
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

July 1995

Semantics of Database Transformations Semantics of Database Transformations

Anthony Kosky
University of Pennsylvania

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Peter Buneman
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Anthony Kosky, Susan B. Davidson, and Peter Buneman, "Semantics of Database Transformations", . July
1995.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-95-25.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/216
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/216
mailto:repository@pobox.upenn.edu

Semantics of Database Transformations Semantics of Database Transformations

Abstract Abstract
Database transformations arise in many different settings including database integrations, evolution of
database systems, and implementing user views and data-entry tools. This paper surveys approaches
that have been taken to problems in these settings, assesses their strengths and weaknesses, and
develops requirements on a formal model for specifying and implementing database transformations.

We also consider the problem of insuring the correctness of database transformations. In particular, we
demonstrate that the usefulness of correctness conditions such as information preservation are hindered
by the interactions of transformations and database constraints, and the limited expressive power of
established database constraint languages. We conclude that more general notions of correctness are
required, and that there is a need for a uniform formalism for expressing both database transformations
and constraints, and reasoning about their interactions.

Finally we introduce WOL, a declarative language for specifying and implementing database
transformations and constraints. We briefly describe the WOL language and its semantics, and argue that
it addresses many of the requirements of a formalism for dealing with general database transformations.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-95-25.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/216

https://repository.upenn.edu/cis_reports/216

Semantics of Database Transformations

MS-CIS-95-25

Anthony Kosky, Susan Davidson, Peter Buneman

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

July 10, 1995

Semantics of Database Transformations

Anthony Kosky Susan Davidson Peter Buneman

July 10, 1995

Abstract

Database transformations arise in many different settings including database integra-
tion, evolution of database systems, and implementing user views and data-entry tools.
This paper surveys approaches that have been taken to problems in these settings, as-
sesses their strengths and weaknesses, and develops requirements on a formal model for
specifying and implementing database transformations.

We also consider the problem of insuring the correctness of database transformations.
In particular, we demonstrate that the usefulness of correctness conditions such as in-
formation preservation are hindered by the interactions of transformations and database
constraints, and the limited expressive power of established database constraint languages.
We conclude that more general notions of correctness are required, and that there is a need
for a uniform formalism for expressing both database transformations and constraints, and
reasoning about their interactions.

Finally we introduce WOL, a declarative language for specifying and implementing
database transformations and constraints. We briefly describe the WOL language and
its semantics, and argue that it addresses many of the requirements on a formalism for
dealing with general database transformations.

1 Introduction

The need t o implement transformations between distinct, heterogeneous databases has be-
come a major factor in information management in recent years. Problems of reimplementing
legacy systems, adapting application programs and user interfaces t o schema evolution, in-
tegrating heterogeneous databases, and merging user views or mapping between data-entry
screens and the underlying database all involve some form of transformation. The wide
variety of da ta models in use, including those supporting complex data structures and object-
identities, further complicate these problems.

A database transformation is a set of mappings from the instances of one or more source
database schemas to the instances of some target schema. The schemas involved may be
expressed in a variety of different data-models, and implemented using different DBMSs.
Incompatibilities between the sources and target exist at all levels - the choice of data-model,
the representation of data within a model, the value of an instance - and must be explicitly
resolved within the mappings.

Much of the existing work on transformations concentrates on the restructuring of source
database schemas into a target schema, either by means of a series of simple manipulations or
by a description in some abstract language, and the mappings of the underlying instances are
determined by the restructurings of schemas. In some cases this emphasis is a t the expense
of a formal treatment of the effect of transformations on instances, which is stated informally
or left t o the intuition. However there are, in general, many possible interpretations of a
particular schema manipulation. For example, in a data model supporting classes of objects
and optional attributes of classes, suppose we changed an attribute of an existing class from
being optional to being required. There are a number of ways that such a schema manipulation
can be reilected on the underlying data: we could insert a default value for the attribute where
ever it is omitted, or we could simply delete any objects from the class for which the attribute
is missing.

It is clear that there may be many transformations, with differing semantics, corresponding
to the same schema manipulation, and that it is necessary to be able to distinguish between
them. In contrast to existing work, our focus in this paper is therefore on how transformations
effect the underlying data itself. We will use the term C'database transformations", as opposed
to the more common "schema transformations", in order to emphasize this distinction.

Implementations of database transformations fall into two camps: those in which the data
is actually transformed into a format compatible with the target schema and then stored in
a target database, and those in which the data remains stored in the source databases and
queries against the target schema are translated into queries against the source databases.
The first of these approaches can be thought of as performing a one-time bulk transformation,
while the second approach evaluates transformations in a call-by-need manner.

For example, the most common approach adopted within federated database systems [14] is
call-by-need [24, 10, 211. The approach has the advantage that the source databases retain
their autonomy, and updates to the various source databases are automatically reflected in
the target database. However, in cases where accessing the component databases is costly
and the databases are not frequently updated, actually merging the data into a local uni-
fied database may be more efficient. Furthermore, maintaining integrity constraints over a
federated database system is a much more difficult task than checking data integrity for a
single merged database [29, 381. As a result, the approach of performing a one-time bulk

transformation is taken in [37].

Some work on schema evolution also advocates implementing transformations in a call-by-
need manner [5, 32, 341. In this case multiple versions of a schema are maintained, and data
is stored using the version for which it was originally entered. The advantage of the approach
is that major database reorganizations can be avoided, and applications implemented for an
earlier version of a schema can still be used. However, for applications built on old versions of a
schema to be applied to new data, reverse transformations must be implemented. Furthermore
the cost of maintaining multiple views and computing compounded transformations may be
prohibitively expensive. These problems are especially significant when schema evolutions are
frequent, and it is not possible a priori to tell when old views or data cease to be relevant.
Consequently some practical work on implementing schema evolutions has been based on
performing bulk transformations of data [26].

It is clear that the implementation method appropriate for a particular transformation will
depend on the application and on the databases involved. However, the semantics of a
transformation should be independent of the implenlentation method chosen as well as of
the application area itself. Unfortunately, for much of the work in the area of database
transformations this is not the case, primarily due to the fact that there is no independent
semantics for the transformation. The focus of this paper is therefore to develop a semantics
of database transformations, and examine various metrics for the "goodness" or "correctness"
of such transformations.

We start in the next section by giving an informal example of a database transformation as it
might arise within heterogeneous database integration, and surveying approaches that have
been taken within this domain. The example is used to illustrate that while many of the ideas
in these approaches are useful, they cannot capture all necessary structural manipulations and
that there is therefore a need for a more general and flexible formalism for expressing such
transformations.

Section 3 formalizes the example by presenting a data model which gives a precise semantics
to a database schema, instances and keys. The model is used in section 4 to examine the
notion of information capacity preserving transformations. We argue that while this is an
appealing "correctness" metric for database transformations, it is not always useful because
it does not capture intuitively meaningful transformations, and fails to take into account
implicit constraints on the databases being transformed. We conclude that there is a need
to express and test more general correctness conditions, and to derive constraints on the
databases being transformed from such conditions.

Section 5 presents a declarative language for expressing database transformations and con-
straints called WOL (Well-Principled Object Language). We show that WOL is not only

sufficient for expressing the transformations occuring in existing work, but that it is more ex-
pressive than existing transformation languages for the data-models being considered. WOL
ca.n also be used to express the constraints on individual databases and between databases
necessary to ensure correctness of transformations, hence filling a significant need in the field
of database transformations.

2 Transformat ions in Database Integration

Tn this section we will look at some examples of database transformations, particularly in the
context of database integration, and show how some parts of these examples are addressed
by existing work, while others require more general transformation techniques. The context
of' database integration is particularly appropriate since much of the most significant work in
database transformations stems from this field. In contrast, transformations proposed in say
the area of schema evolution are comparatively simple [27, 34,26, 5,321, normally being based
a single model and a small set of basic schema modifications (such as introducing specialization
and generalization classes, adding or removing attributes, and so on). It is not clear whether
the reason for this is historical, since database integration became a significant problem earlier
in terms of needing formal tools and techniques, or because the transformations involved in
database integration are inherently more difficult than those arising in other areas.

2.1 Database Integration: An Example

'l'he objective of database integration is to make data distributed over a number of distinct,
heterogeneous databases accessible via a single database interface, either by constructing a
(virtual) view of the component databases to give them the appearance of a single database,
or by actually mapping data from the component databases into a single unified database. In
either case, the problem from the perspective of database transformations is how to transform
data from the various formats and structures in which it is represented in the component
databases into a form compatible with the integrated database schema.

Example 2.1: Figure 1 shows the schemas of two databases representing US Cities and States,
and European Cities and Countries respectively. (The graphical notation used here is inspired
by [3] although it will be given an interpretation in the data-model of section 3). The first
schema has two classes: City and State. The City class has two attributes: name, representing
t,hc name of a city, and state, which points to the state to which a city belongs. The State
class also has two attributes, representing its name and its capital city.

The second schema also has two classes, this time City and Country. The City class has at-

City, State,

state
name

str str

Schema of US Cities and States

name ~ S t r

lm>l countryE
r language, str I city.

