test, transitive closure, and balanced 
binary tree test are not expressible in bag languages like BALG of Grumbach and Milo and LQL of 
Libkin and Wong. Moreover, it implies that many recursive queries, including simple ones like test 
for a chain, cannot be expressed in a nested relational language even when aggregate functions are 
available. In an attempt to generalize the finite-cofiniteness result, we study the bounded degree 
property which says that the number of distinct in- and out-degrees in the output of a graph query 
does not depend on the size of the input if the input is "simple." We show that such a property 
implies a number of inexpressibility results in a uniform fashion. We then prove the bounded degree 
property for the nested relational language. 

I Introduction 

As the relational algebra and the  relational calculus are standard languages for relational databases, 
upon which most other approaches are based, there was a search for a standard language for nested 
relations and, more generally, nested collections. Several researchers have found such languages: Schek 
and Scholl [15]; Thomas and Fischer [16]; Colby [5]; Abiteboul and Kanellakis [I]; Breazu-Tannen, 
Buneman, and Wong [2]. All the  discovered algebras and calculi have been proven t o  possess the same 
expressive power. So we can speak of the nested relational algebra or calculus. 

The  practical versions of these languages are further complicated by the presence of aggregate functions 
and arithmetic operations. Moreover, t o  implement these aggregate functions, they often use bag 
semantics. Tha t  is, duplicates are not removed. Many results on relational languages do not carry 
over t o  languages with bag semantics; see Chaudhuri and Vardi [4]. Adding aggregate functions t o  
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the nested relational algebra was studied by us in [ l l ,  121. In particular, we showed that the language 
thus obtained is equivalent to the nested bag algebra, called BALG in Grumbach and Milo [9] and 
BQC by us in [ll] .  This confirmed the intuition that bags essentially give us an ability to work with 
numbers. 

There are many problems in analyzing these of languages. The flat relational algebra is an alge- 
braization of first-order logic. Therefore, to answer questions about expressibility of the flat relational 
languages based on the relational algebra one can use a rich body of results known about first-order 
expressibility, as in Chandra and Hare1 [3] and Fagin [6]. However, calculi for nested relations are 
essentially higher-order logics, where very little is known about expressibility over finite structures. 

Therefore, new techniques are needed for analyzing languages for nested collections. A difficulty seems 
to  be that, in writing simple queries, one can increase the level of nesting in the intermediate data and 
then get a desired result by flattening or unnesting. Unless there is some restriction for doing this, 
there is very little hope for finding nice tools for analyzing expressiveness of such languages. 

Fortunately, queries of the nested relational algebra were shown to be independent of the height of set 
nesting in the intermediate data. The first result of this kind was proved by Paredaens and Van Gucht 
[14] for queries over flat relations. It was later generalized by Wong [17] to arbitrary queries. Recently, 
we showed that it continues to hold in the presence of aggregate functions [12]. This property provides 
the simplifying tools we need to analyze our languages. 

Since BQC has built-in arithmetic, it is hard to find a logic that would capture it. Thus it is not 
clear which techniques can be used for proving results about its expressive power. There are several 
conjectures on BQL and the nested relational algebra, formulated by Grumbach and Milo [9] and 
Paredaens [13]: 

Conjecture 1 (Grumbach and Milo) Parity test is not definable in  BQL. 

Conjecture 2 (Grumbach and Milo) Transitive closure is not definable in  BQC. 

Conjecture 3 (Paredaens) Test for balanced binary trees is neither definable in the nested relational 
algebra nor in BQC. 

BALG and f?QL can be embedded in the nested relational language with aggregate functions [ll]. 
Therefore, it suffices to  solve conjectures 1, 2, and 3 in the latter. That conjecture 1 is true was shown 
by us in [ll]. In this paper, among other things, we prove conjectures 2 and 3 as well. 

Before we outline the main results of this paper, let us make a few observations. In most cases when 
people conjecture that something like transitive closure is not expressible in a language, they actually 
mean that a language is incapable of expressing recursive queries. Transitive closure just happens 
to be the most famous example of a recursive query, but it is not the simplest one. As Immerman 
[lo] showed, the first-order logic with transitive closure captures the complexity class NLOGSPACE 
over ordered structures. There are (possibly) simpler classes and complete problems for them. For 
example, DLOGSPACE is captured by the first-order logic with deterministic transitive closure [lo]. 



