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Fourier Decomposition Analysis af Anisotropic Inhomogeneous
Dielectric Waveguide Structures

Abstract

In this paper we extend the Fourier decomposition method to compute both propagation constants and the
corresponding electromagnetic field distributions of guided waves in millimeter-wave and integrated optical
structures. Our approach is based on field Fourier expansions of a pair of wave equations which have been
derived to handle inhomogeneous mediums with diagonalized permittivity and permeability tensors. The
tensors are represented either by a grid of homogeneous rectangles or by distribution functions defined over
rectangular domains. Using the Fourier expansion, partial differential equations are converted to a matrix
eigenvalue problem that correctly models this class of dielectric structures. Finally numerical results are
presented for various channel waveguides and are compared with those of other literatures to validate our
formulation.
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Fourier Decomposition Analysis of Anisotropic
Inhomogeneous Dielectric Waveguide Structures

Ramin Pashaie, Student Member, IEEE

Abstract—In this paper, we extend the Fourier decomposition
method to compute both propagation constants and the corre-
sponding electromagnetic field distributions of guided waves in
millimeter-wave and integrated optical structures. Qur approach
is based on field Fourier expansions of a pair of wave equations,
which have been derived to handle inhomogeneous mediums with
diagonalized permittivity and permeability tensors. The tensors
are represented either by a grid of homogeneous rectangles or by
distribution functions defined over rectangular domains. Using
the Fourier expansion, partial differential equations are converted
to a matrix eigenvalue problem that correctly models this class of
dielectric structures. Finally, numerical results are presented for
various channel waveguides and are compared with those of other
literature to validate the formulation.

Index Terms—Anisotropic, dielectric waveguide, Fourier decom-
position method, inhomogenous.

I. INTRODUCTION

IELECTRIC waveguides are widely used for the trans-

mission of electromagnetic energy and in the structure
of optical devices such as directional couplers and modulators
at optical frequencies. As the design criteria for these devices
become tighter, results of approximate methods often do not
have the desired accuracy. Examples of approximate methods
are the effective index method [1], [2], the semivectorial fi-
nite-difference method [3], [4], and the variational methods
[5]. Rigorous techniques include the vector finite-element
method (FEM) [6], [7], the domain integral-equation method
[8]-[11], and the method of lines [12], [13]. The FEM is an
exact and general technique that can be utilized in the analysis
of inhomogeneous anisotropic dielectric waveguides. Despite
flexibilities of such a numerical method, the incorporation of
unbounded regions outside the waveguide and the occurrence
of spurious solutions (as a result of inexplicit satisfaction of
the divergence equation) are two major problems one has to
face using this method. An important advantage of the domain
integral-equation method is that it avoids spurious solutions;
nevertheless, this method is time consuming. The method of
lines is a rigorous seminumerical technique. It is well known
for its accuracy, speed of computation, and minimal memory
requirements; however, it is relatively complicated.
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In 1989, Henry and Verbeek proposed an interesting method
for modal analysis of arbitrary shaped inhomogeneous dielec-
tric waveguides with small changes in the refractive index func-
tion (weakly guiding) and negligible induced birefringence for
modes that are far from their cutoff [14]. This analysis, which
was further investigated by Marcuse [15], allows evaluation of
propagation constants and field distributions within any desired
precision. The method is based on expansion of the unknown
field in a complete set of orthogonal functions within limited
boundaries. which converts a linear partial differential equation
into a matrix eigenvalue problem. By solving the eigenvalue
problem, all the guided modes of the waveguide are clarified.
Nevertheless, only those guided modes for which the field goes
to zero before the boundary is reached are computed accurately.

