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Abstract 

Cognitive modeling is a provocative new paradigm that paves the 
way towards intelligent graphical characters by providing them with 
logic and reasoning skills. Cognitively empowered self-animating char- 
acters will see in the near future a widespread use in the interactive 
game, multimedia, virtual reality and production animation industries. 
This review covers three recently-published papers from the field of 
cognitive modeling for computer animation. The approaches and tech- 
niques employed are very different. The cognition model in the first 
paper is built on top of Soar, which is intended as a general cognitive 
architecture for developing systems that exhibit intelligent behaviors. 
The second paper uses an active plan tree and a plan library to achieve 
the fast and robust reactivity to the environment changes. The third 
paper, based on an A1 formalism known as the situation calculus, de- 
velops a cognitive modeling language called CML and uses it to  specify 
a behavior outline or "sketch plan" to direct the characters in terms of 
goals. Instead of presenting each paper in isolation then comparatively 
analyzing them, we take a top-down approach by first classifying the 
field into three different categories and then attempting to put each 
paper into a proper category. Hopefully in this way it can provide 
a more cohensive, systematic view of coginitive modeling approaches 
employed in computer animation. 



1 Introduction 

Modeling for computer animation addresses the challenge of automating a 
variety of difficult and complex animation tasks. An early milestone was 
the combination of geometric models and inverse kinematics to simplify 
the laborious keyframing. The computer maintains a representation of how 
parts of model are linked together and the constraints are enforced as the 
objects are pulled around. This frees the animator from, necessarily, having 
to move every part of an articulated figure individually. 

Similarly, using the laws of physics can free the animator from implic- 
itly trying to emulate them when they generate motion. Physically-based 
models such as Witkin et al. (1987) [53] and Barzel & Barr (1988) [54] view 
the world as objects and constraints. Constraints connect objects together 
through desired geometric relationships or keep them in space. Otherwise, 
they float in space under the appropriate laws of physics (Badler e t  al. 1993) 
[3]. Passive objects, such as falling chains, colliding objects, rigid bodies, 
deformable solids, gases and fluids can be animated using physically-based 
models (Foster & Metaxas 1996; Metaxas 1996) [15, 351 . For animate ob- 
jects biomechanically-based modeling can be employed. So far, it has been 
possible to use simplified biomechanical models to automate the process of 
locomotion learning in a variety of virtual creatures, such as fish, snakes, and 
some articulated figures (Tu 1996; Grzeszczuk & Terzopoulos 1996) [50, 211. 
While the physically-based and biomechanically-based modeling can model 
and simulate characters accurately and realistically, they are usually too 
computationally expensive to be used in real-time animation without any 
preprocessing. 

Research in behavioral modeling is making progress towards self-animating 
characters that react appropriately to perceived environment stimuli. The 
seminal work in this area was that of Reynolds (1987) [38]. His "boids" 
have found extensive applications throughout the games and animation in- 
dustry. Recently the work of Badler et al. (1993) [3], Tu and Terzopoulous 
(1994) [49], Blumberg and Galyean (1995) [6], Hodgins et al. (1995) [22], 
Unuma et al. (1995) [51], and Thalmann et al. (1998) [48] has extended 
this approach to dealing with some complex behaviors for more sophisti- 
cated characters. This works well for low-level behaviors. For animations of 
specific high-level behaviors, things are more complicated because many of 
the high-level behaviors exhibited by the characters suffer from the problems 
of being hard-wired into the code thus are very hard to be reconfigured or 
extended. 



1.1 Cognitive Modeling 

Some researchers address these problems by introducing cognitive modeling 
(henceforth, CM) as the next logical step in the hierarchy of models that 
have been used for coniputer animation. 

Building cognitive models is very much a research area at the forefront of 
artificial intelligence (AI) research and psychological research. The research 
in A1 overlaps considerably with cognitive science. Many researchers in A1 
try to model their computer programs after human intelligence, and they 
derive inspiration from modeling human cognition (Stillings et aE 1987, p.9) 
[47]. In psychological research, a cognitive model serves as a vehicle for 
understanding human behavior. If your model is successful at  producing 
human-like behavior under certain assumptions, you can hypothesize that 
different behavior will emerge under different assumptions, change those 
assumptions in the model and see how it behaves. Explorations with models 
in this way can then be used to design experimental conditions that are 
likely to show measurable effects. So, CM is useful for A1 scientists and 
psychologists, but why should computer animators care about CM? 

Figure 1: Shifting the Burden of the Work 

Because computer animators are very interested in shifting the burden 
of the work to intelligent agents that have the following properties: 

Autonomy: agents operate without direct intervention and have 
some kind of control over their actions and internal states; 

Reactivity: agents perceive their environment and respond in a timely 
fashion to changes that occur in it; 

Pro-activeness: agents do not simply act in response to their envi- 
ronment, they are able to exhibit goal-directed behavior by taking the 
initiative: 

Interactivity: agents interact with humans in real-time, which could 
include natural language understanding capabilities. 



CM can play critical subsidiary roles in simulating these properties. 
Therefore, computer animators believe CM, by raising the level of abstrac- 
tion at which the user can direct animated agents, makes it easier to produce 
animations. This level of functionality is obtained by enabling the agents 
themselves to do more of the work rather than the animator. 

Hence, the goal of CM for animation is to have agents behave au- 
tonomously and intelligently in the virtual environment by emulating the 
perceptual, thinking, and/or motor processes a human goes through to  com- 
plete a task. However, it does not necessarily imply that a cognitively em- 
powered agent should get the job done with the least effort or in the least 
time. She may take the same amount of time that a human takes to perform 
a task. She may make the same kind of errors a human makes. She may 
require the same type of experience to learn to perform a task. She may do 
the same inefficient fumbling for a solution to a difficult problem. 

1.2 Challenges 

1.2.1 Fundamenta l  Definitions 

The task of developing a general cognitive model for compute animation or 
virtual reality (VR) games is a daunting task, greatly complicated by the 
lack of a consensus on some fundamental definitions such as intelligence and 
cognition. 

Newell's definition of intelligence (Newel1 1990) [36] implies that it is 
the knowledge within the system that makes it intelligent. From Newell's 
definition it can be inferred that in order to see if a system exhibits intelli- 
gence, it is important to study its content, and not its computatioiial model 
(Jona & Schank 1993) [27]. However, it is important to note that it is the 
computational model which allows the implementation of the content. Also 
according to Newel1 (1990) [36], a system is intelligent to the extent that it 
uses the knowledge it possesses. Taking this notion to the extreme implies 
that a simple system operating in a small domain is more intelligent than a 
human operating in a large domain (Fehling 1993) [14]. Laird and Rosen- 
bloom in their response (1993) [30] to this criticism, on behalf of Newell, 
seem to think that this is an issue of generality, and not intelligence. This 
debate suggests that intelligence is dependent upon the domain and subject 
in question. Maybe there is no universal definition of intelligence, as it really 
is a highly relative and subjective concept. 

What cognition really is also is highly debated among proponents of 
two distinct approaches. One approach, the tradition upon which cognitive 



science was founded, is that of symbolic representation and processing (Vera 
& Simon 1993) [52]. The other more recent approach, emphasizing the role 
of the environment, the context, the social and cultural setting, and the 
situations in which characters find themselves, is variously called situated 
cognition (Greeno & Moore 1993; Agre 1993; Suchman 1993; and Clancey 
1993) [20, 2, 46, 131. The supporters of situated cognition tend to emphasize 
the importance of social interaction and environment and to minimize the 
importance of internal cognition; while the proponents of the traditional 
symbolic approach tend to downplay the importance of these social and 
external factors and to emphasize the importance of internal cognition. The 
dispute is really one of differing worldviews, but it defies attempts to produce 
a single universally accepted definition of cognition. 

1.2.2 Fundamental Questions 

Current computational cognitive models in computer animation demon- 
strate nothing like the intelligence and cognition and the efflorscence o f  adap- 
tation evident in human or other agents' behaviors and such a result seems 
very far away. To make any progress, researchers must set goals much lower 
and hope to move gradually to the intelligent ideal. 

However, this lowering of goals results in great deviations among the 
research community when answering some fundamental questions: 

What types of environments should be anticipated? 

- Static Simulated Environments, consist of unchanging surround- 
ings in which an agent navigates and manipulates. The agent does 
not need to adapt to new situations, nor do its designers need to 
concern themselves with the issue of inconsistencies of the world 
model. An example of such an environment is a simulated office 
setting, where the doorways and halls never change, and there are 
no moving objects that populate the simulated space. Nothing 
changes in the static environment except through the action of 
the agent. 

- Dynamic Simulated Environments, change over time independent 
of the actions of the agents. They usually factor out the unin- 
teresting variables and allow the agents to focus on the critical 
issues. However, due to the dynamic and unpredictable changing 
of the environment, agents that operate in the dynamic simulated 
enviornment require robust sensing/perception mechanisms and 



high-level capabilities such as planning and learning. They may 
be even required to produce new plans rapidly based on updated 
sensory/perceptual information. They may have to reason about 
the temporal aspects of their plans. 

a What capabilities are most important? 

- Capabilities taking place within the agent 

* Planning 

* Replanning 

* Learning: explanation-, abstraction-, or caching-based, etc. 
* Problem solving 

* Support for multiple simultaneous goals 

* Deductive and/or inductive reasoning 
* Self reflection 

- Capabilities related to interaction with the environment 

* Sensing and perception 

* Natural language understanding 
* Query answering and providing explanations 

* Prediction 
* Navigational strategies 

- Capabilities related to Execution 

* Real-time execution 

* Goal reconstruction 
* Focused behavior and selective attention 

* Responding intelligently to interrupts and failures 

What properties should be included? 
Agent properties identify and entail the techniques and methods that 
are used to realize a particular modeling component. For example 
most cognitive models include some sort of memory. Agent properties 
characterize the memory: Is the memory declarative, procedural, or 
episodic? Are there size limitations? Is memory uniformly accessed? 
Is it uniformly organized? 

