
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1993

A Bounded Degree Property and Finite-Cofiniteness of Graph A Bounded Degree Property and Finite-Cofiniteness of Graph

Queries Queries

Leonid Libkin
University of Pennsylvania

Limsoon Wong
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Leonid Libkin and Limsoon Wong, "A Bounded Degree Property and Finite-Cofiniteness of Graph Queries",
. December 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-95.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/249
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76361532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/249
mailto:repository@pobox.upenn.edu

A Bounded Degree Property and Finite-Cofiniteness of Graph Queries A Bounded Degree Property and Finite-Cofiniteness of Graph Queries

Abstract Abstract
We provide new techniques for the analysis of the expressive power of query languages for nested
collections. These languages may use set or bag semantics and may be further complicated by the
presence of aggregate functions. We exhibit certain classes of graphics and prove that properties of
these graphics that can be tested in such languages are either finite or cofinite. This result settles that
conjectures of Grumbach, Milo, and Paredaens that parity test, transitive closure, and balanced binary tree
test are not expressible in bah languages like BALG of Grumbach and Milo and BQL of Libkin and Wong.
Moreover, it implies that many recursive queries, including simple ones like test for a chain, cannot be
expressed in a nested relational language even when aggregate functions are available. In an attempt to
generalize the finite-cofiniteness result, we study the bounded degree property which says that the
number of distinct in- and out-degrees in the output of a graph query does not depend on the size of the
input if the input is "simple." We show that such a property implies a number of inexpressibility results in a
uniform fashion. We then prove the bounded degree property for the nested relational language.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-95.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/249

https://repository.upenn.edu/cis_reports/249

A Bounded Degree Property
and

Finite-Cofiniteness of Graph Queries

MS-CIS-93-95
LOGIC & COMPUTATION 75

Leonid Libkin
Limsoon Wong

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

December 1993

A Bounded Degree Property and Finite-Cofiniteness of Graph Queries

Leonid Libkin* Limsoon Wongt

Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104-6389, USA

email: {libkin, limsoon}@saul.cis.upenn.edu

Abstract

We provide new techniques for the analysis of the expressive power of query languages for nested
collections. These languages may use set or bag semantics and may be further complicated by the
presence of aggregate functions. We exhibit certain classes of graphs and prove that properties of
these graphs that can be tested in such languages are either finite or cofinite. This result settles the
conjectures of Grumbach, Milo, and Paredaens that parity test, transitive closure, and balanced
binary tree test are not expressible in bag languages like BALG of Grumbach and Milo and LQL of
Libkin and Wong. Moreover, it implies that many recursive queries, including simple ones like test
for a chain, cannot be expressed in a nested relational language even when aggregate functions are
available. In an attempt to generalize the finite-cofiniteness result, we study the bounded degree
property which says that the number of distinct in- and out-degrees in the output of a graph query
does not depend on the size of the input if the input is "simple." We show that such a property
implies a number of inexpressibility results in a uniform fashion. We then prove the bounded degree
property for the nested relational language.

I Introduction

As the relational algebra and the relational calculus are standard languages for relational databases,
upon which most other approaches are based, there was a search for a standard language for nested
relations and, more generally, nested collections. Several researchers have found such languages: Schek
and Scholl [15]; Thomas and Fischer [16]; Colby [5]; Abiteboul and Kanellakis [I]; Breazu-Tannen,
Buneman, and Wong [2]. All the discovered algebras and calculi have been proven t o possess the same
expressive power. So we can speak of the nested relational algebra or calculus.

The practical versions of these languages are further complicated by the presence of aggregate functions
and arithmetic operations. Moreover, t o implement these aggregate functions, they often use bag
semantics. Tha t is, duplicates are not removed. Many results on relational languages do not carry
over t o languages with bag semantics; see Chaudhuri and Vardi [4]. Adding aggregate functions t o

*Supported in part by NSF Grant IRI-90-04137 and AT&T Doctoral Fellowship.
+supported in part by NSF Grant IRI-90-04137 and ARO Grant DAAL03-89-C-0031-PRIME.

the nested relational algebra was studied by us in [l l , 121. In particular, we showed that the language
thus obtained is equivalent to the nested bag algebra, called BALG in Grumbach and Milo [9] and
BQC by us in [ll] . This confirmed the intuition that bags essentially give us an ability to work with
numbers.

