
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 2001

Cognitive Modeling for Computer Animation: A Comparative Cognitive Modeling for Computer Animation: A Comparative

Review Review

Liwei Zhao
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Liwei Zhao, "Cognitive Modeling for Computer Animation: A Comparative Review", . January 2001.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-01-02.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/136
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/136
mailto:repository@pobox.upenn.edu

Cognitive Modeling for Computer Animation: A Comparative Review Cognitive Modeling for Computer Animation: A Comparative Review

Abstract Abstract
Cognitive modeling is a provocative new paradigm that paves the way towards intelligent graphical
characters by providing them with logic and reasoning skills. Cognitively empowered self-animating
characters will see in the near future a widespread use in the interactive game, multimedia, virtual reality
and production animation industries. This review covers three recently-published papers from the field of
cognitive modeling for computer animation. The approaches and techniques employed are very different.
The cognition model in the first paper is built on top of Soar, which is intended as a general cognitive
architecture for developing systems that exhibit intelligent behaviors. The second paper uses an active
plan tree and a plan library to achieve the fast and robust reactivity to the environment changes. The third
paper, based on an AI formalism known as the situation calculus, develops a cognitive modeling language
called CML and uses it to specify a behavior outline or "sketch plan" to direct the characters in terms of
goals. Instead of presenting each paper in isolation then comparatively analyzing them, we take a top-
down approach by first classifying the field into three different categories and then attempting to put each
paper into a proper category. Hopefully in this way it can provide a more cohesive, systematic view of
cognitive modeling approaches employed in computer animation.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-01-02.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/136

https://repository.upenn.edu/cis_reports/136

Cognitive Modeling for Computer Animation:
A Comparative Review

Liwei Zhao
Center for Human Modeling and Simulation

University of Pennsylvania, PA 19104-6383, USA
lwzhao@graphics.cis.upenn.edu

Abstract

Cognitive modeling is a provocative new paradigm that paves the
way towards intelligent graphical characters by providing them with
logic and reasoning skills. Cognitively empowered self-animating char-
acters will see in the near future a widespread use in the interactive
game, multimedia, virtual reality and production animation industries.
This review covers three recently-published papers from the field of
cognitive modeling for computer animation. The approaches and tech-
niques employed are very different. The cognition model in the first
paper is built on top of Soar, which is intended as a general cognitive
architecture for developing systems that exhibit intelligent behaviors.
The second paper uses an active plan tree and a plan library to achieve
the fast and robust reactivity to the environment changes. The third
paper, based on an A1 formalism known as the situation calculus, de-
velops a cognitive modeling language called CML and uses it to specify
a behavior outline or "sketch plan" to direct the characters in terms of
goals. Instead of presenting each paper in isolation then comparatively
analyzing them, we take a top-down approach by first classifying the
field into three different categories and then attempting to put each
paper into a proper category. Hopefully in this way it can provide
a more cohensive, systematic view of coginitive modeling approaches
employed in computer animation.

1 Introduction

Modeling for computer animation addresses the challenge of automating a
variety of difficult and complex animation tasks. An early milestone was
the combination of geometric models and inverse kinematics to simplify
the laborious keyframing. The computer maintains a representation of how
parts of model are linked together and the constraints are enforced as the
objects are pulled around. This frees the animator from, necessarily, having
to move every part of an articulated figure individually.

Similarly, using the laws of physics can free the animator from implic-
itly trying to emulate them when they generate motion. Physically-based
models such as Witkin et al. (1987) [53] and Barzel & Barr (1988) [54] view
the world as objects and constraints. Constraints connect objects together
through desired geometric relationships or keep them in space. Otherwise,
they float in space under the appropriate laws of physics (Badler e t al. 1993)
[3]. Passive objects, such as falling chains, colliding objects, rigid bodies,
deformable solids, gases and fluids can be animated using physically-based
models (Foster & Metaxas 1996; Metaxas 1996) [15, 351 . For animate ob-
jects biomechanically-based modeling can be employed. So far, it has been
possible to use simplified biomechanical models to automate the process of
locomotion learning in a variety of virtual creatures, such as fish, snakes, and
some articulated figures (Tu 1996; Grzeszczuk & Terzopoulos 1996) [50, 211.
While the physically-based and biomechanically-based modeling can model
and simulate characters accurately and realistically, they are usually too
computationally expensive to be used in real-time animation without any
preprocessing.

Research in behavioral modeling is making progress towards self-animating
characters that react appropriately to perceived environment stimuli. The
seminal work in this area was that of Reynolds (1987) [38]. His "boids"
have found extensive applications throughout the games and animation in-
dustry. Recently the work of Badler et al. (1993) [3], Tu and Terzopoulous
(1994) [49], Blumberg and Galyean (1995) [6], Hodgins et al. (1995) [22],
Unuma et al. (1995) [51], and Thalmann et al. (1998) [48] has extended
this approach to dealing with some complex behaviors for more sophisti-
cated characters. This works well for low-level behaviors. For animations of
specific high-level behaviors, things are more complicated because many of
the high-level behaviors exhibited by the characters suffer from the problems
of being hard-wired into the code thus are very hard to be reconfigured or
extended.

1.1 Cognitive Modeling

Some researchers address these problems by introducing cognitive modeling
(henceforth, CM) as the next logical step in the hierarchy of models that
have been used for coniputer animation.

Building cognitive models is very much a research area at the forefront of
artificial intelligence (AI) research and psychological research. The research
in A1 overlaps considerably with cognitive science. Many researchers in A1
try to model their computer programs after human intelligence, and they
derive inspiration from modeling human cognition (Stillings et aE 1987, p.9)
[47]. In psychological research, a cognitive model serves as a vehicle for
understanding human behavior. If your model is successful at producing
human-like behavior under certain assumptions, you can hypothesize that
different behavior will emerge under different assumptions, change those
assumptions in the model and see how it behaves. Explorations with models
in this way can then be used to design experimental conditions that are
likely to show measurable effects. So, CM is useful for A1 scientists and
psychologists, but why should computer animators care about CM?

Figure 1: Shifting the Burden of the Work

Because computer animators are very interested in shifting the burden
of the work to intelligent agents that have the following properties:

Autonomy: agents operate without direct intervention and have
some kind of control over their actions and internal states;

Reactivity: agents perceive their environment and respond in a timely
fashion to changes that occur in it;

Pro-activeness: agents do not simply act in response to their envi-
ronment, they are able to exhibit goal-directed behavior by taking the
initiative:

Interactivity: agents interact with humans in real-time, which could
include natural language understanding capabilities.

CM can play critical subsidiary roles in simulating these properties.
Therefore, computer animators believe CM, by raising the level of abstrac-
tion at which the user can direct animated agents, makes it easier to produce
animations. This level of functionality is obtained by enabling the agents
themselves to do more of the work rather than the animator.

Hence, the goal of CM for animation is to have agents behave au-
tonomously and intelligently in the virtual environment by emulating the
perceptual, thinking, and/or motor processes a human goes through to com-
plete a task. However, it does not necessarily imply that a cognitively em-
powered agent should get the job done with the least effort or in the least
time. She may take the same amount of time that a human takes to perform
a task. She may make the same kind of errors a human makes. She may
require the same type of experience to learn to perform a task. She may do
the same inefficient fumbling for a solution to a difficult problem.

1.2 Challenges

1.2.1 Fundamenta l Definitions

The task of developing a general cognitive model for compute animation or
virtual reality (VR) games is a daunting task, greatly complicated by the
lack of a consensus on some fundamental definitions such as intelligence and
cognition.

Newell's definition of intelligence (Newel1 1990) [36] implies that it is
the knowledge within the system that makes it intelligent. From Newell's
definition it can be inferred that in order to see if a system exhibits intelli-
gence, it is important to study its content, and not its computatioiial model
(Jona & Schank 1993) [27]. However, it is important to note that it is the
computational model which allows the implementation of the content. Also
according to Newel1 (1990) [36], a system is intelligent to the extent that it
uses the knowledge it possesses. Taking this notion to the extreme implies
that a simple system operating in a small domain is more intelligent than a
human operating in a large domain (Fehling 1993) [14]. Laird and Rosen-
bloom in their response (1993) [30] to this criticism, on behalf of Newell,
seem to think that this is an issue of generality, and not intelligence. This
debate suggests that intelligence is dependent upon the domain and subject
in question. Maybe there is no universal definition of intelligence, as it really
is a highly relative and subjective concept.

What cognition really is also is highly debated among proponents of
two distinct approaches. One approach, the tradition upon which cognitive

science was founded, is that of symbolic representation and processing (Vera
& Simon 1993) [52]. The other more recent approach, emphasizing the role
of the environment, the context, the social and cultural setting, and the
situations in which characters find themselves, is variously called situated
cognition (Greeno & Moore 1993; Agre 1993; Suchman 1993; and Clancey
1993) [20, 2, 46, 131. The supporters of situated cognition tend to emphasize
the importance of social interaction and environment and to minimize the
importance of internal cognition; while the proponents of the traditional
symbolic approach tend to downplay the importance of these social and
external factors and to emphasize the importance of internal cognition. The
dispute is really one of differing worldviews, but it defies attempts to produce
a single universally accepted definition of cognition.

1.2.2 Fundamental Questions

Current computational cognitive models in computer animation demon-
strate nothing like the intelligence and cognition and the efflorscence o f adap-
tation evident in human or other agents' behaviors and such a result seems
very far away. To make any progress, researchers must set goals much lower
and hope to move gradually to the intelligent ideal.

However, this lowering of goals results in great deviations among the
research community when answering some fundamental questions:

What types of environments should be anticipated?

- Static Simulated Environments, consist of unchanging surround-
ings in which an agent navigates and manipulates. The agent does
not need to adapt to new situations, nor do its designers need to
concern themselves with the issue of inconsistencies of the world
model. An example of such an environment is a simulated office
setting, where the doorways and halls never change, and there are
no moving objects that populate the simulated space. Nothing
changes in the static environment except through the action of
the agent.

- Dynamic Simulated Environments, change over time independent
of the actions of the agents. They usually factor out the unin-
teresting variables and allow the agents to focus on the critical
issues. However, due to the dynamic and unpredictable changing
of the environment, agents that operate in the dynamic simulated
enviornment require robust sensing/perception mechanisms and

high-level capabilities such as planning and learning. They may
be even required to produce new plans rapidly based on updated
sensory/perceptual information. They may have to reason about
the temporal aspects of their plans.

a What capabilities are most important?

- Capabilities taking place within the agent

* Planning

* Replanning

* Learning: explanation-, abstraction-, or caching-based, etc.
* Problem solving

* Support for multiple simultaneous goals

* Deductive and/or inductive reasoning
* Self reflection

- Capabilities related to interaction with the environment

* Sensing and perception

* Natural language understanding
* Query answering and providing explanations

* Prediction
* Navigational strategies

- Capabilities related to Execution

* Real-time execution

* Goal reconstruction
* Focused behavior and selective attention

* Responding intelligently to interrupts and failures

What properties should be included?
Agent properties identify and entail the techniques and methods that
are used to realize a particular modeling component. For example
most cognitive models include some sort of memory. Agent properties
characterize the memory: Is the memory declarative, procedural, or
episodic? Are there size limitations? Is memory uniformly accessed?
Is it uniformly organized?