Therefore, if we could show that deterministic transitive closure is not expressible in the language that 
has at least the power of the first-order logic, then many other inexpressibility results will be obtained 
for free (for instance, connectivity and transitive closure). In fact, we exhibit two queries which are , 

at most as hard as the deterministic transitive closure, one of them being a test for balanced binary 
trees, and show that they are not expressible in the languages we study. 

We also face a lack of uniformity in proving inexpressibility results. There are well-known tools for 
proving first-order inexpressibility over finite structures, such as Ehrenfaucht-FraYssd games. However, 
applying them to any query whose inexpressibility is to be proved, is a separate combinatorial problem, 
which is sometimes a nontrivial one. This is, perhaps, one of the reasons Paredaens formulated his 
balanced binary tree conjecture for the nested relational algebra as well. For the Paredaens conjecture, 
it may be easier to  use another technique, Hanf's lemma (as presented in [7]), but it still requires some 
combinatorial proof which no longer works if we ask about balanced ternary, 4-ary etc. trees. In this 
paper we demonstrate a uniform technique for proving various inexpressibility results for the nested 
relational calculus that does not have this deficiency. 

Organization. The rest of the paper is organized in four sections. In section 2 we describe the 
nested relational calculus NRC and its enhancement with aggregate functions SQC as in [12]. We 
choose this presentation of the nested relational calculus because of the simplicity of its syntax and 
the availability of tools for analyzing it. We formulate the conservativity results for NRC and SQL. 

In section 3 we define our sample queries and show that they are at most as hard as deterministic 
transitive closure. We then present the bounded degree property of a language and show how it implies 
various inexpressiblity results in a uniform fashion. We prove this property for the nested relational 
calculus. 

In section 4 we study the expressive power of SQL. Using conservativity, we first state that properties 
of naturals it can define are either finite or co-finite. Then we prove a much more involved result that 
properties of certain graphs definable in SQC are also finite-cofinite. From this result, we derive the 
inexpressibility of our sample queries in SQC and f3Q.C. Finally, we show that complete problems for 
a number of complexity classes below PTIME cannot be expressed in SQC. Concluding remarks are 
given in section 5. 

2 Languages NRC and SQC and conservative extension 

In this section we define the nested relational calculus NRC as in Breazu-Tannen, Buneman and Wong 
[2] and its extension with aggregate functions as in Libkin and Wong [12]. 

A type in NRC is either a complex object type or is a function type s + t where s and t are complex 
object types. The complex object types are given by the following grammar: 

s , t  ::= bI B 1 unit I s x t  I { s )  

Here b ranges over some collection of unspecified base types. Objects of type B are the two boolean 
values true and false. Type unit has a unique object denoted by 0. Objects of type s x t are pairs 
whose first components are objects of type s and second components are objects of type t .  Objects of 
type {s) are finite sets of objects of type s. Expressions of NRC are given in figure 1. 



Lambda Calculus and Products 

e : t  e l : s + t  e 2 : s  
xs  : s Xxs.e : s -+ t el e2 : t 

e l : s  e 2 : t  e : s x t  e : s x t  
( ) :  unit (e l ,e2)  : s  x t  nl e : s  n2 e : t  

Set Monad 

e : s  el : { s )  e2 : { s )  el : { s )  e2 : { t )  

0" : { s )  {e l  : { s )  el u e2 : { s )  U{el  I xt E e2) : { s )  

Booleans 

e l : s  e 2 : s  e l : B  e 2 : s  e 3 : s  
el =' e2 : B true : B false : B if el then e2 else es : s 

Figure 1: Expressions of N R C  

Semantics (see [2, 121). The lambda calculus, product, and boolean constructs are standard. We 
briefly describe the meaning of the monad constructs here. {) is the empty set. {e}  is the singleton 
set containing e. el U e2 is the union of sets el and e2. The construct U{el I x E e 2 )  denotes the set 
obtained by first applying the function Xx.el to elements of the set e2 and then taking their big union. 
Hence U{el  I x E e 2 )  = f (01)  U . . . U f (o,), where f is the function Xx.el and (01, . . . , on) is the set 
e2. It must be stressed that the x E e2 part in the construct U{el I x E e2} is not a membership test; 
it is the introduction of a new variable x whose scope is the subexpression el.  