A research team's answers to these questions greatly influence its cogni- 
tive models. Unfortunately, no answer is completely satisfying or justified. 
For instance, most researchers consider the ability of planning fundamental 



to intelligence. However, the subsumption designers (Brooks 1986) [7] pur- 
posely ignore this capability. Both sides provide compelling arguments for 
their choices, so the final decision is highly subjective. 

1.3 Overview 

The remainder of the paper is organized as follows. Section 2 reviews the 
background of different CM strategies, taking into account the most impor- 
tant theoretical and practical issues. Here, our primary goal is to classify 
various CM approaches into three big categories: deliberative models, reactive 
models and layered models. The classification serves as a framework for the 
rest of the paper. Section 3 presents Steve, an animated pedagogical agent 
that helps students learn to perform physical and procedural tasks. Steve's 
cognition is based on the Soar model which is intended as a general delib- 
erative cognitive architecture for developing systems that exhibit intelligent 
behaviors. Section 4 presents Hap, a reactive cognition model used in the 
Oz project to achieve fast and robust reactivity to world changes. Section 5 
presents a layered model which, based on the situation calculus, develops a 
cognitive modeling lanaguage called CML and uses it to direct the charac- 
ters in terms of goals. Section 6 presents the analytical conclusions we have 
drawn from our previous examinations, followed by a brief summary. This 
paper is an animation-centric review instead of an investigation on the A1 
side. We restrict our interests to real-time computer animation. 

2 Background: Theory and Practice 

With all those difficulties and challenges presented in the first section, how 
does one proceed? First we need to systematically review the approaches and 
strategies available. So far, there are three different strategies: deliberative 
models, the classical strategies; reactive models, the alternative strategies; 
and layered models, the intermediate strategies. 

2.1 Deliberative Model 

The foundation upon which the deliberative model, actually the whole sym- 
bolic A1 paradigm, rests is the physical-symbol system, formulated by Newel1 
and Simon (1976). A physical-symbol system is built from a set of elements, 
called symbols, which may be formed into symbol structures by means of a set 
of relations. A symbol system has a memory capable of storing and retain- 
ing symbols and symbol structures, and has a set of information processes 



that form symbol structures as a function of sensory stimuli, which produce 
symbol structures that cause motor actions and modify symbol structures 
in meniory in a variety of ways. The processes that encode sensory stimuli 
into internal symbols are called perceptual processes, and the processes that 
decode motor symbols into muscular responses are called motor processes. 
Perceptual and motor processes connect the symbol system with its envi- 
ronment, providing it with its semantics, the operational definitions of its 
symbols. 

The deliberative model is a model that contains an explicitly represented, 
symbolic model of world, and in which decisions are made through logical 
reasoning and planning, based on pattern matching and symbolic processing. 
In the early days - not very long ago, studies of this model dominated the 
A1 and cognitive science field. Progress was made on many fronts, including 
planning, problem solving, reasoning, and language. A substantial number 
of symbol systems have been constructed and tested, partially successfully, 
for their ability to simulate human thinking and learning over a wide range 
of task domains. But after the initial flurry of activity, progress slowed due 
to the various difficulties mentioned earlier. 

2.1.1 First Order Logic 

First Order Logic (henceforth, FOL) is the logical foundation for symbolic 
AI. The basic building blocks are terms for referring to objects, and pred- 
icates for referring to relations. Terms and predicates can be combined to 
make atorr~ ic  sentences to state facts. Then atomic sentences can be used 
with logical connectives to construct complex sentences. FOL also contains 
two standard quantifiers, called universal ('d) and existential ( 3 ) ,  to express 
properties of entire collections of objects, rather than having to enumerate 
the objects by name. FOL can express anything that can be programmed. 

More detailed discussion of FOL can be found in a number of books 
including Logic for Computer Science by Gallier (1986) and Logical Foun- 
dations of Artificial Intelligence by Genesereth and Nilsson (1987). 

Situation calculus is used for describing the changing world in FOL. It 
conceives of the world as consisting of a sequence of situations, each of 
which is a "snapshot" of the state of the world. Situations are generated 
from previous situations by actions. Three major problems have to be solved 
for practical use of situation calculus: the frame problem, the qualification 
problem and the ramification problem. 



2.1.2 Planning 

It has long been assumed that planning will be a central compoiient of 
any deliberative model. Perhaps the best-known early planning system was 
STRIPS (Fikes & Nilsson 1971). This system takes a symbolic description of 
both the world and a desired goal state, and a set of action operators, which 
characterize the preconditions and postconditions associated with each ac- 
tion. It then attempts to find a sequence of actions that will achieve the 
goal, by using a simple means-ends analysis (MEA), which essentially in- 
volves matching the postconditions of actions against the desired goal. The 
STRIPS planning algorithm was very simple, and proved ineffective and 
impractical on problems of even moderate complexity. Much effort was sub- 
sequently devoted to developing more effective and practical planning tech- 
niques. Major innovations include hierarchical planning (Sacerdoti 1974) 
[43] and nonlinear planning (Sacerdoti 1975) [44]. 

Researchers in computer animation, trying to create autonomous intel- 
ligent agents, have attempted quite a few planning schemes by implicitly 
adopting a symbolic representation model of the simulated world. One of 
the papers we are going to analyze in this review employs a hierarchical de- 
composition planning mechanism. So it is a good time now for us to briefly 
review the practical planning being used in computer animation. 

Regression Planning 
This approach builds a plan by chaining backward from the desired 
goal through an action that will achieve the goal to the preconditions 
that must be achieved for this action to be effective. This is due 
to the empirical belief that the search space has a smaller branching 
factor near the goal state than that of near the initial state therefore 
a backward search from the goal is more tightly constrained and more 
effective. One of the drawbacks of this approach is the initial steps of 
the final plan are the last ones that are constructed. This is hardly 
acceptable in real-time computer animation. To satisfy the real-time 
constraints some researchers (Kurlander & Ling 1995) [28] propose a 
modified version that precompiles the plan scripts into a finite-state 
machine prior to the executions. In this specific case the operators 
are animation scripts, and the programmers declare preconditions and 
postconditions that explain how each of the scripts depend on and 
modify states. The price to pay is that all the possible situations have 
to be hard-coded into the finite state machines as a preprocessing step. 

Interleaving Planning 



Given the planning delays and the requirement of adaptability to a 
changing unpredictable environment, interleaving planning suggests 
that do some planning, switch to perform some of the planned actions 
and then continue the planning. The open question is how much plan- 
ning to do before the planned action takes over. Wood's AUTODRIVE 
system (Wood 1993) [55] has interleaving planning agents operating 
in a highly dynamic environment (a traffic simulation). 

Hierarchical Decomposition 
Most of planners we surveyed have adopted the idea of hierarchical 
decomposition: that an abstract operator can be decomposed into a 
group of steps that forms a plan that implements the operator. The 
composite steps of this plan can be further decomposed into even more 
specific plans until they are fully decomposed into hierarchically orga- 
nized primitive actions that can be directly executed. These decom- 
positions can be stored in a library of plans for retrieval as needed 
(Russell and Norvig 1995) [42]. This is a typical Divide-and-Conquer 
strategy, assuming the combination of implementations of subgoals 
can achieve the implementation of the goal. The action steps in the 
plan can be either partially ordered or totally ordered, partial ordering 
is preferred, though, due to the principle of least commitment. 

However the partial order planning has to solve three prominent prob- 
lems: the selection of multiple applicable actions; subgoal interactions, 
also known as Sussman Anomaly; and constraint binding. Due to these 
problems, in practice hierarchical decomposition with partial ordering 
is rarely used directly without modification. ItPlanS (Geib 1995) [18] 
restricts a strong linearity (no subgoal interactions) and total order- 
ing in its incremental hierarchical planner to satisfy the constraints of 
rapid response and limited knowledge. 

One of the papers we will examine adopts this method with some 
additional requirements. To construct a plan, Steve demands a task 
knowledge definition from the course author. Basically it is an aug- 
mented partial-ordering planner with substantial control knowledge to 
discourage unusual plans, and to guide the plan construction and re- 
vision. We will come to this point with more details when analyzing 
the planning model in the Steve paper. 

However, in the mid 1980s, Chapman (1987) [12] established some the- 
oretical results which indicate that even refined planning techniques will 
ultimately turn out to be unusable in any time-constrained system. These 



results have had a profound influence on subsequent planning research; per- 
haps more than any other, they have caused some researchers to question the 
whole symbolic A1 paradigm, and thus have led to the work on alternative 
approaches that we will discuss in the next. 

2.2 Reactive Model 

As we mentioned above, there are many unsolved problems associated with 
symbolic AI. These problems have led some researchers to question the via- 
bility of the whole symbolic paradigm, and to the development of what are 
generally known as reactive models, which do not include any kind of central 
symbolic world model, and do not use any complex symbolic reasoning. 

Probably the most vocal critic of symbolic A1 has been Rodney Brooks. 
He has been arguing for over a decade that the road to intelligence consists 
of building situated agents which employ no explicit symbolic representa- 
tion nor abstract reasoning (Brooks 1990; Brooks 1991a; Brooks 1991b) 
[8, 9, 101. The "Creatures," as he called the humanoid robots he built at 
MIT, have a number of functionally distinct control layers that act indepen- 
dently. Sensors feed directly into distinct layers, each of which can react to 
the input with its own set of motor behaviors. Each layer has only the nec- 
essary information about the environment and the information is processed 
independently and in parallel. The lower layer represents more primitive 
behaviors (such as avoiding obstacles) and has precedence over layers fur- 
ther up the hierarchy. The higher layers subsume the roles of lower layers 
by suppressing their outputs. The system does not, at any point, have a 
centralized representation of its world. 

Pattie Maes' corn petence modules loosely resemble the behaviors of Brooks' 
architecture (Maes 1991; Maes 1994) [33, 341. Each module is specified by 
the designer in terms of preconditions and postconditions, and an activation 
level, which gives a real-valued indication of the relevance of the module in 
a particular situation. The higher the activation level, the more likely it is 
that the module will affect an agent's behavior. Once specified, a set of com- 
petence modules is compiled into a spreading activation network, in which the 
modules are linked to one another in ways defined by their preconditions and 
postconditions. For example, if module a has postcondition 4, and module 
b has precondition 4, then a and b are connected by a successor link. Other 
types of links include predecessor links and conflicter links. When an agent 
is executing, various modules may become more active i11 given situations, 
and may be executed. The result of execution may be a motor command. 