A research team's answers to these questions greatly influence its cogni-
tive models. Unfortunately, no answer is completely satisfying or justified.
For instance, most researchers consider the ability of planning fundamental

to intelligence. However, the subsumption designers (Brooks 1986) [7] pur-
posely ignore this capability. Both sides provide compelling arguments for
their choices, so the final decision is highly subjective.

1.3 Overview

The remainder of the paper is organized as follows. Section 2 reviews the
background of different CM strategies, taking into account the most impor-
tant theoretical and practical issues. Here, our primary goal is to classify
various CM approaches into three big categories: deliberative models, reactive
models and layered models. The classification serves as a framework for the
rest of the paper. Section 3 presents Steve, an animated pedagogical agent
that helps students learn to perform physical and procedural tasks. Steve's
cognition is based on the Soar model which is intended as a general delib-
erative cognitive architecture for developing systems that exhibit intelligent
behaviors. Section 4 presents Hap, a reactive cognition model used in the
Oz project to achieve fast and robust reactivity to world changes. Section 5
presents a layered model which, based on the situation calculus, develops a
cognitive modeling lanaguage called CML and uses it to direct the charac-
ters in terms of goals. Section 6 presents the analytical conclusions we have
drawn from our previous examinations, followed by a brief summary. This
paper is an animation-centric review instead of an investigation on the A1
side. We restrict our interests to real-time computer animation.

2 Background: Theory and Practice

With all those difficulties and challenges presented in the first section, how
does one proceed? First we need to systematically review the approaches and
strategies available. So far, there are three different strategies: deliberative
models, the classical strategies; reactive models, the alternative strategies;
and layered models, the intermediate strategies.

2.1 Deliberative Model

The foundation upon which the deliberative model, actually the whole sym-
bolic A1 paradigm, rests is the physical-symbol system, formulated by Newel1
and Simon (1976). A physical-symbol system is built from a set of elements,
called symbols, which may be formed into symbol structures by means of a set
of relations. A symbol system has a memory capable of storing and retain-
ing symbols and symbol structures, and has a set of information processes

that form symbol structures as a function of sensory stimuli, which produce
symbol structures that cause motor actions and modify symbol structures
in meniory in a variety of ways. The processes that encode sensory stimuli
into internal symbols are called perceptual processes, and the processes that
decode motor symbols into muscular responses are called motor processes.
Perceptual and motor processes connect the symbol system with its envi-
ronment, providing it with its semantics, the operational definitions of its
symbols.

The deliberative model is a model that contains an explicitly represented,
symbolic model of world, and in which decisions are made through logical
reasoning and planning, based on pattern matching and symbolic processing.
In the early days - not very long ago, studies of this model dominated the
A1 and cognitive science field. Progress was made on many fronts, including
planning, problem solving, reasoning, and language. A substantial number
of symbol systems have been constructed and tested, partially successfully,
for their ability to simulate human thinking and learning over a wide range
of task domains. But after the initial flurry of activity, progress slowed due
to the various difficulties mentioned earlier.

2.1.1 First Order Logic

First Order Logic (henceforth, FOL) is the logical foundation for symbolic
AI. The basic building blocks are terms for referring to objects, and pred-
icates for referring to relations. Terms and predicates can be combined to
make atorr~ ic sentences to state facts. Then atomic sentences can be used
with logical connectives to construct complex sentences. FOL also contains
two standard quantifiers, called universal ('d) and existential (3) , to express
properties of entire collections of objects, rather than having to enumerate
the objects by name. FOL can express anything that can be programmed.

More detailed discussion of FOL can be found in a number of books
including Logic for Computer Science by Gallier (1986) and Logical Foun-
dations of Artificial Intelligence by Genesereth and Nilsson (1987).

Situation calculus is used for describing the changing world in FOL. It
conceives of the world as consisting of a sequence of situations, each of
which is a "snapshot" of the state of the world. Situations are generated
from previous situations by actions. Three major problems have to be solved
for practical use of situation calculus: the frame problem, the qualification
problem and the ramification problem.

2.1.2 Planning

It has long been assumed that planning will be a central compoiient of
any deliberative model. Perhaps the best-known early planning system was
STRIPS (Fikes & Nilsson 1971). This system takes a symbolic description of
both the world and a desired goal state, and a set of action operators, which
characterize the preconditions and postconditions associated with each ac-
tion. It then attempts to find a sequence of actions that will achieve the
goal, by using a simple means-ends analysis (MEA), which essentially in-
volves matching the postconditions of actions against the desired goal. The
STRIPS planning algorithm was very simple, and proved ineffective and
impractical on problems of even moderate complexity. Much effort was sub-
sequently devoted to developing more effective and practical planning tech-
niques. Major innovations include hierarchical planning (Sacerdoti 1974)
[43] and nonlinear planning (Sacerdoti 1975) [44].

Researchers in computer animation, trying to create autonomous intel-
ligent agents, have attempted quite a few planning schemes by implicitly
adopting a symbolic representation model of the simulated world. One of
the papers we are going to analyze in this review employs a hierarchical de-
composition planning mechanism. So it is a good time now for us to briefly
review the practical planning being used in computer animation.

Regression Planning
This approach builds a plan by chaining backward from the desired
goal through an action that will achieve the goal to the preconditions
that must be achieved for this action to be effective. This is due
to the empirical belief that the search space has a smaller branching
factor near the goal state than that of near the initial state therefore
a backward search from the goal is more tightly constrained and more
effective. One of the drawbacks of this approach is the initial steps of
the final plan are the last ones that are constructed. This is hardly
acceptable in real-time computer animation. To satisfy the real-time
constraints some researchers (Kurlander & Ling 1995) [28] propose a
modified version that precompiles the plan scripts into a finite-state
machine prior to the executions. In this specific case the operators
are animation scripts, and the programmers declare preconditions and
postconditions that explain how each of the scripts depend on and
modify states. The price to pay is that all the possible situations have
to be hard-coded into the finite state machines as a preprocessing step.

Interleaving Planning

Given the planning delays and the requirement of adaptability to a
changing unpredictable environment, interleaving planning suggests
that do some planning, switch to perform some of the planned actions
and then continue the planning. The open question is how much plan-
ning to do before the planned action takes over. Wood's AUTODRIVE
system (Wood 1993) [55] has interleaving planning agents operating
in a highly dynamic environment (a traffic simulation).

Hierarchical Decomposition
Most of planners we surveyed have adopted the idea of hierarchical
decomposition: that an abstract operator can be decomposed into a
group of steps that forms a plan that implements the operator. The
composite steps of this plan can be further decomposed into even more
specific plans until they are fully decomposed into hierarchically orga-
nized primitive actions that can be directly executed. These decom-
positions can be stored in a library of plans for retrieval as needed
(Russell and Norvig 1995) [42]. This is a typical Divide-and-Conquer
strategy, assuming the combination of implementations of subgoals
can achieve the implementation of the goal. The action steps in the
plan can be either partially ordered or totally ordered, partial ordering
is preferred, though, due to the principle of least commitment.

However the partial order planning has to solve three prominent prob-
lems: the selection of multiple applicable actions; subgoal interactions,
also known as Sussman Anomaly; and constraint binding. Due to these
problems, in practice hierarchical decomposition with partial ordering
is rarely used directly without modification. ItPlanS (Geib 1995) [18]
restricts a strong linearity (no subgoal interactions) and total order-
ing in its incremental hierarchical planner to satisfy the constraints of
rapid response and limited knowledge.

One of the papers we will examine adopts this method with some
additional requirements. To construct a plan, Steve demands a task
knowledge definition from the course author. Basically it is an aug-
mented partial-ordering planner with substantial control knowledge to
discourage unusual plans, and to guide the plan construction and re-
vision. We will come to this point with more details when analyzing
the planning model in the Steve paper.

However, in the mid 1980s, Chapman (1987) [12] established some the-
oretical results which indicate that even refined planning techniques will
ultimately turn out to be unusable in any time-constrained system. These

results have had a profound influence on subsequent planning research; per-
haps more than any other, they have caused some researchers to question the
whole symbolic A1 paradigm, and thus have led to the work on alternative
approaches that we will discuss in the next.

2.2 Reactive Model

As we mentioned above, there are many unsolved problems associated with
symbolic AI. These problems have led some researchers to question the via-
bility of the whole symbolic paradigm, and to the development of what are
generally known as reactive models, which do not include any kind of central
symbolic world model, and do not use any complex symbolic reasoning.

Probably the most vocal critic of symbolic A1 has been Rodney Brooks.
He has been arguing for over a decade that the road to intelligence consists
of building situated agents which employ no explicit symbolic representa-
tion nor abstract reasoning (Brooks 1990; Brooks 1991a; Brooks 1991b)
[8, 9, 101. The "Creatures," as he called the humanoid robots he built at
MIT, have a number of functionally distinct control layers that act indepen-
dently. Sensors feed directly into distinct layers, each of which can react to
the input with its own set of motor behaviors. Each layer has only the nec-
essary information about the environment and the information is processed
independently and in parallel. The lower layer represents more primitive
behaviors (such as avoiding obstacles) and has precedence over layers fur-
ther up the hierarchy. The higher layers subsume the roles of lower layers
by suppressing their outputs. The system does not, at any point, have a
centralized representation of its world.

Pattie Maes' corn petence modules loosely resemble the behaviors of Brooks'
architecture (Maes 1991; Maes 1994) [33, 341. Each module is specified by
the designer in terms of preconditions and postconditions, and an activation
level, which gives a real-valued indication of the relevance of the module in
a particular situation. The higher the activation level, the more likely it is
that the module will affect an agent's behavior. Once specified, a set of com-
petence modules is compiled into a spreading activation network, in which the
modules are linked to one another in ways defined by their preconditions and
postconditions. For example, if module a has postcondition 4, and module
b has precondition 4, then a and b are connected by a successor link. Other
types of links include predecessor links and conflicter links. When an agent
is executing, various modules may become more active i11 given situations,
and may be executed. The result of execution may be a motor command.

Chapman and Agre (1986) [ll] observed that most everyday activity is

"routine", requiring little new abstract reasoning. Most tasks, once learned,
can be accomplished in a routine way, with little variations. They proposed
an idea that as most decisions are routine, they can be encoded into a low-
level structure, which only need periodic updating, perhaps to handle new
kinds of problems. Their approach was illustrated with the PENGI system
(Agre and Chapman 1987) [I]. PENGI is a simulated computer game with
characters controlled by "routines".

