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Cantilever tilt compensation for variable-load atomic force microscopy

Abstract
In atomic force microscopy (AFM), typically the cantilever's long axis forms an angle with respect to the
plane of the sample's surface. This has consequences for contact mode experiments because the tip end of the
cantilever, which is constrained to move along the surface, displaces longitudinally when the applied load
varies. As a result, the AFM tip makes contact with a different point on the surface at each load. These
different positions lie along the projection of the lever's long axis onto the surface. When not constrained by
static friction, the amount of tip-displacement is, to first order, proportional to the load and is shown to be
substantial for typical AFM and cantilever geometries. The predictions are confirmed experimentally to
within 15% or better. Thus, care should be taken when performing load-dependent contact mode
experiments, such as friction versus load, elasticity versus load, or force versus displacement measurements,
particularly for heterogeneous or topographically-varying samples. We present a simple method to reliably
and precisely compensate for in-plane tip displacement that depends only on the range of vertical motion
used to vary the load. This compensation method should be employed in any load-varying AFM experiment
that requires the tip to scan the same line or to remain at the same point at each load. ©2005 American Institute
of Physics
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In atomic force microscopysAFMd, typically the cantilever’s long axis forms an angle with respect
to the plane of the sample’s surface. This has consequences for contact mode experiments because
the tip end of the cantilever, which is constrained to move along the surface, displaces longitudinally
when the applied load varies. As a result, the AFM tip makes contact with a different point on the
surface at each load. These different positions lie along the projection of the lever’s long axis onto
the surface. When not constrained by static friction, the amount of tip-displacement is, to first order,
proportional to the load and is shown to be substantial for typical AFM and cantilever geometries.
The predictions are confirmed experimentally to within 15% or better. Thus, care should be taken
when performing load-dependent contact mode experiments, such as friction versus load, elasticity
versus load, or force versus displacement measurements, particularly for heterogeneous or
topographically-varying samples. We present a simple method to reliably and precisely compensate
for in-plane tip displacement that depends only on the range of vertical motion used to vary the load.
This compensation method should be employed in any load-varying AFM experiment that requires
the tip to scan the same line or to remain at the same point at each load.© 2005 American Institute
of Physics.fDOI: 10.1063/1.1896624g

I. INTRODUCTION

Atomic-force microscopysAFMd is an invaluable tool
for investigating the interactions between a nanoscale probe
tip and sample surface.1,2 In AFM, the tip is integrated near
the end of a microfabricated cantilever. The tip/cantilever
assembly may be scanned across the surface of a sample of
interest, or displaced normal to the surface, depending on the
experiment. Common applications include topography, fric-
tion, and force-displacementsFDd measurements. In dy-
namic AFM, information related to topographic and material
contrast are gathered via noncontactsNCd or intermittent-
contactsICd modes.3 Alternately, one can use contact mode
AFM to obtain topography, elasticity, and friction data. Typi-
cal contact mode experiments, such as friction versus load
sFvLd, elasticity versus load, and FD measurements, involve
varying the applied load between the tip and sample by
ramping the normal force setpoint. A piezoelectric actuator
that moves either the sample platform or cantilever holder
responds to this modulation by controlling the relative dis-
placement of the sample and the fixed end of the cantilever.
This displacement, in turn, alters the amount the lever is
bent.

The tip displaces as a consequence of two features in-
herent to the experiment:s1d the relative motion between the
sample and the fixed end of the lever, ands2d the 10°–25° tilt
of the cantilever with respect to the sample, typical of most
AFMs. Overneyet al. discussed the effect of in-plane dis-
placement on elastic compliance measurements and ac-
counted for it in their experiments.4 In addition, Marcuset al.
and D’Amato,et al. addressed other consequences of the tilt

