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Local Polarization, Charge Compensation, and Chemical Interactions on
Ferroelectric Surfaces: a Route Toward New Nanostructures

Abstract
The local potential at domains on ferroelectric surfaces results from the interplay between atomic polarization
and screening charge. The presence of mobile charge affects surface domain configuration, switching behavior,
and surface chemical reactions. By measuring the temperature and time dependence of surface potential and
piezo response with scanning probe microscopies, thermodynamic parameters associated with charge
screening are determined. This is illustrated for the case of BaTiO3 (100) in air, for which the charge
compensation mechanism is surface adsorption and enthalpy and entropy of adsorption are determined. The
local electrostatic fields in the vicinity of the domains have a dominant effect on chemical reactivity.
Photoreduction of a large variety of metals can be localized to domains with the appropriate surface charge. It
has been demonstrated that proximal probe tips can be used to switch polarization direction locally.
Combining the ability to 'write' domains of local polarization with domain specific reactivity of metals, vapors
of small molecules, and organic compounds leads to a new approach to fabricating complex nanostructures.
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Local Polarization, Charge Compensation, and Chemical Interactions on Ferroelectric 
Surfaces:  a Route Toward New Nanostructures 

 
Dawn A. Bonnell and Sergei V. Kalinin 
Dept. Mat. Sci. Eng., University of Pennsylvania, 3231 Walnut St, 
Philadelphia, PA 19104 
 
ABSTRACT 
 
The local potential at domains on ferroelectric surfaces results from the interplay between atomic 
polarization and screening charge. The presence of mobile charge affects surface domain 
configuration, switching behavior, and surface chemical reactions. By measuring the temperature 
and time dependence of surface potential and piezo response with scanning probe microscopies, 
thermodynamic parameters associated with charge screening are determined. This is illustrated 
for the case of BaTiO3 (100) in air, for which the charge compensation mechanism is surface 
adsorption and enthalpy and entropy of adsorption are determined. The local electrostatic fields 
in the vicinity of the domains have a dominant effect on chemical reactivity. Photoreduction of a 
large variety of metals can be localized to domains with the appropriate surface charge. It has 
been demonstrated that proximal probe tips can be used to switch polarization direction locally. 
Combining the ability to ‘write’ domains of local polarization with domain specific reactivity of 
metals, vapors of small molecules, and organic compounds leads to a new approach to 
fabricating complex nanostructures. 
 
INTRODUCTION 
 
 Development of spontaneous polarization and related lattice distortion below the Curie 
temperature in a ferroelectric material results in the formation of regions of uniform polarization, 
i.e. ferroelectric domains. Polarization discontinuities in the vicinity of surfaces and interfaces 
result in polarization bound charge that significantly affects materials properties. Polarization 
charge can compensate Schottky barriers at the interfaces giving rise to Positive Temperature 
Coefficient of Resistance behavior in semiconducting BaTiO3. In the vicinity of surfaces, 
polarization charge results in domain specific adsorption of charged species from the ambience 
that effectively compensates the charge, i.e. extrinsic screening processes [1]. Screening charges 
thus affect the thermodynamic properties of a ferroelectric surface via a reduction in 
depolarization energy. Therefore, screening plays a significant role in the polarization reversal 
processes and, to a large extent, determines the stability of domain structures in ferroelectric 
materials. Another type of screening process involves band bending in the near surface region 
(intrinsic screening) with the formation of depletion and accumulation layers depending on the 
nature of majority charge carriers in the ferroelectric semiconductor. These domain specific 
space charge layers strongly influence local chemical activity of ferroelectric surfaces as 
discovered by Giocondi and Rohrer [2,3]. Studies of domain specific chemical phenomena are 
hindered by typical multidomain structure of the samples. Until recently, only limited progress 
has been achieved in the understanding of the effects of local polarization on adsorption and 
chemical reactivity of ferroelectric surfaces due to the lack of appropriate characterization 
techniques. 
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 The current tendency towards the miniaturization of ferroelectric based electronic 
components [4,5] has motivated a number of scanning probe microscopy (SPM) studies of 
ferroelectric materials. SPM provides information on the topographic features, the potential and 
field above the surface, and local electromechanical properties. Non-contact techniques such as 
Scanning Surface Potential Microscopy (SSPM) and Electrostatic Force Microscopy (EFM) are 
sensitive to electrostatic fields, which for ferroelectric surfaces have contributions from both 
polarization and screening charge [6]. 
 In the present paper, SPM was used to study domain related chemical activity of 
ferroelectric surfaces in adsorption and photochemical deposition processes. Variable 
temperature SSPM is used to determine the temperature and time dynamics of effective surface 
potential on BaTiO3 surfaces. A thermodynamic model based on the Ginzburg-Devonshire 
theory is developed that allows enthalpy and entropy of adsorption to be determined from 
equilibrium potential contrast. Piezoresponse force microscopy (PFM) is used to determine 
domain patterns in polycrystalline BaTiO3 and correlate them with metal photodeposition 
pattern. This technique provides a new approach towards the generation of nanometer scale 
structures. 
 