Rosenschein and Kaelbling (Rosenschein 1985; Rosenschein and Kael-
bling 1986; Kaelbling and Rosenschein 1990; Kaelbling, 1991) proposed a
situated automata in which agents are specified in declarative terms. This
specification is then compiled down to a digital machine, which satisfies the
declarative specification. This digital machine can operate in a provably
time-bounded fashion; it does not do any symbol manipulation, and in fact
no symbolic expressions are represented in the machine at all. An agent is
specified in terms of two components: perception component RULER and
action component GAPPS. RULER takes as input three components: a
specification of the semantics inputs; a set of static facts; and a specification
of state transitions. The programmer then specifies the desired semantics
for the output and the compiler synthesizes a circuit whose output will have
the correct semantics. All the declarative "knowledge" has been reduced to
a very simple circuit (Kaelbling 1991). GAPPS takes as input a set of goal
reduction rules (essentially rules that encode information about how goals
can be achieved), a top level goal, and generates a program that can be
translated into a digital circuit in order to realize the goal. The generated
circuit does not represent symbolic expressions; all symbolic manipulation
is done at compile time.

All above have a common idea: Compiling specifications to construct
dedicated parallel cicuits to bypass the the symbolic processing and reason-
ing steps. This makes agents very responsive to their environment. Hap,
which we will examine in details in Section 4, applies the same ideas of this
situated actions and reactivity.

However, some researchers argue that although pure planning, with no
situational feedback, is surely ineffective, yet it may be too radical to take the
opposite extreme claiming planning and symbolic representation is irrevalent
to cognition. So they advocate a more sophisticated intermediate approach
- layered models, which we will discuss in the following.

2.3 Layered Model

Many researchers have suggested that neither a purely deliberative nor a
purely reactive approach is suitable for CM. They have argued the case for
a hybrid approach, which attempts to marry deliberative and reactive in a
complementary fashion.

One of the best known layered models is the Procedural Reasoning Sys-
tem (PRS), developed by Georgeff and Lansky (1987) [19]. PRS is a belief-
desire-intention architecture, which includes a plan library, as well as explicit
symbolic representations of beliefs, desires, and intentions. Beliefs are facts,
either about the external world or the internal states, and are expressed
in classical FOL. Desires are represented as system behaviors. A PRS plan
library contains a set of partially-elaborated plans, called knowledge areas
(henceforth, KA), each of which is associated with an invocation condition.
This condition determines when the KA is to be activated. KAs may also be
reactive, allowing the PRS to respond rapidly to changes in its environment.
The set of currently active KAs in a system represent its intentions. These
various data structure are manipulated by a system interpreter, which is
responsible for updating beliefs, invoking KAs, and executing actions.

The common characteristics of layered models that is the control must be
both data-driven (in response to agent's current situation) and goal-driven
(to satisfy one of agent's intention). In John Funge's Undersea World, which
we will examine in Section 5, mermen can reason about their world based
on acquired knowledge to achieve their goal; in case that reasoning can
not be done in a timely fashion, the reactive system prevents mermen from
doing anything stupid, such as bashing into rocks. Typical default reactive
behaviors include "turn right", "avoid collision" and "swim for your life".

2.4 Discussion

Layered models, such as the PRS and RAP (Firby, 1989 & 1995), are cur-
rently a very active area of work, and arguably have some advantages over
both purely deliberative and purely reactive models. One potential difficulty
with such models, however, is that they tend to be ad hoc in that while their
structures are well-motivated from a design point of view, it is not clear that
they are motivated by any deep theory.

3 Steve's Cognitive Model

The first paper reviewed describes Steve, an animated agent that helps stu-
dents learn to perform physical and procedural tasks. Steve, cohabiting with
students in a three-dimensional simulated work environment, can demon-
strate how to perform tasks and monitor students while they practise tasks,
carrying on tutorial, task-oriented dialogs with students when needed.

Steve's architecture consists of three major modules: perception, cog-
nition and motor control. The perception module monitors the state of
the virtual world, maintains a coherent representation of it, and provides
this information to the cognition and motor control modules. The cog-
nition module interprets its perceptional input, chooses appropriate goals,
constructs and executes plans to achieve those goals, and sends out motor
commands. The motor control module decomposes these motor commands
into a sequence of lower-level commands, controlling Steve's voice, locomo-
tion, gaze, and gestures, and allowing Steve to manipulate objects in the
virtual world. In this paper we focus on its cognition module, which is built
on top of Soar (Laird, Newell, & Rosenbloom 1987; Newel1 1990) [29, 361.
As much of Steve's design was influenced by features of Soar, it is necessary
to briefly review Soar cognitive architecture.

3.1 Soar: A general cognitive architecture

Soar is a general cognitive architecture for developing systems that exhibit
intelligent behaviors. In Soar, all tasks are represented as collections of
problem spaces, which are made up of a set of states and operators that
manipulate the states. Soar begins work on a task by choosing a problem
space, then an initial state in the space. Soar represents the goal of the task
as the final state in the problem space. Soar repeats its Decision Cycle as
necessary to move from the initial state to the final state.

3.1.1 Knowledge in Soar

In order to act in a domain, Soar must have knowledge of that domain
(either given to it or learned). The domain knowledge can be divided into
two categories:

Basic problem space knowledge: definitions of the state representation,
the "legal move" operators, their applicability conditions and their
effects.

Figure 2: Steve

Control knowledge, which gives guidance on choosing what to do, such
as heuristics for solving problems in the domain.

Knowledge in Soar is encoded in production rules, which has the form of
C + A, where C stands for conditions, and A for actions.

Two of Soar's memories are of relevance here: the production memory (or
long-term memory), permanent knowledge in the form of production rules;
and the working memory, temporary information about the situation being
dealt with. Productions place preferences for working memory elements into
preference memory. Types of preferences include acceptable, reject, require,
prohibit, better, worse, reconsider, and indifferent. All perceptual and motor
behavior is mediated through working memory. The motor modules accept
commands from working memory and execute them. Their progress can
then be monitored through sensors that are fed back into the system via
perception.

3.1.2 Decision Cycle i n Soar

Soar has a two-phase decision cycle, elaboration followed by decision. The
two phases are repeated until the goal of the current task is reached. Dur-
ing the elaboration phase all productions which match the current working
memory fire. All productions fire in parallel. The elaboration phase runs to
Quiescence (until no more productions fire).

The decision phase examines any preferences put into preference mem-
ory (either in this phase, or previous ones), and chooses the next problem
space, state, operator or goal to place in the context stack. The decision
phase may change any current slot values, or any previous slot values in
the context stack. If there is not enough information (or the information
is contradictory) for the decision phase to choose the next slot value, then
Soar reaches an impasse.

3.1.3 Impasses a n d Subgoaling in Soar

There are three possible types of impasses:

Operators Zero Impasse: no candidate operators to apply.

Operator Tie Impasse: too many, undifferentiable candidates.

Conflict Impasse: Two or more operators are better than one another
and they are not dominated by a third.

When Soar encounters an impasse in context level-1, it sets up a subcon-
text (or "subgoal") at level-2, which has associated with it a new state, with
its own problem space and operators. Note that the operators at level-2
could well depend upon the context level-1. The goal of context level-2 is to
find knowledge sufficient to resolve the higher impasse, allowing processing
to resume there. For example, we may not have been able to choose between
two operators, so the level-2 subgoal may simply try one operator to see if
it solves the problem, and if not, tries the other operator. The processing
a t level-2 might itself encounter an impasse, set up a subgoal at level-3, and
so on. So in general we have a stack of such levels, each generated by an
impasse in the level above. Each level is referred to as a context (or goal),
and each context can have its own state, problem space and operators.

Soar automatically creates subgoals in order to resolve impasses. This
is the only way that subgoals get created.

3.1.4 Chunking in Soar

Soar includes a simple, uniform learning mechanism called chun king. When-
ever a result is returned from an impasse, a new rule is learned connecting
the relevant parts of the pre-impasse situation with the result. This means
that next time a sufficiently similar situation occurs, the impasse is avoided.
Notice in Figure 3 only A, B, and C are included in the conditions for the

~ 0 u * 8 ' r u r WORKING MEMORY

Figure 3: Chunking in Soar (from "Unified Theories of Cognition" [14])

production, working memory elements (WMEs) 7, 8, and 9 are not included
since they are not along the path that leads to the goal even though they
were created just before the impasse occurred; Similarly, WMEs 2, 4, and
6 are not included since they lead to WMEs which were used in impasse
resolution but they were created before the impasse occurred. If in a fu-
ture situation, condition elements A, B, and C occur, the resultant chunk
shown at the bottom of the diagram will fire, regardless of the elements
from which these conditions elements are created. And these new chunks
are placed in the production memory immediately, and are available on the
next elaboration phase, thus Soar's learning is intermixed with its problem
solving.

Figure 4: Steve's Cognitive Architecture

Steve

I
I
I
I

Soar Rules Perception snapshots I

COGNITION

Spatial Properties
PERCEPTION

INTERFACE
SIMULATOR

r--------------------------------
Task
Knowledge

Pedagogical
Capabilities

1
I
I
I
I

3.2 Steve's Cognition

Soar is a general cognitive architecture, but it does not provide built-in
support for particular cognitive skills such as demonstration, explanation,
monitoring and question answering. Steve, as an intelligent tutoring and
training agent, requires such pedagogical capabilities. These capabilities
are implemented as Soar production rules and layered on top of Soar. To
demonstrate how to perform procedural task in a particular domain, Steve
also needs a domain-specific task knowledge, which must be provided by
the course author. Given appropriate task knowledge for a specific domain,
Steve can employ these general pedagogical capabilities to teach students
that knowledge. From top to bottom, the cognition is organized into three
main layers:

domain-specific task knowledge

domain-independent pedagogical capabilities

Soar production rules

This layered approach to Steve's cognition module (as shown in Figure 4)
offers the flexibility of allowing Steve to be used in a variety of domains. Each
new domain requires only new task knowledge. Steve's general pedagogical
capabilities and underlying Soar production rules need not be modified.

3.2.1 Steve's Domain Task Knowledge

Steve represents domain tasks as hierarchical plans, using a relatively stan-
dard representation (Russell & Norvig 1995) [42]. First, each task consists
of a set of steps, each of which is either a primitive action or a compos-
ite action. Composite actions give tasks a hierarchical structure. Second,
there may be ordering constraints among the steps, each specifying that one
step must precede another. These constraints define a partial order over the
steps. Finally, the role of the steps in the task is represented by a set of
causal links. Each causal link specifies that one step achieves a goal that is
a precondition for another step. For example, putting on socks achieves the
goal of SocksOn, which is a precondition for putting on shoes.