There are many problems in analyzing these of languages. The flat relational algebra is an alge-
braization of first-order logic. Therefore, to answer questions about expressibility of the flat relational
languages based on the relational algebra one can use a rich body of results known about first-order
expressibility, as in Chandra and Hare1 [3] and Fagin [6]. However, calculi for nested relations are
essentially higher-order logics, where very little is known about expressibility over finite structures.

Therefore, new techniques are needed for analyzing languages for nested collections. A difficulty seems
to be that, in writing simple queries, one can increase the level of nesting in the intermediate data and
then get a desired result by flattening or unnesting. Unless there is some restriction for doing this,
there is very little hope for finding nice tools for analyzing expressiveness of such languages.

Fortunately, queries of the nested relational algebra were shown to be independent of the height of set
nesting in the intermediate data. The first result of this kind was proved by Paredaens and Van Gucht
[14] for queries over flat relations. It was later generalized by Wong [17] to arbitrary queries. Recently,
we showed that it continues to hold in the presence of aggregate functions [12]. This property provides
the simplifying tools we need to analyze our languages.

Since BQC has built-in arithmetic, it is hard to find a logic that would capture it. Thus it is not
clear which techniques can be used for proving results about its expressive power. There are several
conjectures on BQL and the nested relational algebra, formulated by Grumbach and Milo [9] and
Paredaens [13]:

Conjecture 1 (Grumbach and Milo) Parity test is not definable in BQL.

Conjecture 2 (Grumbach and Milo) Transitive closure is not definable in BQC.

Conjecture 3 (Paredaens) Test for balanced binary trees is neither definable in the nested relational
algebra nor in BQC.

BALG and f?QL can be embedded in the nested relational language with aggregate functions [ll].
Therefore, it suffices to solve conjectures 1, 2, and 3 in the latter. That conjecture 1 is true was shown
by us in [ll]. In this paper, among other things, we prove conjectures 2 and 3 as well.

Before we outline the main results of this paper, let us make a few observations. In most cases when
people conjecture that something like transitive closure is not expressible in a language, they actually
mean that a language is incapable of expressing recursive queries. Transitive closure just happens
to be the most famous example of a recursive query, but it is not the simplest one. As Immerman
[lo] showed, the first-order logic with transitive closure captures the complexity class NLOGSPACE
over ordered structures. There are (possibly) simpler classes and complete problems for them. For
example, DLOGSPACE is captured by the first-order logic with deterministic transitive closure [lo].

Therefore, if we could show that deterministic transitive closure is not expressible in the language that
has at least the power of the first-order logic, then many other inexpressibility results will be obtained
for free (for instance, connectivity and transitive closure). In fact, we exhibit two queries which are ,

at most as hard as the deterministic transitive closure, one of them being a test for balanced binary
trees, and show that they are not expressible in the languages we study.

We also face a lack of uniformity in proving inexpressibility results. There are well-known tools for
proving first-order inexpressibility over finite structures, such as Ehrenfaucht-FraYssd games. However,
applying them to any query whose inexpressibility is to be proved, is a separate combinatorial problem,
which is sometimes a nontrivial one. This is, perhaps, one of the reasons Paredaens formulated his
balanced binary tree conjecture for the nested relational algebra as well. For the Paredaens conjecture,
it may be easier to use another technique, Hanf's lemma (as presented in [7]), but it still requires some
combinatorial proof which no longer works if we ask about balanced ternary, 4-ary etc. trees. In this
paper we demonstrate a uniform technique for proving various inexpressibility results for the nested
relational calculus that does not have this deficiency.

Organization. The rest of the paper is organized in four sections. In section 2 we describe the
nested relational calculus NRC and its enhancement with aggregate functions SQC as in [12]. We
choose this presentation of the nested relational calculus because of the simplicity of its syntax and
the availability of tools for analyzing it. We formulate the conservativity results for NRC and SQL.

In section 3 we define our sample queries and show that they are at most as hard as deterministic
transitive closure. We then present the bounded degree property of a language and show how it implies
various inexpressiblity results in a uniform fashion. We prove this property for the nested relational
calculus.