Chapman and Agre (1986) [ll] observed that most everyday activity is 



"routine", requiring little new abstract reasoning. Most tasks, once learned, 
can be accomplished in a routine way, with little variations. They proposed 
an idea that as most decisions are routine, they can be encoded into a low- 
level structure, which only need periodic updating, perhaps to handle new 
kinds of problems. Their approach was illustrated with the PENGI system 
(Agre and Chapman 1987) [I]. PENGI is a simulated computer game with 
characters controlled by "routines". 

Rosenschein and Kaelbling (Rosenschein 1985; Rosenschein and Kael- 
bling 1986; Kaelbling and Rosenschein 1990; Kaelbling, 1991) proposed a 
situated automata in which agents are specified in declarative terms. This 
specification is then compiled down to a digital machine, which satisfies the 
declarative specification. This digital machine can operate in a provably 
time-bounded fashion; it does not do any symbol manipulation, and in fact 
no symbolic expressions are represented in the machine at all. An agent is 
specified in terms of two components: perception component RULER and 
action component GAPPS. RULER takes as input three components: a 
specification of the semantics inputs; a set of static facts; and a specification 
of state transitions. The programmer then specifies the desired semantics 
for the output and the compiler synthesizes a circuit whose output will have 
the correct semantics. All the declarative "knowledge" has been reduced to 
a very simple circuit (Kaelbling 1991). GAPPS takes as input a set of goal 
reduction rules (essentially rules that encode information about how goals 
can be achieved), a top level goal, and generates a program that can be 
translated into a digital circuit in order to realize the goal. The generated 
circuit does not represent symbolic expressions; all symbolic manipulation 
is done at compile time. 

All above have a common idea: Compiling specifications to construct 
dedicated parallel cicuits to bypass the the symbolic processing and reason- 
ing steps. This makes agents very responsive to their environment. Hap, 
which we will examine in details in Section 4, applies the same ideas of this 
situated actions and reactivity. 

However, some researchers argue that although pure planning, with no 
situational feedback, is surely ineffective, yet it may be too radical to take the 
opposite extreme claiming planning and symbolic representation is irrevalent 
to cognition. So they advocate a more sophisticated intermediate approach 
- layered models, which we will discuss in the following. 



2.3 Layered Model 

Many researchers have suggested that neither a purely deliberative nor a 
purely reactive approach is suitable for CM. They have argued the case for 
a hybrid approach, which attempts to marry deliberative and reactive in a 
complementary fashion. 

One of the best known layered models is the Procedural Reasoning Sys- 
tem (PRS), developed by Georgeff and Lansky (1987) [19]. PRS is a belief- 
desire-intention architecture, which includes a plan library, as well as explicit 
symbolic representations of beliefs, desires, and intentions. Beliefs are facts, 
either about the external world or the internal states, and are expressed 
in classical FOL. Desires are represented as system behaviors. A PRS plan 
library contains a set of partially-elaborated plans, called knowledge areas 
(henceforth, KA), each of which is associated with an invocation condition. 
This condition determines when the KA is to be activated. KAs may also be 
reactive, allowing the PRS to respond rapidly to changes in its environment. 
The set of currently active KAs in a system represent its intentions. These 
various data structure are manipulated by a system interpreter, which is 
responsible for updating beliefs, invoking KAs, and executing actions. 

The common characteristics of layered models that is the control must be 
both data-driven (in response to agent's current situation) and goal-driven 
(to satisfy one of agent's intention). In John Funge's Undersea World, which 
we will examine in Section 5, mermen can reason about their world based 
on acquired knowledge to achieve their goal; in case that reasoning can 
not be done in a timely fashion, the reactive system prevents mermen from 
doing anything stupid, such as bashing into rocks. Typical default reactive 
behaviors include "turn right", "avoid collision" and "swim for your life". 

2.4 Discussion 

Layered models, such as the PRS and RAP (Firby, 1989 & 1995), are cur- 
rently a very active area of work, and arguably have some advantages over 
both purely deliberative and purely reactive models. One potential difficulty 
with such models, however, is that they tend to be ad hoc in that while their 
structures are well-motivated from a design point of view, it is not clear that 
they are motivated by any deep theory. 



3 Steve's Cognitive Model 

The first paper reviewed describes Steve, an animated agent that helps stu- 
dents learn to perform physical and procedural tasks. Steve, cohabiting with 
students in a three-dimensional simulated work environment, can demon- 
strate how to perform tasks and monitor students while they practise tasks, 
carrying on tutorial, task-oriented dialogs with students when needed. 

Steve's architecture consists of three major modules: perception, cog- 
nition and motor control. The perception module monitors the state of 
the virtual world, maintains a coherent representation of it, and provides 
this information to the cognition and motor control modules. The cog- 
nition module interprets its perceptional input, chooses appropriate goals, 
constructs and executes plans to achieve those goals, and sends out motor 
commands. The motor control module decomposes these motor commands 
into a sequence of lower-level commands, controlling Steve's voice, locomo- 
tion, gaze, and gestures, and allowing Steve to manipulate objects in the 
virtual world. In this paper we focus on its cognition module, which is built 
on top of Soar (Laird, Newell, & Rosenbloom 1987; Newel1 1990) [29, 361. 
As much of Steve's design was influenced by features of Soar, it is necessary 
to briefly review Soar cognitive architecture. 

3.1 Soar: A general cognitive architecture 

Soar is a general cognitive architecture for developing systems that exhibit 
intelligent behaviors. In Soar, all tasks are represented as collections of 
problem spaces, which are made up of a set of states and operators that 
manipulate the states. Soar begins work on a task by choosing a problem 
space, then an initial state in the space. Soar represents the goal of the task 
as the final state in the problem space. Soar repeats its Decision Cycle as 
necessary to move from the initial state to the final state. 

3.1.1 Knowledge in Soar 

In order to act in a domain, Soar must have knowledge of that domain 
(either given to it or learned). The domain knowledge can be divided into 
two categories: 

Basic problem space knowledge: definitions of the state representation, 
the "legal move" operators, their applicability conditions and their 
effects. 



Figure 2: Steve 

Control knowledge, which gives guidance on choosing what to do, such 
as heuristics for solving problems in the domain. 

Knowledge in Soar is encoded in production rules, which has the form of 
C + A, where C stands for conditions, and A for actions. 

Two of Soar's memories are of relevance here: the production memory (or 
long-term memory), permanent knowledge in the form of production rules; 
and the working memory, temporary information about the situation being 
dealt with. Productions place preferences for working memory elements into 
preference memory. Types of preferences include acceptable, reject, require, 
prohibit, better, worse, reconsider, and indifferent. All perceptual and motor 
behavior is mediated through working memory. The motor modules accept 
commands from working memory and execute them. Their progress can 
then be monitored through sensors that are fed back into the system via 
perception. 



3.1.2 Decision Cycle i n  Soar  

Soar has a two-phase decision cycle, elaboration followed by decision. The 
two phases are repeated until the goal of the current task is reached. Dur- 
ing the elaboration phase all productions which match the current working 
memory fire. All productions fire in parallel. The elaboration phase runs to 
Quiescence (until no more productions fire). 

The decision phase examines any preferences put into preference mem- 
ory (either in this phase, or previous ones), and chooses the next problem 
space, state, operator or goal to place in the context stack. The decision 
phase may change any current slot values, or any previous slot values in 
the context stack. If there is not enough information (or the information 
is contradictory) for the decision phase to choose the next slot value, then 
Soar reaches an impasse. 

3.1.3 Impasses  a n d  Subgoaling in  Soar  

There are three possible types of impasses: 

Operators Zero Impasse: no candidate operators to apply. 

Operator Tie Impasse: too many, undifferentiable candidates. 

Conflict Impasse: Two or more operators are better than one another 
and they are not dominated by a third. 

When Soar encounters an impasse in context level-1, it sets up a subcon- 
text (or "subgoal") at  level-2, which has associated with it a new state, with 
its own problem space and operators. Note that the operators at  level-2 
could well depend upon the context level-1. The goal of context level-2 is to 
find knowledge sufficient to resolve the higher impasse, allowing processing 
to resume there. For example, we may not have been able to choose between 
two operators, so the level-2 subgoal may simply try one operator to see if 
it solves the problem, and if not, tries the other operator. The processing 
a t  level-2 might itself encounter an impasse, set up a subgoal at  level-3, and 
so on. So in general we have a stack of such levels, each generated by an 
impasse in the level above. Each level is referred to as a context (or goal), 
and each context can have its own state, problem space and operators. 

Soar automatically creates subgoals in order to resolve impasses. This 
is the only way that subgoals get created. 



3.1.4 Chunking in Soar 

Soar includes a simple, uniform learning mechanism called chun king. When- 
ever a result is returned from an impasse, a new rule is learned connecting 
the relevant parts of the pre-impasse situation with the result. This means 
that next time a sufficiently similar situation occurs, the impasse is avoided. 
Notice in Figure 3 only A, B,  and C are included in the conditions for the 
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Figure 3: Chunking in Soar (from "Unified Theories of Cognition" [14]) 

production, working memory elements (WMEs) 7, 8, and 9 are not included 
since they are not along the path that leads to the goal even though they 
were created just before the impasse occurred; Similarly, WMEs 2, 4, and 
6 are not included since they lead to WMEs which were used in impasse 
resolution but they were created before the impasse occurred. If in a fu- 
ture situation, condition elements A, B,  and C occur, the resultant chunk 
shown at the bottom of the diagram will fire, regardless of the elements 
from which these conditions elements are created. And these new chunks 
are placed in the production memory immediately, and are available on the 
next elaboration phase, thus Soar's learning is intermixed with its problem 
solving. 