I L.

str
name I 1 is-capital

JI JI
str ~ o o l

Schema of European Cities and Countries

Figure 1: Schemas for US Cities and European Cities databases

tributes representing its name and its country, but in addition has a Boolean-valued attribute
capital which represents whether or not it is the capital city of a country. The Country class
has attributes representing its name, currency and the language spoken.

Suppose we wanted to combine these two databases into a single database containing infor-
niation about both US and European cities. A suitable schema is shown in figure 2, where
the "plus" node indicates a variant. Here the City classes from both the source databases are
mapped to a single class City in the target database. The state and country attributes of the
City classes are mapped to a single attribute place which take a value that is either a State
or a Country, depending on whether the City is a US or a European city. A more difficult
mapping is between the representations of capital cities of European countries. Instead of
representing whether a city is a capital or not by means of a Boolean attribute, the Country
class in our target database has an attribute capital which points to the capital city of a
country. To resolve this difference in representation a straightforward embedding of data will
not be sufficient; we will need to do some more sophisticated structural transformations on
the data.

The problem of database integration may therefore be seen as forming an integrated schema,
which represents the relevant information in the component source databases, together with

capital n v s t r

Country. language,

ce

I A

Figure 2: An integrated schema of European and US Cities

name1

str

transformations from the source databases to this integrated schema.

2.2 Resolving Structural Conflicts in Database Integration

11 us-city\

In [7] Batini et al. noted that schenia integration techniques generally have two phases:
conflict resolution and merging or unioning of schemas. Although schema merging has received
a great deal of attention, it is only a small (and usually the last) step in the process of
database integration. The more significant part of the process is manipulating the component
databases so that they represent data in a compatible way. In order to do this it is necessary
to rcsolve naming conflicts between the schemas (both homonyms and synonyms), and also to
perform structural manipulations on data to resolve conflicts in the way data is represented.
An example of such a structural manipulation was given by how the capital attribute was
represented in the European Cities schema.

State,

The order in which the conflict resolution and schema merging phases are carried out varies be-
tween different database integration methods. For example, in Motro[24] component schemas
are first unioned to form disjoint components of a "superview" schema, and the superview is
then manipulated in order to combine concepts and resolve conflicts between the component
schemas. In contrast, [25, 8, 311 assume that conflicts between schemas are resolved prior to
the schema merging process, and [6] interleaves the two parts of this process.

name *str

Example 2.2: Returning to example 2.1, it is necessary to perform a structural modification
on the database of European Cities and Countries to replace the Boolean is-capital attribute
of the City class with a capital attribute of class Country going to the class City. This yields
an intermediate database with the schema shown in figure 3. It is then necessary to associate
the classes and attributes of the two source databases, so that the City classes and name
attributes, and also the state and country attributes, are associated, and the remainder of the

capital I

countrv
I'

JI
str

City
I

. h i
I

Schema of European Cities and Countries

Country

name

Figure 3: A modified schema for a European cities and countries database

capital

transformation could be implemented by means of an automated schema-merging tool.

There are two basic approaches to systems for implementing transformations to resolve such
structural conflicts: using a small set of simple transformations or heuristics that can be ap-
plied in series [24, 5, 23, 311, or using some high-level language to describe the transformation
[I , 101. Examples of these two approaches will be given in section 2.3 (examples 2.3 and 2.4).

The advantage of using a small set of pre-defined atomic transformations is that they are
simple to reason about and prove correctness for (notions of correctness for database trans-
formations is the subject of section 4). For instance, one could prove that each transformation
was information preserving [28, 231, or if necessary associate constraints with each transfor-
mation in order for it t o be information capacity preserving, and deduce that a series of
applications of the transformations was information preserving. The disadvantage of this
approach is that the expressivity of such a family of transformations is inherently limited.
For example the family of transformations proposed in [24] are insufficient to describe the
transforn~ation between an attribute of a class and a binary relation between classes: that
is, one cannot transform from a class Person with an attribute spouse of class Person to a
binary relation Marriage on the Person class. Although it might be easy to extend the family
of atomic transformations to allow this case, which is a common source of incompatibility
between databases, there would still be other important transformations that could not be
expressed. The restructuring described in example 2.2 can also not be expressed using any of
the families of transformations mentioned above.

A potentially much more flexible approach is to use some high-level language for expressing
structural transformation on data. However each transformation expressed in such a language
must be programmed and checked individually. Further, if it is necessary to ensure that a
transformation is information preserving then additional constraints may be needed on the
source databases, and in general these constraints will not be expressible in any standard

constraint language. This will be taken up again in more detail in section 4. We therefore
believe that there is a need for a declarative language for expressing such transformations
and constraints, which allows one to formally reason about the interaction between trans-
formations and constraints and which is sufficiently simple to allow transformations t o be
programmed easily. Such a language will be presented in section 5.

2.3 Schema Integration Techniques

In [7] Batini et al. survey existing work on schema integration. They observe that schema
integration arises from two tasks: database integration, which we have already discussed,
and integration of user views, which occurs during the design phase of a database when
constructing a schema that satisfies the individual needs of each of a set of user groups.
However they fail to note that these two kinds of schema integration are fundamentally
different. The reason for this can be seen by considering the direction in which data is
transformed in each case. For database integration, instances of each of the source databases
are transformed into instances of the merged schema. On the other hand, when integrating
multiple user views instances of the merged schema niust be transformed back into instances
of the user views (see figure 4). The intuition is that when integrating user views all of the
underlying information must be represented; no objects or attributes can be missing since
some user may want the information. However, when integrating pre-existing databases the
best that can be hoped for is that attributes of objects that are present in every underlying
database will be definitely be present in the integration; attributes that are present in some
but not all of the underlying databases may be absent in the integration. In [8] it was observed
that integrating user views corresponds to the "least upper bound" of the component schemas
in some information ordering on schemas, while in database integration what is required is the
"greatest lower bound" of the component schemas in some information ordering on schemas.
A good schema-integration method should therefore take account of its intended purpose and
include a semantics for the underlying transformations of instances.

In this section we will concentrate on methodologies intended for database-integration, and
look at some representative examples of the various approaches to this problem.

Example 2.3: Continuing with our example of database integration, we can use the technique
of Motro[24] to integrate the Cities and States database of figure 1 with the restructured
Cities and Countries database of figure 3.' The process is illustrated in figure 5. First, a
disjoint union of the two schemas is formed (a), and then a series of "macro" transformations

'Recall that this methodology is not expressive enough to express the transformation from the Cities and
Countries database of figure 1 to that of figure 3.

Implemented
DB schema

I I

\' Transformations

I I I User I view n

schema
I I

Transformations

............ p q schema n

Integration of user views Database integration

Figure 4: Data transformations in applications of schema integration

are applied to form the desired integrated schema2. The transformations applied include
introducing generalizations (b), deriving new attributes as compositions or combinations of
existing at tributes (c), and combining classes (d).

In this particular integration method, the semantics of the transformations are strongly linked
to the implementation method. The intention is that the integrated database be implemented
as a view of the component databases, and that queries against the integrated database
be executed by translating them into queries against the component databases and then
combining the results. The semantics of the individual transformations are given by their
effects on queries. However the lack of any independent characterization of tlzeir semantics
makes it difficult to reason about or prove properties of the transformations, or to use any
alternative implementation of the methodology.

A more expressive and flexible way of specifying transformations is to use some sort of high-
level transformation language. An example of such an approach is the system of rewrite rules
for nested relational structures proposed by Abiteboul and Hull in [I].

Example 2.4: We will show how the rewrite rules of [I] can be used to represent the mapping
from the European Cities and Countries database of figure 1 to the integrated schema of

2 ~ n the model of [24] generalizations are represented by classes with isa edges, though for consistency we
present this example using variants instead.

countr

City

name currency
capital Str

City State

name
capital

str str

n m str

str

str

nameJ.

str Str

str

str

Str

Str Stl

Str

Figure 5: A schema integration using the methodology of Motro

figure 2. The transformation is defined by a series of rewrite rules:

Pcapitals - rew((name : X , is-capital : True, country : Y) + X)

pcountry~ rew((name : N , language : L, currency : C)

i (name : N, language : L, currency : C, capitals : pc,it,ls(Z)))

pcity -- rew((name : N , is-capital : -, country : Y)
i (name : N, place : aeuro-city : YD))

p = rew((City : Z, Country : W) --t (City : pcity(Z), Countrf : P ~ ~ ~ ~ ~ ~ ~ ~ (W)))

For example the rewrite rule p takes a record with set-valued attributes City and Country
and applies the rewrite rules pc;hy and pcOunt,, to the values associated with these attributes.
The rewrite rule pcount,~ takes a record with attributes name, language and currency, and
forms a new record with an additional attribute capitals which is formed by applying the
rewrite rule pcapitals t o the free variable X . This kind of nesting of rewrite rules is necessary
in [I] to deal with nested sets. In section 5 we will see that such nested rules can be avoided
in the language WOL by requiring some sort of identity on the elements of any set.

The model of [I] is purely value-based: there is no concept of object identity. Consequently it
is necessary to use some notion of keys in order t o represent recursive structures such as those
of figure 1, and to reference values in one table or class from values in another (see section 3) .
Here we are using the name attributes of Cities and States as keys.