More recently, Hewlett and Ladoucer improved this method
by introducing a preliminary mapping of the infinite transverse
plane onto a unit square by applying a suitable analytic transfor-
mation function [16]. This modification allows computation of
even near-to-cutoff modes by using relatively few waves. The
main drawback is that both computation time and memory re-
quirements can become exceedingly large before adequate accu-
racy is obtained; however, this problem can be solved by using
suitable optimization parameters. Henry and Verbeek’s method
can be used for modal analysis of inhomogeneous isotropic di-
electric structures such as ion-exchange optical waveguides in
the substrate of glass [17]. Nevertheless, extending the utility
of this technique to applications that make use of anisotropic
mediums (e.g., LiNbOj3) requires reformulation of the method.

In this paper, Henry and Verbeek’s method is extended and
applied to the vector form of the wave equation. With min-
imal increase in computation time and memory requirements,
the method is improved for modal analysis of anisotropic inho-
mogeneous dielectric structures. Recently, independent of this
study, other researchers have studied full vector analysis of in-
homogeneous dielectric waveguides [18]-[20]. However, to the
author’s knowledge, the formulation in this paper covers the
most general case, including anisotropic mediums.

Basic equations are derived in Section II followed by the de-
scription of the eigenvalue problem. In Section III, numerical
results are presented and discussed. Finally, concluding remarks
are made in Section IV.

II. FORMULATION

Here, wave and field equations that must be solved are derived
directly from Maxwell’s equations. The Fourier expansion for-
mulation is then applied to the developed equations so that an
appropriate eigenvalue problem is obtained.

0018-9480/$25.00 © 2007 IEEE



1690

Fig. 1. Dielectric waveguiding structure with arbitrary shaped anisotropic in-
homogeneous dielectric subregions Q12 Q3 ... QN and 2 embedded in
QO dielectric media.

A. Basic Equations

Consider the case where an anisotropic inhomogeneous
waveguiding region with arbitrary shape 2" is embedded
within the substrate Q°, and this embedding consists of N other
dielectric subregions Q', Q2,03 ... QN . The cross section of
such a dielectric structure is illustrated in Fig. 1. The position
is specified using a right-handed Cartesian reference frame.
The z-axis is chosen such that the material properties of the
waveguide configuration is invariant in the z-direction. Each
sub-domain is assumed to be anisotropic and inhomogeneous,
with diagonal permittivity and permeability tensors as follows:

[ex(z,y) 0 0

0 ey (2, y) 0 ey
L0 0 e(r,y)
[pa(zy) 0 0

0 1y (2, y) 0 : @)
.0 0 pa(z,y)

Both dielectric and ohmic losses are included since ¢; and p;
are taken to be complex quantities defined as p1; = p} — jp} and
€ = €, — j(e!! + 0;/w), where o; are components of the con-
ductivity tensor. In a source-free anisotropic inhomogeneous
medium, Maxwell’s equations are written as follows:

VxE=—jwunpi-H 3)
V x H= — Jwege E “4)
V-(z-H)= &)
V-(e-E)=0. (6)

Maxwell’s curl equations (3) and (4) are coupled first-order dif-
ferential equations. They become uncoupled by applying the
following sequence of mathematical operations, V x - (4)
into (3) and V x €!- (3) into (4). Second-order vector wave
equations are then obtained for electric and magnetic fields

Vxa ' -VxE-—kle.
Vxe ' - VxH-ku-

o O

)
®)

T =
[
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where the wavenumber kg is defined as k2 = w?jig€o. From the
Gauss equations (5) and (6), we find that

0B, —1[0 P

E [a@m " a—y&yEy)} ©
OH. —1[0 9
Era [a(észz) + a—y(ﬁyHy)] . (10)

The two vector wave equations (7) and (8) can be further
expanded into six scalar wave equations. In an inhomogeneous
anisotropic medium, each scalar wave equation is coupled with
at least one other, and solving these equations is prohibitively
difficult. Nevertheless, uncoupled scalar wave equations can
be developed by considering only the TE*(E® = 0) and
TM*(HI™ = 0) modes and using (9) and (10) accordingly.
The superposition of the TE® and the TM” modes will then
completely characterize propagating modes (including hybrid
modes) in the structure

r aETE

9 lﬂ(eyEyTE) pp D | L5
ay L€z ay v Oy U oz

+ (k§eypa—B%) E;F =0 (11)
a1 0 9 |1 0H™
I 1HTN[ | = Yy
Oy | p- Oy (M" y )] te Oy [ez ox