The language SQC is obtained by adding the type of rationals Q and the following constructs to  N R C :  

Arithmetic 
e l : Q  e 2 : Q  e l : Q  e 2 : Q  

el + e2 : Q el e2 : Q 

e l : Q  e 2 : Q  e l : Q  e 2 : Q  
el t e2 : Q el - e2 : Q 

el : Q e2 : { s )  e l : Q  e 2 : Q  
Cue1  I zS  E e2D : Q el 5 e2 : B 

The semantics of C u e l  I xS E e2D is f (01)  + . . .+ f (o,), where f is the function Xx.el and {ol,  . . . , 0,) 
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is the set es. All standard aggregate functions found in commercial databases can be expressed using 
C; see [12]. 

Remark. A sublanguage of SQC obtained by restricting Q to N, removing f, and using monus instead of 
minus is equivalent to the nested bag languages BALG and BQC of [9, 111. Hence, any inexpressibility 
result for SQC implies a similar result for BQC. 

Let us now define the concept of conservative extension. The set height ht(s)  of a type s is defined by 
induction on the structure of type: ht(unit) = ht(b) = 0, ht(s x t )  = ht(s  -+ t )  = max(ht(s) ,  ht( t ) ) ,  
and ht ({s} )  = 1 + ht(s).  The set height of an expression e is defined as ht(e)  = max{ht(s) ) s occurs 
in the unique type derivation of e}. Let denote the class of functions whose input has set height 
at most i ,  whose output has set height at most o, and which are definable in the language L using 
an expression whose set height is at most h 2 max(i,o).  C is said to have the conservative extension 
property if L;,o,h = C;,,,h+l for all i, o, and h > max(i,o).  In other words, having the conservative 
extension property means that any query is independent of the height of intermediate data. 

Fact 1 (Paredaens and Van Gucht [14], Wong [17]) N R C  has the conservative extension property. In 
particular, N R C  queries on Pat relations are exactly those expressible in the fiat relational algebra. 

Fact 2 (Libkin and Wong [12]) SQL has the conservative extension property. 

3 Bounded degree property and NRC 

In this section we first define two sample queries and show that in a language having at least the 
power of the relational algebra (first-order logic) they are at most as hard as deterministic transitive 
closure. Then we define the bounded degree property of a language and show how it implies a number 
of inexpressibility results in a uniform fashion. Finally we prove that this property holds in N R C .  

Definition 1 

chain : { s  x s }  -, B is a query that takes in  a graph and returns true i$ the graph is a chain, 
that is, a tree such that the out-degree of each node is at most 1. 

bbtree : { s  x s )  + B is a query that takes in  a graph and returns true i$ the graph is a 
balanced binary tree, that is, a binary tree in which all paths from the root to the leaves have 
the same length. 

(see Immerman [ lo ] )  dtc : { s  x s )  + { s  x s )  is the deterministic tmnsitive closure. That 
is, i f  G = (V ,  E )  is a digraph, then dtc(G) = (V ,  E') where ( v l ,  v k )  E E' i f l  there is a path 
( v l ,  v2) E E ,  . . . , ( v ~ - ~ ,  vk )  E E such that v;+l is a unique descendant of v;, i = 1,.  . . , k - 1. 

Proposition 1 Let L be a language that has at least the power of the relational algebm. Then chain 
and bbtree are expressible in L(dtc)'. 0 

'Operations added to languages are listed explicitly in the brackets. 



Corollary 1 Let C be a language that has at least the power of the relational algebm. If chain is 
not expressible i n  C ,  then none of the following is expressible in  C:  dtc, transitive closure, tests for 
connectivity of directed and undirected graphs, test whether a graph is a tree, test for acyclicity. 

Let G = (V, E )  be a graph. Define in-deg(v) = card({vt I (v', v )  E E ) )  and out-deg(v) = card({v' I 
( v ,  v') E E ) ) .  The degree set of G ,  deg(G), is defined as {in-deg(v) I v E V )  u {out-deg ( v )  I v E V )  N .  
One of the reasons why most recursive queries are not first-order definable is that they may take in 
a graph2 whose degree set contains only small integers and may return a graph whose degree set is 
large. The definition below captures this intuition. 

Definition 2 Let C be a language. It is said to have the bounded degree property (at type s )  i i  for 
any f : { s  x s }  + { s  x s )  that is definable in  C and for any number k there exists a number c,  depending 
on f and k only, such that card(deg( f (G) ) )  5 c for any graph G satisfying deg(G) {0,1, .  . . ,k}. 