Note that the structure formed here does not coincide precisely with that of figure 2 because
the class Country has a set valued attribute capitals rather than a single valued attribute
capital. To rectify this we would have to compose the transformation with a second transfor-
mation given by the rewrite rule - rew((name : N, language : L, currency : C, capitals : {X))

+ (name : N , language : L, currency : C , capital : X))

The pattern of this rewrite rule matches records for which the attribute capitals is singleton
valued, and maps them t o similar records with a singleton attribute capital instead.

It is not possible t o express this transformation using a single rewrite rule: in [I] rewrite
rules are not closed under composition. A subclass of simple rewrite rules are also defined,
which are closed under composition, but these are not sufficiently expressive to represent our
example transformation.

A number of other approaches to schema merging [25, 8, 311 take component schemas - such
as those of figures 1 and 3 - together with constraints relating the elements of the schemas
- for example saying that the City classes of the two schemas and the state and country

attributes correspond - and apply an algorithm which returns a unified schema. In these
approaches the transformations are generally simple embeddings of data and type coercions.

For most schema integration methodologies the outcome is dependent on the order in which
schemas are integrated: that is, they are not associative. Intuitively this should not be
the case, since the integration of a set of schemas should depend only on the schemas and
the relations between them; the semantics of the integration should be independent of the
algorithm used. As a consequence of this non-associativity, a schema integration method
will specify an ordering in which schema integrations take place, such as a binary tree or
ladder, or all at once, and possibly a way of ordering the particular schemas. For example [6]
states that schemas should be ranked and then integrated in order of relevance, although no
justification for this ordering is given: why shouldn't it be appropriate to integrate the most
relevant schemas last, or in the middle, rather than first? Further enforcing such an ordering
is not acceptable in a system in which new databases may be added to the system at a later
date: if a database is added to an established federation the result should be the same as if
the database had been present in the federation at the outset.

In [8] it was shown that the non-associativity of schema integration methodologies is due to
new "implicit" nodes of classes that are introduced during the merging process. The variant of
the State and Country classes in example 2.1 is an example of such an implicit node. By taking
account of these implicit nodes and how they are introduced, an independent semantics can
be given to the merge of a set of schemas and the relations between them, and an associative
schema merging algorithm defined [8].

2.4 Merging Data

Once transformed into a suitable form, data from the component databases must be merged.
In a value based model without additional constraints, this is simply a matter of taking the
union of the relevant data. However, when more complex data models supporting object iden-
tity or inter-database constraints are used this task becomes more difficult since it necessary
to resolve conflicts and equate objects arising from different databases [33, 171.

This problem is not apparent in our running example because the databases of Cities and
States and Cities and Countries represent disjoint sets of objects. However suppose we were
also interested in integrating a third database including international information about Cities
and Countries with the schema shown in figure 6. This schema has three classes: City, State
and Region. Each City is in a Region, and each Country has a set (indicated by a "star"
node) of Regions. The exact meaning of Region depends on the country to which it belongs.
For example, in the United States Regions would correspond to States (or Districts), while in
Great Britain Regions might be counties. This database might contain data which overlaps

Figure 6: A schema for a international database of Cities and Countries

Country

with the other two databases. For example there niight be objects representing the city
Philadelphia in both the International Cities and Countries database and in the Cities and
States database, in which case it would be necessary to map both objects to the same object
in the integrated database. Equally there might be objects representing the same City or
Country in both the International and the European Cities databases, which would need to
be combined in the target database.

name
str

An important point to note here is that transformations from the various source databases to
a integrated database are not independent: it is not sufficient to merely write a transformation
from each individual database to the target database. Instead, we must write a transformation
that takes a set of database instances, one for each source schema, and transforms them into
a target instance.

The problem of resolving object identity over multiple databases with constraints is examined
in [17, 12,361. [19] gives an analysis of the more general problem of how to compare and equate
object identities, and concludes by recommending a system of external keys for identifying
object identities.

regions

V v

3 Data Models for Database Transformations

City

Works on transformations between heterogeneous databases are usually based around some
sufficiently expressive data-model, or meta-data-model, which naturally subsumes the models
used for the component databases. Various data models have been used, ranging from rela-
tional and extended entity-relationship models to semantic and object-oriented models. The
main requirements on such a meta-data-model are that the models of component databases

name

str str

place ' Region

being considered should be embeddable in it in a natural way, and that it be sufficiently sim-
ple and expressive to allow data to be represented in multiple ways so that conflicts between
alternative representations of data can be resolved. In [30] the requirements on a model
for transforming heterogeneous databases are examined, and the authors conclude that a
model supporting complex data-structures (sets, records and variants), object-identity and
specialization and generalization relations between object classes is desirable.

Persons

nam

str

mafimale

unit unit

unit

mother
some

PersonT
some

ui i t
Source schema Target schema

Figure 7: A transformation between recursive data structures

Some notion of referencing, such as object-identities or keys is essential in order to represent
recursive data-structures such as those of figures 1 and 2. However, in order to transform
databases involving such recursive structures, it is also necessary to have a notion of extents
or classes in which all objects in a database must occur. To see this, let us look at another
example, namely the transformation between the two schemas shown in figure 7. Suppose
we considered the first schema merely to define a recursive type Persons. A value of type
Persons would be a record with attributes name, sex and children, such that the children
attribute would be a set of records of type Persons. In order to transform a source database
consisting of a set of values of type Persons, we would have to recursively apply a restructuring
transformation to each set of children of each person in the database. This recursion could
be arbitrarily deeply nested, and, in the case of cyclic data, non-terminating.

Fortunately the source schenia of figure 7 conveys some important information in addition to
describing a recursive type: namely it tells us that our database consists of a finite extent or
class Persons, and that all the people represented in the database are reachable as members
of this extent. In particular it tells us that, if X is an object in the class Persons and
Y E X.children (Y is a child of X), then Y is also in the class Persons. Consequently, when
transforming the database, we can iterate our transformation over the elements of the class
Persons, and not have to worry about recursively applying the transformation to the children
of a person.

Note that in performing a transformation, it may be necessary to create and reference an
object-identity before it has a value associated with it. In this example, if we perform the
transformation by iterating over the class Persons, it may be necessary to create an object
in the target class PersonT, with father and mother attributes both set to some person,
before the objects corresponding to the parents of the person being transformed have been
encountered in the class Persons. In this case it is necessary to create and reference object
identities for the two parents, even though the corresponding values have not yet been formed.
Keys provide a mechanism for such early creation and referencing of object identities.

Keeping these requirements in mind, we now present the data-model for WOL so that it can
be used for examples throughout the remainder of this paper. It is presented in three stages:
First we present schemas, then instances, and then keyed-schemas and instances.

3.1 The WOL Data-Model

The data-model for WOL supports object-identities, classes and complex data-structures.
However we prefer to view specialization and generalization relations as particular examples of
constraints which can be expressed separately using a general constraint language. The model
is basically the same as that of [2] and is equivalent to the models implemented in various
object-oriented databases [4], except for the omission of direct support for inheritance. It is
also necessary to have some mechanism to create and reference object-identities. Since object
identities themselves are generally considered to be abstract values, which are not directly
visible, some value-based handle on them is desirable. We follow [18] in using surrogate keys
for this purpose.

We assume a fixed set of base types, B, ranged over by b,. . ., and a countable set of attribute
labels, A, ranged over by a , a', . . ., together with some fixed arbitrary ordering on A. Our
definition of types will be relative to a particular finite set of classes.

Assume a finite set C of classes ranged over by C, C', The types over C , ranged over by
T , . . ., consist of base types, b, class types C , where C E C, set types {b) and {C) for each
base type b and class type C , record types (al : 71,. . . , ak : rk), where a l , . . . , ak are arranged
according to the ordering on A, and variant types Qal : 71,. . . , a k : rkD. We write ~ ~ ~ e s ~ for
the set of types over C. The restriction on set types, that they be either sets of base or class
type, can be relaxed and replaced by some more general but complicated constraints on set
types and on expressions dealing with sets, as in [20]. A restriction of this nature is necessary
in order to be able to navigate and identify elements in nested sets. We need to avoid types
such as sets of sets ({{r))), particularly in the target database of a transformation, where
sets may only be partially instantiated as the transformation progresses, and therefore cannot
be compared or equated.

A schema, S, consists of a finite set of classes, C, and for each class C E C a corresponding
type rC E ~ ~ ~ e s ~ where rC is not a class type.

For each base type b we assume a countable set Db corresponding to the domain of b. Suppose
we have a schema S with classes C, and for each C E C we have a disjoint set aC of object
identities of class C. The set of values associated with a particular type are dependent on the
object identities present in an instance. For each type r E ~ ~ ~ e s ~ we define a set [rJoc as in
figure 8.

Figure 8: The semantic operator on types

An instance, Z, of a database schema S consists of a family of sets of object identities, aC,
and for each class C E C, a mapping V' : oC + [rc]ac. We write Inst(S) for the set of
instances of schema S.