In section 4 we study the expressive power of SQL. Using conservativity, we first state that properties
of naturals it can define are either finite or co-finite. Then we prove a much more involved result that
properties of certain graphs definable in SQC are also finite-cofinite. From this result, we derive the
inexpressibility of our sample queries in SQC and f3Q.C. Finally, we show that complete problems for
a number of complexity classes below PTIME cannot be expressed in SQC. Concluding remarks are
given in section 5.

2 Languages NRC and SQC and conservative extension

In this section we define the nested relational calculus NRC as in Breazu-Tannen, Buneman and Wong
[2] and its extension with aggregate functions as in Libkin and Wong [12].

A type in NRC is either a complex object type or is a function type s + t where s and t are complex
object types. The complex object types are given by the following grammar:

s , t ::= bI B 1 unit I s x t I { s)

Here b ranges over some collection of unspecified base types. Objects of type B are the two boolean
values true and false. Type unit has a unique object denoted by 0. Objects of type s x t are pairs
whose first components are objects of type s and second components are objects of type t . Objects of
type {s) are finite sets of objects of type s. Expressions of NRC are given in figure 1.

Lambda Calculus and Products

e : t e l : s + t e 2 : s
xs : s Xxs.e : s -+ t el e2 : t

e l : s e 2 : t e : s x t e : s x t
() : unit (e l ,e2) : s x t nl e : s n2 e : t

Set Monad

e : s el : { s) e2 : { s) el : { s) e2 : { t)

0" : { s) {e l : { s) el u e2 : { s) U{el I xt E e2) : { s)

Booleans

e l : s e 2 : s e l : B e 2 : s e 3 : s
el =' e2 : B true : B false : B if el then e2 else es : s

Figure 1: Expressions of N R C

Semantics (see [2, 121). The lambda calculus, product, and boolean constructs are standard. We
briefly describe the meaning of the monad constructs here. {) is the empty set. {e} is the singleton
set containing e. el U e2 is the union of sets el and e2. The construct U{el I x E e 2) denotes the set
obtained by first applying the function Xx.el to elements of the set e2 and then taking their big union.
Hence U{el I x E e 2) = f (01) U . . . U f (o,), where f is the function Xx.el and (01, . . . , on) is the set
e2. It must be stressed that the x E e2 part in the construct U{el I x E e2} is not a membership test;
it is the introduction of a new variable x whose scope is the subexpression el.

The language SQC is obtained by adding the type of rationals Q and the following constructs to N R C :

Arithmetic
e l : Q e 2 : Q e l : Q e 2 : Q

el + e2 : Q el e2 : Q

e l : Q e 2 : Q e l : Q e 2 : Q
el t e2 : Q el - e2 : Q

el : Q e2 : { s) e l : Q e 2 : Q
Cue1 I zS E e2D : Q el 5 e2 : B

The semantics of C u e l I xS E e2D is f (01) + . . .+ f (o,), where f is the function Xx.el and {ol, . . . , 0,)

4

is the set es. All standard aggregate functions found in commercial databases can be expressed using
C; see [12].

Remark. A sublanguage of SQC obtained by restricting Q to N, removing f, and using monus instead of
minus is equivalent to the nested bag languages BALG and BQC of [9, 111. Hence, any inexpressibility
result for SQC implies a similar result for BQC.

Let us now define the concept of conservative extension. The set height ht(s) of a type s is defined by
induction on the structure of type: ht(unit) = ht(b) = 0, ht(s x t) = ht(s -+ t) = max(ht(s) , ht(t)) ,
and ht ({s}) = 1 + ht(s). The set height of an expression e is defined as ht(e) = max{ht(s)) s occurs
in the unique type derivation of e}. Let denote the class of functions whose input has set height
at most i , whose output has set height at most o, and which are definable in the language L using
an expression whose set height is at most h 2 max(i,o). C is said to have the conservative extension
property if L;,o,h = C;,,,h+l for all i, o, and h > max(i,o). In other words, having the conservative
extension property means that any query is independent of the height of intermediate data.

Fact 1 (Paredaens and Van Gucht [14], Wong [17]) N R C has the conservative extension property. In
particular, N R C queries on Pat relations are exactly those expressible in the fiat relational algebra.

Fact 2 (Libkin and Wong [12]) SQL has the conservative extension property.

3 Bounded degree property and NRC

In this section we first define two sample queries and show that in a language having at least the
power of the relational algebra (first-order logic) they are at most as hard as deterministic transitive
closure. Then we define the bounded degree property of a language and show how it implies a number
of inexpressibility results in a uniform fashion. Finally we prove that this property holds in N R C .