+ (k§ewpy—B%) HM = 0. (12)

Due to the continuity of £/, and H, in all the regions and bound-
aries, in (11) and (12), one can change the order of differentia-
tion in terms 9?E. /020y and 0° H . /920y to 9> E., /0ydz and
0?H, /9y0z, respectively. Consequently, the 2- and z-oriented
electric and magnetic components of a propagating mode in this
dielectric structure are related to the TE* - and TM®-mode com-
ponents via the following set of equations:

aZHTM
; Y ) (13)

wepe, Ox2

1
B, = (wuouyHEM +

1 1 a?ETE
H, == ETE —Y 14
B (“)EOEy vt wpiop;  Ox? (14)
1 OE® 1 OH™
E.=j| —e—2 — Y (15)
€0 dy wege,  Ox
1 aHTM 1 aETE
H,=j| — Y Y 16
! <uzﬁuy By | weoe, Oz (16)
1 9*H™
E,=E' Y 17
v v Bwege., Oydz an
’ 1 92 ETE
H,=H" - K (18)

Bwpop, Oydr

Finding an analytical solution for (11) and (12) is complicated
and numerical (or seminumerical) methods are often preferred.
In the Fourier decomposition method, all dielectric sub-domains
0L 02,03 ..., QN and Qv are enclosed in a virtual box whose
dimensions are 2L, and 2L, along - and y-axes, respectively.
L, and L, are large enough to ensure that the electromagnetic

fields of the guided modes are zero on these artificial boundaries.
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The electric field of the TE® mode and the magnetic field of
the TM® mode are then expanded in terms of a complete set of
orthogonal basis functions ¢ = {¢$; }52,

oo

EE =" aigi(z,y) ~ Za@xy (19)
=1
HM = Zb bi(z,y) mesi(x,y). (20)
i=1

In practice, infinite summations are approximated by consid-
ering finite terms in the expansions. The main restriction of
the Fourier method appears as the modal cutoff is approached.
Close to cutoff, more terms need to be included in the field ex-
pansion, and the bounding box should be chosen much larger to
make the implicit assumption of zero field on the boundary more
reasonable. An explicit solution to this difficulty is proposed in
[16] in which the whole z—y-plane is mapped onto a unit square
in the u—v-plane via analytical transformation functions such as

© = a, tan {w <u— %)]
y =a, tan {w <v— %)}

where o, and o, are arbitrary scaling parameters. With this

mapping, boundary conditions for all bounded modes are satis-

fied automatically. One can develop the TE™ and TM™ charac-

teristic wave equations in transformed coordinates by applying

the mapping equations (21) and (22) to (11) and (12) as follows:
v 9 ]

& [(d\ & dvo
€. |\dy/) ovZ dy?ov
P Pud
dr ) Ou?

dz? du

+ ia€y+i €y d_’U 3_}. 2
€, Ov  0v \ e, dy | v Mmau

2n

(22)

+_

du 0
dx Ou

]

() oyt
{&l(@)zf)_:@z]
w. | \dy /) 0v2  dy?ov
+e_zl<d_u>20_2+d2_u3]
ey |\dz /) Ou?  da?ou
e A 2
e Qv v \ . ov Tou | e, | dxou

9 (1 0y, 2 ™ _
() e

Solving these two Sturm-Liouville wave equations is the sub-
ject of Section II-B.