EXPERIMENT 
 
Thermodynamic of adsorption 
 The AFM and SSPM measurements were performed on a commercial instrument (Digital 
Instruments Dimension 3000 NS-III) using metal coated tips (l ≈ 225 µm, resonant frequency ~ 
60 kHz, k ≈ 1 N/m). The lift height for the interleave scans in SSPM was 100 nm, the scan rate 
was typically 1 Hz and amplitude of the driving voltage, Vac, was 5 V. Variable temperature 
measurements were performed on a home-built heating stage. During measurements, the 
temperature was increased in steps of ~10°C. Several images were acquired at ~10 min intervals 
at each temperature. The cantilever was re-tuned at each step in order to stay in the vicinity of the 
resonance frequency. Thermal drift was corrected by adjusting lateral offsets to position domain-
unrelated topographical features. Topographic images were processed by line (first order) 
flattening to remove the effect of surface tilt and noise in slow scan direction. SSPM images 
acquired at room temperature were processed only by plane subtraction. During variable 
temperature measurements higher levels of thermal noise necessitated zero order flattening.  
 A barium titanate (100) single crystal (5x5x1 mm, Tc = 130°C, Superconductive 
Components, Inc) was used for the experiment. The roughness of the (100) face did not exceed 
15 Å. Prior to analysis the crystal was repeatedly washed in acetone and deionized water. In 
order to obtain a reproducible well-developed domain structure the crystal was heated above the 
Tc, held at 140°C for ~0.5 h and cooled on a metallic surface.  
 