Figlire 5 shows an example of a task definition: the task of performing a
functioiial test of a high-pressure air compressor aboard a ship. It consists of
three steps: press-function-test, chcck-alarm-light, and extinguish-alarm. In
press-function-test step, the operator presses the test button on the control
panel; then examines the light to make sure if it is still functional or burned

Task: functional-test
Step: press-function-test, check-alarm-light, extinguish-alarm

Causal Links:
press-function-test achieves test-mode for check-alarm-light
check-alarm-light achieves know-if-alarm-functional for end-task
extinguish-alarm achieves alarm-off for end-task

Ordering Constraints:
press-function-test before check-alarm-light
check-alarm-light before extinguish-alarm

Figure 5: An example task definition

out in the check-alarm-light step; finally operator turns off the light by
pressing the reset button in the extinguish-alarm step. The task must be
performed in this order. This is enforced by the ordering constraints in
the task definition. In addition, several causal links exist among the steps.
For example, press-function-test puts the devices in test mode, which is
a precondition for check-alarm light. In order to complete the task, the
operator must know whether the alarm light is functional, and make sure to
turn off the alarm light. These are shown as the preconditions for end-task.
Similarly, if the task is depended on conditions that must be established
prior to starting the task, these conditions would be represented as effects
of begin-task. Causal links serve to record the purpose(s) of steps in the task
definition. They enable Steve to automatically generate explanations and
to adopt procedures to unexpected circumstances.

The task definition only defines the structure of a task in terms of its
steps and orderings. To complete the description, the course author must
provide the goals and primitive actions. Each goal is defined by an attribute-
value pair. Steve can represent two types of goals: goals that require putting
the virtual world in some desired state (attributes of virtual world with
specific values), which Steve can evaluate using perception, and goals that
acquire information, which Steve can evaluate by checking his own mental
state. Primitive actions are basic actions which can be directly executed
by the motor. To simplify the course author's job, Steve has a general
action library. Primitive action is an instance of one general action in the

library with instantiated object name, motor command, and the perceptual
attribute-value pair that will indicate that the primitive action has finished.

Steve uses the task knowledge to create the task model when being asked
to demonstrate a specific task or to monitor the students performing the
task. He creates the task model by adopting a top-down task decomposition
proposed by Sacerdoti (1977) [45]. This approach is pretty simple: First,
Steve initializes the task model to contain the name of the task. Next, he
adds the task representation (steps, causal links and ordering constraints)
for that task. Then he recursively repeats this process for any composite
task until the task model has been fully decomposed into a hierarchically
organized structure of primitive actions. The resulting task model is an
important resource for Steve's plan construction.

3.3 Steve's Decision Cycle

Steve's cognition module operates by continually looping through a decision
cycle. Each decision cycle goes through five phases:

1. Input Phase: Get the current perceptual information from the percep-
tion module.

2. Goal Assessment: Use the perceptual information to determine which
goals of the current task are satisfied. This includes the end goals of
the task as well as any intermediate goals (i.e., preconditions of task
steps).

3. Plan Construction: Based on the results of goal assessment, construct
a plan to complete the task.

4. Operator Selection: Select the next operator. Each operator is rep-
resented by a set of production rules that implement one of Steve's
capabilities, such as answering a question or demonstrating an action.
Steve's operators serve as the building blocks for his behavior.

5. Operator Execution: Execute the selected operator. In most cases,
this will cause the cognition module to output one or more motor
commands.

3.3.1 Input Phase

During the input phase, the cognition module receives three pieces of infor-
mation from the perception module:

The state of the simulator, represented as a set of attribute-value pairs.

A set of important events that occurred since the last snapshot.

The student's field of view, represented as the set of objects that lie
within it.

3.3.2 Goal Assessment

Since each goal is associated with an attribute-value pair, Steve can assess
each goal by simply determining whether its associated attribute-value pair
is satisfied given the current perceptual input and mental state. This pro-
cess is based on Soar's truth maintenance system. When the goal becomes
satisfied, the rule fires, marking the goal satisfied. As long as the goal is
satisfied, this result will remain, without any further processing required. If
the goal becomes unsatisfied, Soar retracts the rule, along with its result.
Thus Steve need not evaluate every goal on every decision cycle; each rule
automatically fires or retracts when the status of its goal changes.

3.3.3 Plan Construction

Steve uses the task model to guide his plan construction and revision. The
task model includes all the steps that might be required to complete the
task (even if some are not necessary given the current state of world). Every
decision cycle, after Steve gets a new perceptual snapshot and assesses the
goals in the task model, he constructs a plan for completing the task. He
first marks all the end goals as relevant for completing the task, then for
each goal that is unsatisfied he finds the relevant steps in the task model
that can achieve it and adds these steps to the plan. Each step added may
further have unsatisfied preconditions, and each such precondition becomes
a new goal that must likewise be achieved.

3.4 Steve's Domain-Independent Pedagogical Capabilities

3.4.1 Demonstration

To demonstrate a task to a student, Steve must perform the task himself,
explaining what he is doing along the way. First, he creates the task model.
Then, in each decision cycle, he updates his plan for completing the task
and determines the next appropriate steps.

Choosing the Next Task Step to Demonstrate There may be mul-
tiple applicable steps to be executed next at ally point of executing a task.
In order to improve the communication between Steve and students, Steve
maintains a focus stack to help to choose the next task step. Basically when
executing a step (either primitive or composite), Steve pushes it onto the
stack. Therefore, the bottom element of the stack is the main task on which
Steve and the student are collaborating, and the topmost element is the one
on which the demonstration is currently focused. When the step at the top
of the focus stack is finished, Steve pops it off the stack. The main idea is
to maintain the current focus or shift to a subtask of the current focus when
multiple applicable steps are ready for execution.

Demonstrating a Task Step Steve always picks up the topmost step
on the focus stack and demonstrates it to students. If the step is a com-
posite step, Steve decomposes it into subtasks. If it is a primitive action,
Steve simply performs the step. This is done by sending an appropriate
motor command along with its associated text fragments and waiting for
confirmation in his perception that command was executed.

Shifting to Monitoring Steve's demonstrations can end in one of two
ways. Typically, he completes the task and announces his completion. Some-
times students may request to take over the rest of the demonstration. In
such cases Steve shifts to monitoring the students.

3.4.2 Monitoring

When Steve plays the monitoring role, he still needs to maintain his own task
completion plan and use it to evaluate the student's actions and answer their
questions. In order to give students the opportunity to variety of situations,
Steve should be able to adapt to various unexpected situations. Also, to
allow students to deviate from the standard procedure, make mistakes and
learn from recovering them, Steve needs to be able to repeatedly re-evaluate
and revise his plan to support such flexibility. Steve can handle the following:

Evaluating the student's actions Steve evaluates the student's actions
by trying to match the currently multiple applicable steps in the task model
against the action the student is performing. If no match is found, Steve
judges the student's actioii is incorrect. He acknowledges the students by
text speech (i.e. simply says "no") and/or simple gestures (i.e. shakes his
head). When student's action is correct, Steve nods his head in agreement.

Suggesting what to do next The student can always ask Steve "What
should I do next?" Steve simply suggests the next step in his own plan. If
there are multiple applicable next steps, Steve enumerates them. If Steve
does not know either what to do next, he simply says he does not know.

Explaining the relevance of a step Sometime the student may ask
questions about what the role of the action is in the whole task. Steve can
answer such questions by generating explanation from the causal links in the
plan. Causal links record the purpose(s) of steps. They are the connections
between steps and goals, Steve can use these connections to rationalize his
suggestions.

Shifting to demonstration The student may ask Steve "Show me what
to do." In such case Steve takes over and shifts to demonstration. If there
are multiple applicable next steps, Steve chooses one of them randomly.

3.4.3 After-Action Review

When Steve completes a demonstration, he asks the students whether they
have any questions. They can ask him at this point to rationalize any one
of his actions during the demonstration, and they can ask the follow-up
"Why?" questions too. To answer such questions, Steve cannot rely on his
current plan, since the task is already complete and the step in question is
no longer relevant. Steve employs an episodic memory capability which can
memorize Steve's actions and the situations in which the actions occurred.

3.5 Animation Results

3.6 Discussion

Augmented Partial-Order Planning
Planning is at the heart of Steve's cognition. No matter demonstrating
a task to a student or monitoring the student's performance of the task,
Steve must maintain a plan for completing the task. The plan enables
Steve to identify the next appropriate action and, if asked, to explain
the role of that action in completing the task (using causal links in the
plan). In addition, Steve must be able to construct and revise plans
quickly since he and students are collaborating on tasks in real time.
Steve employs an augmented partial-order planner for his planning.

Figure 6: Steve is Demonstrating

As mentioned in Section 2, partial-order planners suffer from three
major difficulties: the selection of multiple applicable actions; sub-
goal interactions; and the constraint bindings. A practical planning
scheme must solve these problems to survive. We can ask whether
Steve solves these problems by using a task model and whether the
task model makes a good trade-off between plan expressiveness and
execution efficiency.

- Selection of multiple applicable actions
A partial-order planner may have multiple applicable actions that
could achieve each goal, so it must go through all alternative
plans, which often results in exponential searching. In constrast,
Steve uses the task model as a guideline for choosing the appro-
priate next action to achieve each relevant, unsatisfied goal, so the
searching is dramatically reduced. But this ease is bought a t a
cost. First, recall the task model is built based on the task defini-
tion given by the course author. The course author who provides
such task definitions must have a skill knowledge about complet-
ing the tasks and can write down such knowledge in a clear and
procedural way. A simple example is bicycle-riding. It would
be very hard for Steve to demonstrate or monitor bicycle-riding
because it is hard for course authors to articulate the procedure
to perform the riding. Obviously the simplified task model em-
ployed greatly restricts the applications of Steve to a very limited
domains such as operation and equipment maintainance where
procedural knowledge is available. So far there has been no re-
port that Steve works well in other domains.

Secondly, using procedural knowledge instead of declarative knowl-
edge to specify the task definition means Steve can only perform
tasks in a way that the course author can forsee. This greatly
reduces Steve's autonomy. Declarative knowledge specification
is desirable in that knowledge can be manipulated, decomposed
and analyzed by the reasoning engine and can be used in a way
the designer can not forsee, however, procedural knowledge spec-
ification is possibly faster usage in performance. Steve's plan
construction is predictably fast. In this sense we may say Steve's
rapid response is achieved by sacrificing of his autonomy.

- Subgoal interaction
A partial-order planner must identify the possible subgoal inter-
actions (clobber) and add appropriate ordering constraints. In
constrast, Steve simply uses the ordering constraints provided in
the task model; if two steps in the plan have an ordering con-
straint in the task model, that ordering constraint is added to
the plan. As long as there are no conflicting subgoal interactions
in the task model, there will be no conflicting subgoal interac-
tions in the plan. Again the elimination of subgoal interactions
totally depends on the involvement of the course author to de-
bug. The course author is required to detect all possible subgoal
interactions and resolve them by either demotion or promotion.

- Variable binding constraint
To perform a task, a partial-order planner must break plan steps
down into fully specified motion directives. Therefore, it must
maintain a set of variable binding constraints, and it may have to
search through when there are alternatives. In contrast, the steps
in the task model of Steve are instances of actions in the action
library, so they have no variables. Hence, Steve need not reason
about binding constraints. However, the price to pay for this
is: the course author must provide for each action instance with
the object name, motor commands, and the perceptual attribute-
value that will indicate the action is finished. The work of variable
reasoning is simply shifted to the course author. Even worse,
all these action parameters are hard-wired for a given situation,
making it very inflexible to be reused in other situations.