The bounded degree property can be used to prove various inexpressibility results. 

Theorem 1 Let C be a language that has at least the power of the relational algebm. Then, i f  C has 
the bounded degree property at type s ,  then neither chain : { s  x s )  + B nor bbtree : { s  x s) + B is 
expressible i n  C.  

Proof. We offer a proof by picture. Assume chain is definable; then it is possible to define an expression 
that, when given a chain as an input, returns its transitive closure. As shown below, using chain it is 
possible to determine if a precedes b by re-arranging two edges and checking if the resulting graph is 
a chain: 

But this contradicts the bounded degree property as we started with an n-node graph whose degree 
set is {O,1) and ended up with (0, 1, . . . , n). 

If bbtree is definable, it is possible to determine if two nodes in a balanced binary tree are at the same 
level by re-arranging two edges as follows and checking if the result is still a balanced binary tree: 

2We use graphs for the simplicity of exposition. Relational structures of arbitrary finite arity can be used. 
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Again, we started with an n-node graph whose degree set is (0, 1,2) and, making cliques of the nodes 
at the same level, ended up with a graph whose degree set has cardinality log2(n + 1). 

The main reason we study this property is that it holds in NRC. 

Theorem 2 NRC has the bounded degree property at base types. 

Proof sketch. Let f : {b x b) -t {b x b) be an N W  expression where b is a base type. Then, by 
conservativity, f is equivalent to a relational algebra expression. Therefore, if Gt = f (G), then for some 
first-order expression F we have VaVbEt(a, b) tt F(a, b, E). According to Gaifman [8], F is a Boolean 
combination of certain sentences and formulae with a, b as free variables in which all quantifiers are 
bounded to some neighborhoods of a and b. Moreover, the maximal radius of those neighborhoods, r, 
is determined by F. If deg(G) E: (0,. . . , k), then it is possible to find the number of all neighborhoods 
of radius up to r ,  which depends only on F and k. Let co be that number. Then, for all nodes a and 
b which have the same neighborhoods of radius up to r,  we have Vc : Et(a, c) t, Et(b, c). Hence, there 
are at most 2Q elements in deg(Gt). 

This settles the first part of conjecture 3. 

Corollary 2 

r The flat relational algebra has the bounded degree property. 

r chain, bbtree and other queries listed in corollary 1 are not expressible in NRC. 

4 Finite-cofiniteness and SQC 

To the best of our knowledge, there is no logic capturing the language SQC, nor its flat fragment. The 
proof of the bounded degree property is based on Gaifman's result about local formulae [8]. That 
result was proved by quantifier elimination. This poses a problem if we try to prove the bounded 
degree property for flat types in SQC. 

In this section we use another technique to overcome this difficulty. It is well known that properties 
of cardinalities of finite models which can be tested in the first-order logic are either finite or co-finite. 



For example, parity cannot be tested. Using conservativity, we present two results of the same kind 
for SQC. First, properties of natural numbers expressible in SQC are either finite or co-finite. That 
answers conjecture 1. Second, for certain families of graphs the same finiteness-cofiniteness property 
holds. Then we derive inexpressibility of chain and bbtree from that. This answers conjecture 2 and 
the second part of conjecture 3, since BQL can be embedded in SQC. 

4.1 Expressive power of SQC at base types 

Let U be a property of natural numbers, that is, U & N. By a test for U we mean a function p : Q + B 
such that for all n E N, p(n) is true iff n E U. 

Theorem 3 (see Libkin and Wong [ll]) Let 24 E N be a property of natural numbers. Then mem- 
bership test for U is definable in S g  iflU is either finite or co-finite. 

A similar result can be shown for new base types, provided we do not have powerful functions on 
them. It  is also based on the conservative extension property. 

Corollary 3 Let b be a base type with a countably infinite domain D. Assume that only equality test 
and a linear order sb isomorphic to o are available for b. Then a test for D' D is definable in 
SQC(b, s b )  ifl D' is either finite or co-finite. 

4.2 Expressive power of SQC over flat relations 

A binary relation 0 : {b x b) is called a k-multi-cycle if it is nonempty and is of the form 

where h 2 k and 4 are all distinct. That is, it is a graph containing rn > 1 unconnected cycles of 
equal length h >_ k. 