Figure 4: Steve's Cognitive Architecture 

Steve 

I 
I 
I 
I 

Soar Rules Perception snapshots I 

COGNITION 

Spatial Properties 
PERCEPTION 

INTERFACE 
SIMULATOR 

r-------------------------------- 
Task 
Knowledge 

Pedagogical 
Capabilities 

1 
I 
I 
I 
I 



3.2 Steve's Cognition 

Soar is a general cognitive architecture, but it does not provide built-in 
support for particular cognitive skills such as demonstration, explanation, 
monitoring and question answering. Steve, as an intelligent tutoring and 
training agent, requires such pedagogical capabilities. These capabilities 
are implemented as Soar production rules and layered on top of Soar. To 
demonstrate how to perform procedural task in a particular domain, Steve 
also needs a domain-specific task knowledge, which must be provided by 
the course author. Given appropriate task knowledge for a specific domain, 
Steve can employ these general pedagogical capabilities to teach students 
that knowledge. From top to bottom, the cognition is organized into three 
main layers: 

domain-specific task knowledge 

domain-independent pedagogical capabilities 

Soar production rules 

This layered approach to Steve's cognition module (as shown in Figure 4) 
offers the flexibility of allowing Steve to be used in a variety of domains. Each 
new domain requires only new task knowledge. Steve's general pedagogical 
capabilities and underlying Soar production rules need not be modified. 

3.2.1 Steve's Domain Task Knowledge 

Steve represents domain tasks as hierarchical plans, using a relatively stan- 
dard representation (Russell & Norvig 1995) [42]. First, each task consists 
of a set of steps, each of which is either a primitive action or a compos- 
ite action. Composite actions give tasks a hierarchical structure. Second, 
there may be ordering constraints among the steps, each specifying that one 
step must precede another. These constraints define a partial order over the 
steps. Finally, the role of the steps in the task is represented by a set of 
causal links. Each causal link specifies that one step achieves a goal that is 
a precondition for another step. For example, putting on socks achieves the 
goal of SocksOn, which is a precondition for putting on shoes. 

Figlire 5 shows an example of a task definition: the task of performing a 
functioiial test of a high-pressure air compressor aboard a ship. It consists of 
three steps: press-function-test, chcck-alarm-light, and extinguish-alarm. In 
press-function-test step, the operator presses the test button on the control 
panel; then examines the light to make sure if it is still functional or burned 



Task: functional-test 
Step: press-function-test, check-alarm-light, extinguish-alarm 

Causal Links: 
press-function-test achieves test-mode for check-alarm-light 
check-alarm-light achieves know-if-alarm-functional for end-task 
extinguish-alarm achieves alarm-off for end-task 

Ordering Constraints: 
press-function-test before check-alarm-light 
check-alarm-light before extinguish-alarm 

Figure 5: An example task definition 

out in the check-alarm-light step; finally operator turns off the light by 
pressing the reset button in the extinguish-alarm step. The task must be 
performed in this order. This is enforced by the ordering constraints in 
the task definition. In addition, several causal links exist among the steps. 
For example, press-function-test puts the devices in test mode, which is 
a precondition for check-alarm light. In order to complete the task, the 
operator must know whether the alarm light is functional, and make sure to 
turn off the alarm light. These are shown as the preconditions for end-task. 
Similarly, if the task is depended on conditions that must be established 
prior to starting the task, these conditions would be represented as effects 
of begin-task. Causal links serve to record the purpose(s) of steps in the task 
definition. They enable Steve to automatically generate explanations and 
to adopt procedures to unexpected circumstances. 

The task definition only defines the structure of a task in terms of its 
steps and orderings. To complete the description, the course author must 
provide the goals and primitive actions. Each goal is defined by an attribute- 
value pair. Steve can represent two types of goals: goals that require putting 
the virtual world in some desired state (attributes of virtual world with 
specific values), which Steve can evaluate using perception, and goals that 
acquire information, which Steve can evaluate by checking his own mental 
state. Primitive actions are basic actions which can be directly executed 
by the motor. To simplify the course author's job, Steve has a general 
action library. Primitive action is an instance of one general action in the 



library with instantiated object name, motor command, and the perceptual 
attribute-value pair that will indicate that the primitive action has finished. 

Steve uses the task knowledge to create the task model when being asked 
to demonstrate a specific task or to monitor the students performing the 
task. He creates the task model by adopting a top-down task decomposition 
proposed by Sacerdoti (1977) [45]. This approach is pretty simple: First, 
Steve initializes the task model to contain the name of the task. Next, he 
adds the task representation (steps, causal links and ordering constraints) 
for that task. Then he recursively repeats this process for any composite 
task until the task model has been fully decomposed into a hierarchically 
organized structure of primitive actions. The resulting task model is an 
important resource for Steve's plan construction. 

3.3 Steve's Decision Cycle 

Steve's cognition module operates by continually looping through a decision 
cycle. Each decision cycle goes through five phases: 

1. Input Phase: Get the current perceptual information from the percep- 
tion module. 

2. Goal Assessment: Use the perceptual information to determine which 
goals of the current task are satisfied. This includes the end goals of 
the task as well as any intermediate goals (i.e., preconditions of task 
steps). 

3. Plan Construction: Based on the results of goal assessment, construct 
a plan to complete the task. 

4. Operator Selection: Select the next operator. Each operator is rep- 
resented by a set of production rules that implement one of Steve's 
capabilities, such as answering a question or demonstrating an action. 
Steve's operators serve as the building blocks for his behavior. 

5. Operator Execution: Execute the selected operator. In most cases, 
this will cause the cognition module to output one or more motor 
commands. 

3.3.1 Input Phase 

During the input phase, the cognition module receives three pieces of infor- 
mation from the perception module: 



The state of the simulator, represented as a set of attribute-value pairs. 

A set of important events that occurred since the last snapshot. 

The student's field of view, represented as the set of objects that lie 
within it. 

3.3.2 Goal Assessment 

Since each goal is associated with an attribute-value pair, Steve can assess 
each goal by simply determining whether its associated attribute-value pair 
is satisfied given the current perceptual input and mental state. This pro- 
cess is based on Soar's truth maintenance system. When the goal becomes 
satisfied, the rule fires, marking the goal satisfied. As long as the goal is 
satisfied, this result will remain, without any further processing required. If 
the goal becomes unsatisfied, Soar retracts the rule, along with its result. 
Thus Steve need not evaluate every goal on every decision cycle; each rule 
automatically fires or retracts when the status of its goal changes. 

3.3.3 Plan Construction 

Steve uses the task model to guide his plan construction and revision. The 
task model includes all the steps that might be required to complete the 
task (even if some are not necessary given the current state of world). Every 
decision cycle, after Steve gets a new perceptual snapshot and assesses the 
goals in the task model, he constructs a plan for completing the task. He 
first marks all the end goals as relevant for completing the task, then for 
each goal that is unsatisfied he finds the relevant steps in the task model 
that can achieve it and adds these steps to the plan. Each step added may 
further have unsatisfied preconditions, and each such precondition becomes 
a new goal that must likewise be achieved. 

3.4 Steve's Domain-Independent Pedagogical Capabilities 

3.4.1 Demonstration 

To demonstrate a task to a student, Steve must perform the task himself, 
explaining what he is doing along the way. First, he creates the task model. 
Then, in each decision cycle, he updates his plan for completing the task 
and determines the next appropriate steps. 



Choosing the Next Task Step to Demonstrate There may be mul- 
tiple applicable steps to be executed next at ally point of executing a task. 
In order to improve the communication between Steve and students, Steve 
maintains a focus stack to help to choose the next task step. Basically when 
executing a step (either primitive or composite), Steve pushes it onto the 
stack. Therefore, the bottom element of the stack is the main task on which 
Steve and the student are collaborating, and the topmost element is the one 
on which the demonstration is currently focused. When the step at the top 
of the focus stack is finished, Steve pops it off the stack. The main idea is 
to maintain the current focus or shift to a subtask of the current focus when 
multiple applicable steps are ready for execution. 

Demonstrating a Task Step Steve always picks up the topmost step 
on the focus stack and demonstrates it to students. If the step is a com- 
posite step, Steve decomposes it into subtasks. If it is a primitive action, 
Steve simply performs the step. This is done by sending an appropriate 
motor command along with its associated text fragments and waiting for 
confirmation in his perception that command was executed. 

Shifting to Monitoring Steve's demonstrations can end in one of two 
ways. Typically, he completes the task and announces his completion. Some- 
times students may request to take over the rest of the demonstration. In 
such cases Steve shifts to monitoring the students. 

3.4.2 Monitoring 

When Steve plays the monitoring role, he still needs to maintain his own task 
completion plan and use it to evaluate the student's actions and answer their 
questions. In order to give students the opportunity to variety of situations, 
Steve should be able to adapt to various unexpected situations. Also, to 
allow students to deviate from the standard procedure, make mistakes and 
learn from recovering them, Steve needs to be able to repeatedly re-evaluate 
and revise his plan to support such flexibility. Steve can handle the following: 

Evaluating the student's actions Steve evaluates the student's actions 
by trying to match the currently multiple applicable steps in the task model 
against the action the student is performing. If no match is found, Steve 
judges the student's actioii is incorrect. He acknowledges the students by 
text speech (i.e. simply says "no") and/or simple gestures (i.e. shakes his 
head). When student's action is correct, Steve nods his head in agreement. 



Suggesting what to do next The student can always ask Steve "What 
should I do next?" Steve simply suggests the next step in his own plan. If 
there are multiple applicable next steps, Steve enumerates them. If Steve 
does not know either what to do next, he simply says he does not know. 

Explaining the relevance of a step Sometime the student may ask 
questions about what the role of the action is in the whole task. Steve can 
answer such questions by generating explanation from the causal links in the 
plan. Causal links record the purpose(s) of steps. They are the connections 
between steps and goals, Steve can use these connections to rationalize his 
suggestions. 

Shifting to demonstration The student may ask Steve "Show me what 
to do." In such case Steve takes over and shifts to demonstration. If there 
are multiple applicable next steps, Steve chooses one of them randomly. 