Definition 1

chain : { s x s } -, B is a query that takes in a graph and returns true i$ the graph is a chain,
that is, a tree such that the out-degree of each node is at most 1.

bbtree : { s x s) + B is a query that takes in a graph and returns true i$ the graph is a
balanced binary tree, that is, a binary tree in which all paths from the root to the leaves have
the same length.

(see Immerman [lo]) dtc : { s x s) + { s x s) is the deterministic tmnsitive closure. That
is, i f G = (V , E) is a digraph, then dtc(G) = (V , E') where (v l , v k) E E' i f l there is a path
(v l , v2) E E , . . . , (v ~ - ~ , vk) E E such that v;+l is a unique descendant of v;, i = 1,. . . , k - 1.

Proposition 1 Let L be a language that has at least the power of the relational algebm. Then chain
and bbtree are expressible in L(dtc)'. 0

'Operations added to languages are listed explicitly in the brackets.

Corollary 1 Let C be a language that has at least the power of the relational algebm. If chain is
not expressible i n C , then none of the following is expressible in C: dtc, transitive closure, tests for
connectivity of directed and undirected graphs, test whether a graph is a tree, test for acyclicity.

Let G = (V, E) be a graph. Define in-deg(v) = card({vt I (v', v) E E)) and out-deg(v) = card({v' I
(v , v') E E)) . The degree set of G , deg(G), is defined as {in-deg(v) I v E V) u {out-deg (v) I v E V) N .
One of the reasons why most recursive queries are not first-order definable is that they may take in
a graph2 whose degree set contains only small integers and may return a graph whose degree set is
large. The definition below captures this intuition.

Definition 2 Let C be a language. It is said to have the bounded degree property (at type s) i i for
any f : { s x s } + { s x s) that is definable in C and for any number k there exists a number c, depending
on f and k only, such that card(deg(f (G))) 5 c for any graph G satisfying deg(G) {0,1, . . . ,k}.

The bounded degree property can be used to prove various inexpressibility results.

Theorem 1 Let C be a language that has at least the power of the relational algebm. Then, i f C has
the bounded degree property at type s , then neither chain : { s x s) + B nor bbtree : { s x s) + B is
expressible i n C.

Proof. We offer a proof by picture. Assume chain is definable; then it is possible to define an expression
that, when given a chain as an input, returns its transitive closure. As shown below, using chain it is
possible to determine if a precedes b by re-arranging two edges and checking if the resulting graph is
a chain:

But this contradicts the bounded degree property as we started with an n-node graph whose degree
set is {O,1) and ended up with (0, 1, . . . , n).

If bbtree is definable, it is possible to determine if two nodes in a balanced binary tree are at the same
level by re-arranging two edges as follows and checking if the result is still a balanced binary tree:

2We use graphs for the simplicity of exposition. Relational structures of arbitrary finite arity can be used.

6

Again, we started with an n-node graph whose degree set is (0, 1,2) and, making cliques of the nodes
at the same level, ended up with a graph whose degree set has cardinality log2(n + 1).

The main reason we study this property is that it holds in NRC.

Theorem 2 NRC has the bounded degree property at base types.

Proof sketch. Let f : {b x b) -t {b x b) be an N W expression where b is a base type. Then, by
conservativity, f is equivalent to a relational algebra expression. Therefore, if Gt = f (G), then for some
first-order expression F we have VaVbEt(a, b) tt F(a, b, E). According to Gaifman [8], F is a Boolean
combination of certain sentences and formulae with a, b as free variables in which all quantifiers are
bounded to some neighborhoods of a and b. Moreover, the maximal radius of those neighborhoods, r,
is determined by F. If deg(G) E: (0,. . . , k), then it is possible to find the number of all neighborhoods
of radius up to r , which depends only on F and k. Let co be that number. Then, for all nodes a and
b which have the same neighborhoods of radius up to r, we have Vc : Et(a, c) t, Et(b, c). Hence, there
are at most 2Q elements in deg(Gt).

This settles the first part of conjecture 3.

Corollary 2

r The flat relational algebra has the bounded degree property.

r chain, bbtree and other queries listed in corollary 1 are not expressible in NRC.