Example 3.1: The first schema illustrated in example 2.1 has two classes representing Cities
and States, with each city having a name and a state, and each state having a name and
a capital city. The set of classes for the schema is therefore CA - {CityA, StateA) and the
associated types are

T F t ~ ~ = (name : str, state : StateA)

ritateA = (name : str, capital : CityA)

The second schema has classes CE {CityE, CountryE) and associated types

r F t ~ ~ = (name : str, is-capital : Bool, country : CountryE)
rEuntryE = (name : str, language : str, currency : str)

An instance of the second schema would consist of two sets of object identities, such as

oCityE {London, Manchester, Paris, Berlin, Bonn}
a CountryE - {UK, FR, GM}

and functions vCity on aCity and vstate on aState, such as

 ondon) don) (name H "London", country H UK, is-capital H tt)

~ " ~ ~ ~ (~ a n c h e s t e r) = (name H "Manchester", country H UK, is-capital H f f)
~ ~ ~ ~ ~ ~ (~ a r i s) (name H "Paris", country H FR, is-capital H tt)
CountryE (UK) (name H "United Kingdom", language H "English",

currency H "sterling")
VCountryE (FR) (name - "France", language H "French", currency H "franc")

and so on. H

A key specification, K, for a schema S with classes C consists of a type K' for each C E C,
where K' contains no class types, and for any instance Z E Inst(S), a family of functions
lC$' : aC -+ [K'] for each C E

An instance Z of schema S is said to satisfy a key specification K on S iff for each class C E C
and any o7 o' E aC, if Kg(o) = K$'(of) then o = o'.

A keyed schema consists of a schema S , and a key specification K on S. An instance of a
keyed schema (S ,K) is an instance Z of S such that Z satisfies K. We write Inst(S, K) for
the instances of (S, K).

In general we will use S, 7 , . . . to range over both keyed and un-keyed schemas, and will
specify either a keyed or un-keyed schema when we are interested exclusively in one or the
other.

Example 3.2: For the European Cities and Countries schema defined in example 3.1 we might
expect each Country to be uniquely determined by its name, and each City t o be uniquely
determined by its name and the name of its country (two Countries might both contain Cities
with the same name). The types of a key specification for this schema might have types

KCo~ntryE = str

kc it^^ (name : str, countryname : str)

and functions defined by

K ~ ~ Y E = Ax . (name = x.name, countryname = x.name.name)

where the notation x.a means if x E oC then take the value vC(2), which must be of record
type, and project out the attribute a .

31f r is a type which does not involve any class types, then the value of [[r]uC is independent of the choice
of object identities, uC. In this case we write [r] for the set [r]uc for an arbitrary choice of aC.

3.2 Well-defined Key-Specificat ions

As we remarked earlier, object-identities are generally taken to be abstract entities that are
not directly visible in a database. In practice they are frequently generated as they are
needed by a DBMS. Consequently we would like the meaning of a database instance to be
independent of the choice of object-identities in the instance, or the order in which they were
generated, and to depend only on the data represented by the instance. In particular, if two
instances differ only in their choice of object identities, we would like to consider them to be
the same, and to ensure that any queries or operations on those two instances give equivalent
results. We define the notion of isomorphism to represent when two instances differ only in
their choice of object-identities.

Given two instances of an unkeyed schema S, say Z and Z', with families of object identities
aC and a'' respectively, and a family of functions f C : aC + atC, for C E C, we can extend
f C to functions on general types f7 : [r]]ac + j[rl]a'c, so that fbis the identity on ~ b f o r each
base type b, and f 7 is defined in the obvious manner for each higher type r .

An isomorphism from instance Z to instance Z', consists of a family of bijective functions
f c : a" + a'" such that for each class C E C and each o E aC, vtC(fC(o)) = frC(yC(o)).
We say instances Z and Z' are isomorphic and write Z E Z' iff there is an isomorphism f C

from Z to Z'.

A key specification K on schema S is said to be well-defined if for any two instances Z and
Z' of S and isomorphism f C from Z to Z', if Z satisfies K then so does Z', and further, for any
class C E C and o E aC, KF(o) = ~ ~ g , (f ~ (o)) . Intuitively a key-specification is well-defined if
it is not dependent on the particular choice of object identifiers in an instance.

For the remainder we will assume that any key specifications are well-defined.

4 Information Dominance in Transformations

One of the important questions of database systems is that of data-relativism, or when one
schema or data-structure can represent the same data as another. From the perspective of
database transformations this can be thought of as asking when there is a transformation
from instances of one schema to another such that all the information in the source database
is preserved by the transformation. Such a transformation would be said to be information
preserving.

There are a number of situations when dealing with database transformations where we might
want to ensure that a transformation is information preserving. For example when performing

a schema evolution, we might want to ensure that none the information stored in the initial
database is lost in the evolved database, or when integrating databases, we might wish to
ensure that all the information stored in one of the component databases is reflected in the
integrated database.

Example 4.1: For the schema integration described in example 2.1 the transformation from
the database of US Cities and States to the schema of figure 2 is information preserving,
in that all the information stored in an instance of the first schema will be reflected in the
transformed instance. Equally the transformation from the restructured European Cities and
Countries schema of figure 3 to the schema of figure 2 is information preserving.

However the transformation from the first European Cities and Countries schema in figure 1
to the restructured schema of figure 3, and hence to the schema of figure 2, is not information
preserving. This is because the transformation to the restructured schema assumes that,
for each Country in the original schema, there is exactly one City of that Country with
its is-capital attribute set to True. However the original schema allows a country to have
multiple capitals: there may be many Cities with their is-capital attribute set to True. If we
were able to associate an additional constraint with European Cities and Countries schema
of figure 1 stating that each there can be at most one capital City in each Country, then the
transformation would be information preserving, and we could say that the schema of figure 2
dominates both of the schemas of figure 1.

In section 4.1 we will look at the work of Hull in [15], which defines a series of progressively
more restrictive concepts of information dominance, and see how they can be related to
transformations using the data model of section 3. In section 4.2 we consider the recent work
of Miller in [22, 231 which studies various applications of database transformations, and the
need for transformations to be information preserving in these situations.

4.1 Hull's hierarchy of information dominance measures

In [15] Hull defined four progressively more restrictive notions of information dominance
between schemas, each determined by some reversible transformation between the schemas
subject to various restrictions. Although [15] dealt only with simply keyed flat-relational
schemas, the definitions and some of the results can be easily generalized to the more general
model used here.

Given two (possibly keyed) schemas, S and 7 , a transformation from S to 7 is a partial map
a : Inst(S) i Inst(7). Intuitively the transformation is information preserving iff there is
a second transformation from 'T back to S, say p : Inst(7) + Inst(S) such that p recovers
the instance of S. That is, for any Z E Inst(S), Z F p o a(Z). Note that we are concerned

here with transformations which preserve instances up to isomorphism, since the particular
choice of object identities is immaterial.4 In such a situation we say that 7 domina tes S
via (a, p).

We say that a schema 7 dominates S absolutely, S 5 7(abs), iff there exist transforma-
tions a and p such that 7 dominates S via (a, p).

However a problem with this definition is that there may be many functions from Inst(S)
to Inst(7) which do not correspond to any reasonable or definable transformations, so that,
although there may be an information preserving map from instances of S to those of 7,
there is no way of realizing this map.

For any instance Z the support of Z, Supp(1) is the set of values from UbEB DL that occur in -
Z.

Suppose 2 C UbEB D b is a finite set. A transformation a from S to 7 is said to be 2- internal
iff, for every in;tance Z E InstS, Supp(a(Z)) c Supp(Z) U 2. Intuitively a transformation is
2-internal if it doesn't invent any new values, beyond some finite set of constants represented
by 2.

A schema 7 dominates a schema S internally, S 5 7(in t) iff there is a finite set 2 C UbEB DL
-

and 2-internal transformations a and p such that 7 dominates S via (a, p).

The next concept of dominance attempts to capture the idea that base values are "essentially
uninterpreted". Suppose Z c UbEB D L is a finite set. A 2-permuta t ion gB is a family of
bijections gb : DL -+ ~b such t h a t b restricted to ~ b f l ~ is the identity function for each b f 8.
Given a 2-permutation gB and a family of object identities aC, we can extend gB to functions
g7 : I[T]O' + [T]o' by taking gC to be the identity on aC for each C E C, and defining g7 for
higher types in the obvious way. Given an instance Z = (aC, vC), we can form the instance
gB(Z) with object identities aC and value functions vfC given by ~ " (0) = g7C(~c (o)) .

A transformation a from S to 7 is said to be 2-generic iff for any 2-permutation f B and
any instance Z E Inst(S), a (f B (l)) S fB(a(Z)). Intuitively a transformation is 2-generic
if all base values other than those in the finite set Z are "essentially uninterpreted values".
This fits with the assumption common in database query and constraint languages that no
computations are performed on values themselves beyond simple comparisons.

The following lemma follows simply:

Lemma 4.1: If a is a transformation from S to 7 and a is Z-generic for some finite set 2 ,
then a is also 2-internal. rn

41t might also be interesting t o consider transformations which preserve information up to observational
indistinguishability [19]

The converse, however, does not hold. Suppose, for example, we had a schema with a class
Person which had an attribute age. Consider a transformation from the schema to itself which
is the identity transforniation except that it replaces the age of each Person in an instance
with the minimum value of the age attribute occuring in the instance: if there was an object of
class Person with age 4 say, and no objects in Person with age less than 4 , then every Person
in the transformed instance would have age 4. Such a transformation would be internal, since
no new values are introduced, but is not 2-generic for any Z.