3.4.3 After-Action Review 

When Steve completes a demonstration, he asks the students whether they 
have any questions. They can ask him at this point to rationalize any one 
of his actions during the demonstration, and they can ask the follow-up 
"Why?" questions too. To answer such questions, Steve cannot rely on his 
current plan, since the task is already complete and the step in question is 
no longer relevant. Steve employs an episodic memory capability which can 
memorize Steve's actions and the situations in which the actions occurred. 

3.5 Animation Results 

3.6 Discussion 

Augmented Partial-Order Planning 
Planning is at the heart of Steve's cognition. No matter demonstrating 
a task to a student or monitoring the student's performance of the task, 
Steve must maintain a plan for completing the task. The plan enables 
Steve to identify the next appropriate action and, if asked, to explain 
the role of that action in completing the task (using causal links in the 
plan). In addition, Steve must be able to construct and revise plans 
quickly since he and students are collaborating on tasks in real time. 
Steve employs an augmented partial-order planner for his planning. 



Figure 6: Steve is Demonstrating 

As mentioned in Section 2, partial-order planners suffer from three 
major difficulties: the selection of multiple applicable actions; sub- 
goal interactions; and the constraint bindings. A practical planning 
scheme must solve these problems to survive. We can ask whether 
Steve solves these problems by using a task model and whether the 
task model makes a good trade-off between plan expressiveness and 
execution efficiency. 

- Selection of multiple applicable actions 
A partial-order planner may have multiple applicable actions that 
could achieve each goal, so it must go through all alternative 
plans, which often results in exponential searching. In constrast, 
Steve uses the task model as a guideline for choosing the appro- 
priate next action to achieve each relevant, unsatisfied goal, so the 
searching is dramatically reduced. But this ease is bought a t  a 
cost. First, recall the task model is built based on the task defini- 
tion given by the course author. The course author who provides 
such task definitions must have a skill knowledge about complet- 
ing the tasks and can write down such knowledge in a clear and 
procedural way. A simple example is bicycle-riding. It  would 
be very hard for Steve to demonstrate or monitor bicycle-riding 
because it is hard for course authors to articulate the procedure 
to  perform the riding. Obviously the simplified task model em- 
ployed greatly restricts the applications of Steve to a very limited 
domains such as operation and equipment maintainance where 
procedural knowledge is available. So far there has been no re- 
port that Steve works well in other domains. 



Secondly, using procedural knowledge instead of declarative knowl- 
edge to specify the task definition means Steve can only perform 
tasks in a way that the course author can forsee. This greatly 
reduces Steve's autonomy. Declarative knowledge specification 
is desirable in that knowledge can be manipulated, decomposed 
and analyzed by the reasoning engine and can be used in a way 
the designer can not forsee, however, procedural knowledge spec- 
ification is possibly faster usage in performance. Steve's plan 
construction is predictably fast. In this sense we may say Steve's 
rapid response is achieved by sacrificing of his autonomy. 

- Subgoal interaction 
A partial-order planner must identify the possible subgoal inter- 
actions (clobber) and add appropriate ordering constraints. In 
constrast, Steve simply uses the ordering constraints provided in 
the task model; if two steps in the plan have an ordering con- 
straint in the task model, that ordering constraint is added to 
the plan. As long as there are no conflicting subgoal interactions 
in the task model, there will be no conflicting subgoal interac- 
tions in the plan. Again the elimination of subgoal interactions 
totally depends on the involvement of the course author to de- 
bug. The course author is required to detect all possible subgoal 
interactions and resolve them by either demotion or promotion. 

- Variable binding constraint 
To perform a task, a partial-order planner must break plan steps 
down into fully specified motion directives. Therefore, it must 
maintain a set of variable binding constraints, and it may have to 
search through when there are alternatives. In contrast, the steps 
in the task model of Steve are instances of actions in the action 
library, so they have no variables. Hence, Steve need not reason 
about binding constraints. However, the price to pay for this 
is: the course author must provide for each action instance with 
the object name, motor commands, and the perceptual attribute- 
value that will indicate the action is finished. The work of variable 
reasoning is simply shifted to the course author. Even worse, 
all these action parameters are hard-wired for a given situation, 
making it very inflexible to be reused in other situations. 

In summary, the planning model Steve employs is simple and provides 
efficient execution and fast responses, but it sacrifices flexibility and 
expressiveness. It requires the course author do all the hard work 



providing not only the task definition but also the goals and instan- 
tiated primitive actions. Such instantiated structures make it work 
predictably fast, but virtually eliminate all the nondeterminism. 

Miscellaneous 
My techinical complain about this paper is that it lacks description 
about how the general pedagogical capabilities are implemented using 
Soar production rules. Although the connection is a little implemen- 
tation oriented, this layer is important to convey the information of 
how to implement a particular set of cognitive skills using the general 
built-in cognitive capabilities of Soar, which is essentially the point 
that they advocate. 

4 Woggle's Cognitive Model 

The next paper reviewed presents a reactive cognition model, called Hap, 
designed as part of the Oz project at CMU. Oz project is aimed at building 
a dramatically interesting simulated world which includes intelligent, emo- 
tional and believable agents. In order to foster the illusion of reality, the 
Oz designers claim that agents (woggles) must have broad, though shal- 
low, capabilities. Therefore they have attempted to build a broad architec- 
ture, called Tok, which contains several components: an emotion component 
called Em, a natural language system called Glinda, and a cognition compo- 
nent called Hap (the architecture is shown in Figure 7). 

4.1 Hap: A Reactive Cognition Model 

Initially Oz designers intended to provide reactivity by using a planner in the 
background feeding a reactive frontend that would execute plans. However, 
as they pursued this idea, the reactivity seemed to be spread through the 
whole system, so that they regard now reactivity as fundamental to the 
entire paradigm and abandon the background planning. 

Due to this historical reason Hap designers call sequences of actions as 
plans, however, Hap does no explicit planning. There is no global internal 
symbolic world model, and no global planner/reasoner from a traditional A1 
planning pointview. All plans are simply chosen from a static plan library 
prepared in advance by the designers. These plans are either ordered or 
unordered collections of subgoals and primitive physical actions that can be 
used to accomplish a goal. Subgoals are statically provided by the designer, 
primitive physical actions are given by the domain. 



Figure 7: The Hap Cognitive Architecture 



Hap supports goal-directed actions and allows the encoding of cognitive 
tasks. It  continuously chooses the agent's next action based on perception, 
current goals, and emotional state. Perceptual information is provided by 
sensors which are automatically controlled by Hap to turn on or off when 
appropriate. Goals contain an atomic name and a set of parameters which 
are instantiated when the goal becomes active, for example, (open <door>). 
Multiple plans can be written for a given goal, with Hap choosing among 
them at execution time. If a plan fails, Hap will attempt any alternate plans 
for the given goal. 

The explicit representations of goal and emotional states may be a little 
controversial. Vera and Simon argued (1993) [52] that such representations 
are good examples of orthodox symbol system. But in Hap the goals and 
emotional states are represented functionally and aim at interacting with 
the world in a direct and unmediated stimulus-response manner. Thus Hap 
can be thought of as a kind of "soft form" reactive cognition model. 

To illustrate a Hap agent's direct reaction to changing events in the world 
to  achieve a goal, consider the following situation: 

An agent has the goal of opening a locked door. She has two 
applicable plans: get a key from her purse, unlock the door, 
and open it; or knock and wait. If, while looking for a key, 
someone opens the door for her, she should notice that her goal 
was satisfied and not keep working to accomplish it. In the same 
scenario, if she were searching in her purse for the key when 
her mischievous nephew snatched the purse, she should abandon 
that plan and try knocking (and perhaps deal with the nephew 
later.) (Loyal1 & Bates 1991) [32] 

This example shows the two types of reactivity which Hap explicitly 
supports: recognizing the spontaneous achievement of a goal or subgoal, 
and realizing when changes in the domain make the pursuit of an active 
plan meaningless. 

4.1.1 Active Plan Tree 

Hap stores all active goals and plans in a structure called the active plan tree 
(henceforth, APT). This is a tree composed of alternating layers of goals 
and plans that represent Hap's current execution state. Each plan node in 
the tree has some number of goal nodes as its children. These goal nodes 
are the subgoals which must be satisfied for the plan to succeed. Each goal 
node either has no children (and thus it is a leaf goal node) or its child is the 
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Figure 8: An Example of Active Plan Tree 



current plan for the goal. The APT is constantly changing: expanding as 
plans with their component subgoals are chosen for goals and contracting as 
goals and plans succeed or fail. Physical actions succeed or fail depending 
on their realization in the domain. Goals succeed when a plan for the goal 
succeeds, and fails if all of the applicable plans have failed. Plans succeed if 
all of the component steps succeed and fail if any of the step fails. Therefore, 
the APT may be thought of as an AND-OR tree, where the goals are OR 
nodes and the plans are AND nodes. (The APT for the open-door case is 
shown in Figure 8 as an example.) 

At the root of the APT is a special node which is parent to all of the 
top-level goals. These top-level goals are classified according to whether 
they are persistent. The persistent goals are continuous goals and thus are 
never removed from the tree. They can be reset so that they are again 
available to be pursued. Other goals are removed from the tree once they 
have succeeded or failed. 

Associated with each goal node is a success-test and a priority. The 
success-test is a method for recognizing when a goal's purpose in the enclos- 
ing plan is spontaneously achieved. If it ever becomes true its associated goal 
is deemed to have been completed and no longer needs to be pursued and 
is thus removed from the tree. The subtree rooted at the goal node is also 
removed since its only purpose was working toward the goal. For example, 
the first subgoal of the (open <door>) described above has a success-test 
associated with it to determine if the agent is already (have <key>). If 
this test is true when t,he plan begins, the step (get  <key> from <purse>) 
would be skipped. Also, if the agent is in the process of (get  <key> from 
<purse>) when some external factor causes the test to be true, the success- 
test would enable Hap to recognize that the goal has succeeded and stop 
further pursuing it. The priority is a number representing how important 
the goal is to the agent. Preferring higher priority goals is one of the meth- 
ods to arbitrate between multiple goals. 