B. Eigenvalue Problem

Consider the following orthogonal functions ¢m1 ni

(25)
(26)

(j)m“nz = 2sin(m;mu) sin(n; 7o)

¢m7 n, =2cos[(m; — 1)mu] sin(n;mv)
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¢7(;;’)nz = 2sin(m;mu) cos [(n; — 1)mv] 27
<Z>(4) n, = 2sin [(m; — L)mu] cos[(n; — L)mv].  (28)

In these equations, m; and n; are nonnegative integers. Next,
we expand the electric field £ ® and the magnetic field ™

using ¢§3)(u, v) and the ¢,§2)(u, v) functions, respectively,

NN,
—i3= 3
EyTE —e P Z ai@( )(u,v)
i=1
=Pz Z Z Um; n d)mq n; (U, 0) (29)
m;=1n;=0
NN,
_i3s 2
HIM =702 3™ b8 (u,v)
=1
N,y Ny
=N S b w62 (wv)  (30)
m;=0n;=1
where the indices m; and n; are
m; =(t—1)div (N,)+1 (31)
n; = (i — 1) mod (N,) + 1. (32)

In the Fourier decomposition method, boundary conditions at
the interfaces between the dielectrics are not applied directly.
The field distribution functions are assumed to be piecewise
smooth, continuous, and square integrable over the entire space.
However, the jump discontinuity of the fields at the dielectric in-
terfaces causes the appearances of the Gibbs phenomena. As a
result, the solution of the vector wave equation is in good agree-
ment with the exact solution, except on the dielectric interfaces.
Nevertheless, the energy of this systematic error depresses with
an increasing number of terms in the series expansion [15].

Substituting (29) and (30) into characteristic equations (23)
and (24), multiplying by 455,%3,1 ; and ¢>5,213n ,» Tespectively, and
integrating over the unit square, the matrix eigenvalue equations
will be developed for both TE and TM modes. For the electric
field,

Z VZA]"/L' + Bjyi - WZC]"Z‘)G,Z‘

= (33)
11
- / [ 900?06 woytudr o)
0 0
Bji=p*(Ii+ I+ I3+ Ly + Is + Is + I7) (35)
Cj,i = 6 i,mj (6ni,15nj,1 + 5ni,nj) (36)
MUx€y — (lj/m)l\flin(ey)l\ﬁn
U, v) = 37
g( ) (.u':r)Max(ey)Max - (/ffz)Min(ey)Min

V = kOp\/(,u'm)N[ax(ey)N[ax - (.u'm)Min(ey)]\’Iin (38)

= p\/ﬂZ Mz Nlln(ey)Nhn (39
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while for the magnetic field,

Ny Now
> (VPAL + Bj - WPC ) b
i=1
=0 (40)
11
/ /g U, V) ¢( (u, v)qb( (u, v)dudv 41)
0 0
Bii=p*(I{ + I+ Iy + I+ I, + Iy + I) (42)
C;l = 5m ,m; (6ni,16nj,l + 5ni,nj) (43)
/ Hy€x — (/Ly)l\'[in(ez)Min
g (u,v) = (44)
(w,v) (1y)Max(€x)Max — (ty)Min(€x)Min
V= koﬂ\/ (#by)Max(€z)Max — (tby)Min(€z)Min  (45)
= p\/ﬂ2 My Mm(6$>l\lm (46)

In these equations, p is a normahzatlon parameter that repre-
sents dimension of the dielectric waveguide. The variables V'
and V" are the waveguide’s degree of guidance and W and W’
are the modal cladding parameters [16]. The expressions for the
double integrals I;_7 and I} _; are found in Appendix I.

Equations (33)—(39) and (40)—(46) express the eigenvalue
problems, which can be readily solved using standard nu-
merical routines. The eigenvalues W?2 and W'? and the
corresponding eigenvectors @ = (a1,a2,4as,-..,an, N, )"
and b = (b1,b2,b3,...,bN, N, )T of the system matrices
Col = (V2A;, + Bjy) and O3 = (VAL + B},) yield
the unknown modal propagation constants and the associated
Fourier expansion coefficients, respectively. The modal fields
can then be readily reconstructed in the © — v space via (19)
and (20) and mapped back to the  — y space with the transfor-
mation functions (21) and (22).