A schema 7 dominates S generically, S 3 T(gen), iff there is a finite set Z and 2-generic
transforniations a and p such that 7 dominates S via (a , p).

The final concept of information dominance captures the idea of having transformations ex-
pressible in some implicit calculus. To formalize this definition and realize the following results
it is necessary to actually fix some underlying calculus for expressing transformations, and to
show that for any transformation expressed in the calculus there will be a finite set Z such
that the transformation is 2-generic. Later we will be using the language WOL, which does
satisfy these properties, for expression transformations. For the time being it will suffice to
assume some implicit calculus.

Suppose 7 and S are schemas. Then 7 domina tes S calculously, S 3 7(caEc), iff there
are calculus expressions representing transformations a and p such that 7 dominates S via

(0, P I -
It is clear that calculus dominance is more restrictive than the other three concepts of domi-
nance. However it has the disadvantage of depending on a particular calculus for its definition,
while the other definitions of dominance are more abstract.

The following proposition is due to Hull ([15]) and follows easily from the previous lemma:

Proposition 4.2:HuEl '86. Let S and 7 be schemas. Then S 5 T(ca1c) implies S 5
S 5 7(gen) implies S 3 T(int) and S 3 7(int) implies S 5 T(abs).

A more significant result, also shown in 1151 is the following:

Proposition 4.3:HuEl '86 Let S and 7 be schemas. Then S 5 T(int) does not imply S 5
%len) .

In particular, in [15], it was shown that there are flat relational schemas S and I for which
S 5 7(int) and S $ I(gen). It follows that we cannot hope to construct a calculus which is
complete with respect to expressing internal dominance. The questions of whether absolute
dominance implies internal dominance, or generic dominance implies calculus dominance for
some calculus are left open however.

An important conclusion of [15] is that none of these criteria capture an adequate notion

of semantic dominance, that is, whether there is a semantically meaningful interpretation
of instances of one schema as instances of another. Consequently the various concepts of
information dominance can be used in order to test whether semantic dominance between
schemas is plausible, or to verify that a proposed transformation is information preserving,
but the task of finding a semantically meaningful transformation still requires a knowledge
and understanding of the databases involved.

Another significant problem with this analysis is that it assumes that all possible instances of
a source schema should be reflected by distinct corresponding instances of a target schema.
However, in practice only a small number of instances of a source schema may actually
correspond to real world data sets. That is, there may be implicit constraints on the source
database which are not included in the source schema, either because they are not expressible
in the data-model being used or simply because they were forgotten or not anticipated at the
time of initial schema design. An alternative approach, pursued in [ll], is to attempt to define
information preserving transformations and valid schemas with respect to some underlying
'(universe of discourse". However such characterizations are impossible or impractical to
represent and verify in practice.

4.2 Information Capacity and Constraints

In 122,231 Miller et al. analyse the information requirements that need to be imposed on trans-
formations in various applications. The restrictions on transformations that they consider are
somewhat simpler than those of [15] in that they examine only whether transformations are
injective (one- to-one) or surjective (onto) mappings on the underlying sets of instances. For
example they claim that if a transformation is to be used to view and query an entire source
database then it must be a total injective function, while if a database is to be updated via a
view then the transformation to the view must also be surjective. Having derived necessary
conditions for various applications of transformations, they then go on to evaluate existing
work on database integration and translations in the light of these conditions.

An important observation in 1221 is that database transformations can fail to be information
capacity preserving, not because there is anything wrong with the definition of the transfor-
mations themselves, but because certain constraints which hold on the source database are
not expressed in the source database schema. However the full significance of this observation
is not properly appreciated: in fact it is frequently the case that the constraints that must be
taken into account in order to validate a transformation have not merely been omited from
the source schema, but are not expressible in any standard constraint language.

Example 4.2: Consider the schema evolution illustrated in figure 9. The first schema has only
one class, Person, with attributes representing a person's name, sex (a variant of male and

Person

male

unit unit

I Marriage (

Pre-evolution Schema

I

str str

Evolved Schema

Male

Figure 9: An example schema evolution

Female

female) and spouse. In our second (evolved) schema the Person class has been split into two
distinct classes, Male and Female, perhaps because we wished to start storing some different
information for men and women. Further the spouse attribute is replaced by a new class,
Marriage, perhaps because we wished to start recording additional information such as dates
of marriages, or allow un-married people to be represented in the database.

It seems clear that there is a meaningful transformation from instances of the first database
to instances of the second. The transformation could be described by the following W O L
program:

X E Male, X.name = N -+== Y E Person, Y.name = N, Y.sex = insmale();
X E Female, X.name = N -+== Y E Person, Y.name = N, Y.sex = insfemale();
M E Marriage, M.husband = X, h4.wife = Y

+== X E Male, Y E Female, Z E Person, W E Person,
X.name = Z.name, Y.name = W.name, W = Z.spouse;

where "Y.sex = insmale()" indicates that the sex is a male variant; details of W O L will be
given in the next section. Although this transformation intuitively appears to preserve the
information of the first database, in practice it is not information preserving. The reason
is that there are instances of the spouse attribute that are allowed by the first schema that
will not be reflected by the second schema. In particular the first schema does not require
that the spouse attribute of a man goes to a woman, or that for each spouse attribute in
one direction there is a corresponding spouse attribute going the other way. To assert these
things we would need to augment the first schema with additional constraints, such as:

X.sex = insmaIe() += Y E Person, Y.sex = insfemal,(), X = Y.spouse;
Y.sex = insfemale() +== X E Person, X.sex = insmale(), Y = X.spouse;
Y = X.spouse -=$== Y E Person, X = Y.spouse;

We can then show that the transformation is information preserving on those instances of the
first schema that satisfy these constraints. Notice however, that these constraints are very
general, and deal with values at the instance level of the database, rather than just being
expressible at the schema level. They could not be expressed with the standard constraint
languages associated with most data-models (functional dependencies, inclusion dependencies,
cardinality constraints and so on).

This highlights one of the basic problems with information capacity analysis of transforma-
tions: Such an analysis assumes that schemas give a complete description of the set of possible
instances of a database. In practice schemas are seldom complete, either because certain con-
straints were forgotten or were not known at the time of schema design, or because the
data-model being used simply isn't sufficiently expressive. When dealing with schema evo-
lutions, where information capacity preserving transformations are normally required, it is
frequently the case that the transformation implementing a schema evolution appears to dis-
card information, while in fact this is because the new schema is a better fit for the data,
expressing and taking advantage of various constraints that have become apparent since the
initial schema design.

Further, when dealing with transformations involving multiple source databases, even if the
transformations from individual source databases to a target database are information pre-
serving, it is unlikely that the transformations will be jointly information preserving. This
is in part due to the fact that the source databases may represent overlapping information,
and inter-database constraints are necessary to ensure that the individual databases do not
contain conflicting information. It may also be due to the fact that information describing
the source of a particular item of data may be lost.

An additional limitation of the information capacity analysis of transformations is that is
very much an all-or-nothing property, and does not help us to establish other less restrictive
correctness criteria on transformations. When dealing with database integration, we might
only be interested in a small part of the information stored in one of the source databases,
but wish to ensure that the information in this subpart of the database is preserved by the
transformation. For example, we might be integrating our database of US Cities and States
with a database of European Cities or towns and Countries, and only be interested in those
Cities or towns with a population greater than a hundred thousand. However we would still
like to ensure that our transformation does not lose any information about European Cities
and towns with population greater than one hundred thousand.

It therefore seems that a more general and problem specific correctness criteria for transfor-
mations is needed, such as relative information capacity. In addition, a fornlalism in which
transformations and constraints can be jointly be expressed is needed in which to test these
more general correctness criteria. As a first step in this direction we present the the lan-

guage WOL, which provides a uniform framework for specifying transformations as well as
constraints.

5 The WOL Language

WOL (Well-principled Object Language)is a declarative language for specifying and imple-
menting database transformations and constraints. It is based on the data-model of section 3,
and can therefore deal with databases involving object-identity and recursive data-structures
as well as complex and arbitrarily nested data-structures. Due to space limitations, we will
omit or simplify certain formal details in the definitions and semantics of WOL. Full details
can be found in [20].

The previous sections have shown that there are important interactions between transforma-
tions and the constraints imposed on databases: constraints can play a part in determining
a transformation, and also transformations can imply constraints on their source and target
databases. Although most data-models support some specific kinds of constraints, in general
it is a rather ad hoc collection, included because of their utility in the particular examples
that the designer of the system had in mind rather than on any sound theoretical basis. For
example, relational databases will often support keys and sometimes functional and inclu-
sion dependencies 1351, while semantic models might incorporate various kinds of cardinality
constraints and inheritance 113, 161. The constraints that occur when dealing with transfor-
mations often fall outside such predetermined classes; further it is difficult to anticipate the
kinds of constraints that will arise. We therefore propose augmenting a simple data-model
with a general formalism for expressing constraints, such that the formalism makes it easy to
reason about the interaction between transformations and constraints.