Domain selective photochemical deposition 
 BaTiO3 samples were prepared by sintering commercial BaTiO3 powder (Aldrich). 
Powders were ball-milled and pressed into pellets, which were annealed for 12h at 1400°C. 
Samples were cut with a diamond saw and exposed surfaces were polished with SiC media down 
to 1 µm grit size and by alumina down to 50 nm size. Samples thus obtained were thermally 
etched at 1400°C for 12 h, producing grain boundary grooving and surface faceting, which 
provide a clear topographic contrast that can be used as markers in AFM experiment. This 
procedure is also crucial to relieve surface damage associated with polishing. PZT thin films 
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were prepared by a sol-gel method on Pt/Si substrates. The film thickness was ~200 nm and 
characteristic grain size was 50-100 nm. 
 The contact-mode AFM and PFM measurements were performed on a commercial 
instrument (Digital Instruments Dimension 3000 NS-III). For piezoresponse measurements, the 
AFM was additionally equipped with a function generator and lock-in amplifier (DS340, SRS 
830, Stanford Research Systems). Pt coated tips (l ≈ 125 µm, resonant frequency ~ 350 kHz) 
(Micromasch NSCS12 Pt) were used for these measurements. To perform polarization switching 
in polycrystalline BaTiO3, the microscope was equipped with a PS310 high voltage power 
supply (Stanford Research Systems). The electrical connections between the microscope and the 
tip were severed and a wire was connected from the function generator to the tip through a 
custom-build sample holder. This set-up allowed dc voltages up to 150 Vdc to be applied to the 
tip. Modulation amplitude in the PFM imaging was 6 Vpp; larger amplitudes resulted in 
polarization reversal in the metastable switched regions.  
 To pattern domains, the function generator output was controlled through the GPIB 
interface using in-house control software [7]. After scanning a selected region, the tip was ac 
biased and scanned over larger region, thus allowing the switched domain to be imaged. 
Polarization in PZT samples can be switched by voltages as low as 5-10 Vdc. Polarization 
switching in BaTiO3 ceramics requires high voltages (100Vdc).  
 For silver photodepositon, samples were placed in the 0.01 M AgNO3 solution and 
irradiated by Xe UV lamp for 10 s at 100W. After deposition samples were washed and dried by 
air flow. Deposition conditions are specific for individual cations, e.g. Pd requires longer 
exposure time (~30 min from 0.01M PdCl2 solution). 
 
THEORETICAL TREATMENT OF SCREENING 

 
Thermodynamics of partially screened ferroelectric surface 
 The surface of a ferroelectric material is characterized by a polarization charge density 

nP ⋅=σ , where P is the polarization vector and n is the unit normal to the surface. However, 
the unscreened state is unstable and extrinsic surface adsorption and/or intrinsic charge 
redistribution result in polarization screening at ferroelectric surfaces or interfaces [1]. In the 
case when charge compensation is due to adsorption, the free energy for screening process is: 

( ) ( ) adsads,, ST
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where q = 1.602⋅10-19 C is electron charge, P is spontaneous polarization, Na = 6.022⋅1023 mol-1 
is Avogadro number, α is the degree of screening and T is the temperature [8]. The enthalpy and 
entropy of adsorption are denoted ∆Hads and ∆Sads, respectively. The electrostatic contribution to 
the free energy in Eq. (1), ( )T,Eel α , is: 
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where L is the domain size, h is the screening layer width, 2ε  is the dielectric constant of the 

screening layer, xε and zε  are the dielectric constants of the ferroelectric and ε0 = 8.854⋅10-12 

F/m is the dielectric constant of vacuum. The temperature dependence of the equilibrium 
screening can be obtained from the condition of the minimum of free energy ( ) 0, =∂∂ αα TE . 
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Since ( )T,Eel α  is a quadratic function of α [Eq.(2)], this condition can be written as 

( ) ( ) ( )TaTaTE 21, +=∂∂ ααα . Thus, from Eqs. (1,2) the equilibrium degree of screening is  
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where a1(T) and a2(T) are temperature dependent coefficients defined by domain structure and 
material properties. The temperature dependencies of a1(T), a2(T) are calculated within the 
framework of the Ginzburg-Devonshire [9-11] theory and these values are shown to be only 
weakly temperature dependent [8].  
 
SSPM Contrast vs. Degree of Screening 
 The effective potential measured by SSPM contains contributions both from screened and 
unscreened components of polarization charge. The force acting on the biased tip above a 
partially screened ferroelectric surface is written as a sum of capacitive and Coulombic 
components. In SSPM the tip bias is Vtip = Vdc+Vaccos(ωt), where Vac is driving voltage and the 
first harmonic of the force is: 

( ) zacacstip ECVVVV
dz

dC
F +−=ω1      (4) 

where C = C(z) is the distance dependent tip-surface capacitance, Vtip is the tip bias, Vs is the 
surface potential due to electric double layer, and Ez is the normal component of electric field 
due to unscreened polarization charge. To quantify the capacitive and Coulombic components of 
the tip-surface interactions, a line charge model is used. For a typical metal coated tip used in the 
SSPM measurements with θ  = 17°, H ≈ 10 µm and tip-surface separation z = 50-100 nm 
effective potential difference between the domains is 