These system matrices are N,,N,, X N,,N,, in size. Con-
sequently, they possess NV, [V, eigenvalues, including both
bounded and continuum modes of the waveguide. Eigenvalues
between the minimum of #3 (1. )Min (€4 ) Min and the maximum
of £Z(tz)Max(€y)Max in the TE® mode, and eigenvalues
between the minimum of 3 ( o) Min (€2 )Min and the maximum
of n%(uy)MaX(ez)MaX in the TM” mode, are related to the
bounded modes. At modal cutoff, the propagation constant
(% is equal to K3(f:)min(€y)Min for the TE® mode, and
3ty )Min(€x)Min for the TM® mode. Thus, at the cutoff,
W?2 = W' = 0 and (33) and (40) are simplified to the

following forms:
N

2

(VQA] i+ Bji)a; =0
1

(47)

2
20

(V’QA’ + Bj;) b =0.
1

In particular, the eigenvalues 1/V2 and 1/V/? and
the eigenvectors @ =  (aj,as,as,...,an, n,)T and
b= (b1,by,bs,...,bx, n,)T of the systemmatrlces B 1A
and —B;;lA’ i yleld the cutoff values of V' and V' and the
associated Fourier expansion coefficients, respectively. As be-
fore, it is then straightforward to reconstruct the modal fields at
the cutoff using (19) and (20) and the transformation functions
(21) and (22).

(48)

i
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Double integrals I;_7 and I _ are the kernels of the Fourier
decomposition method. Speed and accuracy of results obtained
are critically affected by the way these integrals are computed.
Generally, it is more convenient to describe the cross section of
dielectric waveguides (particularly the waveguides formed from
etched layers or those fabricated by diffusion process) as a se-
ries of rectangular meshes where the electromagnetic permit-
tivity and permeability tensors are approximately constant over
each mesh. In this case, I;_5 and 1 _; are zero and closed-form
equations can be written for other integrals. An efficient proce-
dure for this purpose is presented in Appendix II.

Rapid increase in the computation time, which is of order
(NmNn)3 for each eigenvalue problem, is the main disadvan-
tage of this method. Nevertheless, accurate results are often de-
veloped before a great increase in the computation time occurs.
Moreover, by adjusting scaling parameters «, and «, and the
normalization coefficient p, accurate results can be obtained by
using minimal terms in the field expansions. For a channel di-
electric waveguide with dimensions dz and dy, optimum values
for a, and v are dz /2 and dy/2 and the optimum value for nor-
malization parameter p is the geometrical average of o, and oy,
[16]. Quasi-optimum values of the mapping parameters can be
chosen automatically by utilization of adaptive techniques [21].

Finally, it should be noticed that an appropriate selection of the
orthogonal basis functions reduces the number of required terms
in the expansions and considerably affects the precision of re-
sults and the computation time. Selection of the orthogonal func-
tions depends on the geometry of the structure. As an example, for
multilayer cylindrical dielectric structures, such as optical fibers,
Fourier Bessel expansion would be the best choice.

III. NUMERICAL RESULTS

To validate the performance of the method, we defined three
dielectric waveguides and analyzed them at optical frequencies.
The results are obtained by employing the formulation given
above. In each case, we compared our results with other avail-
able literatures. We adopt the modal identification format found
in [22].

A. Anisotropic Dielectric Waveguide

As a first example, an optical channel waveguide with rectan-
gular cross section, embedded in a uniform media, is analyzed.
The relative permittivities of the waveguide are €, = €, = 2.31,
ey = 2.19, and ¢, = 2.05 for the background. The scaling pa-
rameters are chosen to be o, = b and o, = b/2 and the normal-
ization parameter is p = VO Oy. In each direction, 15 terms are
considered in the expansions.