Example 5.1: For example, in our Cities and States database of example 3.1, we would want
to impose a constraint that the capital City of a State is in the State of which it is the capital.
We can express this as

This can be read as "if Y is in class State and X is the capital of Y, then Y is the state of X".
Suppose also that our States and Cities each had an attribute population and we wanted to
impose a constraint that the population of a City was less than the population of the State
in which it resides. We could express this as

Such a constraint cannot be expressed in most constraint languages.

We can also use constraints to express how the keys of a schema are derived:

This constraint says that the key of an object of class City is a tuple built out of the name of
the city, and the name of its state. Such constraints are important in allowing us to identify
objects in transformations.

W O L is based on Horn clause logic expressions, using a small number of simple predicates
and primitive constructors. However it is sufficient to express a large family of constraints
including those commonly found in established data-models. In fact the only kinds of con-
straints which occur in established data-models but can not easily be expressed in W O L are
finite cardinality constraints: these are constraints that might state, for example, that a cer-
tain set-valued attribute has cardinality between 2 and 3. Although it wouldn't be difficult in
practice to extend W O L with operators to express such constraints, our experience indicates
that the need for such constraints is uncommon and their use is often somewhat contrived.

The language W O L can also be used to express constraints that span multiple databases,
and, in particular, can be used to specify transformations. A transformation specification
may viewed as a collection of constraints stating how data in a target database arises from
data stored in a number of source databases. In general however there may be any number of
target database instances satisfying a particular set of constraints for a particular collection of
source instances. It is therefore necessary to restrict our attention to complete transformation
specifications, such that for any collectioiz of source database instances if there is a target
instance satisfying the transformation specification then there is a unique smallest such target
instance.

Possibly the closest existing work to W O L are the structural manipulations of Abiteboul and
Hull [I] illustrated in section 2. The rewrite rules in [I] have a similar feel to the Horn clauses
of W O L but are based on pattern matching against complex data-structures, allowing for
arbitrarily nested set, record and variant type constructors. W O L gains some expressivity
over the language of [I] by the inclusion of more general and varied predicates (such as not-
equal and not-in), though we have not included tests for cardinality of sets in WOL. The main
contributions of W O L however lie in its ability to deal with object-identity and hence recursive
data-structures, and in the uniform treatment of transformation rules and constraints.

The language of [l] allows nested rewrite rules which can generate more general types of
nested sets, whereas in W O L we require that any set occuring in an instance is identifiable
by some means external to the elements of the set itself. Recall that in the data-model
presented here, a set occurs either as a class or as part of the value associated with some
object identity. Comparing the expressive power of the two formalisms is difficult because
of the difference between the underlying models, and because the expressive power of each

language depends on the predicates incorporated in the language. However if the rewrite
rules of [I] are extended to deal with the data-model presented here, and both languages are
adjusted to support equivalent predicates (for example adding inequality and not-in tests to
[I] and cardinality tests to WOL) then WOL can be shown to be at least as expressive as the
rules of [I]. In particular, given the restrictions on types considered here, nested rewrite rules
do not give any increase in expressive power.

5.1 Syntax and semantics of W O L

We will assume some fixed, keyed schema, (S, IC) with classes C, and define a version of WOL
relative to this schema. We will write WOL'~ when we wish to be explicit that the language
is parameterized on a particular schema.

Terms and Atoms

For each base type we will assume a countable set of constant symbols ranged over by
cb, . . ., and for each type T we will assume a countably infinite set of variables ranged over
by X', Y r , The terms of WOL", ranged over by P, Q, . . ., are given by the abstract
syntax:

P ::= C - class
I cb - constant symbol
I x - variable
I rap - record projection
I insaP - variant insertion
I ! P - dereferencing
I M~'P - object identity referencing

A term C represents the set of a l l object identities of class C. A term n a p represents the
a component of the term P , where P should be a term of record type with a as one of its
attributes. insap represents a term of variant type built out of the term P and the choice a.
! P represents the value associated with the term P, where P is a term representing an object
identity. The term M~'P represents the object identity of class C with key P.

We define the typing relation t-: on terms and types to be the smallest relation satisfying the

rules:

t C : {C}

A term P is said to be well-typed iff there is a type T such that t- P : T.

Atomic formulae or atoms are the basic building blocks of formulae in our language. An atom
represents one simple statement about some values.

The atoms of W O L ' ~ , ranged over by (b, $, . . ., are defined by the abstract syntax:

(b ::= p-Q

I P#Q
I PEQ
I pi'&
I False

The atoms P-Q, P#Q, P i Q and P$Q represent the obvious comparisons between terms.
False is an atom which is never satisfied, and is used to represent inconsistent database states.

An atom 4 is said to be well-typed iff

1. 4 = P-Q or (b =- P # Q and I' t P : T , I- Q :I- for some T; or

2. (b = Pi& or (b ~ P ~ Q and I't- P : T, I' t Q : {T} for some 7; or

3. (b = False.

Intuitively an atom is well-typed iff that atom makes sense with respect to the types of the
terms occuring in the atom. For example, for an atom P = Q, it wouldn't make sense to
reason about the terms P and Q being equal unless they were potentially of the same type.

Range restriction

The concept of range-restriction is used to ensure that every term in collection of atoms is
bound to some constant or value occurring in a database instance. This is necessary to ensure
that the truth of a statement of our logic depends only on the instance and not the underlying
domains of the various types.

Suppose @ is a set of atoms, and P is an occurrence of a term in @. Then P is said to be
range-restricted in iff one of the following holds:

1. P = C where C E C is a class;

2. P = cb where cb is a constant symbol;

3. P = n,Q where Q is a range restricted occurrence of a term in a ;

4. P occurs in a term Q = ins,P, where Q is a range-restricted occurrence of a term in a ;

5. P =!Q where Q is a range-restricted occurrence of a term in a;

6. P occurs in an atom P-Q or Q - P or P i & in @, where Q is a range-restricted occur-
rence of a term in @;

7. P = X, a variable, and there is a range-restricted occurrence of X in cP.

Clauses

A clause consists of two finite sets of atoms: the head and the body of the clause. Suppose
@ = (41, . . . , 4 k) and !P = {GI,. . . , Gl}. We write

for the clause with head !P and body cP. Intuitively the meaning of a clause is that if the
conjunction of the atoms in the body holds then the conjunction of the atoms in the head
also holds.

For example, the clause

Y.state = X -+== X E State, Y = X.capita1

means that , for every object identity X in the class State, if Y is the capital of X then X is
the state of Y.

A set of atoms @ is said to be well-formed iff each atom in @ is well-typed and every term
occurrence in @ is range restricted in @.

A clause 9 += @ is said t o be well-formed iff @ is well-formed and @ U !4 is well-formed.

Intuitively a clause is well-formed iff it makes sense, in that all the terms in the clause range
over values in a database instance, and all the types of terms are con~patible with the various
predicates that are applied to them. All the clauses we deal with in the remainder of this
paper will be well-formed.

S e m a n t i c s o f WOL clauses

An enviro9zment binds values t o the variables occuring in a WOL term, atom or clause.
Suppose 1 is an instance, with object-identifiers oC. An 1 - e n v i r o n m e n t , p, is a partial
function with finite donia,in on the set of variables such that p (XT) E [r]oC for each variable
X 7 E dom(p).

If Z is an instance, p an 1-environment and P a term of type r with variables taken from
dom(p), then we define a value [P]p E I[r]oC by structural induction on P . We present some
sample steps in the definition below. For full details see [20].

if X E dom(p)
~ X ' J J ' ~ - { :S?fined otherwise

[insa ~ 4 ' ~ = (a , [P]'~)

T [!PI p = v C ([~ I T p) if [P]'p E oC for some C E C
undefined otherwise

if [P]'p E [L ; ~] Z and o E oC
[[M ~ ~ (P)] ' ~ = such that ~ ~ (0) = [p]lTp

undefined otherwise

For any well-typed atom 4 with variables taken from dom(p) we define a boolean value ([+]pa
For example [P-Q]p = T iff [P]p = [Q]p; [P i Q] p = T iff [P]p E [Q]p; [False]p = F and
SO on.

The variables in the body of a clause are taken t o be universally quantified, while any variables
which occur only in the head of a clause amre existentially quantified. Consequently a clause

is said t o be satisfied by an instance iff for any binding of the variables in the body of the
clause which makes all the atoms in the body true, there is an instantiation of any remaining
~a~r iables which makes all the atoms in the head true too.

Given a set of atoms a , we write Var(@) for the set of variables occuring in a.
Suppose Q + Q, is a well-formed clause. An instance Z is said t o satisfy !P G iff for
any Z-environment p such that dom(p) = Var(Q,) and [$]p = T for each 4 E Q,, there is an
extension P' of p (that is, P'(X) = p(X) for each X E dom(p)), such that PI(+) = T for each
$ € *.
Example 5.2: For the instance of the European Cities and States database described in
example 3.1, suppose the environment p is given by:

p = (X H UK, Y ++ London)

Then

Further we can check that , for any other binding of X t o an element of aCoUntryE which makes
the first atom true, there is a binding of Y to an element of o C i t y E which makes the remaining
t,llree atoms true. Hence the instance satisfies the clause

Y i City,, Y.countrygX, Y.is-capital- -+= XE CountryE

5.2 Expressing database transformations using WOL

So far we have defined the language WOL t o deal with a single database schema and instance.
However in order to express transformations we need to be able to write WOL clauses con-
cerning multiple databases. In particular we will need to write clauses involving one or more
source databases and a distinguished target database.