( ) ( )2121 18.1 EEHVVVdc −−−=∆      (5) 

where V1, V2 and E1, E2 are potential and field above domains of opposite polarity. 
 Using the representation of a partially screened ferroelectric surface as a sum of 
completely unscreened and completely screened part, the potential difference between domains 

of opposite polarity is ( )zxzxs Ph εεεεεεαϕ +=∆ 022 , while the difference in the normal 

component of the electric field is ( ) ( )zxu PE εεεα +−=∆ 01 . Therefore, domain potential 

contrast is a linear function of degree of screening. Combination of Eq. (3) and Eq. (5) thus 
suggests that the surface potential difference between the domains as measured by SSPM is a 
linear function of temperature as well. Therefore, the temperature dependence of domain 
potential contrast can be used to estimate the temperature dependence of the degree of screening 
and determine thermodynamic parameters associated with the screening process. 
 
RESULTS AND DISCUSSION 
 
Kinetics and thermodynamics of screening process 
 The domain structure of the BaTiO3 (100) surface is shown in Fig. 1. Surface topography 
indicates the presence of 90° a-c domain walls. The SSPM image indicates the presence of 
domains of opposite polarity within c domains. A detailed analysis of domain structure from the 
combination of AFM and SSPM data is discussed elsewhere [6]. On increasing the temperature 
the domain structure does not change significantly. Neither 90° nor 180° domain wall motion is  
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observed. After a temperature decrease from 70°C to 50°C the domain contrast inverts (Fig. 
1a,b), i.e. a positive c domain becomes negative. The potential difference between the domains 
decreases with time, passing through an isopotential point corresponding to zero domain 
potential contrast (Fig. 1c), and finally establishing an equilibrium value (Fig. 1d). 
 This phenomenon, which will be referred to as temperature induced domain potential 
inversion, is consistent with the proposed explanation of screening on ferroelectric surfaces. In 
the case of complete screening, the surface potential has the sign of the screening charges and is 
reverse to that expected from polarization orientation, i.e. c+ domains are negative and c- 
domains are positive on the SSPM image. Increasing the temperature results in a decrease of 
polarization bound charge leaving some of the screening charge uncompensated, thus increasing 
the effective surface potential. On decreasing the temperature spontaneous polarization increases 

(a) 

(c) (d) 

(b) 5 µµm 

Figure 1. Surface potential (a) of ferroelectric domain structure on BaTiO3 (100) surface at T = 90°C. 
Surface potential during cooling from 90°C to 70°C (b), at 70°C (c) and after annealing at 70°C for 50 
min (d). Streaks on (b) are due to the significant vertical displacements of the surface during cooling. 
Note that the sign of surface potential features inverts on cooling. On lowering the temperature the 
spontaneous polarization increases and for a short period of time polarization charge dominates over 
screening charge in the potential image. At constant temperature screening charges adsorb on the 
surface, domain contrast passes through the isopotential point (c) and after equilibration the sign of 
domain potential is again determined by the screening charges (d). 

a c- 

c+ 

c+ 

a 
c- 
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and, for a short period of time, the sign of domain potential is determined by the polarization 
charge. Under isothermal conditions, polarization and screening charges equilibrate and the 
potential establishes an equilibrium value.  
 To analyze the temperature and time dependences of topographic structure and domain 
potential contrast the average corrugation angle and average domain potential difference between 
c are a domains were determined. The time dependence of domain potential contrast on heating 
and cooling is shown in Fig. 2a,b. To quantify the kinetics, the time dependence of domain 
potential contrast, ∆ϕ, was approximated by an exponential function  