angle in AFM in relation to phase contrast imaging in
intermittent-contact AFM.5,6 We continue the discussion of
lever tilt and address its role in contact mode imaging and
nanotribology measurements with AFM. Consider a FvL ex-
periment in which the same line is to be scanned at a series
of loads. Most commercial instruments permit the user to
disable piezo motion in the slow-scan directionsthe
x-direction in Fig. 1d. Nonetheless, the tip end of the lever
displaces in this direction, i.e., parallel to the lever’s projec-
tion onto the samplesthex-axisd. Thus, with increasing load,
i.e., with decreasing separation between the fixed end of the
lever and the sample surface, the tip end of the lever moves
in the +x-direction. Similarly, the tip retraces this path when
the lever retracts from the surface. The load-dependence of
the in-plane tip position relative to features on the sample
surface has been ignored or underestimated in past studies. In
this paper, we demonstrate that this dependence has a strong
effect on the interpretation of data and the manner in which
measurements should be taken. We show that this is particu-
larly important for surfaces with nanoscale topographic,
structural, or compositional variations, and when studies of
nanoscale wear are of interest.

II. LOAD DEPENDENCE OF IN-PLANE TIP–SAMPLE
DISPLACEMENT

A. Preliminary observations

To illustrate this effect, we begin by discussing a FvL

study of the s11̄02d surface sR-planed of single crystal
a-alumina. Experiments are carried out using the EV scanner
of a Digital InstrumentssDId/Veeco MultiMode AFM with a
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Nanoscope IV controller and Signal Access Module. The EV
scanner has a vertical range of approximately 2.5mm and an
x–y scan range of approximately 10mm. As shown in Fig. 1,
the lever forms a nominal 11° angle between itsx8–y plane
and thex–y plane of the sampleswhich may be tilted rela-
tive to the microscoped. The cantilever is held fixed while

piezos drive the sample platform inx, y, andz. The s11̄02d
surface of oura-alumina sample is extremely flat, having a
RMS roughness of 0.09 nm over a 3003300 nm2 region,
and 0.06 nm over a 1003300 nm2 terracefFig. 2sadg.

After a series of FvL measurementsswith the slow-scan
disabled by the softwared, wear debris or swept-up particu-
lates flank the imaged areafFig. 2sbdg. Instead of indicating
that scanning occurred on one scan line or over a narrow
region, the debris forms a large rectangular pattern on the
surface. It is unlikely that this wear pattern is a result of drift,
as there is no evidence of similar motion in they-direction.
Moreover, the length of thex-sides of the rectangle is
160±3 nm, a displacement that is much larger than the ther-
mal drift typically observed in this instrument. In this case, a
load-dependent displacement between the tip and sample is
the only explanation for the large size of the debris features.
If the load is not varied, but scanning takes place for the
same amount of times,20 mind, the resulting rectangle is
approximately 6 nm.

The tilt effect is also apparent for tribological interfaces
that exhibit atomic-scale stick-slip behavior, or for which
high adhesion produces tip or lever buckling. Watsonet al.
observed atomic stick-slip behavior in the normal force sig-
nal while varying thez-displacement of an AFM cantilever
relative to WTe2 and highly oriented pyrolytic graphic
surfaces.7 They attribute this effect to the same mechanism

observed here, namely longitudinal travel of the tip due to
cantilever tilt. Stick-slip arises because in-plane forces are
great enough to induce lever buckling.

B. Displacement versus load calculations

The extent of tip–sample displacement along the
x-directionsx-displacementd depends on the lever-sample ge-
ometry specific to each AFM. Figure 3 depicts the basic ge-
ometry of the typical lever-sample system at zero and non-
zero spositived applied loads. For a given range of load,
x-displacement increases with an increase in the angleu be-
tween the cantilever and its projection onto the sample sur-
face. The length of the cantilever and, more importantly, the
range of vertical motion, Dz, also affect the total
x-displacement,Dx. If we assume the lever is rigidsi.e., ig-
nore elastic bending deformationsd and that it slips without
static friction, then the following simple equation describes
the geometric relationship betweenDx, L, u, andDz, as il-
lustrated by Fig. 3,

Dx = ÎL2 − sL sinu − Dzd2 − L cosu, s1ad

whereL is the length from the base of the lever to the tip
axis, and u is the angle between the cantilever and the
sample surface at zero applied load. To first order inDz, Eq.
s1ad reduces to

Dx . Dz tanu. s1bd

The load range determinesDz, which is specific to each ex-
periment. For an 11° tilt angle, thex-displacement is ap-
proximately 19% of thez-displacement. If the cantilever’s
force constant is low, then a largez-displacement is needed
to vary the force appreciably. For example, to cover a load
range of 100 nN using a contact mode cantilever with a force
constant of 0.05 N/m requires az-displacement of 2000 nm,
thus thex-displacement is,389 nm.