Partitioning schemas and instances

If S1,. . . , S, are schenias with disjoint sets of classes then we can define S E S1 U . . . U S, by
taking the classes of S to be the union of the classes of S1,. . . , S,, and the type corresponding
to each class in S to be the same as the type corresponding to that class in the relevant S;.
S1,. . . ,S, are said to be a partition of S .

Given instances Zl, . . . ,Z, of disjoint schemas Sl, . . . ,S,, we can form an instance Z = Zl U
. . . U 1, of S1 U . . . U S, by taking the unions of the components of Zl , . . . ,I,. Further given an
irrstance Z of S and a partition S1,. . . , S, of S, we can find unique instances Z/S1,. . . ,Z/S,
of SL, . . . ? S n respectively, such that Z = Z/S1 U . . . U Z/S,.

Given disjoint keyed-schemas, (SI, Kl), . . . , (S,, K,), we can forni a keyed schema (S, IC) =
(SI, K1) U . . . u (S,, IC,) in a similar manner (details may be found in [20]).

Transformation rules and constraints

In looking at transformations we will concentrate on the case where we have a schema (S , IC)
with partition (Ss,,,Ksr,),(STgt,KTgt), and use the language WOL'~ in order to define
transformations from (Ssrc, KSrc) to (STgt, KTgt).

R term occuring in a set of atoms is classified as a source term or a target term
depending on whether it refers to a value in the source database or the target database. Note
that it is possible for a term to be classified as both a source term and a target term.

For example, if CountryE is a class in our source schema, CountryT is a class in our target
schema. and @ is the set of atoms

t,hetl the terms X and X.name are source terms, the terms Y and Y.name are target terms,
and the tern1 N is both a source and a target term.

There are three kinds of clauses that are relevant in determining transformations:

target constraints - containing no source terms;

source constraints - containing no target terms; and

transformation clauses - clauses of the form 9 + cP where each term occuring in !J is
a target term, and !P U @ contains no negative atoms involving target terms (P$Q or
P # Q) , and no comparisons of set-valued target terms.

So a transformation clause is one which does not imply any constraints on the source database,
and which only implies the existence of certain objects in the target database.

The restrictions against "negative" target atoms or comparisons of target sets are neces-
sary to allow us to apply transformation clauses while the target database is only partially
instantiated, and to ensure that any tests which become true at some point during the imple-
mentation of a transformation will remain true even if additional elements are added to the
target database. For example, suppose we allowed the following transformation clause

where C is a class with corresponding type rC = (a : {int)). Then suppose, at some point
during the transformation, we were to find an instantiation of X and Y to two objects,
say 01 and 02, of class C , such that the body of the clause was true at that point in the
transformation. Then the clause would cause the constant 1 to be added to the set X.a, thus
potentially making the body of the clause no longer true.

Transformation programs

A transformation program, Tr from a schema (Ss,,, Ksrc) to a schema (STgt, KTgt) consists
of a set of source and target constraints and transformation clauses in the language WOL'~ ,
where (S, K) = (SSTC, KSTC) U (STgt,KTgt)-

Example 5.3: Let us consider the transformation from the schema of European Cities and
Countries from example 3.1 to the schema illustrated in figure 2. We will assume that the
ltey for the class CountryT is its name attribute, and the key for the class CityT is a record
of type (name : str, place-name : str), where the first attribute is the name of a City, and the
second is the name of the Country or State pointed to by its place attribute.

Then we have the following source constraints:

which state that every Country has a capital City, and that the capital City of a Country is
unique.

We also need target constraints describing how the keys for our classes are generated:

y= M ~ C O U ~ ~ ~ Y T (Y.name) += Y i CountryE

x L M ~ C ~ ~ Y T (Z) , Z.name=X.name, Z.placeaame-Y.name

+= X € CityT, Y i CountryT, X . p l a ~ e ~ i n s ~ ~ , - , ; ~ ~ (Y)

x A M ~ C ~ ~ Y T (Z), Z.name=X.name, Z.placename=Y.name

+= X i CityT, Y i S t a t q , X . p l a ~ e = i n s ~ , - ~ ~ ~ ~ (Y)

Our transformation clauses are:

The first of the transformation clauses says that , for every object in the source class CityE
there is a corresponding object in the target class CityT with the same value on its name
attribute, and with its place attribute set to an object in class CountryT with the same name
as the name of the country of the city in class CityE. The second clause says that , for every
country in the source class CountryE, there is a corresponding country with the same name,
currency and language, in the target class CountryT, and the third clause tells us how t o
derive the capital attribute of an object in the class CountryT.

Note that , in the above example, a complete description of an object in the target database
may be spread over several transformation rules, and that transformation rules may define
one target object in terms of other target object. This highlights one of the strengths of
WOL: it allows us t o split transformations over large and complicated data-structures with
many interdependencies into a number of small relatively simple rules.

The clauses of the transformation program above may however be unfolded in order t o give an
equivalent program in which all the clauses give complete descriptions of the target database
in terms of the source database only, and which can then be implemented in a simple manner

[201.

S e m a n t i c s o f t r a n s f o r m a t i o n p r o g r a m s

Suppose Tr is a transformation program, and Zs,, an instance of (SsT,, Ksrc). An instance
ZTgt of (STgt, KTgt) is said t o be an Tr - t rans format ion of ZsTc iff for every clause !Q + cP
in Tr, Z satisfies !P += cP, where Z-Is,, U ZTgt.

Unfortunately the Tr-transformation of a particular instance will not in general be unique: a
transformation program will imply that certain things must be included in the target database
instance, but will not exclude other additional things from being included. Consequently
there may be infinitely many Tr-transformations of a particular instance, representing the
inclusion of arbitrary additional data. It is therefore necessary t o characterize the unique
smallest Tr-transformation of an instance, when it exists. To do this, we construct a size
ordering on instances, taking into account the fact that instances may have different sets of
object identifiers. We refer the reader t o [20] for details.

R transformation program, Tr is then said to be comple te iff for any instance Is,, of
(SsTc, KsT,), if there is a Tr-transformation of Is,,, then there is a unique (up t o isomorphism)
sma.llcst such Tr-transformation ZTgt.

Intuitively a complete transformation program is one in which the target database instance is
determined unambiguously by the source instance. In particular, a transformation program
is complete if, whenever it implies the existence of some object in the target database, it
provides a "complete" description of that object. For example if the second transformation
clause of example 5 .3 was replaced by the clause

(and no additional clauses were added) then the program would no longer be complete. This is
because, for a suitable source instance, the above clause would imply the inclusion of an object
identity in the target CountryT class with some specific value for the name attribute of the
associated record, but none of the clauses of the transformation program would assert what
the language and currency attributes of the associated record should be. Consequently there
would be many possible minimal instances of the target database satisfying the program, all
including objects of class CountryT with the appropriate name attribute but with arbitrary
values assigned to their language and currency attributes.

Given a complete transformation program, the "unique smallest" transformation of an in-
stance represents precisely the data whose presence in the target database is implied by the
transformation program, and is therefore the transformation we are interested in.

Example 5.4: Consider transforming the instance described in example 3.1 taking Tr t o be
the t,ransformation program of example 5.3. The choice of object identities in our target

database is arbitrary. We will take them to be:

aCityT {London', Man chest el', Paris', Berlin', Bonn'}
aCountryE E { U P , FR', GM)

The mappings are then given by

VCity~(~ondon') (name H "London7,, place H (euro-city, UK'))

~ ~ ~ ~ ~ ~ (~ a n c h e s t e f) (name H "Manchester", place H (euro-city, UK'))

VCityE(~aris') (name H "Paris", country H (euro-city, FR'))
vCountryE (UK') (name ++ "United Kingdom", language H "English",

currency H "sterling", capital H London')
VCountryE (FR') (name H "France", language tt "French",

currency H "franc", capital H paris')

and so on.

This is the smallest instance which is a Tr-transformation of the instance of example 3.1:
there are many other Tr-transformations which can be formed by adding additional objects
to the instance. However any other minimal Tr-transformation will by isomorphic to this
one. Since we can always find such a smallest Tr-transformation of an instance, if we can
find a Tr-transformation at all, it follows that the transformation program is complete.

We therefore have a precise semantics for complete transformation programs. Unfortunately
it is not in general decidable whether a transformation program is complete. However it is
possible to construct fairly general syntactic conditions which ensure that a transformation
program is complete. For programs which meet these syntactic conditions, it is also possible
to efficiently compute the unique smallest transformation of a set of source instances (see [20]
for details). We have prototyped such a system for a subset of WOL and are currently testing
it on a number of sample biological database transformations [9].