Fig. 2 illustrates the dispersion curves for the first four guided
modes of the waveguide. The results are compared with data ob-
tained from the method of lines [12] and FEM [7]. As can be
seen, close correspondence exists. The normalized field distri-
bution of the E! mode for Byb = 4.0 is depicted in Fig. 3.

B. LiNbOs Optical Waveguide

As a second example, an anisotropic LiNbO3 channel wave-
guide has been analyzed. The rectangular waveguide is sur-
rounded by a uniform substrate with slightly smaller perme-
ability tensors and homogeneous superstrate (air) that covers the
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cl
> |- Method of Lines
— ®  Finite Elements Method
A Fourier Decomposition Method
=
2.2F
2.15F
2.1F
2.05 —

1 2

Fig. 2. Dispersion cures for the first four modes of the illustrated channel waveguide. Relative permeability tensor of the channel is €, = €. = 2.31,¢, = 2.19,
and €, = 2.05 for background. o, = b, a,, = b/2, and p = ,/a,a,. Expansions with 15 terms in each direction are used.
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structure. Relative permeability tensor in the channel is € =
2.22%, €f = € = 2.3129%, and in the substrate, €
2.292. In this case, physical dimensions of the channel is2b x b,
where b = 1.0 pm. The optimization parameters are chosen to
be a; = 2.5b, ay = b/2, and the normalization parameter is
p = \/@z . Similar to the previous example, expansions with
15 terms in each direction are used. Fig. 4 illustrates the normal-
ized dispersion curves of the guided modes E,' and E;}' of the
waveguide. As before, we compare the results with the method
of lines [12] and FEM [6]. The cutoff wavelengths of these two
modes can be computed with the direct procedure studied be-
fore. For instance, the normalized propagation constant of the
E;' mode is (fob)co = 1.03054, which is computed using
25 x 25 expansion.

_ES:

C. Channel Waveguide With Permittivity and
Permeability Tensors

As a final example, a channel waveguide with permittivity
and permeability tensors is analyzed three times for three dif-

2.315
Fourier Decomposition
ﬂ ---------- Method of Lines
ﬂ— S | R Finite Elements
0
2305 N
oy
2.3 /" /
// /
2290
o 5 5 20 25 30

B, b

Fig. 4. Dispersion cures for the )" and E}" modes of the illustrated wave-
guide. Relative permeability tensor in the channel is €5 = 2.222, €, = €2 =
2.31297, and in the substrate, €5 = e = 2.297, for background. In this case,
b=1.0pum, o, =2.5b,a, =b/2,and p = /-y, Field expansions with
15 terms in each direction.
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Casel Case2 Case3
g\\‘.r = 26 gxx.r = 24 gxz.r = 28
= £,, =26 £,, =28 £,, =24
" £,,=26 £,,=26 £,,=26
e, . =1.10 ., =115 .. =105
ZL. i, =110 |u =105  |u, =115
i, =110  |u,, =110  |u_, =110

Fig. 5. Permittivity and permeability tensors of the channel waveguide in the
last example.

ferent permittivity and permeability tensors that are listed in the
table in Fig. 5. Fig. 6 illustrates the dispersion curves of the
first two guided modes E,' and E,' in each of the three cases
and compares the results with results obtained via the method
of lines [12]. In spite of small differences in dispersion curves
at lower frequencies, the dispersion curves we obtained agree
quite well with other literature.

IV. SUMMARY

In this paper, the Fourier decomposition method has been ex-
tended to determine both propagation constants and modal field
distributions of the guided modes in anisotropic inhomogeneous
dielectric structures with arbitrary cross sections. The method
has been successfully applied in numerical computation of the
propagation constants of channel waveguides with second rank
electromagnetic permittivity and permeability tensors.