4 Finite-cofiniteness and SQC

To the best of our knowledge, there is no logic capturing the language SQC, nor its flat fragment. The
proof of the bounded degree property is based on Gaifman's result about local formulae [8]. That
result was proved by quantifier elimination. This poses a problem if we try to prove the bounded
degree property for flat types in SQC.

In this section we use another technique to overcome this difficulty. It is well known that properties
of cardinalities of finite models which can be tested in the first-order logic are either finite or co-finite.

For example, parity cannot be tested. Using conservativity, we present two results of the same kind
for SQC. First, properties of natural numbers expressible in SQC are either finite or co-finite. That
answers conjecture 1. Second, for certain families of graphs the same finiteness-cofiniteness property
holds. Then we derive inexpressibility of chain and bbtree from that. This answers conjecture 2 and
the second part of conjecture 3, since BQL can be embedded in SQC.

4.1 Expressive power of SQC at base types

Let U be a property of natural numbers, that is, U & N. By a test for U we mean a function p : Q + B
such that for all n E N, p(n) is true iff n E U.

Theorem 3 (see Libkin and Wong [ll]) Let 24 E N be a property of natural numbers. Then mem-
bership test for U is definable in S g iflU is either finite or co-finite.

A similar result can be shown for new base types, provided we do not have powerful functions on
them. It is also based on the conservative extension property.

Corollary 3 Let b be a base type with a countably infinite domain D. Assume that only equality test
and a linear order sb isomorphic to o are available for b. Then a test for D' D is definable in
SQC(b, s b) ifl D' is either finite or co-finite.

4.2 Expressive power of SQC over flat relations

A binary relation 0 : {b x b) is called a k-multi-cycle if it is nonempty and is of the form

where h 2 k and 4 are all distinct. That is, it is a graph containing rn > 1 unconnected cycles of
equal length h >_ k.

Define distance,(o, o', 0) to be a predicate that holds iff the distance from node r l o to node r20' in
k-multi-cycle 0 is c. Note that distance, is definable in SQC for each constant c.

Define a d-state S with respect to variables R : {b x b), X I , ..., x, : b x b to be a conjunction
of formulae of the form distance,(x;, x j, R) or the form 1 distance,(x;, x j , R). Moreover for each
0 5 c 5 d, 1 5 i, j 5 m, either distance,(x;, xj, R) or ldistance,(x;, xj, R) must appear in it. Also S
has to be satisfiable in the sense that some k-multi-cycle 0 and edges 01, ..., om in 0 can be found so
that SIO/R,ol/xl, ..., o,/x,] holds.

Theorem 4 Let G : {b x b) + B be a function ezpressible in SQC. Then there is some k such that
for all k-multi-cycles 0 , it is the case that G(0) is true; or for all k-multi-cycles 0, it is the case that
G(0) is false.

Figure 2: Special form of SQC query

Before we present the proof of this theorem, let us observe that if we identify isomorphic k-multi-cycles,
then for any m 2 1, properties of k-multi-cycles consisting of at most m components are either finite
or co-finite. In SQC(chain) it is possible to distinguish k-multi-cycles containing one cycle from those
containing two. Therefore,

x + ~ ~ } C

Corollary 4 chain is not expressible in SQC.

The proof of theorem 4 uses the following property of k-multi-cycles.

(. . . j /

Proposition 2 Let E be an expression of SQC having R : {b x b), N : Q, X I , ..., xm : b x b as
free variables such that E has the special form given in figure 2, where fi7s are mtios of polynomials
in terms of N , Pj's are Boolean combinations of formulae of the form T;X;I = n j x j ~ , T;X;I # njxjl ,
~distance,(x;, x i , R) , or distance,(z;,xj, R) . Let d 1 n + m + C where C is the sum of the c's for
each distance,(x;,zj, R) or ldistance(x;, x j , R) in the P;'s. Let S be any d-state with respect to R ,
x l , ..., x,. Then there is a number k and a mtio e of polynomials in terms of N such that for any
k-multi-cycle 0, and edges 01, ..., om in 0 making S [O / R , o l / x l , ..., om/xm] true, it is the case that
E [O / R , o l / x l , ..., om/xm, card(O)/N] = e[card(O)/N].