Associated with each plan node is a context-condition and a specificity. 
When a context-condition becomes false its associated plan is deemed no 
longer applicable. In the example above if context-conditions (have <purse>) 
and (have <key>) are both false, the plan fails, making that plan node con- 
tracted, and a new alternative plan must be chosen at the (open <door>) 
goal level. Thus the context-condition for a plan rnust be continuously yield- 
ing true to have any chance of making sense and achieving its goal. The 
context-condition is necessary, but not sufficient, for the plan to work. A 
very dumb agent nnlight use true for most context-conditions. This corre- 
sponds to not being very aware of world changing. Specificity is a measure 



of how specific each plan is. More specific plans are preferred over less 
specific plans by the plan arbiter. 

4.1.2 P l a n  Memory 

Plan memory is a set of production rules. The left hand side of each produc- 
tion is composed of a goal-expression and a precondition-expression. The 
goal-expression contains the goal name and zero or more variables. For a 
subgoal to match a production, the goal names must match and the number 
of values given in the subgoal must match the number of variables in the 
goal-expression. In addition, the precondition-expression must be true in 
the current state for the production to be applicable. The precondition- 
expression can reference the values from the goal-expression variables in its 
tests. 

The right hand side of the production contains the context-condition, 
specificity and plan expression which are instantiated to create the plan 
and subgoal nodes for the APT. The plan node is created using all three 
of these, and the plan expression is used to create the subgoal nodes. The 
plan expression can be either a sequential or parallel arrangement of steps. 
Each step contains a goal expression, a priority modifier and a success- 
test expression. The goal expression and success-test are used directly to 
construct the appropriate goal node, and the priority modifier is added to 
the priority of the parent goal node to create the priority of this node. In 
this way a subgoal can be more, less or the same level of importance as the 
goal node which spawned it. 

By the time the paper was written there are about 250 goal types and 
500 plans available for a complete woggle. Keep in mind all these must 
be prepared by the woggle designers in advance. During the animation 
there is no dynamic plan construction, nor replanning under unexpected 
circumstances. What a woggle does given a current situation is to simply 
follow the circuit-switched action sequences. There is no deliberation in 
between. 

4.1.3 Execut ion Loop 

The execution loop consists of three steps: update the APT based on changes 
in the world, pick a leaf goal to execute, and execute the goal. Executing 
the goal can take the form of performing a primitive physical action, or 
expanding a subgoal. 

The first step of the execution loop is to update the APT based on 



changes in the perceived world state: goals whose success-tests are true 
and plans whose context-conditions are false are removed along with any 
subordinate subgoals or plans; the parents to the removed subgoals or plans 
are notified that either the goal has been achieved or that the plan has failed. 
This effect can then propagate up the tree causing enclosing plans and goals 
to either succeed or fail. After the tree is adjusted, computation continues 
with the rest of the tree. 

In the next step, the next leaf goal to execute is chosen by the goal 
arbiter. It chooses a leaf goal in the following fashion: first it refers to higher 
priority goals. If there are multiple goals with the same priority, it prefers 
to remain on the same higher-level goals that it was last working 011 rather 
than switching to new higher-level goals. Finally it will randomly choose 
among remaining leaf goals. 

A primitive physical action is executed by sending the action to the body 
of the agent. A subgoal is expanded in following manner: first the subgoal 
expression is used to index the plan memory, then from the resulting set 
of applicable plans the more specific one is chosen and instantiated, created 
plans and subgoals are placed in the APT for consideration in the next loop. 

4.1.4 Selective Sensing 

Sensing in a real-time animated world must be efficient. Agents in Hap 
employ task-specific sensors which can be automatically turned on or off 
as needed. Each sensor observes the changes in the world and notifies the 
cognition module of such changes. Such sensory information is very impor- 
tant to evaluate agent's preconditions, success-tests and context-conditions. 
Hap automatically manages to turn on and off as appropriate. When a leaf 
subgoal is chosen for execution, sensors needed to evaluate the preconditions 
for that goal's plans are automatically turned on, and then turned off after 
a plan is chosen. Similarly, when a particular goal or a plan is present in 
the APT, all sensors related to its success-tests or condition-tests remain on. 
When a goal or a plan is removed from the tree, the corresponding sensors 
are automatically turned off. 

4.1.5 Parallel Execution 

In Hap all of an agent's active goals can be attended to, potentially gener- 
ating multiple actions in parallel. Hap uses a greedy approach by attending 
to the rnost critical goals first and mixing in others as time allows. In each 
decision cycle Hap chooses the most critical applicable leaf goal and exe- 



cutes it until it is interrupted or suspended. In such a case Hap allocates 
the available time to threads running other, perhaps unrelated, critical goals 
selected by the goal arbiter. 

During the parallel execution Hap will not allow any two incompati- 
ble goals to be pursued at the same time. Two actions are considered as 
incompatible if they use the same body resources. 

Figure 9: Woggle's World 

4.2 Animation Results 

The woggle's world is shown in Figure 9. It is modeled as a terrain field with 
simple physics. It is inhabited by four woggles: Bear, Wolf, Shrimp and a 
user-controlled woggle. Each woggle's body is an ellipsoid with eyes. They 
can play, sleep, fight, relax, explore the world, etc. The three woggles are 
designed to have somewhat stereotypical personalities: Wolf is aggressive; 
Shrimp is friendly and meek; Bear is a protector. These characterizations 
are reflected in their behavior. Shrimp is often timid and almost never does 
anything bold. Bear will often try to put out any strife in the world, for 
example, if he sees the user-controlled woggle is intimidating Shrimp, he 
becomes sad and tries to protect Shrimp. But Wolf sees the fight as an 



opportunity to amuse himself. 

4.3 Discussions 

In the deliberative model as we have seen in Section 2, agents tend to operate 
according to a sense-plan-act cycle. During sensing, the symbolic representa- 
tion of the state of the world is updated by making inferences from sensory 
information. The agent then constructs a plan to accomplish its current goal 
in the symbolically represented world by composing a set of operators (prim- 
itive actions the agent can perform). Finally, the plan is executed. After the 
plan completes (or is interrupted due to some unplanned-for contingencies), 
the cycle repeats. When something unexpected happens, a replanning is 
necessary. However, rather than employing the sense-plan-act cycle, Hap is 
reactive. Its execution is a sense-indexing-react loop. The difference is in the 
middle: a deliberative model such as Soar explicitly considers alternatives 
and rejects all but one, while a reactive model such as Hap has no explicit 
deliberation except plan memory indexing. This does not necessarily mean 
that a reactive model is less creative than a deliberative model, because a 
real planner also does what it is programmed to do. By carefully considering 
the possible situations of sensing-acting sequences and providing appropriate 
production rules in the plan memory, a reactive model can still produce a lot 
of different patterns because of many possibilities of dynamic situations oc- 
curing environmentally and internally. It is arguable that a reactive system 
is doing less things itself, shifting the hard work such as plan construction 
to the designers. However, a traditional planner would also be given a lot 
of domain knowledge if it has to work efficiently, as we have seen previously 
in the Steve paper. 

Replacing the planning (similar to on-line interpretation) with the in- 
dexing (similar to off-line compilation), Hap is predictably faster, and more 
fault-tolerant. In addition, it increases the possibility of parallel implemen- 
tation. Different production rules in the plan memory could be active at the 
same time, allowing compatible actions to take place simultaneously. 

4.3.1 Burden of Proof 

My technical comments to Hap are two questions: How will it scale? How 
to implement a higher level of cognition? 

Scalability 
The capability of woggles responding to emergencies depends on whether 
or not there exists an appropriate sequence of actions in the plan 



memory for woggles to execute. Woggles would fail to respond ap- 
propriately when there are no rules available in the plan memory for 
unexpected situations. In such case new rules must be constructed 
and added to the plan memory so that when a similar situation hap- 
pens later woggles won't fail again. That's the scalability problems 
of the plan memory: Whether or not it degrades the reactivity when 
there are too many rules clustered in the plan memory? Whether or 
not the old rule components can be reused when constructing new 
rules? Whether or not more efficient indexing is required as the plan 
memory scales? Because some situations happen frequently, it may 
be helpful to cache the most recently used rules on the top level of 
the plan memory. What kind of caching strategy is better to achieve a 
high rule hit-ratio? All these questions are not addressed in the paper. 

Higher Level of Cognition 
To jump toward a hill, the woggle in the current implementation of 
Hap does not make use of a representation of the location of terrain 
in relation to its goal. It deals with each obstacle as it comes to it and 
does not remember whether the path it took last time was longer or 
shorter. However, creatures, like a real wolf or a real bear, appear to 
perform actions based on a more robust representation of the world. 
As the example i11 the paper mentioned that Bear will try to protect 
Shrimp when he detects the user is intimidating Shrimp. In such a 
case it makes sense that Bear should take the most direct route to the 
location where the fight happens. This requires a significantly more 
conlplex and more permanent representation. Currently they do not 
have such a higher-level cognition and probably they will not have 
unless a new underlying representation is adopted. 

Finally, choosing Hap as a representative of the reactive rnodels is some- 
what questionable, since Hap is not a purely reactive model. According to 
my survey, most of the models employed in computer aninlation so far that 
are generally regarded as reactive are actually not purely reactive (Reynolds 
1987; Agre & Chapman 1987; Tu & Terzopoulous 1994; Blumberg 1995) 
138, 1, 49, 61. In Hap, there are some production rules which need to be 
selected through pattern matching, there are some variables that need in- 
stantiation during the pattern matching. There is some alternative plans to 
be chosen when current plan fails. There are some low-level sensory infor- 
mation which needs to be further processed using production rules in order 
to recognize the abstract composites of that sensory information such as 
woggles fighting, relaxing or playing games. 