( )τϕϕ /exp0 tA −+∆=∆ ,       (6) 

where τ is relaxation time and A is a prefactor. Due to the finite heating and cooling rates, the 
domain potential contrast immediately after the temperature change can not be reliably 
established; therefore, Eq. (6) describes the late stages of potential relaxation. The temperature 
dependence of the potential redistribution time is shown in Fig. 2c. The redistribution time is 
almost temperature independent with an associated relaxation energy of ~4 kJ/mole. This low 
value of activation energy suggests that the kinetics of relaxation process is limited by the 
transport of charged species to the surface. The characteristic redistribution time is ~ 20 min and 
is close to the relaxation time for domain potential contrast above Tc (30 min) [12].  
 The redistribution process both on heating and cooling results in the same equilibrium 
value of domain potential contrast, 0ϕ∆ . The temperature dependence of domain potential 
contrast, shown in Fig. 2d, is almost linear, with the zero potential difference corresponding to 
temperature ~110°C well below the Curie temperature of BaTiO3 (Tc = 130°C). For higher 
temperatures the degree of screening is smaller and the Coulombic contribution to the effective 
SSPM potential increases. Since polarization charge and screening charge contributions to the 
effective surface potential are of opposite sign, the decrease of the degree of screening results in 
the decrease of domain potential contrast. The thermodynamics of this process are expected to 
be strongly temperature dependent and to dominate over relatively weak variation of 
spontaneous polarization with temperature (P = 0.26 C/m2 at 25°C and 0.20 C/m2 at 100°C).  
 The equilibrium domain potential contrast can be related to the degree of screening of 
spontaneous polarization. As shown in Fig. 2d, the temperature dependence of equilibrium 
domain potential contrast in the temperature interval 30°C < T < 100°C is linear and the domain 
potential contrast is the same on heating and cooling, i.e. equilibrium is achieved. This 
dependence can be represented by the linear function TVdc

4103.5059.0 −⋅−=∆ , where T is 

temperature in Celsius degrees. Using Eq. (12) for tip length of 10 µm yields the temperature 
dependence of equilibrium degree of screening is 

T.. 65 102311062711 −− ⋅+⋅=− α      (7) 
A comparison of Eq. (3) and Eq. (7) allows us to estimate the enthalpy, ∆Hads, and entropy, 
∆Sads, of adsorption as ∆Hads = 164.6 kJ/mole, ∆Sads = -126.6 J/mole K.  
 The enthalpy and entropy of adsorption thus obtained are within expected values in spite 
of the approximations inherent in this approach. The Coulombic contribution to the effective 
potential can be estimated as < 10-20 % thus validating our previous conclusion that the surface 
is completely screened at room temperature. The nature of the screening charges can not be 
determined from these experiments; however, these results are also consistent with the well  
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known fact that adsorbing on polar transition metal oxide surface in air are water and hydroxyl 
groups, -OH [13-15]. Dissociative adsorption of water as a dominant screening mechanism on 
BaTiO3 surface in air was verified using temperature programmed desorption experiments on 
poled BaTiO3 crystals [16]. Obviously, adsorbates can provide the charge required to screen the 
polarization bound charge, since corresponding polarization charge densities are of order of 0.25 
C/m2 corresponding to 2.6⋅10-6 mole/m2. For a typical metal oxide surface with characteristic 
unit cell size of ~ 4 Å this corresponds to the coverage of order of 0.25 mL.  
 