Proof sketch. By the probability p for a predicate P of n free variables to hold with respect to a graph
0, we mean the proportion of the instantiations of the free variables to edges in 0 that make P true.
The key to the proof of this proposition is in realizing that the probability p; for P; to hold and Pj<; to
fail can be determined in the case of k-multi-cycle when k is large. (By convention, po is the probability
for every Pi to fail. That is, it is the probability for the last branch to be executed.) Moreover pi can
be expressed as a ratio of two polynomials of N . Thus e can be defined as N n . (po . fo + . . . + ph . fh) .

if Pl

In f l else then if f h Ph

else fo

Each probability p; can be calculated as follows. First, generate all possible d-states Dj7s with respect
to the variables R , X I , ..., xm+,. Second, determine the probability qj of D j given the certainty of S ;
this can be calculated using the procedure given in the next paragraph. Third, eliminate those Dj7s
that are inconsistent with the conjunction of S, Pi, and the negation of Pj<;. Finally, calculate pi by
summing the q j 7 s corresponding to those remaining d-states.

x m + R

It remains to show that each qj can be expressed as a ratio of two polynomials in N . Partition the
positive leaves of the corresponding D; into groups so that the variables in each group are connected
between themselves and are unconnected with those in other groups. (Variables x and y are said to

be connected in D; if there is a positive leaf distance,(x, y, R) in D;.) Note that the negative leaves
merely assert that these groups are unconnected. Then we proceed by induction on the number of
groups.

The base case is when we have just one group. In such a situation, all the variables lie on the same
cycle. Then a lower bound on k can be determined from the group to force the variables to lie on a
line. Let u is the number of free variables amongst xm+l, ..., xm+, appearing in the group; in this
case u = n. Then q; = N t NU if no variables amongst XI, ..., x, appear in the group. Otherwise,
q; = 1 + Nu. In either condition, q; is a ratio of polynomials in N.

For the induction case, suppose we have more than one group. The independent probability of each
group can be calculated as in the base case. Then q; is the difference between the product of these
independent probabilities and the sum of the probabilities where these groups are made to overlap in
all possible ways. These groups are made to overlap by turning some negative leaves in D; into positive
ones. Notice that when groups overlap, the number of groups strictly decreases. Hence the induction
hypothesis can be applied to obtain these probabilities as ratios of polynomials in N. Consequently,
q; can be expressed as a ratio of polynomials in N as desired.

Now we return to the proof of theorem 4.

Proof sketch of theorem 4. Suppose G : { b x b) + B is implemented by the SQL expression XR.E.
Without loss of generality, E can be assumed to be a normal form with respect to the rewrite system
used by us in the proof of the conservative extension theorem [12]. We note that such an E contains
no subexpression of the form U{el I x E e2}. Furthermore, all occurrences of summation in E must
be of the form C u e I x E RE.

Let us temporarily enrich our language with the usual logical operators V, A, 1, #, $, as well as
distance,. Also introduce a new variable N : & which is to be interpreted as the cardinality of R.
Rewrite all summations into the special form given in figure 2, so that each f; has the form hi t g;,
where hi is a polynomial in terms of N and g; is either a polynomial in terms of N or is again a
subexpression of the same special form. Also, the Pj's are formulae whose leaves are of the following
form: n;x;t = njxjt, T;X;I # njxjt, distance,(xi,xj, R), ldistance,(z;, xj, R), U =Q V, U #Q V,
U 5 V, or U $ V, where U and V also have the same special form.

Let the resultant expression be F. The rewriting should be such that for all sufficiently long k-
multi-cycles 0, F[O/R,card(O)/N] holds iff E[O/R] holds. This can be accomplished by using rules
like:

if el then Cue2 I x E RD else e3 -+ if el then ez else e3 t N I x E RD

if el then ez else Cue3 1 x E RD - C(I if.el then e2 + N else e3 I x E RD

~ I . C (~ ~ ~ ~ X E R D - C ~ ~ ~ . ~ ~ I X E R D
Cue1 I X E RD.e2-C(lel.e2 I x E RD

Cuel ~ X E R D i e p - C (j e l t e 2 I X E R D

Having obtained F in this special form, we continue the proof using the following steps.

Step 1. If F is already in the form required by proposition 2, we can transform it according to
proposition into a ratio of polynomials in terms of N (finding a lowerbound for k in the process). If
F does not have the right form, proceed to the remaining steps.