APPENDIX [

1, _7 are the following integrals:

1
= [d—} 8 (u, 0)8 (u, v)dud
0
[%} gbl(»l)(u, v)¢§3)(u,v)dudv
11
I3: _m?ﬂ-Z//Z |:3_z:| ¢£3)(u7v)¢§3)(u,v)dudv
0

0
11
1 :mﬂr// £ [%} ¢><4 (u, )¢(3)(u v)dudv
00

S Ol
e

, v)dudv

1 1
_ 0 (1 0ey 3) @)
= 0/0/{ y<ez ayﬂ ¢y (u,0)¢5” (u, v)dudv  (49)
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and I7_- are as follows:
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APPENDIX II

Here, the closed-form equations are presented as follows for
computation of Iy — Iy and I; — I when the permittivity and
permeability tensors are constant on a rectangular mesh (our
standard rectangular mesh is depicted in Fig. 7):

—4n? (ﬁ)
T“Pf(mi,mj)

Yy
x (0.18755%(n; +n;)+0.18755%(n; —n;)
—0.25Q%(ni+n;,2)—0.25Q% (n; —n;,2)
+0.0625Q% (n;+n;,4)+0.0625Q% (n; —n;, 4))
—8n; (ey)
Ih=— €27 pb

ag a (m'i7 mj)

x (0.125P%(n;+n;,2)+0.125P% (n; —n;, 2)
—0.0625Q%(n;+n;,4)—0.0625Q% (n;—n;,4))
—4m? (ﬁ)
IszTﬂfo(nmnj)
x (—0.18758% (m;+m;) —0.187555 (m; —m,)
+0.25Q% (m;+m;, 2)—0.25Q" (m; —m;, 2)
—0.0625Q" (m; +m;,4)—0.0625Q% (m; —mj, 4))

L=
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~

B/B,)’

--=- Method of Lines
—— Fourter Decomposition

8]
0
T

[
[1S)
LI

12
\

11 -
.. Casel

E!, Case3

11 =
E,, Case2

Fig. 6. Dispersion curves of illustrated channel waveguide with permittivity and permeability tensors. o, = 2.5b, a, = b/2,and p = /@, . Field expansions

include 15 terms in each direction.

Fig. 7. Standard rectangular mesh.

()
mi |
Iy= P20

2

(6]

Yy

x (0.125P%(m;+mj, 2)+0.125P (m; —m;, 2)

— 0.0625P2 (m; +m;,4)—0.0625P% (m; —m;, 4))

_4”1‘2 <@>
z
_]{_7“62

=
)

x (—0.18758% (n;+n;)—0.18755% (n; —n;)
+0.25Q%(ni+n;,2)—0.25Q%(n; —n;, 2)

—0.0625Q% (n; +m;,4)—0.0625Q% (n; —n;,4))

()
I=—ELQh

=2
x (0.125P%(n;+n;,2)+0.125P%(n;—n;,2)
—0.0625Q% (n;+n;,4)—0.0625Q%(n; —n;, 4))

—4m?2 (@)

—— =L P

X (0.1';7553(%+m]-)+0.187553(m1-—m]-)
—0.25Q% (m;+m;,2) — 0.25Q% (m; —m;, 2)

niyn;)

Z(mhmj)

mi,m;)

=

4, 15)

+0.0625Q" (m; +mj, 4)+0.0625Q" (m; —m;,4)) .

s (2)
TPC (
x (0.125P%(m; +m;,2)+0.125P% (m; —m;, 2)

— 0.0625P% (m;+mj,4) — 0.0625P% (m;—m;,4)).

(S

Iy= ni;nj)

Here, S2(p), P2(p,q) and Q3(p, q) are defined with following
equations:

S

Sy (p) = /cos(pﬁt)dt

T
S

Pi(p,q) = / sin(pt) sin(qt)dt

T
S

Q:(prq) = / cos(pt) cos(qt)dt. (52)

s

It is apparent that these three integrals have simple analytical
solutions.
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