Define distance,(o, o', 0 )  to be a predicate that holds iff the distance from node r l o  to  node r20' in 
k-multi-cycle 0 is c. Note that distance, is definable in SQC for each constant c. 

Define a d-state S with respect to variables R : {b x b), X I ,  ..., x, : b x b to  be a conjunction 
of formulae of the form distance,(x;, x j, R) or the form 1 distance,(x;, x j  , R). Moreover for each 
0 5 c 5 d, 1 5 i, j 5 m, either distance,(x;, xj, R) or ldistance,(x;, xj, R) must appear in it. Also S 
has to  be satisfiable in the sense that some k-multi-cycle 0 and edges 01, ..., om in 0 can be found so 
that SIO/R,ol/xl, ..., o,/x,] holds. 

Theorem 4 Let G : {b x b) + B be a function ezpressible in SQC. Then there is some k such that 
for all k-multi-cycles 0 ,  it is the case that G(0)  is true; or for all k-multi-cycles 0, it is the case that 
G(0)  is false. 



Figure 2: Special form of SQC query 

Before we present the proof of this theorem, let us observe that if we identify isomorphic k-multi-cycles, 
then for any m 2 1, properties of k-multi-cycles consisting of at most m components are either finite 
or co-finite. In SQC(chain) it is possible to distinguish k-multi-cycles containing one cycle from those 
containing two. Therefore, 

x + ~ ~ }  C 

Corollary 4 chain is not expressible in SQC. 

The proof of theorem 4 uses the following property of k-multi-cycles. 

( . . . j /  

Proposition 2 Let E be an expression of SQC having R : {b x b), N : Q, X I ,  ..., xm : b x b as 
free variables such that E has the special form given in figure 2, where fi7s are mtios of polynomials 
in terms of N ,  Pj's are Boolean combinations of formulae of the form T;X;I = n j x j ~ ,  T;X;I # njxjl ,  
~distance,(x;, x i ,  R ) ,  or distance,(z;,xj, R ) .  Let d 1 n + m + C where C is the sum of the c's for 
each distance,(x;,zj, R )  or ldistance(x;, x j ,  R )  in  the P;'s. Let S be any d-state with respect to R ,  
x l ,  ..., x,. Then there is a number k and a mtio e of polynomials in  terms of N such that for any 
k-multi-cycle 0, and edges 01, ..., om in 0 making S [ O / R ,  o l / x l ,  ..., om/xm] true, it is the case that 
E [ O / R ,  o l / x l ,  ..., om/xm, card(O)/N] = e[card(O)/N]. 

Proof sketch. By the probability p for a predicate P of n free variables to hold with respect to a graph 
0, we mean the proportion of the instantiations of the free variables to edges in 0 that make P true. 
The key to the proof of this proposition is in realizing that the probability p; for P; to hold and Pj<; to 
fail can be determined in the case of k-multi-cycle when k is large. (By convention, po is the probability 
for every Pi to fail. That is, it is the probability for the last branch to be executed.) Moreover pi can 
be expressed as a ratio of two polynomials of N .  Thus e can be defined as N n  . (po . fo + . . . + ph . fh) .  

if Pl 

In f l  else then if f h  Ph 

else fo 

Each probability p; can be calculated as follows. First, generate all possible d-states Dj7s with respect 
to the variables R ,  X I ,  ..., xm+,. Second, determine the probability qj of D j  given the certainty of S ;  
this can be calculated using the procedure given in the next paragraph. Third, eliminate those Dj7s 
that are inconsistent with the conjunction of S, Pi, and the negation of Pj<;. Finally, calculate pi by 
summing the q j 7 s  corresponding to those remaining d-states. 

x m + R  

It remains to show that each qj can be expressed as a ratio of two polynomials in N .  Partition the 
positive leaves of the corresponding D; into groups so that the variables in each group are connected 
between themselves and are unconnected with those in other groups. (Variables x and y are said to 



be connected in D; if there is a positive leaf distance,(x, y, R) in D;.) Note that the negative leaves 
merely assert that these groups are unconnected. Then we proceed by induction on the number of 
groups. 