Step 2. Look for an innermost subexpression of F that has the special form required by proposition
2. Let this subexpression be F' and its free variables be yl , ..., y,, R and N. Let the number
of summation in F' be n. Generate all possible d-states (where d is the smallest one suggested by
proposition 2) with respect to these free variables of F'. Let So, S1, ..., Sh be these d-states, with
So = is1 A - - . A ish. (SO is one of the d-states because d < k.) Apply proposition 2 to F' with
respect to each S; to obtain expressions e; (finding a lower bound for k in the process). Then F' is
equivalent to if S1 then el else . . .if Sh then eh else eo. Note that each e; is a ratio of polynomials
of N.

Step 3. To maintain the same special form, we need to push the S; up one level to the expression in
which F' is nested. This is done using rules like:

(if S1 then el . . . if Sh then eh else eo) =Q V - (So A eo = V) v . . . v (Sh A eh = V)

if P then (f + (if S1 then el else . . . if Sh then eh else eo)) else e - if P A So then f i
eo . . . if P A Sh then f i eh else e

Step 4. After step 3, some expression having the form U =Q V, U 5 V, or their negation can become
an (in)equation of ratios of polynomials of N. Such an expression can be replaced either by true or
by false. For illustration, we explain the case of U =Q V; the other cases are similar. First U =Q V
is readily transformed into a polynomial P = 0 with N being its only free variable. Check if P is
identically 0. If this is the case, replace U =Q V by true. If P is not identically 0, we use the fact that
a polynomial has a finite number of roots. By choosing a sufficiently large lower bound for k, we can
ensure that N always exceeds the largest root of P. Thus, in this case we replace U =Q V by false.

Observe that in step 2 we have reduced the number of summations and in step 4 we have reduced
the number of equality and inequality tests. By repeating these steps, we must eventually reach the
base case and arrive at an expression where step 1 is applicable. When we are finished, the resultant
expression is clearly a boolean formula containing no free variable. Therefore its value does not depend
on R. Consequently the theorem holds for any k not smaller than the lower bound determined by the
above process.

The proof of theorem 4 relies on two things: satisfiability of d-states is easy to decide for k-multi-
cycles and probabilities are easy to calculate and express as ratios of polynomials in terms of the size

of graphs for k-multi-cycles. There is another class of graphs having these two properties: k-strict-
binary-trees. A k-strict-binary-tree is a nonempty tree where each node has either 0 or 2 decendents
and the distance from the root to any leaf is at least k .

Theorem 5 Let G : {b x b) -t B be a function expressible in SQL. Then there is some k such that
for all k-strict-binary-trees 0 , it is the case that G (0) is true; or for all k-strict-binary-trees 0 , it is
the case that G(0) is false.

Proof sketch. It is easy to decide if a d-state is satisfiable by some k-strict-binary-trees. The probability
calculation is also simple. The only problem is that the probability must be expressed wholely as a
ratio of polynomials of the number of edges in the tree. This is dealt with by observing that in k-
strict-binary-trees, the number of internal nodes is 1 less half the number of edges and the number of
leaves is equal to 2 plus the number of internal nodes. The theorem follows by repeating verbatim the
proof for k-multi-cycles.

So, if we identify isomorphic k-strict-binary-trees, then their properties recognizable in SQL are either
finite or co-finite. In SQL(bbtree), for any k > 0, one can distingush a balanced binary tree of height
k from any other k-strict-binary-tree. Therefore,

Corollary 5 bbtree is not definable in SQL.

In summary, we obtain

Corollary 6 All the queries listed in corollary 1 are not expressible in SQL.

4.3 Complete p r o b l e m s and SQC

Some of the problems considered above are known to be complete for various complexity classes
under first-order reductions. For example, the graph reachability problem is first-order complete for
NLOGSPACE and its restriction to graphs with outdegree 1 is first-order complete for DLOGSPACE.
Using the results of Immerman [lo] on first-order completeness, the fact that NRC and SQL are closed
under first-order reductions, and the inexpressiblity results proved in this paper, we get

Corollary 7 Let P be a problem that is complete with respect to first-order reductions for one of
the following classes: DLOGSPACE, Sym-L OGSPACE, NL OGSPACE, PTIME. Then P can not be
solved by SQC.