6 Conclusions

There is a considerable need for database transformations in the areas of reimplementing
legacy systems, reacting to schema evolutions, merging user views and integrating existing
heterogeneous databases, amongst others. Though work exists t o address certain aspects
of these problems, a general formal approach to specifying and implementing such complex
structural transformations has not yet been completely developed. Many existing approaches

lack formal semantics, while others are limited in the types of transformations that can be
expressed, or in the data model being considered. In addition it is frequently necessary
to ensure the "correctness" of such database transformations, and so the it is necessary to
develop notions of correctness or information preservation of transformations, and to tie such
notions in with database transformation techniques.

In this paper we surveyed various approaches to database transformations and notions of
information preservation, and reached a number of conclusions. First, approaches which al-
low a fixed set of well-defined transformations to be applied in series are inherently limited
in the class of transformations that can be expressed. As an example we demonstrated a
complex structural manipulation which could not be expressed in one such methodology, but
which commonly arises in practice. Using a high-level language for expressing transforma-
tions can provide greater expressive power, but makes it more difficult to reason about and
prove properties of transformations. We concluded that a high-level language is necessary in
order to express general transformations, but that such a language should be declarative and
should have a well-defined formal semantics, in order to minimize the problems involved with
reasoning about transformations.

Second, the choice of an underlying data model impacts the types of transformations that
can be expressed. The main requirement of the model underlying a transformation language
is that it subsume the various models which might be used in the databases being trans-
formed. In particular, it should include support for complex data-structures (sets, records
and variants), object-identity and recursive structures. To reason about transforming recur-
sive structures, it is also necessary to have a notion of extents or classes in which all the
objects in a database must occur.

Thirdly, to reason that a transformation is correct, constraints should be expressed in the same
formalism as the transformation. Constraints on the source and target databases are crucial
to notions of information preservation, but typically are not - or cannot - be expressed in the
models of the underlying databases. Furthermore, when integrating multiple heterogeneous
databases it is necessary to reason about inter-database constraints. Since such constraints
are crucial to the correctness of transformations they should be expressed as part of the
transformation program.

These conclusions have driven the design of the transformation language WOL. As a declara-
tive language built on Horn clause logic expressions, it allows a general class of transformations
to be expressed and unifies the treatment of transformations and constraints. The class of
constraints that can be expressed in WOL encompasses those found in most data models, such
as keys, functional dependencies and inclusion dependences. Furthermore, our experience in
using WOL to specify database transformations within biological databases [9] indicates that
it is intuitive and easy to use since transformations over large and complicated data struc-

tures can be split into a number of relatively small and simple rules. However, while the
mechanics for checking information preservation appear to be in place for WOL we feel that
more general, problem specific notions of correctness need to be developed as well as sound
techniques for proving these properties.

References

[l] S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theoretical
Computer Science, 62:3-38, 1988.

[2] S. Abiteboul and P. KaneIlakis. Object identity as a query language primitive. In Proceed-
ings of ACM SIGMOD Conference on Management of Data, pages 159-173, Portland,
Oregon, 1989.

[3] Serge Abiteboul and Richard Hull. IFO: A formal semantic database model. ACM
Transactions on Database Systems, 12(4):525-565, December 1987.

[4] F. Bancilhon. Object-oriented database systems. In Proceedings of 7th ACM Symposium
on Principles of Database Systems, pages 152-162, Los Angeles, California, 1988.

[5] J. Banerjee, W. Kim, H. Kim, and H. Korth. Semantics and implementation of schema
evolution in ob ject-oriented databases. SIGMOD Record, 16(3):311-322, 1987.

[6] C. Batini and M. Lenzerini. A methodology for data schema integration in the entity-
relationship model. IEEE Transactions on Software Engineering, SE-10(6):650-663,
November 1984.

[7] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323-364, December 1986.

[8] P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects of schema merging. In
LNCS 580: Advances in Database Technology - EDBT '92, pages 152-167. Springer-
Verlag, 1992.

[9] S. B. Davidson, A. S. Kosky, and B. Eckman. Facilitating transformations in a human
genome project database. In Proc. Third International Conference on Information and
Knowledge Management (CIKM), pages 423-432, December 1994.

[lo] U. Dayal and H. Hwang. View definition and generalisation for database integration in
Multibase: A system for heterogeneous distributed databases. IEEE Transactions on
Software Engineering, SE-lO(6) :628-644, November 1984.

[ll] C. Eick. A methodology for the design and transformation of conceptual schemas. In
Proceedings of the 17th International Conference on Very Large Databases, Barcelona,
Spain, pages 25-34, September 1991.

[12] F. Eliassen and R. Karlsen. Interoperability and object identity. SIGMOD Record,
20(4) :25-29, December 1991.

1131 N. Hammer and D. McLeod. Database description with SDM: A semantic database
model. A CM Transactions on Database Systems, 6(3):351-386, September 1981.

[14] Dennis Heimbigner and Dennis McLeod. A federated architecture for information man-
agement. ACM Transactions on Ofice Information Systems, 3(3), July 1985.

[15] R. Hull. Relative information capacity of simple relational database schemata. SIAM
Journal of Computing, 15(3):865-886, August 1986.

[16] Richard Hull and Roger King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys, 19(3):201-260, September 1987.

[17] W. Kent. The breakdown of the information model in multi-database systems. SIGMOD
Record, 20(4):10-15, December 1991.

1181 Setrag N. Khoshafian and George P. Copeland. Object identity. In Stanley B. Zdonik
and David Maier, editors, Readings in Object Oriented Database Systems, pages 37-46.
Morgan Kaufmann Publishers, San Mateo, California, 1990.

[19] Anthony Kosky. Observational properties of databases with object identity. Techni-
cal Report MS-CIS-95-20, Dept. of Computer and Information Science, University of
Pennsylvania, 1995.

[20] Anthony Kosky. Types with extents: On transforming and querying self-referential
data-structures. PhD Thesis Proposal, Technical Report MS-CIS-95-21, University of
Pennsylvania, May 1995.

1211 W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22(3):267-293, September 1990.

[22] R. J. Miller, Y. E. Ioannidis, and R Ramakrishnan. The use of information capacity
in schema integration and translation. In Proc. 19th International VLDB Conference,
pages 120-133, August 1993.

[23] R. J. Miller, Y. E. Ioannidis, and R Ramakrishnan. Schema equivalence in heterogeneous
systems: Bridging theory and practice. Information Systems, 19, 1994.

[24] A. Motro. Superviews: Virtual integration of multiple databases. IEEE Transactions on
Software Engineering, SE-13(7):785-798, July 1987.

1251 S. Navathe, R. Elmasri, and J . Larson. Integrating user views in database design. IEEE
Computer, 19(1):50-62, January 1986.

[26] D. Penney and J. Stein. Class modification in the gemstone object-oriented dbms. SIG-
PLAN Notices (Proc. OOOPSLA '8?'), 22(12):111-117, October 1987.

[27] John F. Roddick. Schema evolution in database systems - An annotated bibliography.
SIGMOD Record, 2 1(4):35-40, December 1992.

[28] A. Rosenthal and D. Reiner. Theoretically sound transformations for practical database
design. In S. T. March, editor, Entity-Relationship Approach, pages 115-131, 1988.

[29] M. Rusinkiewicz, A. Sheth, and G. Karabatis. Specifying interdatabase dependencies in
a multidatabase environment. IEEE Computer, December 1991.

[30] I?. Saltor, M. Castellanos, and M. Garcia-Solaco. Suitability of data models as canonical
models for federated databases. SIGMOD Record, 20(4):44-48, December 1991.

[31] P. Shoval and S. Zohn. Binary-relationship integration methodology. Data and Knowledge
Engineering, 6:225-249, 1991.

[32] Andrea H. Skarra and Stanley B. Zdonik. Type evolution in an object oriented database.
In Bruce Shriver and Peter Wegner, editors, Research Directions in Object Oriented
Programming, pages 392-415. MIT Press, Cambridge, Massachusetts, 1987.

[33] S. Spaccapietra and C. Parent. Conflicts and correspondence assertions in interoperable
dbs. SIGMOD Record, 20(4):49-54, December 1991.

[34] M. Tresch and M. Scholl. Schema transformation without database reorganization. SIG-
MOD Record, 22(1):21-27, March 1993.

[35] Jeffrey D. Ullman. Principles of Database and Knowledgebase Systems I. Computer
Science Press, Rockville, MD 20850, 1989.

[36] S. Widjojo, R. Hull, and D. S. Wile. A specificational approach to merging persistent ob-
ject bases. In A1 Dearle, Gail Shaw, and Stanley Zdonik, editors, Implementing Persistent
Object Bases. Morgan Kaufmann, December 1990.

[37] S. Widjojo, D. S. Wile, and R. Hull. Worldbase: A new approach to sharing distributed
information. Technical report, USC/Information Sciences Institute, February 1990.

[38] G. Wiederhold and X. Qian. Modeling asynchrony in distributed databases. Proc. 1987
International Conference on Data Engineering, pages 246-250, 1987.

	Semantics of Database Transformations
	Recommended Citation

	Semantics of Database Transformations
	Abstract
	Comments

	tmp.1183142451.pdf.3HqSs