Domain selective photodeposition 
 The domain specificity of adsorption illustrates the experimental behavior that certain 
chemical reactions depend on domain orientation. Photochemical reactivity and the structural 
properties of photodeposited metal are strongly dependent on semiconducting properties of 
BaTiO3. Weakly n-doped/undoped ceramic material develops noticeable deposition layer in ~ 1-
10 min. Heavily donor doped BaTiO3 was extremely active under the irradiation and formation 
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Figure 2. Time dependence of domain potential contrast on heating (a) and cooling (b). Solid lines are fits by 
Eq. (6) Note that on heating domain potential contrast increases and relaxes with time to some equilibrium 
value. On cooling the domain potential contrast reduces and in some cases change sign. Also note that the 
equilibrium value of domain potential contrast doesn't depend on the process. (c) Time constant for relaxation 
process on heating in Arrhenius coordinates and (d) temperature dependence of equilibrium domain potential 
contrast on heating (p) and cooling (q) and fit by Eq. (7) (solid line). 
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of hydrogen and metallic silver in the solution was observed. Photochemical activity of BaTiO3 
was found to be sensitive to surface conditions. Generally, as polished samples did not developed 
domain specific deposition patterns and thermal etching at 1200°C was necessary to achieve 
desired reactivity. Dependence of deposition rate on the radiation wavelength was also studied 
and the necessary wavelength was found to correspond to the bandgap of BaTiO3 (Eg = 3.1 eV). 
For PZT the wavelength of radiation required for the deposition is higher (Eg = 4.1 eV). 
 Surface topography and corresponding piezoresponse force microscopy (PFM) images of 
BaTiO3 surface are shown in Fig. 3a,b. While no distinct topographic features are seen in Fig. 3a, 
the PFM image clearly reveals a complicated lamellar domain pattern with characteristic domain 
size of order of ~200-300 nm. Note that a topographic defect (pore) results only in the minor 
alteration of domain structure and doesn't impair PFM contrast. The photodeposited metal 
pattern is clearly seen in Fig. 3c. After imaging, silver particles were mechanically removed and 
palladium was deposited on the surface; the corresponding AFM image is shown in Fig. 3d. Note 
that polarization distribution on the pristine surface and deposition patterns of silver and 
palladium are identical. Interestingly, the reactivity of the ferroelectric surface is not limited by 
the degree to which reaction has proceeded: removal and deposition steps can be repeated several 
times without the loss of reactivity. Another example of silver deposition along the lamellar 
domains is shown in Fig 4a. While in the most cases metal deposits in the form of nanoclusters, 
some conditions produce interesting particle geometries (triangular and hexagonal crystals in Fig 
4b) and nanowires. The particle size was shown to be controllable by deposition time and 
solution concentration. 
 The mechanism for the domain selective photoreduction is closely related to the intrinsic 
screening on ferroelectric surfaces. In the absence of vacancy or step edge defects, transition 
metal oxide surfaces have a low density of surface states in the gap between the conduction band 
formed predominantly from the d states of the metal and valence band formed predominantly 
from oxygen p states. In ferroelectric materials, the normal component of polarization results in 
polarization charge density nP ⋅=σ , where P is polarization and n is unit normal. For a typical 
material, such as BaTiO3, polarization charge density can be 0.26 C/m2 corresponding to 0.26 e- 
per unit cell. In the regions with negative polarization (c- domains) the effective surface charge 
becomes more negative and, therefore, band bending, increases. In the regions with positive 
polarization (c+ domains) surface charge increases and can become positive with associated 
downward band bending. Irradiation with super band gap light results in the formation of a 
electron-hole pair. In ambient, the space charge field results in separation of the e-hole pair and 
charge accumulation on the surface, i.e. the photovoltage effect. However, on a surface 
immersed in a cation solution the electrons can reduce the metal cations preventing charge 
accumulation at the surface. Reduction is expected on positive domains, while oxidation is 
expected at negative domains in perfect agreement with experimental results.  
 This mechanism points to a significant advantage of polarization based lithography over 
other charge-based SPM lithographic techniques. On a ferroelectric substrate, local surface 
charge is due to atomic polarization and therefore is stable. The charge alters the electronic 
structure in a manner that can be exploited in surface interactions; therefore, the amount of 
deposited material is not limited by the amount of deposited charge. On high quality ferroelectric 
substrates, domains can be patterned with 10-20 nm resolution in feature size.  
 To illustrate the possibility of SPM lithography using PFM/photodeposition, a number of 
experiments using alternative ferroelectric materials were performed. Fig. 5a,b shows surface 
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1 µµm (a) (b) 

(d) (c) 

1 µµm (a) (d) 1 µµm 

Figure 3. Local contact mode topography (a) and piezoresponse image of BaTiO3

surface prior to the deposition. Topography after silver deposition (c) and palladium 
deposition (d). Note that the metal deposition pattern coincides with the ferroelectric 
domain structure as revealed by PFM. 