In summary, the planning model Steve employs is simple and provides
efficient execution and fast responses, but it sacrifices flexibility and
expressiveness. It requires the course author do all the hard work

providing not only the task definition but also the goals and instan-
tiated primitive actions. Such instantiated structures make it work
predictably fast, but virtually eliminate all the nondeterminism.

Miscellaneous
My techinical complain about this paper is that it lacks description
about how the general pedagogical capabilities are implemented using
Soar production rules. Although the connection is a little implemen-
tation oriented, this layer is important to convey the information of
how to implement a particular set of cognitive skills using the general
built-in cognitive capabilities of Soar, which is essentially the point
that they advocate.

4 Woggle's Cognitive Model

The next paper reviewed presents a reactive cognition model, called Hap,
designed as part of the Oz project at CMU. Oz project is aimed at building
a dramatically interesting simulated world which includes intelligent, emo-
tional and believable agents. In order to foster the illusion of reality, the
Oz designers claim that agents (woggles) must have broad, though shal-
low, capabilities. Therefore they have attempted to build a broad architec-
ture, called Tok, which contains several components: an emotion component
called Em, a natural language system called Glinda, and a cognition compo-
nent called Hap (the architecture is shown in Figure 7).

4.1 Hap: A Reactive Cognition Model

Initially Oz designers intended to provide reactivity by using a planner in the
background feeding a reactive frontend that would execute plans. However,
as they pursued this idea, the reactivity seemed to be spread through the
whole system, so that they regard now reactivity as fundamental to the
entire paradigm and abandon the background planning.

Due to this historical reason Hap designers call sequences of actions as
plans, however, Hap does no explicit planning. There is no global internal
symbolic world model, and no global planner/reasoner from a traditional A1
planning pointview. All plans are simply chosen from a static plan library
prepared in advance by the designers. These plans are either ordered or
unordered collections of subgoals and primitive physical actions that can be
used to accomplish a goal. Subgoals are statically provided by the designer,
primitive physical actions are given by the domain.

Figure 7: The Hap Cognitive Architecture

Hap supports goal-directed actions and allows the encoding of cognitive
tasks. It continuously chooses the agent's next action based on perception,
current goals, and emotional state. Perceptual information is provided by
sensors which are automatically controlled by Hap to turn on or off when
appropriate. Goals contain an atomic name and a set of parameters which
are instantiated when the goal becomes active, for example, (open <door>).
Multiple plans can be written for a given goal, with Hap choosing among
them at execution time. If a plan fails, Hap will attempt any alternate plans
for the given goal.

The explicit representations of goal and emotional states may be a little
controversial. Vera and Simon argued (1993) [52] that such representations
are good examples of orthodox symbol system. But in Hap the goals and
emotional states are represented functionally and aim at interacting with
the world in a direct and unmediated stimulus-response manner. Thus Hap
can be thought of as a kind of "soft form" reactive cognition model.

To illustrate a Hap agent's direct reaction to changing events in the world
to achieve a goal, consider the following situation:

An agent has the goal of opening a locked door. She has two
applicable plans: get a key from her purse, unlock the door,
and open it; or knock and wait. If, while looking for a key,
someone opens the door for her, she should notice that her goal
was satisfied and not keep working to accomplish it. In the same
scenario, if she were searching in her purse for the key when
her mischievous nephew snatched the purse, she should abandon
that plan and try knocking (and perhaps deal with the nephew
later.) (Loyal1 & Bates 1991) [32]

This example shows the two types of reactivity which Hap explicitly
supports: recognizing the spontaneous achievement of a goal or subgoal,
and realizing when changes in the domain make the pursuit of an active
plan meaningless.

4.1.1 Active Plan Tree

Hap stores all active goals and plans in a structure called the active plan tree
(henceforth, APT). This is a tree composed of alternating layers of goals
and plans that represent Hap's current execution state. Each plan node in
the tree has some number of goal nodes as its children. These goal nodes
are the subgoals which must be satisfied for the plan to succeed. Each goal
node either has no children (and thus it is a leaf goal node) or its child is the

Active Plan
Tree (APT)

Figure 8: An Example of Active Plan Tree

current plan for the goal. The APT is constantly changing: expanding as
plans with their component subgoals are chosen for goals and contracting as
goals and plans succeed or fail. Physical actions succeed or fail depending
on their realization in the domain. Goals succeed when a plan for the goal
succeeds, and fails if all of the applicable plans have failed. Plans succeed if
all of the component steps succeed and fail if any of the step fails. Therefore,
the APT may be thought of as an AND-OR tree, where the goals are OR
nodes and the plans are AND nodes. (The APT for the open-door case is
shown in Figure 8 as an example.)

At the root of the APT is a special node which is parent to all of the
top-level goals. These top-level goals are classified according to whether
they are persistent. The persistent goals are continuous goals and thus are
never removed from the tree. They can be reset so that they are again
available to be pursued. Other goals are removed from the tree once they
have succeeded or failed.

Associated with each goal node is a success-test and a priority. The
success-test is a method for recognizing when a goal's purpose in the enclos-
ing plan is spontaneously achieved. If it ever becomes true its associated goal
is deemed to have been completed and no longer needs to be pursued and
is thus removed from the tree. The subtree rooted at the goal node is also
removed since its only purpose was working toward the goal. For example,
the first subgoal of the (open <door>) described above has a success-test
associated with it to determine if the agent is already (have <key>). If
this test is true when t,he plan begins, the step (get <key> from <purse>)
would be skipped. Also, if the agent is in the process of (get <key> from
<purse>) when some external factor causes the test to be true, the success-
test would enable Hap to recognize that the goal has succeeded and stop
further pursuing it. The priority is a number representing how important
the goal is to the agent. Preferring higher priority goals is one of the meth-
ods to arbitrate between multiple goals.

Associated with each plan node is a context-condition and a specificity.
When a context-condition becomes false its associated plan is deemed no
longer applicable. In the example above if context-conditions (have <purse>)
and (have <key>) are both false, the plan fails, making that plan node con-
tracted, and a new alternative plan must be chosen at the (open <door>)
goal level. Thus the context-condition for a plan rnust be continuously yield-
ing true to have any chance of making sense and achieving its goal. The
context-condition is necessary, but not sufficient, for the plan to work. A
very dumb agent nnlight use true for most context-conditions. This corre-
sponds to not being very aware of world changing. Specificity is a measure

of how specific each plan is. More specific plans are preferred over less
specific plans by the plan arbiter.

4.1.2 P l a n Memory

Plan memory is a set of production rules. The left hand side of each produc-
tion is composed of a goal-expression and a precondition-expression. The
goal-expression contains the goal name and zero or more variables. For a
subgoal to match a production, the goal names must match and the number
of values given in the subgoal must match the number of variables in the
goal-expression. In addition, the precondition-expression must be true in
the current state for the production to be applicable. The precondition-
expression can reference the values from the goal-expression variables in its
tests.

The right hand side of the production contains the context-condition,
specificity and plan expression which are instantiated to create the plan
and subgoal nodes for the APT. The plan node is created using all three
of these, and the plan expression is used to create the subgoal nodes. The
plan expression can be either a sequential or parallel arrangement of steps.
Each step contains a goal expression, a priority modifier and a success-
test expression. The goal expression and success-test are used directly to
construct the appropriate goal node, and the priority modifier is added to
the priority of the parent goal node to create the priority of this node. In
this way a subgoal can be more, less or the same level of importance as the
goal node which spawned it.

By the time the paper was written there are about 250 goal types and
500 plans available for a complete woggle. Keep in mind all these must
be prepared by the woggle designers in advance. During the animation
there is no dynamic plan construction, nor replanning under unexpected
circumstances. What a woggle does given a current situation is to simply
follow the circuit-switched action sequences. There is no deliberation in
between.

4.1.3 Execut ion Loop

The execution loop consists of three steps: update the APT based on changes
in the world, pick a leaf goal to execute, and execute the goal. Executing
the goal can take the form of performing a primitive physical action, or
expanding a subgoal.

The first step of the execution loop is to update the APT based on

changes in the perceived world state: goals whose success-tests are true
and plans whose context-conditions are false are removed along with any
subordinate subgoals or plans; the parents to the removed subgoals or plans
are notified that either the goal has been achieved or that the plan has failed.
This effect can then propagate up the tree causing enclosing plans and goals
to either succeed or fail. After the tree is adjusted, computation continues
with the rest of the tree.

In the next step, the next leaf goal to execute is chosen by the goal
arbiter. It chooses a leaf goal in the following fashion: first it refers to higher
priority goals. If there are multiple goals with the same priority, it prefers
to remain on the same higher-level goals that it was last working 011 rather
than switching to new higher-level goals. Finally it will randomly choose
among remaining leaf goals.

A primitive physical action is executed by sending the action to the body
of the agent. A subgoal is expanded in following manner: first the subgoal
expression is used to index the plan memory, then from the resulting set
of applicable plans the more specific one is chosen and instantiated, created
plans and subgoals are placed in the APT for consideration in the next loop.

4.1.4 Selective Sensing

Sensing in a real-time animated world must be efficient. Agents in Hap
employ task-specific sensors which can be automatically turned on or off
as needed. Each sensor observes the changes in the world and notifies the
cognition module of such changes. Such sensory information is very impor-
tant to evaluate agent's preconditions, success-tests and context-conditions.
Hap automatically manages to turn on and off as appropriate. When a leaf
subgoal is chosen for execution, sensors needed to evaluate the preconditions
for that goal's plans are automatically turned on, and then turned off after
a plan is chosen. Similarly, when a particular goal or a plan is present in
the APT, all sensors related to its success-tests or condition-tests remain on.
When a goal or a plan is removed from the tree, the corresponding sensors
are automatically turned off.

4.1.5 Parallel Execution

In Hap all of an agent's active goals can be attended to, potentially gener-
ating multiple actions in parallel. Hap uses a greedy approach by attending
to the rnost critical goals first and mixing in others as time allows. In each
decision cycle Hap chooses the most critical applicable leaf goal and exe-

cutes it until it is interrupted or suspended. In such a case Hap allocates
the available time to threads running other, perhaps unrelated, critical goals
selected by the goal arbiter.

During the parallel execution Hap will not allow any two incompati-
ble goals to be pursued at the same time. Two actions are considered as
incompatible if they use the same body resources.

Figure 9: Woggle's World

4.2 Animation Results

The woggle's world is shown in Figure 9. It is modeled as a terrain field with
simple physics. It is inhabited by four woggles: Bear, Wolf, Shrimp and a
user-controlled woggle. Each woggle's body is an ellipsoid with eyes. They
can play, sleep, fight, relax, explore the world, etc. The three woggles are
designed to have somewhat stereotypical personalities: Wolf is aggressive;
Shrimp is friendly and meek; Bear is a protector. These characterizations
are reflected in their behavior. Shrimp is often timid and almost never does
anything bold. Bear will often try to put out any strife in the world, for
example, if he sees the user-controlled woggle is intimidating Shrimp, he
becomes sad and tries to protect Shrimp. But Wolf sees the fight as an

opportunity to amuse himself.