The derivation of Eq.s1d assumes that the beam pivots
rigidly about its base and does not consider elastic deforma-
tion due to bending. A second-order correction to Eq.s1ad
may be obtained by considering the shape of a cantilevered,
tip-loaded Euler-Bernoulli beam with uniform cross section.8

The result is

FIG. 1. sad Side view andsbd top view of the lever-sample system in an
atomic force microscope. Thex-axis corresponds to the projection of the
cantilever onto the sample surface. Tip-displacementsor motion of the tip
end of the leverd versus load occurs along this axis. Load is varied by
moving the fixed end of the lever relative to the sample along thez-axis.

FIG. 2. 3003300 nm2 topographs ofa-alumina beforesad and aftersbd a
series of FvL measurements. The vertical scales are each 10 nm. Scanning
has either worn this surface or swept aside physisorbed material that now
flanks the scanned region. The length of this region is a measure of the
amount by which the tip displaced during the FvL experiment, where the
load was ramped by 270 nN, corresponding to az-displacement of 820 nm.
The worn region extends approximately 160 nm in thex-direction.

FIG. 3. Schematic of the basic geometry of a typical lever-sample system at
zero and nonzerospositived applied loadssthe fixed end of the lever is
higher for the zero load cased where the lever is modeled as a rigid beam.
The relative position between the tip and sample changes as the applied load
varies. Increased load decreases the relative separation between the base of
the cantilever and the sample surface. Since the tip is constrained to the
sample plane, the lever must deflect counterclockwise about its base, and the
tip displaces along the +x-direction.

053706-2 Cannara et al. Rev. Sci. Instrum. 76, 053706 ~2005!
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Dxbending= −
3Dz2

L
cosu s2d

and the sum of Eq.s1d and Eq.s2d give the total in-plane
deflection. Equations2d yields a 5% reduction from the rigid
analysis of Eq.s1d for small bending deflections of the can-
tilever. For most measurements, this small correction may be
neglected. Equations1d also neglects sample drift, tip bend-
ing, and lever buckling. There may indeed be cases where it
is important to address the role of each of these effects in an
experiment depending on the conditions. For example, if
friction is very high, the tip may not slip at first and could
remain constrained to one contact point for a substantial
range of loads. This effect was seen by Enachescuet al.9

C. Theory versus measurement

The dependence predicted by Eq.s1bd can produce a
substantialx-displacement in an experiment. Thus, it is easy
to measure the distance traversed in theIx-direction by the
tip for FvL measurements that produce wear by examining
the wear debris. With the range of loads used in the
a-alumina experiment,Dz=816 nm, and the tilt angleu
=11 °. In this case, Eq.s1bd predicts a totalx-displacement,
Dx=159 nm.fEquations2d would add another 8 nm to the
predicted value.g From the wear debris in Fig. 2sbd, we mea-
sureDx=160±3 nm, in remarkable agreement with Eq.s1bd.

This is an especially significant result if the goal of an ex-
periment is to repeat measurements on the same location on
the sample at different loads. Moreover, if the surface is
chemically or topographically inhomogeneous, it is futile to
compare data at different loads without some form of com-
pensation.