Figure 4. Silver lines (a) and gold clusters (b) on the BaTiO3 surfaces.  
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topography and piezoresponse images of PZT films. The film consists of 50-100 nm grains and 
ferroelectric domain size is comparable with the grain size. Careful inspection of PFM images 
illustrates that most small grains (~50 nm) are in the single domain state, while larger grains can 
contain multiple domains. Unlike BaTiO3 crystals, domains are small; therefore, comparison of 
domain structure before the photodeposition and metal deposition pattern is all but impossible. 
To avoid complications due to this problem, we have fabricated relatively large scale lines by the 
intermittent application of +10 V and -10 V to the tip. The piezoresponse image of the resulting 
domain pattern is shown in Fig. 5c. Image clearly illustrates the "random" polarization 
orientation with characteristic domain size of 50-100 nm on the edges of the image and line 
regions with positive or negative polarization orientation in the central part of the image. The 
patterned sample was placed in the silver nitrate solution and irradiated by the UV lamp for 30 
min; the topographic structure is shown in Fig. 5 d. Careful inspection of the lines shows that 
they are formed of small (10-50 nm) silver particles. The total amount of deposited material 
corresponds to ~100 nm layer (comp. to the thickness of the PZT film ~ 200 nm). Therefore, 
reduction of silver by trapped electrons can be excluded. Note the one to one correspondence 

10 µµm (a) (b) 

(d) (c) 

0.5 µµm 

10 µµm 

0.5 µµm 

Figure 5. Surface topography (a) and piezoresponse image (b) of PZT thin film. The inset 
shows that the PFM contrast in not random but is due to the small (~50-100 nm) 
ferroelectric domains associated with grains. PFM image (c) of lines patterned with 
alternating +10 and -10 Vdc. Surface topography (d) after deposition. Note one to one 
correspondence between tip-induced polarization distribution and metal deposition pattern. 
The width of the smallest feature is ~700 nm.  
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5 µµm 5 µµm (a) (b) 
Figure 6. Piezoresponse image (a) of PZT thin film with patterned domain structure (Penn logo). SEM image 
(b) after deposition. Note one to one correspondence between tip-induced polarization distribution and metal 
deposition pattern. The grain size of Ag particles is  ~ 50-100 nm and is determined by deposition time.  

between the polarization pattern on the PFM image and photodeposited silver pattern. Deposition 
occurs exclusively on the domains written by the negative voltage, i.e. positive domains. Very 
little silver particle density was observed on the negative domains. The lateral size of the 
smallest feature on the image is ~700 nm. The lateral width of the features that can be written on 
PZT surface in this case is limited by the grain size of the film and was found to be 30-50 nm. 
Shown in Fig. 6a,b is the example of more complex polarization pattern created using PFM 
lithography [7] and corresponding metal photodeposition pattern.  
 These results illustrate the potential of controlled polarization switching with subsequent 
metal photodeposition for metal meso- and nanoscale structure fabrication. Obviously, 
polarization and deposition steps can be repeated sequentially to produce more complex 
nanostructures. 
 
CONCLUSIONS 
 
 The relationship between atomic polarization and charge compensation can be exploited 
to induce local surface adsorption and chemical reactivity.  Recent advances in scanning probe 
type measurements allow domain specific thermodynamic parameters of these reactions to be 
determined.  In combination with domain patterning by local fields or e-beam lithography, 
reaction specificity can be used to produce complex multi-component nanostructures. 
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