Some deliberative models proponents (Vera and Simon 1993) [52] argue 
that such representations are good demonstrations that symbolic processing 
is at the heart of the intelligence and therefore the reactive models are not 
at all antithetical, but complementary, to the deliberative models. Never- 
theless, some researchers, as we shall see in the next section, believe these 
are good indications of the necessities to combine the two models together to 
take advantages of a high-level control (reasoning/planning) and a low-level 
sensing-reacting. This results in the third approach in cognitive modeling 
- layered modeling. 

5 Mermen's Cognitive Model 

The third paper reviewed simulates a physics-based undersea world, which 
is inhabited by mermen, fabled creatures of the sea with the head and upper 
body of a man and the tail of a fish. Other inhabitants are predator sharks. 
An artificial life simulator implements these creatures as fully functional 
autonomous agents. The modeling includes a graphical display model that 
captures the form and appearance of these creatures, a biomechanical model 
captures their anatomical structures and simulates the deformation of their 
body. A behavioral control model implements shark's brain and is respon- 
sible for motor, perception and low-level behavior control. The behavioral 
control model is very similar to that in (Tu & Terzopolilos 1994) [49]. The 
mermen are equipped with a cognitive model which includes a reasoning 
engine and a reactive system. The reasoning engine enables them to reason 
about their world based on the domain knowledge either provided by the an- 
imator or acquired through sensing. The reactive system rnediates between 
the reasoning engine and the physics-based environment. The reactive sys- 
tem translates the low-level commands generated by the reasoning engine 
down to the necessary detailed muscle actions. It also acts as a fail-safe 
should the reasoning engine temporarily fall through. When the reasoning 
engine cannot decide upon an intelligent course of actions in a reasonable 
amount of time, the reactive system continually tries to prevent the mermen 
from doing anything stupid, such as bashing into obstacles. Typical default 
reactive actions are "torn right", "avoid collision", and "swim for your life". 

5.1 Domain Knowledge and Character Directions 

A character's knowledge of its world is referred to as the background do- 
main knowledge. It  is a set of animator supplied information which can 
provide the character with understanding of when actions are possible, and 
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Figure 10: Mermen's Cognitive Model 



what the effect of actions are on the virtual world. Tlie domain knowledge 
specification in this paper heavily rests on the use of situation calculus. 

5.1.1 Situation Calculus 

As mentioned in the introduction, situation calculus is used for describing 
a changing world in First Order Logic (FOL). It conceives of the world as 
consisting of a sequence of situations, each of which is a "snapshot" of the 
state of the world. Situations are generated from previous situations by 
actions. A domain independent constant so denotes the initial situation. 
Any property of the world that can change over time is known as a fluent. A 
fluent is a function, or relation, with a situation term as its last argument. 
For example, Alive(x, s) is a fluent to keeps track of whether Jack x is alive 
in a situation s. The situation S' resulting from doing action a in situation 
s is given by distinguished function do: action x situation + situation. For 
example, Aimed(do(aim, s)) means the gun is aimed at Jack after aiming 
it. The possibility of performing action a in situation s is denoted by a 
distinguished predicate Poss: action x situation. Sentences that specify 
what the state of the world must be before performing some action are 
known as precondition axioms. For example, Poss(shoot, s) + Loaded(s) 
means the gun can only be shot if it's loaded. Effect axioms give necessary 
conditions for a fluent to take on a given value after performing an action. 
We can use effect axioms to state the effects of the actions. For example, 
Poss(shoot, s) A Aimed(s) + 1 Alive(do(shoot, s)) means if the gun is 
aimed at Jack and it can be shot then he is dead after shooting it. 

As mentioned earlier, situation calculus is perplexed by three problems: 
the qualificatioii problem, the frame problem, and the ramification problem. 

The Qualification Problem 
The qualification problem is that of trying to infer when an action is 
possible. In the gun-shooting example, only certain necessary condi- 
tion is given, not all the things that may prevent shooting the gun are 
enumerated. For instance, we cannot shoot if the trigger is too stiff, 
or if the gun is encased in concrete, etc. By employing a closed-world 
assumption, we may obviate this problem and assume that the set of 
necessary conditions is also a sufficient set. For instance, under this 
assumption the precondition axiom for shoot now becomes: 

The Frame Problem 
The frame problem is of trying to infer what remains unchanged by an 



action. In previous examples we only wrote down what changed after 
an action; we did not write down all the things that stayed the same. 
The frame problem can be solved provided characters represent their 
knowledge with the assumption that effect axioms enumerate all the 
possible ways that the world can change. This closed world assump- 
tion provides the justification for replacing all the effect axioms with 
successor s t a t e  axioms. For instance, the successor state axiom for 
Alive(s) states that Jack is alive, if and only if, he was alive in the 
previous state and he was not just shot: 

Poss(a, s )  j [ ~ l i v e ( d o ( a ,  s))  u ~ l i v e ( s )  A ~ ( a  = shoot A Aimed(s))] . 

The Ramification Problem 
The ramification problem is that of trying to determine all the implicit 
side-effects of actions caused by the presence of state constraints. In 
general, state constraints may give rise to intractable problems (Lin 
& Reiter) [31], but in some cases, the ramification problem can be 
dealt with by making all the side-effects explicit. This can be done by 
compiling the state constraints into the successor state axioms. For 
example, we can modify the successor state axiom for Alive(s) as 
follows: 

Poss(a, s )  =3 (Alive(do(a, s))  H Alive(s) A l ( a  = shoot A Aimed(s)) 

Ay(a = detonate A ~ e a r ~ o m b ( s ) ) ) .  

5.1.2 Primitive and Complex Actions 

The actions discussed previously, defined by correspoliding preconditions 
and successor state axioms, are referred to as a primitive actions. We have 
explained how they can be used by characters to keep track of its changing 
world. Next we show how to define new complex actions in terms of the 
previously defined primitive actions. 

Conlplex actions consist of a set of primitive actions connected by op- 
erators. The complete list of operators for defining the complex actions is 
defined recursively and given below. 



Type 
Seouence 

a *  I do a zero or more times. I 
Test 
Conditional 

Operator 

a ; 4  
Meaning 

do action a, followed by action B 
P ? 

if p then a else p 

Iteration 
Nondeterm. 
actions 
Nondeterm.  

Complex actions are also called sketch plans. The effect of a complex 
action a is defined by the macro DO(Q, S, s1 ), where s1 is a state that results 
from doing a in state s. These macros expand out into a situation calculus 
expression, thus ensuring complex actions inherit the solution to the frame 
problem for primitive actions. Given some advice, represented as a complex 
action program, the underlying reasoning engine (actually a theorem prover) 
attempts to prove: 

do nothing if p is true, otherwise fails 
do a if p is true, otherwise do j3 

arguments 
Procedures 

A X I O M S  3Do(program, so, s). 

while p do a od 

a l p  

( ~ x ) a ( x >  

The resulting (constructive) proof results in a term s = do(a,, . - , do(al, so)) ,  
such that [al, . . - , a,] is the sequence of primitive actions that the character 
should perform in order to follow the advice program. 

do a while p is true 
do action a, or action ,B 

pick some argument x 

proc P(x l ,  - . . , x,) a end 

5.1.3 CML 

and perform the action a (x )  
declares a procedure P(x l ,  . . . , x,) 

Cognitive Modeling Language (henceforth, C M L )  is an implementation of 
complex actions within the situation calculus. It forms a middle ground 
between the regular logic programming and traditional imperative program- 
ming, therefore, it provides animators with the ability to specify a "sketch 
plan" on a higher-level without the need for logical connectives. CML's 
control constructs are closely related to the logical constructs used in the 
situation calculus. The comparison between situation calculus syntax (SC 
syntax) and CML syntax is given below: 



SC syntax CML Syntax 

Test I D ? I test < e x ~ r >  I 

- - 

Sequence 

iteration I I I 

Conditional 
Nondeterm. 

a ; P  

- I 

Procedures I proc P (x l ,  . . , xn) a end I I void P(<arglist>) <action> I 

<action> ; <action> 

if p then a else /3 
a* 

Iteration 
Nondeterm. 
actions 
Nondeterm. 
arquments 

Following is an example of a CML procedure, the one to the left below, 
with its corresponding complex action in situation calculus. They define a 
depth-bounded (to n steps) depth-first planner: 

if (<expr>) <action> else <action> 
star <action> 

proc planner(n) { 
choose test(goa1); - proc planner(n) 

Or  { goal? I 
test(n> 0); [ (n > O)?; 
~ ick(a)  { (n a)  (primitiveAction(a)?; a)  ; 

primitiveAction(a) ; planner(n-1) ] 
do(a); ) end 

planner(n- 1) ; ) ) 

while p do a od 

a l p  

(nx>a(x) 

A CML program can consist of multiple CML procedures and control 
structures. The CML program can be compiled by a CML compiler (Funge 
1998a) [16] into the equivalent Prolog code. Running the resulting Prolog 
code will return a list of all possible sequences of primitive actions that meet 
the specification represented by the original CML program. 

while (<expr>) <action> 
choose <action> or <action> 

pick (<expr>) <action> 

5.1.4 Domain Knowledge and Character Directions 

Any property of the domain that can change over time can be represented 
as a fluent. For example, the prey's position can be represented as PreyPos, 
where PreyPos (p, s)  means that the prey is in region p in situation s. The 
predator's position, PredPos, and the prey's desired position, PreyGoalPos 
can be similarly defined. A property that does not change over time can 



just be represented as a relation without a situation argument. For exam- 
ple, Occluded(p, q, o)  states that region p is always hidden from region q by 
obstacle o, and Occupied(p, o) states region p is always occupied by o. Pred- 
icates can also be used to specify other domain knowledge. For example, 
Type (jaws, predator), and ~ype(merman, prey) specify the type of predator 
and prey. The truth of predicates such as Occupied@, o) can be quickly 
calculated at run-time; it need not be stored in a precomputed database. 