Further direct evidence of tip displacement was obtained
by performing load variation experiments on polyurethane
and on a monolayer-coated alumina single crystal sample.
The normal force setpoint was ramped over substantial load
rangessthe maximum was approximately 130 nNd several
times according to a sawtooth waveform with the fast scan
on and the slow scan off. Resulting wear pits in the material
were observed in topographic imagessFig. 4d. Three cantile-
vers of different lengths and force constants were used. The
results, included in TableI I along with other measurements
discussed in this section, show excellent agreement with the
predictions of Eq.s1bd, with measured values generally be-
ing less than predicted, but within the substantial uncertain-
ties of determining the boundaries of the wear pits. In par-
ticular, the low-load region of the wear pit is shallowly
sloped, making it somewhat difficult to distinguish it from
the surrounding unworn region. Moreover, polyurethane is a
viscoelastic material, and some relaxation of the surface is
expected after unloading, thereby altering the shape of the
wear pit. The force threshold for permanently deforming the

FIG. 4. AFM topograph and cross section of a wear pit in polyurethane. The top view on the left is 2003200 nm2 and has a height scale of 35 nm.

TABLE I. Summary of predicted and measuredx-displacements from wear experiments on a polyurethane, a
PA SAM film, anda-alumina.

Surface Lever type
Length
/smmd

Dz
/snmd

Dx
predicted

to 1st order
/snmd

Dx
predicted

to 2nd order
/snmd

Dx
Measured
/snmd

% Agreement
with 1st order
prediction

Polyurethane SN 100 263 51 51 45±5 88±10
Polyurethane SN 100 263 51 51 58±8 114±16
Polyurethane Si 110 304 59 58 50±10 85±17
Polyurethane SN 200 397 77 77 77±10 100±13
Polyurethane SN 200 397 77 77 65±15 84±19
PA SAM SN 200 493 96 95 92±10 96±10
a–Alumina Si 300 81 159 158 160±3 101±2

053706-3 Cantilever tilt compensation Rev. Sci. Instrum. 76, 053706 ~2005!
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polyurethane is unknown, but any nonzero value would re-
sult in a systematic reduction in the observedx-displacement,
as it would occur at low loads, but without corresponding
wear.

A similar test was performed on a monolayer-coated
a-alumina sample. A phosphonic acid self-assembled mono-
layer sPA SAMd was seen to have loosely-bound material on
the surface that could be pushed with the AFM tip at small
positive loads, but was undisturbed by zero-load topographic
imaging. Over the course of several load-variation cycles, the
tip cleared a region of the loosely bound material, and di-
mensions of that region confirmed the amount of
x-displacement in agreement with Eq.s1bd, also shown in
Table I.

The data in Table I are presented in a graphical format in
Fig. 5. The scatter plot shows the predicted versus measured
x-displacement and a solid line with slope=1, representing
theoretical agreement between the two. The points fall very
close to this line, which illustrates the good agreement be-
tween the measured and predicted values. Thus, in several
cases we consistently find that the first order approximation
in Eq. s1bd agrees to within 15% of measured values.

III. COMPENSATION FOR IN-PLANE TIP–SAMPLE
DISPLACEMENT

Many AFM controllers allow the user to access various
channels for monitoring output signals or to input external
signals for custom operation. For example, FvL experiments
often require an external voltage source to ramp the normal
force or deflection setpoint. Similarly, proper external control
of the x-piezo voltage can compensate for unwanted tip-
displacement during load-dependent measurements. In a
varying load experiment, thex-piezo may be ramped in the
±x-direction and in phase with the load rampsdepending
upon whether thex-piezo moves the base of the lever or the
sample platformd to counteract tip motion in the
+x-direction. The experiments below demonstrate the effec-
tiveness of this external slow-scan control.10

FvL measurements are performed with SN and tungsten
carbide-coatedsWCd tips on thes111d surface of hydrogen-
terminated single-crystal diamond. Cantilever dimensions
are measured optically or by TEM, and their relevant values

are given in Table I, along with the data for each cantilever
used in this work. Normal spring constants and lateral forces
are calibrated according to established methods.11,12Van den
Oetelaaret al. showed that H-termination reduces atomic-
scale friction on diamond in an ultrahigh vacuum
environment.13 Although the present work is conducted in air
sRH>60%d, an H-terminated surface is employed to help
minimize friction and adhesion. Therefore, prior to FvL mea-
surements, the diamond sample is cleaned in an acid bath
and H-terminated in a H2 plasma.14,15 This procedure pro-
duces a chemically inert, C–H bonded surface with a water
contact angle of 85°–87°.