5 Conclusion and future work

We have considered the problem of analyzing the expressive power of nested relational and bag lan-
guages. We have shown that the conservativity property of these languages is a very powerful technique

in analyzing their expressive power. We looked at the nested relational calculus NRC and presented a
new technique for proving a number of inexpressibility results for it in a uniform way. We then looked
at SQC, which is obtained from NRC by adding aggregate functions, and proved a finite-cofiniteness
property of some graph queries. This property ensures that our sample recursive queries remain
inexpressible in a, solving conjectures 1,2 and 3.

There are a few problems that we would like to work on. The most important is the following.

Conjecture 4 SQC has the bounded degree property.

Answering the following questions may shed some light on this conjecture.

1. What is a logic that captures (the first-order fragment of) SQL?

2. Which logics have the bounded degree property? Observe that we used only a part of Gaifman's
result to prove the bounded degree property for the first-order logic. Hence we believe there is
a chance to find its generalizations for other logics.

It was shown in [ll] that in order to fill the gap between set and bag languages with structural
recursion one has to add a new primitive to the set language: gen(n) = {0,1, . . . , n}. With such a
primitive, the bounded degree property does not hold, and the techniques for proving inexpressibility
in SQC do not work. But we still believe that recursive queries like chain and bbtree are not definable.
Proving this remains open.

Acknowledgments. We would like to thank Val Breazu-Tannen, Peter Buneman, Jan Paredaens,
Dan Suciu, and Scott Weinstein for helpful discussions.

References

[I] S. Abiteboul and P. Kanellakis, Query languages for complex object databases, SIGACT News
21 (1990), 9-18.

[2] V. Breazu-Tannen, P. Buneman, and L. Wong, Naturally embedded query languages. In LNCS
646: Proc. ICDT, Berlin, Germany, October, 1992, pages 140-154. Springer-Verlag, October 92.

[3] A. Chandra and D. Harel, Structure and complexity of relational queries, JCSS25 (1982), 99-128.

[4] S. Chaudhuri and M. Vardi, Optimization of real conjunctive queries, Proceedings of the 12th
Conference on Principles of Database Systems, Washington DC, 1993, pages 59-70.

[5] L. Colby, A recursive algebra for nested relations, Inform. Systems 15 (1990), 567-582.

[6] R. Fagin, Finite model theory - a personal perspective, TCS 116 (1993), 3-31.

[7] R. Fagin, L. Stockmeyer and M. Vardi, On monadic NP vs. monadic co-NP, In Proc. 8th IEEE
Conf. on Structure in Complexity Theory, May 1993, pages 19-30.

[8] H. Gaifman, On local and non-local properties, in: Proceedings of the Herbrand Symposium,
Logic Colloquim '81, North Holland, 1982, pages 105-135.

[9] S. Grumbach, T. Milo, Towards tractable algebras for bags, Proceedings of the 12th Conference
on Principles of Database Systems, Washington DC, 1993, pages 49-58.

[lo] N. Immerman, Languages that capture complexity classes, SIAM J. Comput. 16 (1987), 760-778.

[l l] L. Libkin and L. Wong, Some properties of query languages for bags, In Proceedings of the 4th
International Workshop on Database Programming Languages, Springer Verlag, 1993, to appear.

[12] L. Libkin and L. Wong, Aggregate functions, conservative extension and linear orders, In Proceed-
ings of the 4th International Workshop on Database Programming Languages, Springer Verlag,
1993, to appear.

[13] J. Paredaens, Private communication, Collection Types Workshop, February 1993.

[14] J. Paredaens and D. Van Gucht. Converting nested relational algebra expressions into flat algebra
expressions. ACM Transaction on Database Systems, 17(1):65-93, 1992.

[15] H.-J. Schek and M. Scholl, The relational model with relation-valued attributes, Inform. Systems
11 (1986), 137-147.

[16] S.J. Thomas and P. Fischer, Nested relational structures, in P. Kanellakis editor, Advances in
Computing Research: The Theory of Databases, pages 269-307, JAI Press, 1986.

[17] L. Wong. Normal forms and conservative properties for query languages over collection types. In
PODS 93, pages 26-36, Washington, D. C., May 1993.

	A Bounded Degree Property and Finite-Cofiniteness of Graph Queries
	Recommended Citation

	A Bounded Degree Property and Finite-Cofiniteness of Graph Queries
	Abstract
	Comments

	tmp.1184339376.pdf.YEwS0