Animators can use various structures of CML to encode high-level control 
for issuing advice or directions to a character from the character's point of 
view. For example, consider the problem of a merman trying to come up 
with a plan to hide from the predator. A traditional planning approach will 
be able to perform a search of various locations according to criteria such as 
whether the location is hidden, or far from the predator, etc. Unfortunately, 
this kind of brute-force planning is prohibitively expensive. In contrast, the 
control structures of CML allow the animator to encode heuristic knowledge 
to help overcome this limitation. For example, a CML procedure can encode 
the following heuristics: If the current position is good enough then stay 
there, else search the hidden locations around you (the expensive part); 
otherwise try to run away from the predator. The searching can call another 
subprocedure using another simple heuristics: look for cover near obstacles 
because hidden positions are usually near the obstacles. 

proc evade() { proc searchflee0 
while predatorApproaching do if 3r NearRock(r) 

sense() ; then 
update() ; (nr) (NearRock ( r  ) ) ?;hideBehind(r ) 
choose testCurrPosn() ; else 
or searchflee() ; (nr) (AwayPredDir(r))?;setGoal(r) 

o d end 
end 

A key feature of the CML is the ability to use nondeterminism. Non- 
determinism is not randomness. The above CML specification may admit 
more than one candidate as a hidden position for a merman to hide behind. 
At the design time they are not determined. At the run time only one is 
chosen by the reasoning engine based on the current sensory information. 
This nondeterminism greatly reduces the amount of work required from the 
animator and is very useful for rapidly developing new characters. 



5.2 Sensing 

Due to the unpredictability of the changing environment, some actions 
(events) are generated by the environment and not the character. Such ac- 
tions are referred to as exogenous actions. While the cause of an exogenous 
action is difficult to state its effect need not be. For example, movePred(x) 
simply moves the predator to a new position z. To avoid inefficient and 
unnatural behavior, characters need to take these effects into consideration. 
For example, when a merperson tries to evade, she is supposed to know 
where the predator currently is. But the problem is she is uncertain about 
this because the predator is moved by niysterious external forces and outside 
the ability of her control. The paper reviewed uses a special fluent called 
interval-valued epistemic (henceforth, IVE) fluent to represent the character's 
uncertainty about aspects of the world. 

For each sensory fluent f ,  there is a corresponding IVE fluent If, which 
is a set of pairs <u, v>, where u, v E R*+. The IVE fluent Zf  is used to 
represent an agent's uncertainty about the value of f .  For example, suppose 
an exogenous action setspeed changes the predator's speed, and a fluent 
speed keeps track of the predator's speed. An IVE fluent Zspeed (~ ( ) )  = <lo,  
20> states that the predator's speed is initially known to be between 10 and 
20 ni/sec. The character's uncertainty about the predator's speed usually 
increases over time until a sensing action causes the interval to collapse to 
its actual value. 

Both exogenous actions and sensing actions can be incorporated into 
the situation calculus by modifying the definition of macro expansion for 
complex actions to allow for the possible occurence of exogenous actions and 
sensing actions. In this review we shall skip it due to the lengthy technical 
problems involved. More details can be found in Funge's Ph.D thesis (Funge 
1998b) [17]. 

5.3 Reasoning Engine 

The reasoning engine takes three different inputs: the background domain 
knowledge, sketch plans, and the sensory information. 

The background domain knowledge is a set of animator provided axioms 
that collectively constitute a causal theory providing the character with an 
understanding of when actions are possible and how they affect the world. 
The sketch plans specified by the animator in CML language can be compiled 
using a CML compiler [16] into equivalent Prolog programs. At run-time the 
Prolog code will generate a list of all possible primitive actions, which are 



further selected by the reasoning engine based on the sensory information. 

5.4 Reactive System 

At every animation frame, the reasoning engine commits to the actions 
it has decided by sending the primitive actions to the underlying reactive 
system. The underlying reactive system then executes the primitive actions 
and returns some sensory information. This new sensory information is used 
to update all the IVE fluents. 

More importantly, the reactive system also implements some primitive 
actions that are common to all characters. It autonomously executes and 
arbitrates among these primitive actions. These primitive actions include 
reactive ones such as "avoiding collisions", and basic locomotion such as "go 
to a particular position". 

The drawback of separating these primitive actions out from the high- 
level reasoning system is that they become less flexible and can not be 
reconfigured through logical reasoning. However, there are a number of 
benefits from this separation: 

a Primitive behaviors are usually character-independent, once they are 
operational the need to change them is minimal. 

Primitive behaviors are intended to be components of high-level be- 
haviors, they are supposed to be as efficient as possible as they will be 
executed frequently. 

An independent reactive system can function as a fail-free, in case 
the high-level reasoning engine temporarily falls through, the reactive 
system can still prevent the character from doing anything stupid, such 
as bashing into obstacles. 

5.5 Undersea Animations 

The undersea animations revolve around pursuit and evasion behaviors. The 
hungry sharks try to catch and eat the mermen and the mermen try to use 
their superior cognitive power to avoid this grisly fate. For the most part, 
the sharks are instructed to chase the mermen they see. If they cannot see 
any mermen, they go to where they last saw one. If all else fails, they start 
to forage systematically. Because the shark is a larger and faster swimmer, 
it has little trouble catching the mermen in open water. However, if there 
are rocks in the underwater scene, the cognitively empowered mermen can 



take advantage of the rocks to try and avoid being eaten. They can hide 
behind rocks and hug them closely so that sharks have difficulty seeing or 
reaching them. To cope with fast moving environments, the mermen base 
their decisions on where to go on the positions that they predict the sharks 
will be in when they get to its goal. So long as it is safe to do so, the mermen 
will try to visit other obstacles. To avoid being caught, the mermen can also 
swim through the cracks which are too narrow for the shark to pass through 
without risking injury. 

Figure 11: Undersea Animations 

5.6 Discussions 

The merits of this paper are as noticeable as its deficiencies. It  applies a 
theory of action that allows animated characters to perceive, reason and act 
in a dynamic virtual world. It implements a remarkably useful framework for 
high-level control and low-level reaction that combines the advantages of a 
reasoning system and a reactive system. However, many of the shortcomings 
or limitations can be easily spotted: 

Scalability 
In the reactive model, the scalability problem is concerned with how 
to extend the hardwired connections (or plan memory). In this model, 
the scalability problem is concerned with the reasoning engine. When 
there are many reasoning characters active in the virtual undersea 



world, things would start to get slow dramatically because the un- 
derlying reasoning engine is working on a more declarative style of 
knowledge. Even though the conversion from sketch plans to Prolog 
code can be done as a pre-processing step, the speed problem is still 
prominent. However, when there are only a few characters in the sim- 
ulated world, the very reasoning engine can offer the animator great 
ease and flexibility by placing heavy reliance on the character's rea- 
soning abilities. This reduces the amount of work required from the 
animator and is hence extremely useful for rapid prototyping of new 
characters. One way to relieve the scalability problem is to gradually 
reduce the non-determinism in the reasoning process, but this subse- 
quently results in less flexibility of the high-level control. 

Stability and Robustness 
A key problem with the logical approach to control is that once an 
inconsistency arises the whole system comes crashing to a halt. It 
makes the system extremely unstable. 

Planning 
Compared with the highly sophisticated and effective planners such as 
a SOAR planner, the planning mechanism employed in this paper is 
very simple. It depends on its underlying Prolog theorem prover to 
provide a list of all possible sequences of primitive actions which are 
further selected by its reasoning engine. It  is something like a simple 
action selection mechanism. 

Learning 
Strictly speaking, there is no learning mechanism involved in this sys- 
tem. The reasoning engine makes decisions based on the background 
domain knowledge, character directions and sensory information. The 
decision making process does not really generate any new knowledge. 
There is no new knowledge flowing from the reasoning engine to the 
background domain knowledge base for future use. Later on when 
an exactly similar situation arises, the whole process has to repeat to 
generate the primitive actions. 

Natural Language Control 
Instruction and interaction is made relatively easier by using logical 
representation that correspond to the animator's way of thinking about 
the character's world. Logical representation, as a mean of commu- 
nication, is clear and precise. However, it would be a worthwhile 



enhancement to allow for an interaction language more skin to natural 
language (Badler 1998) [4]. This would provide a version more suited 
to direct the characters by non-technical people. 

6 Summary 

The reader will recall that, after the introduction, the paper began with a 
broad overview of cognitive modeling approaches, taking into account the 
most important theoretical and practical issues. A framework is outlined by 
classifying all the cognitive modeling approaches into three categories. We 
moved on to discuss the applications of these modeling techniques in com- 
pute animation. Steve uses a deliberative model, based on Soar. A woggle 
has a reactive model to achieve fast responses and reactivities. Merpeo- 
ple are equipped with a high-level reasoning engine and a low-level reactive 
system to evade from the sharks in the dynamic undersea world. 

Following is the table containing the comparisons among these three 
cognitively empowered characters. 

Character 

St eve 
Woggle 
Merman 

I Character I Robustness I A ~ ~ l i c a t i o n s  

Planning 

Yes (Complex) 
No 

Yes(Simp1e) 

Character 

Steve 
Woggle 
Merman 

I I I . . J 

I Steve I Medium I Tutorial, Training (in Procedural Domains) I 

Flexibility 

High 

Behavior Direction Efficiency 

Medium 

Learning 

Yes 
No 
No 

Performance 

Low 
Low 
High 

A key note is that, in any of the papers reviewed, computer anima- 
tion does not play a role as a test-bed, but as a driving force, for picking 
up appropriate cognitive modeling techniques. Each paper has a different 
animation donlain and therefore different requirements and expected ani- 
mation results. On the face of these differences, the models do not seem 
to be contradictory: They emphasize different agent behaviors in different 
animated environments. Nonetheless, the social structure of research is such 

Behavior Design Complexity 

High 
Medium 

Low 

Woggle 
Merman 

Low 
High 

High 
Medium 

High 
Low 

- ~ 

Interactive Drama, Entertainment 
Interactive Com~uter  Games 



that individual researchers will justify their approaches by emphasizing the 
weakness of others and the strength of their own. It is this very human set 
of orientations and responses that leads to these compelling but conflicting 
research approaches. Putting each approach into a bigger framework and 
comparatively analyzing its virtues and goodness as well as its shortcomings 
and flaws, this paper gives a more objective, systematic overview of these 
different approaches. 
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