Figure 6sad shows a 5003500 nm2 AFM topograph of
the diamond Cs111d–H surface. The image has a RMS
roughness of 1–3 nm and consists of 20–50 nm islands of
approximately 0.3 nm rms roughness, consistent with previ-
ous work.13,16 The islands are regions of relatively low fric-
tion surrounded by stepped features of higher friction
fFig. 6sbdg. As a result, FvL measurementsswithout
x-compensationd produce abnormal data in which friction in-
creases nonmonotonically with loadsFig. 7d. If not aware of
the x-displacement effect, one might suspect that tip wear
was responsible for the nonmonotonic variations in friction.
However, the abnormal data were often highly repeatable
multiple times, for both increasing and decreasing loads,
which would not be expected for irreversible tip wear pro-
cesses. Figure 8 shows FvL measurements taken with a WC
tip at two different locations on the sample, alternating back
and forth between them. No other scanning occurs between

FIG. 5. Comparison of predicted and observed tip slip. The 45° line repre-
sents theoretical perfect agreement.

FIG. 6. 5003500 nm2 AFM topography and friction images of the
H-terminated diamonds111d surface, using a 13.5 nm radius tungsten
carbide-coated Si tip. The RMS roughness at this scale is 1–3 nm, and the
surface consists of islands with a,0.3 nm RMS roughness.

FIG. 7. Friction on the H-terminated diamond sample without
x-displacement compensation results in abnormal behavior. Friction varies
nonmonotonically with load as a result of either topographical or chemical
inhomogeneities on the surface.
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data acquisition at each position. Each location exhibits its
own reproducible nonmonotonic variations. This rules out tip
wear as the explanation for the variations in friction, and it
suggests that nonmonotonic friction is instead an artifact of
surface inhomogeneitiesstopographical and/or chemicald.
Furthermore, we obtain TEM images of the tip before and
after the experiment and observe little to no tip wear. Al-
though tip wear takes place in some cases, it does not occur
with every measurement. In contrast, the abnormal friction
behavior shown in Figs. 8 and 9 is observed without excep-
tion when nox-compensation is used.

Figure 9 compares FvL data for a SN tip on the same
30 nm island of Cs111d–H with and withoutx-compensation.
In this case,Dz=0.705mm, and, therefore,Dx=136 nm. By
multiplying Dx by thex-piezo sensitivitys0.047 V/nmd, we
obtain thex-piezo voltage necessary to compensate for this
motion sin this case, 6.39 Vd. This range of voltage was ap-

plied to the piezo to cause displacement in thex-direction
concurrently and in phase with the load variation. The fric-
tion data from thesex-compensation measurementssopen
circles in Fig. 9d now increase monotonically with load. The
tip has remained on or near the same line at each load. At
worst, x-compensation confines the tip to within the same
30 nm island.17 Therefore,x-compensation of the piezo mo-
tion, by an amount predicted by Eq.s1d, successfully pre-
serves the tip’s position on the sample as the load is varied.

IV. DISCUSSION

Longitudinalsx-d displacement of the tip with respect to
the sample is significant in load-varying AFM experiments
due to the tilt of the cantilever. Nonetheless, this tilt effect
can be corrected precisely viax-compensation, provided that
static friction is not so high as to prevent slippage of the tip
appreciably. This technique is crucial to a variety of nanotri-
bological and nanomechanical research studies, such as stud-
ies of wear in which it is important to scan the same line over
a range of loads,18 chemical force microscopysCFMd when
tip–sample separation must be restricted to the direction nor-
mal to the surface for adhesion measurements on spatially or
chemically heterogeneous surfaces,19,20 and carbon nanotube
buckling experiments for which pure axial loads are desired.
Most previous work has neglected this effect, despite its im-
portance for experiments that employ long contact mode le-
vers with low force constants. Even NC or IC mode cantile-
vers, if they are used for contact mode experiments, such as
buckling or CFM measurements, exhibit significant
x-displacements. Therefore, users should be aware of this
effect and account for it when possible.
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