4.3 Discussions

In the deliberative model as we have seen in Section 2, agents tend to operate
according to a sense-plan-act cycle. During sensing, the symbolic representa-
tion of the state of the world is updated by making inferences from sensory
information. The agent then constructs a plan to accomplish its current goal
in the symbolically represented world by composing a set of operators (prim-
itive actions the agent can perform). Finally, the plan is executed. After the
plan completes (or is interrupted due to some unplanned-for contingencies),
the cycle repeats. When something unexpected happens, a replanning is
necessary. However, rather than employing the sense-plan-act cycle, Hap is
reactive. Its execution is a sense-indexing-react loop. The difference is in the
middle: a deliberative model such as Soar explicitly considers alternatives
and rejects all but one, while a reactive model such as Hap has no explicit
deliberation except plan memory indexing. This does not necessarily mean
that a reactive model is less creative than a deliberative model, because a
real planner also does what it is programmed to do. By carefully considering
the possible situations of sensing-acting sequences and providing appropriate
production rules in the plan memory, a reactive model can still produce a lot
of different patterns because of many possibilities of dynamic situations oc-
curing environmentally and internally. It is arguable that a reactive system
is doing less things itself, shifting the hard work such as plan construction
to the designers. However, a traditional planner would also be given a lot
of domain knowledge if it has to work efficiently, as we have seen previously
in the Steve paper.

Replacing the planning (similar to on-line interpretation) with the in-
dexing (similar to off-line compilation), Hap is predictably faster, and more
fault-tolerant. In addition, it increases the possibility of parallel implemen-
tation. Different production rules in the plan memory could be active at the
same time, allowing compatible actions to take place simultaneously.

4.3.1 Burden of Proof

My technical comments to Hap are two questions: How will it scale? How
to implement a higher level of cognition?

Scalability
The capability of woggles responding to emergencies depends on whether
or not there exists an appropriate sequence of actions in the plan

memory for woggles to execute. Woggles would fail to respond ap-
propriately when there are no rules available in the plan memory for
unexpected situations. In such case new rules must be constructed
and added to the plan memory so that when a similar situation hap-
pens later woggles won't fail again. That's the scalability problems
of the plan memory: Whether or not it degrades the reactivity when
there are too many rules clustered in the plan memory? Whether or
not the old rule components can be reused when constructing new
rules? Whether or not more efficient indexing is required as the plan
memory scales? Because some situations happen frequently, it may
be helpful to cache the most recently used rules on the top level of
the plan memory. What kind of caching strategy is better to achieve a
high rule hit-ratio? All these questions are not addressed in the paper.

Higher Level of Cognition
To jump toward a hill, the woggle in the current implementation of
Hap does not make use of a representation of the location of terrain
in relation to its goal. It deals with each obstacle as it comes to it and
does not remember whether the path it took last time was longer or
shorter. However, creatures, like a real wolf or a real bear, appear to
perform actions based on a more robust representation of the world.
As the example i11 the paper mentioned that Bear will try to protect
Shrimp when he detects the user is intimidating Shrimp. In such a
case it makes sense that Bear should take the most direct route to the
location where the fight happens. This requires a significantly more
conlplex and more permanent representation. Currently they do not
have such a higher-level cognition and probably they will not have
unless a new underlying representation is adopted.

Finally, choosing Hap as a representative of the reactive rnodels is some-
what questionable, since Hap is not a purely reactive model. According to
my survey, most of the models employed in computer aninlation so far that
are generally regarded as reactive are actually not purely reactive (Reynolds
1987; Agre & Chapman 1987; Tu & Terzopoulous 1994; Blumberg 1995)
138, 1, 49, 61. In Hap, there are some production rules which need to be
selected through pattern matching, there are some variables that need in-
stantiation during the pattern matching. There is some alternative plans to
be chosen when current plan fails. There are some low-level sensory infor-
mation which needs to be further processed using production rules in order
to recognize the abstract composites of that sensory information such as
woggles fighting, relaxing or playing games.

Some deliberative models proponents (Vera and Simon 1993) [52] argue
that such representations are good demonstrations that symbolic processing
is at the heart of the intelligence and therefore the reactive models are not
at all antithetical, but complementary, to the deliberative models. Never-
theless, some researchers, as we shall see in the next section, believe these
are good indications of the necessities to combine the two models together to
take advantages of a high-level control (reasoning/planning) and a low-level
sensing-reacting. This results in the third approach in cognitive modeling
- layered modeling.

5 Mermen's Cognitive Model

The third paper reviewed simulates a physics-based undersea world, which
is inhabited by mermen, fabled creatures of the sea with the head and upper
body of a man and the tail of a fish. Other inhabitants are predator sharks.
An artificial life simulator implements these creatures as fully functional
autonomous agents. The modeling includes a graphical display model that
captures the form and appearance of these creatures, a biomechanical model
captures their anatomical structures and simulates the deformation of their
body. A behavioral control model implements shark's brain and is respon-
sible for motor, perception and low-level behavior control. The behavioral
control model is very similar to that in (Tu & Terzopolilos 1994) [49]. The
mermen are equipped with a cognitive model which includes a reasoning
engine and a reactive system. The reasoning engine enables them to reason
about their world based on the domain knowledge either provided by the an-
imator or acquired through sensing. The reactive system rnediates between
the reasoning engine and the physics-based environment. The reactive sys-
tem translates the low-level commands generated by the reasoning engine
down to the necessary detailed muscle actions. It also acts as a fail-safe
should the reasoning engine temporarily fall through. When the reasoning
engine cannot decide upon an intelligent course of actions in a reasonable
amount of time, the reactive system continually tries to prevent the mermen
from doing anything stupid, such as bashing into obstacles. Typical default
reactive actions are "torn right", "avoid collision", and "swim for your life".

5.1 Domain Knowledge and Character Directions

A character's knowledge of its world is referred to as the background do-
main knowledge. It is a set of animator supplied information which can
provide the character with understanding of when actions are possible, and

i Background Domain Knowledge

I I

Low-Level Sensory
Commands I Information

Domain i

Sensor1
Inf ormat j

REACTIVE
SYSTEM

1. Precondition Axioms
2. Effect Axioms
3. Initial States

VIRTUAL

~pecificatio4

ANIMATOR ~edavior
Speciqication

REASONING

Figure 10: Mermen's Cognitive Model

what the effect of actions are on the virtual world. Tlie domain knowledge
specification in this paper heavily rests on the use of situation calculus.

5.1.1 Situation Calculus

As mentioned in the introduction, situation calculus is used for describing
a changing world in First Order Logic (FOL). It conceives of the world as
consisting of a sequence of situations, each of which is a "snapshot" of the
state of the world. Situations are generated from previous situations by
actions. A domain independent constant so denotes the initial situation.
Any property of the world that can change over time is known as a fluent. A
fluent is a function, or relation, with a situation term as its last argument.
For example, Alive(x, s) is a fluent to keeps track of whether Jack x is alive
in a situation s. The situation S' resulting from doing action a in situation
s is given by distinguished function do: action x situation + situation. For
example, Aimed(do(aim, s)) means the gun is aimed at Jack after aiming
it. The possibility of performing action a in situation s is denoted by a
distinguished predicate Poss: action x situation. Sentences that specify
what the state of the world must be before performing some action are
known as precondition axioms. For example, Poss(shoot, s) + Loaded(s)
means the gun can only be shot if it's loaded. Effect axioms give necessary
conditions for a fluent to take on a given value after performing an action.
We can use effect axioms to state the effects of the actions. For example,
Poss(shoot, s) A Aimed(s) + 1 Alive(do(shoot, s)) means if the gun is
aimed at Jack and it can be shot then he is dead after shooting it.

As mentioned earlier, situation calculus is perplexed by three problems:
the qualificatioii problem, the frame problem, and the ramification problem.

The Qualification Problem
The qualification problem is that of trying to infer when an action is
possible. In the gun-shooting example, only certain necessary condi-
tion is given, not all the things that may prevent shooting the gun are
enumerated. For instance, we cannot shoot if the trigger is too stiff,
or if the gun is encased in concrete, etc. By employing a closed-world
assumption, we may obviate this problem and assume that the set of
necessary conditions is also a sufficient set. For instance, under this
assumption the precondition axiom for shoot now becomes:

The Frame Problem
The frame problem is of trying to infer what remains unchanged by an

action. In previous examples we only wrote down what changed after
an action; we did not write down all the things that stayed the same.
The frame problem can be solved provided characters represent their
knowledge with the assumption that effect axioms enumerate all the
possible ways that the world can change. This closed world assump-
tion provides the justification for replacing all the effect axioms with
successor s t a t e axioms. For instance, the successor state axiom for
Alive(s) states that Jack is alive, if and only if, he was alive in the
previous state and he was not just shot:

Poss(a, s) j [~ l i v e (d o (a , s)) u ~ l i v e (s) A ~ (a = shoot A Aimed(s))] .

The Ramification Problem
The ramification problem is that of trying to determine all the implicit
side-effects of actions caused by the presence of state constraints. In
general, state constraints may give rise to intractable problems (Lin
& Reiter) [31], but in some cases, the ramification problem can be
dealt with by making all the side-effects explicit. This can be done by
compiling the state constraints into the successor state axioms. For
example, we can modify the successor state axiom for Alive(s) as
follows:

Poss(a, s) =3 (Alive(do(a, s)) H Alive(s) A l (a = shoot A Aimed(s))

Ay(a = detonate A ~ e a r ~ o m b (s))) .

5.1.2 Primitive and Complex Actions

The actions discussed previously, defined by correspoliding preconditions
and successor state axioms, are referred to as a primitive actions. We have
explained how they can be used by characters to keep track of its changing
world. Next we show how to define new complex actions in terms of the
previously defined primitive actions.

Conlplex actions consist of a set of primitive actions connected by op-
erators. The complete list of operators for defining the complex actions is
defined recursively and given below.

Type
Seouence

a * I do a zero or more times. I
Test
Conditional

Operator

a ; 4
Meaning

do action a, followed by action B
P ?

if p then a else p

Iteration
Nondeterm.
actions
Nondeterm.