The base case is when we have just one group. In such a situation, all the variables lie on the same 
cycle. Then a lower bound on k can be determined from the group to force the variables to lie on a 
line. Let u is the number of free variables amongst xm+l, ..., xm+, appearing in the group; in this 
case u = n. Then q; = N t NU if no variables amongst XI, ..., x, appear in the group. Otherwise, 
q; = 1 + Nu. In either condition, q; is a ratio of polynomials in N. 

For the induction case, suppose we have more than one group. The independent probability of each 
group can be calculated as in the base case. Then q; is the difference between the product of these 
independent probabilities and the sum of the probabilities where these groups are made to overlap in 
all possible ways. These groups are made to  overlap by turning some negative leaves in D; into positive 
ones. Notice that when groups overlap, the number of groups strictly decreases. Hence the induction 
hypothesis can be applied to  obtain these probabilities as ratios of polynomials in N. Consequently, 
q; can be expressed as a ratio of polynomials in N as desired. 

Now we return to the proof of theorem 4. 

Proof sketch of theorem 4. Suppose G : { b  x b )  + B is implemented by the SQL expression XR.E. 
Without loss of generality, E can be assumed to be a normal form with respect to the rewrite system 
used by us in the proof of the conservative extension theorem [12]. We note that such an E contains 
no subexpression of the form U{el I x E e2}. Furthermore, all occurrences of summation in E must 
be of the form C u e  I x E RE. 

Let us temporarily enrich our language with the usual logical operators V, A, 1, #, $, as well as 
distance,. Also introduce a new variable N : & which is to be interpreted as the cardinality of R. 
Rewrite all summations into the special form given in figure 2, so that each f; has the form hi t g;, 
where hi is a polynomial in terms of N and g; is either a polynomial in terms of N or is again a 
subexpression of the same special form. Also, the Pj's are formulae whose leaves are of the following 
form: n;x;t = njxjt, T;X;I # njxjt, distance,(xi,xj, R), ldistance,(z;, xj, R), U =Q V, U #Q V, 
U 5 V, or U $ V, where U and V also have the same special form. 

Let the resultant expression be F. The rewriting should be such that for all sufficiently long k- 
multi-cycles 0, F[O/R,card(O)/N] holds iff E[O/R] holds. This can be accomplished by using rules 
like: 

if el then Cue2 I x E RD else e3 -+ if el then ez else e3 t N I x E RD 

if el then ez else Cue3 1 x E RD - C(I if.el then e2 + N else e3 I x E RD 

~ I . C ( ~ ~ ~ ~ X E R D - C ~ ~ ~ . ~ ~ I X E R D  
Cue1 I X E  RD.e2-C(lel.e2 I x E RD 

Cuel  ~ X E  R D i e p - C ( j e l t e 2  I X E R D  



Having obtained F in this special form, we continue the proof using the following steps. 

Step 1. If F is already in the form required by proposition 2, we can transform it according to 
proposition into a ratio of polynomials in terms of N (finding a lowerbound for k in the process). If 
F does not have the right form, proceed to the remaining steps. 

Step 2. Look for an innermost subexpression of F that has the special form required by proposition 
2. Let this subexpression be F' and its free variables be yl ,  ..., y,, R and N. Let the number 
of summation in F' be n. Generate all possible d-states (where d is the smallest one suggested by 
proposition 2) with respect to these free variables of F'. Let So, S1, ..., Sh be these d-states, with 
So = is1 A - - .  A ish. (SO is one of the d-states because d < k.) Apply proposition 2 to F' with 
respect to each S; to obtain expressions e; (finding a lower bound for k in the process). Then F' is 
equivalent to if S1 then el else . . .if Sh then eh else eo. Note that each e; is a ratio of polynomials 
of N. 

Step 3. To maintain the same special form, we need to push the S; up one level to the expression in 
which F' is nested. This is done using rules like: 

(if S1 then el . . . if Sh then eh else eo) =Q V - (So A eo = V) v . . . v (Sh A eh = V) 

if P then (f + (if S1 then el else . . . if Sh then eh else eo)) else e - if P A So then f i 
eo . . . if P A Sh then f i eh else e 

Step 4. After step 3, some expression having the form U =Q V, U 5 V, or their negation can become 
an (in)equation of ratios of polynomials of N. Such an expression can be replaced either by true or 
by false. For illustration, we explain the case of U =Q V; the other cases are similar. First U =Q V 
is readily transformed into a polynomial P = 0 with N being its only free variable. Check if P is 
identically 0. If this is the case, replace U =Q V by true. If P is not identically 0, we use the fact that 
a polynomial has a finite number of roots. By choosing a sufficiently large lower bound for k, we can 
ensure that N always exceeds the largest root of P. Thus, in this case we replace U =Q V by false. 