Complex actions are also called sketch plans. The effect of a complex
action a is defined by the macro DO(Q, S, s1), where s1 is a state that results
from doing a in state s. These macros expand out into a situation calculus
expression, thus ensuring complex actions inherit the solution to the frame
problem for primitive actions. Given some advice, represented as a complex
action program, the underlying reasoning engine (actually a theorem prover)
attempts to prove:

do nothing if p is true, otherwise fails
do a if p is true, otherwise do j3

arguments
Procedures

A X I O M S 3Do(program, so, s).

while p do a od

a l p

(~ x) a (x >

The resulting (constructive) proof results in a term s = do(a,, . - , do(al, so)) ,
such that [al, . . - , a,] is the sequence of primitive actions that the character
should perform in order to follow the advice program.

do a while p is true
do action a, or action ,B

pick some argument x

proc P(x l , - . . , x,) a end

5.1.3 CML

and perform the action a (x)
declares a procedure P(x l , . . . , x,)

Cognitive Modeling Language (henceforth, C M L) is an implementation of
complex actions within the situation calculus. It forms a middle ground
between the regular logic programming and traditional imperative program-
ming, therefore, it provides animators with the ability to specify a "sketch
plan" on a higher-level without the need for logical connectives. CML's
control constructs are closely related to the logical constructs used in the
situation calculus. The comparison between situation calculus syntax (SC
syntax) and CML syntax is given below:

SC syntax CML Syntax

Test I D ? I test < e x ~ r > I

- -

Sequence

iteration I I I

Conditional
Nondeterm.

a ; P

- I

Procedures I proc P (x l , . . , xn) a end I I void P(<arglist>) <action> I

<action> ; <action>

if p then a else /3
a*

Iteration
Nondeterm.
actions
Nondeterm.
arquments

Following is an example of a CML procedure, the one to the left below,
with its corresponding complex action in situation calculus. They define a
depth-bounded (to n steps) depth-first planner:

if (<expr>) <action> else <action>
star <action>

proc planner(n) {
choose test(goa1); - proc planner(n)

Or { goal? I
test(n> 0); [(n > O)?;
~ ick(a) { (n a) (primitiveAction(a)?; a) ;

primitiveAction(a) ; planner(n-1)]
do(a);) end

planner(n- 1) ;))

while p do a od

a l p

(nx>a(x)

A CML program can consist of multiple CML procedures and control
structures. The CML program can be compiled by a CML compiler (Funge
1998a) [16] into the equivalent Prolog code. Running the resulting Prolog
code will return a list of all possible sequences of primitive actions that meet
the specification represented by the original CML program.

while (<expr>) <action>
choose <action> or <action>

pick (<expr>) <action>

5.1.4 Domain Knowledge and Character Directions

Any property of the domain that can change over time can be represented
as a fluent. For example, the prey's position can be represented as PreyPos,
where PreyPos (p, s) means that the prey is in region p in situation s. The
predator's position, PredPos, and the prey's desired position, PreyGoalPos
can be similarly defined. A property that does not change over time can

just be represented as a relation without a situation argument. For exam-
ple, Occluded(p, q, o) states that region p is always hidden from region q by
obstacle o, and Occupied(p, o) states region p is always occupied by o. Pred-
icates can also be used to specify other domain knowledge. For example,
Type (jaws, predator), and ~ype(merman, prey) specify the type of predator
and prey. The truth of predicates such as Occupied@, o) can be quickly
calculated at run-time; it need not be stored in a precomputed database.

Animators can use various structures of CML to encode high-level control
for issuing advice or directions to a character from the character's point of
view. For example, consider the problem of a merman trying to come up
with a plan to hide from the predator. A traditional planning approach will
be able to perform a search of various locations according to criteria such as
whether the location is hidden, or far from the predator, etc. Unfortunately,
this kind of brute-force planning is prohibitively expensive. In contrast, the
control structures of CML allow the animator to encode heuristic knowledge
to help overcome this limitation. For example, a CML procedure can encode
the following heuristics: If the current position is good enough then stay
there, else search the hidden locations around you (the expensive part);
otherwise try to run away from the predator. The searching can call another
subprocedure using another simple heuristics: look for cover near obstacles
because hidden positions are usually near the obstacles.

proc evade() { proc searchflee0
while predatorApproaching do if 3r NearRock(r)

sense() ; then
update() ; (nr) (NearRock (r)) ?;hideBehind(r)
choose testCurrPosn() ; else
or searchflee() ; (nr) (AwayPredDir(r))?;setGoal(r)

o d end
end

A key feature of the CML is the ability to use nondeterminism. Non-
determinism is not randomness. The above CML specification may admit
more than one candidate as a hidden position for a merman to hide behind.
At the design time they are not determined. At the run time only one is
chosen by the reasoning engine based on the current sensory information.
This nondeterminism greatly reduces the amount of work required from the
animator and is very useful for rapidly developing new characters.

5.2 Sensing

Due to the unpredictability of the changing environment, some actions
(events) are generated by the environment and not the character. Such ac-
tions are referred to as exogenous actions. While the cause of an exogenous
action is difficult to state its effect need not be. For example, movePred(x)
simply moves the predator to a new position z. To avoid inefficient and
unnatural behavior, characters need to take these effects into consideration.
For example, when a merperson tries to evade, she is supposed to know
where the predator currently is. But the problem is she is uncertain about
this because the predator is moved by niysterious external forces and outside
the ability of her control. The paper reviewed uses a special fluent called
interval-valued epistemic (henceforth, IVE) fluent to represent the character's
uncertainty about aspects of the world.

For each sensory fluent f , there is a corresponding IVE fluent If, which
is a set of pairs <u, v>, where u, v E R*+. The IVE fluent Zf is used to
represent an agent's uncertainty about the value of f . For example, suppose
an exogenous action setspeed changes the predator's speed, and a fluent
speed keeps track of the predator's speed. An IVE fluent Zspeed (~ ()) = <lo,
20> states that the predator's speed is initially known to be between 10 and
20 ni/sec. The character's uncertainty about the predator's speed usually
increases over time until a sensing action causes the interval to collapse to
its actual value.

Both exogenous actions and sensing actions can be incorporated into
the situation calculus by modifying the definition of macro expansion for
complex actions to allow for the possible occurence of exogenous actions and
sensing actions. In this review we shall skip it due to the lengthy technical
problems involved. More details can be found in Funge's Ph.D thesis (Funge
1998b) [17].

5.3 Reasoning Engine

The reasoning engine takes three different inputs: the background domain
knowledge, sketch plans, and the sensory information.

The background domain knowledge is a set of animator provided axioms
that collectively constitute a causal theory providing the character with an
understanding of when actions are possible and how they affect the world.
The sketch plans specified by the animator in CML language can be compiled
using a CML compiler [16] into equivalent Prolog programs. At run-time the
Prolog code will generate a list of all possible primitive actions, which are

further selected by the reasoning engine based on the sensory information.

5.4 Reactive System

At every animation frame, the reasoning engine commits to the actions
it has decided by sending the primitive actions to the underlying reactive
system. The underlying reactive system then executes the primitive actions
and returns some sensory information. This new sensory information is used
to update all the IVE fluents.

More importantly, the reactive system also implements some primitive
actions that are common to all characters. It autonomously executes and
arbitrates among these primitive actions. These primitive actions include
reactive ones such as "avoiding collisions", and basic locomotion such as "go
to a particular position".

The drawback of separating these primitive actions out from the high-
level reasoning system is that they become less flexible and can not be
reconfigured through logical reasoning. However, there are a number of
benefits from this separation:

a Primitive behaviors are usually character-independent, once they are
operational the need to change them is minimal.

Primitive behaviors are intended to be components of high-level be-
haviors, they are supposed to be as efficient as possible as they will be
executed frequently.

An independent reactive system can function as a fail-free, in case
the high-level reasoning engine temporarily falls through, the reactive
system can still prevent the character from doing anything stupid, such
as bashing into obstacles.

5.5 Undersea Animations

The undersea animations revolve around pursuit and evasion behaviors. The
hungry sharks try to catch and eat the mermen and the mermen try to use
their superior cognitive power to avoid this grisly fate. For the most part,
the sharks are instructed to chase the mermen they see. If they cannot see
any mermen, they go to where they last saw one. If all else fails, they start
to forage systematically. Because the shark is a larger and faster swimmer,
it has little trouble catching the mermen in open water. However, if there
are rocks in the underwater scene, the cognitively empowered mermen can

take advantage of the rocks to try and avoid being eaten. They can hide
behind rocks and hug them closely so that sharks have difficulty seeing or
reaching them. To cope with fast moving environments, the mermen base
their decisions on where to go on the positions that they predict the sharks
will be in when they get to its goal. So long as it is safe to do so, the mermen
will try to visit other obstacles. To avoid being caught, the mermen can also
swim through the cracks which are too narrow for the shark to pass through
without risking injury.

Figure 11: Undersea Animations

5.6 Discussions

The merits of this paper are as noticeable as its deficiencies. It applies a
theory of action that allows animated characters to perceive, reason and act
in a dynamic virtual world. It implements a remarkably useful framework for
high-level control and low-level reaction that combines the advantages of a
reasoning system and a reactive system. However, many of the shortcomings
or limitations can be easily spotted:

Scalability
In the reactive model, the scalability problem is concerned with how
to extend the hardwired connections (or plan memory). In this model,
the scalability problem is concerned with the reasoning engine. When
there are many reasoning characters active in the virtual undersea

world, things would start to get slow dramatically because the un-
derlying reasoning engine is working on a more declarative style of
knowledge. Even though the conversion from sketch plans to Prolog
code can be done as a pre-processing step, the speed problem is still
prominent. However, when there are only a few characters in the sim-
ulated world, the very reasoning engine can offer the animator great
ease and flexibility by placing heavy reliance on the character's rea-
soning abilities. This reduces the amount of work required from the
animator and is hence extremely useful for rapid prototyping of new
characters. One way to relieve the scalability problem is to gradually
reduce the non-determinism in the reasoning process, but this subse-
quently results in less flexibility of the high-level control.

Stability and Robustness
A key problem with the logical approach to control is that once an
inconsistency arises the whole system comes crashing to a halt. It
makes the system extremely unstable.

Planning
Compared with the highly sophisticated and effective planners such as
a SOAR planner, the planning mechanism employed in this paper is
very simple. It depends on its underlying Prolog theorem prover to
provide a list of all possible sequences of primitive actions which are
further selected by its reasoning engine. It is something like a simple
action selection mechanism.

Learning
Strictly speaking, there is no learning mechanism involved in this sys-
tem. The reasoning engine makes decisions based on the background
domain knowledge, character directions and sensory information. The
decision making process does not really generate any new knowledge.
There is no new knowledge flowing from the reasoning engine to the
background domain knowledge base for future use. Later on when
an exactly similar situation arises, the whole process has to repeat to
generate the primitive actions.

Natural Language Control
Instruction and interaction is made relatively easier by using logical
representation that correspond to the animator's way of thinking about
the character's world. Logical representation, as a mean of commu-
nication, is clear and precise. However, it would be a worthwhile

enhancement to allow for an interaction language more skin to natural
language (Badler 1998) [4]. This would provide a version more suited
to direct the characters by non-technical people.

6 Summary

The reader will recall that, after the introduction, the paper began with a
broad overview of cognitive modeling approaches, taking into account the
most important theoretical and practical issues. A framework is outlined by
classifying all the cognitive modeling approaches into three categories. We
moved on to discuss the applications of these modeling techniques in com-
pute animation. Steve uses a deliberative model, based on Soar. A woggle
has a reactive model to achieve fast responses and reactivities. Merpeo-
ple are equipped with a high-level reasoning engine and a low-level reactive
system to evade from the sharks in the dynamic undersea world.

Following is the table containing the comparisons among these three
cognitively empowered characters.

Character

St eve
Woggle
Merman

I Character I Robustness I A ~ ~ l i c a t i o n s

Planning

Yes (Complex)
No

Yes(Simp1e)

Character

Steve
Woggle
Merman

I I I . . J

I Steve I Medium I Tutorial, Training (in Procedural Domains) I

Flexibility

High

Behavior Direction Efficiency

Medium

Learning

Yes
No
No

Performance

Low
Low
High

A key note is that, in any of the papers reviewed, computer anima-
tion does not play a role as a test-bed, but as a driving force, for picking
up appropriate cognitive modeling techniques. Each paper has a different
animation donlain and therefore different requirements and expected ani-
mation results. On the face of these differences, the models do not seem
to be contradictory: They emphasize different agent behaviors in different
animated environments. Nonetheless, the social structure of research is such

Behavior Design Complexity

High
Medium

Low

Woggle
Merman

Low
High

High
Medium

High
Low

- ~

Interactive Drama, Entertainment
Interactive Com~uter Games

that individual researchers will justify their approaches by emphasizing the
weakness of others and the strength of their own. It is this very human set
of orientations and responses that leads to these compelling but conflicting
research approaches. Putting each approach into a bigger framework and
comparatively analyzing its virtues and goodness as well as its shortcomings
and flaws, this paper gives a more objective, systematic overview of these
different approaches.

References

[I] P.E. Agre and D. Chapman. PENGI: An implementation of a theory of
activity. Proceedings AAAI-87, pp. 268-272, Seattle, WA, 1987

[2] P.E. Agre. The Symbolic Worldview: Reply to Vera and Simon. Cogni-
tive Science 17, pp. 61-69 (1993).

[3] N.I. Badler, C. Phillips, and B.L Webber. Simulating Humans: Com-
puter Graphics, Animation, and Control. Oxford University Press, New
York, 1993.

[4] N. Badler, R. Bindiganavale, J. Bourne, M. Palmer, J. Shi and
W. Schuler. "A parameterized action representation for virtual hu-
man agents," Workshop on Embodied Conversational Characters, North
Tahoe, CA, October 1998.

[5] J. Bates, L. Byran and R. Scott. An Architecture for Action, Emotion,
and Social Behavior. In Proceeding of Fourth European Workshop on
Modeling Autonomous Agents in a Multi-Agent World, Springer-Verlag,
Berlin, 1992.

[6] B.M. Blumberg and T.A. Galyean. Multi-level Direction of Autonomous
Creatures for Real-Time Virtual Environment. In Proceedings of SIG-
GRAPH'95, Los Angeles, CA, August 1995, pp. 47-54.

[7] R.A. Brooks. A Robust Layered Control System for A Mobile Robot,
IEEE Journal of Robotics and Automation., RA-2, pp. 14-23, 1986.

[8] R.A Brooks. Elephants Don't Play Chess, Robotics and Autonomous
Systems Vol. 6, 1990, pp. 3-15.

[9] R.A. Brooks. Intelligence without reason. In Proceedings of the 12th
International Joint Conference on Artificial Intelligence (I JCAI-9 I) , pp.
569-595, Sydney, Australia, 1991.

[lo] R.A. Brooks. Intelligence without representation. Artificial
Intelligence(47):139-159, 1991

[ll] D. Chapman and P. Agre. Abstract reasoning as emergent from concrete
activity. In Georgeff and Lansky (ed.), Reasoning About Actions and
Plans. pp. 411-424. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

[12] D. Chapman. Planning for conjunctive goals. Artificial Intelligence
(32) :333-378, 1987.

[13] W. J. Clancey. Situated Action: A Neuropsychological Interpretation.
Cognitive Science 17, pp. 87-1 16 (1993).

[14] M.R. Fehling. Book Review: Unified Theories of Cognition: Modeling
Cognitive Competence, Artificial Intelligence 59, pp. 295-328.

[15] N. Foster and D. Metaxas, Realistic Animation of Liquids, Graphical
Models and Image Processing:58(5), 1996, pp. 471-483.

[16] J . Funge. CML Compiler Document. University of Toronto,
http://www.cs.toronto.edu/"funge/cml/index.html, 1998.

[17] J. Funge. Making Them Behave: Cognitive Models for Computer Ani-
mation. Ph.D. Thesis, University of Toronto, 1998.

[18] C.W. Geib. The Intentional Planning System (ItPlanS). University of
Pennsylvania, PhD Thesis, 1995.

[19] M.P. Georgeff and A.L. Lansky. Reactive reasoning and planning. In
Proceedings of the Sixth National Conference on Artificial Intelligence
(AAAI-87), pp. 677-682, Seattle, WA.

[20] J.G. Greeno and J.L. Moore. Situativity and Symbols: Response to
Vera and Simon. Cognitive Science 17, pp. 49-59 (1993).

[21] R. Grzeszczuk and D. Terzopoulos. Automated learning of muscle-
actuated locomotion through control abstraction, In Proceeding of SIG-
GRAPH195, Los Angeles, CA, August, 1995, pp. 63-70.

[22] J.K. Hodgins, W.L. Wooten, D.C. Brogan, and J.F. O'Brien. Animating
Human Athletics. In Proceedings of SIGGRAPH'95, Los Angeles, CA,
August 1995, pp. 71-78.

[23] W.L. Johnson, J. Rickel, R. Stiles, & A. Munro. Integrating Pedagogical
Agents into Virtual Environments, Presence: Teleoperators and Virtual
Environments 7(6):523-546, December 1998.

[24] W.L. Johnson. Pedagogical Agents, invited paper at the International
Conference on Computers in Education. Also to appear in the Italian A1
Society Magazine, 1999.

[25] W.L. Johnson, J. W. Rickel, and J.C. Lester. Animated Pedagogical
Agents: Face-to-Face Interaction in Interactive Learning Environments.
To appear in Intl. Journal of Artificial Intelligence in Education, 2000.

[26] W.L. Johnson, J . W. Rickel. Intelligent Tutoring in Virtual Environment
Simulations, ITS'96 Workshop on Simulation-Based Learning Technology.

[27] M.Y. Jona and R.C. Schank. Book Review: Issues for Psychology, Ar-
tificial Intelligence and Education: A Review of Newell's Unified Theories
of Cognition. Artificial Intelligence 59, pp. 375-388, 1993.

[28] D. Kurlander and D.T. Ling. Planning-Based Control of Interface Ani-
mation. In the Proceeding of CHI'95, Denver, pp. 472-479. Also Microsoft
Research Technical Report MSR-TR-95-21, 1995.

[29] J.E. Laird, A. Nowell, and P.S. Rosenbloom. Soar: an architecture for
general intelligence. Artificial Intelligence, vol. 33, 1-64, 1987

[30] J.E. Laird and P.S. Rosenbloom. On Unified Theories of Cognition: A
Response to the Reviews, Artificial Intelligence 59, pp. 389-413, 1993.

[31] F. Lin and R. Reiter. State Constraints Revisited. Journal of Logic and
Computation, Special Issue on Actions and Processes. 4(5), pp. 655-678,
1994.

[32] A. Loyal1 and J. Bates. Hap: A Reactive Adaptive Architecture for
Agents. Technical Report CMU-CS-91-147, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, June 1991.

[33] P. Maes. The agent network architecture (ANA). SIGART Bulletin,
2(4):115-120, 1991.

[34] P. Maes. Agents that reduce work and information overload. Commu-
nications of the ACM, 37(7):31-40, 1994.

[35] D.N. Metaxas. Physics-Based Deformable Models. Kluwer Academic
Publishers, Boston, 1996, ISBN 0-7923-9840-8.

[36] A. Newell. Unified Thories of Cognition. Harvard University Press,
Cambridge, MA, 1990.

[37] A. Newell. Unified Theories of Cognition and the Role of Soar in Soar:
A Cognitive Architecture in Perspective J.A. Michon and A. Akyurek (Ed-
itors), Kluwer Academic Publishers, Dordrecht, The Netherlands. 1992

[38] C.W. Reynolds. Flocks, Herds and Schools: A Distributed Behavioral
Model. In M.C.Stone (Ed.) Computer Graphics (SIGGRAPH'87 Proceed-
ings), volume 21, pp. 25-34, July, 1987.

[39] J.W. Rickel, W.L. Johnson. STEVE: A Pedagogical Agent for Virtual
Reality (video), in Proceedings of the Second International Conference on
Autonomous Agents, May 1998.

[40] J . W. Rickel, W .L. Johnson. Task-Oriented Dialogs with Animated
Agents in Virtual Reality. In Proceedings of the First Workshop on Em-
bodied Conversational Characters, Tahoe City, CA, October 1998.

[41] J.W. Rickel, W.L. Johnson. Animated Pedagogical Agents for Team
Training. In ITS '98 Workshop on Pedagogical Agents, San Antonio, TX,
pp. 75-77, August, 1998.

[42] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Englewood Cliffs, NJ: Prentice Hall, 1995.

[43] E. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence(5):115-135, 1974.

[44] E. Sacerdoti. The non-linear nature of plans. Proceedings of IJCAI-75,
pp. 206-214, Stanford, CA, 1975.

[45] E. Sacerdoti. A Structure for Plans and Behaviors, New York: Elsevier
North-Holland, 1977.

[46] L. Suchman. Response to Vera and Simon's Situated Action: A Sym-
bolic Interpretation. Cognitive Science 17, pp. 71-75 (1993).

[47] N.A. Stillings et al. Cognitive Science: An Introduction. The MIT
Press, Cambridge, MA. ISBN 0-262-19257-8, 1987.

[48] D.Thalmann and P. Becheiraz. A Behavioral Animation System for
Autonomous Actors Personified by Emotions, Proc. First Workshop on
Embodied Conversational Characters (WECC '98), Lake Tahoe, CA.

[49] X. Tu and D. Terzopoulos. Artificial Fishes: Physics, Locomotion, Per-
ception, and Behavior. In A. Glassner (Ed.) Computer Graphics (SIG-
GRAPH194 Proceedings) Orlando, Florida, pp. 43-50, July, 1994.

[50] X. Tu. Artificial Animals for Computer Animation: Biomechanics, Lo-
comotion, Perception, and Behavior, Ph.D Dissertation , Department of
Computer Science, University of Toronto, January, 1996.

[51] M. Unuma, K. Anjyo, and R. Takeuchi. Fourier Principles for Emotion-
based Human Figure Animation. Proceedings of SIGGRAPH 95, pp. 91-
96. LA, August 1995.

[52] A.H Vera and H.A. Simon. Situated Action: A Symbolic Interpretation.
Cognitive Science 17, 7-48 (1993).

[53] A. Witkin, K. Fleisher, and A. Barr. Energy Constraints on Parame-
terized Models. Computer Graphics, 21(3):225-232, 1987.

[54] A. Witkin and M. Kass. Spacetime Constraints, Computer Graphics,
22(4):159-168, 1988.

[55] S. Wood. Planning and Decision Making in Dynamic Domains. Ellis
Horwood: Chichester, England, 1993.

	Cognitive Modeling for Computer Animation: A Comparative Review
	Recommended Citation

	Cognitive Modeling for Computer Animation: A Comparative Review
	Abstract
	Comments

	tmp.1181231887.pdf.7zk5A