Observe that in step 2 we have reduced the number of summations and in step 4 we have reduced 
the number of equality and inequality tests. By repeating these steps, we must eventually reach the 
base case and arrive at an expression where step 1 is applicable. When we are finished, the resultant 
expression is clearly a boolean formula containing no free variable. Therefore its value does not depend 
on R. Consequently the theorem holds for any k not smaller than the lower bound determined by the 
above process. 

The proof of theorem 4 relies on two things: satisfiability of d-states is easy to decide for k-multi- 
cycles and probabilities are easy to calculate and express as ratios of polynomials in terms of the size 



of graphs for k-multi-cycles. There is another class of graphs having these two properties: k-strict- 
binary-trees. A k-strict-binary-tree is a nonempty tree where each node has either 0 or 2 decendents 
and the distance from the root to any leaf is at least k .  

Theorem 5 Let G : {b  x b)  -t B be a function expressible in SQL. Then there is some k such that 
for all k-strict-binary-trees 0 ,  it is the case that G ( 0 )  is true; or for all k-strict-binary-trees 0 ,  it is 
the case that G(0) is false. 

Proof sketch. It is easy to  decide if a d-state is satisfiable by some k-strict-binary-trees. The probability 
calculation is also simple. The only problem is that the probability must be expressed wholely as a 
ratio of polynomials of the number of edges in the tree. This is dealt with by observing that in k- 
strict-binary-trees, the number of internal nodes is 1 less half the number of edges and the number of 
leaves is equal to 2 plus the number of internal nodes. The theorem follows by repeating verbatim the 
proof for k-multi-cycles. 

So, if we identify isomorphic k-strict-binary-trees, then their properties recognizable in SQL are either 
finite or co-finite. In SQL(bbtree), for any k > 0, one can distingush a balanced binary tree of height 
k from any other k-strict-binary-tree. Therefore, 

Corollary 5 bbtree is not definable in SQL. 

In summary, we obtain 

Corollary 6 All the queries listed in corollary 1 are not expressible in SQL. 

4.3 Complete p r o b l e m s  and SQC 

Some of the problems considered above are known to be complete for various complexity classes 
under first-order reductions. For example, the graph reachability problem is first-order complete for 
NLOGSPACE and its restriction to graphs with outdegree 1 is first-order complete for DLOGSPACE. 
Using the results of Immerman [lo] on first-order completeness, the fact that NRC and SQL are closed 
under first-order reductions, and the inexpressiblity results proved in this paper, we get 

Corollary 7 Let P be a problem that is complete with respect to first-order reductions for one of 
the following classes: DLOGSPACE, Sym-L OGSPACE, NL OGSPACE, PTIME. Then P can not be 
solved by SQC. 

5 Conclusion and future work 

We have considered the problem of analyzing the expressive power of nested relational and bag lan- 
guages. We have shown that the conservativity property of these languages is a very powerful technique 



in analyzing their expressive power. We looked at the nested relational calculus NRC and presented a 
new technique for proving a number of inexpressibility results for it in a uniform way. We then looked 
at SQC, which is obtained from NRC by adding aggregate functions, and proved a finite-cofiniteness 
property of some graph queries. This property ensures that our sample recursive queries remain 
inexpressible in a, solving conjectures 1,2 and 3. 

There are a few problems that we would like to work on. The most important is the following. 

Conjecture 4 SQC has the bounded degree property. 

Answering the following questions may shed some light on this conjecture. 

1. What is a logic that captures (the first-order fragment of) SQL? 

2. Which logics have the bounded degree property? Observe that we used only a part of Gaifman's 
result to prove the bounded degree property for the first-order logic. Hence we believe there is 
a chance to find its generalizations for other logics. 

It was shown in [ll] that in order to  fill the gap between set and bag languages with structural 
recursion one has to add a new primitive to the set language: gen(n) = {0,1, . . . , n}. With such a 
primitive, the bounded degree property does not hold, and the techniques for proving inexpressibility 
in SQC do not work. But we still believe that recursive queries like chain and bbtree are not definable. 
Proving this remains open. 
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