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Two-Step Sintering of Ceramics with Constant Grain-Size, I. Y2O3

Abstract
Isothermal and constant-grain-size sintering have been carried out to full density in Y2O3 with and without
dopants, at as low as 40% of the homologous temperature. The normalized densification rate follows Herring’s
scaling law with a universal geometric factor that depends only on density. The frozen grain structure,
however, prevents pore relocation commonly assumed in the conventional sintering models, which fail to
describe our data. Suppression of grain growth but not densification is consistent with a grain boundary
network pinned by triple-point junctions, which have a higher activation energy for migration than grain
boundaries. Long transients in sintering and grain growth have provided further evidence of relaxation and
threshold processes at the grain boundary/triple point.
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Two-Step Sintering of Ceramics with Constant Grain-Size, I. Y2O3

Xiao-Hui Wang*, Pei-Lin Chen, and I-Wei Chenw

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Isothermal and constant-grain-size sintering have been carried
out to full density in Y2O3 with and without dopants, at as low as
40% of the homologous temperature. The normalized densifi-
cation rate follows Herring’s scaling law with a universal geo-
metric factor that depends only on density. The frozen grain
structure, however, prevents pore relocation commonly assumed
in the conventional sintering models, which fail to describe our
data. Suppression of grain growth but not densification is con-
sistent with a grain boundary network pinned by triple-point
junctions, which have a higher activation energy for migration
than grain boundaries. Long transients in sintering and grain
growth have provided further evidence of relaxation and thresh-
old processes at the grain boundary/triple point.

I. Introduction

SINTERING is a complicated process of microstructure evolu-
tion, with the main outcome being porosity elimination.1–4

However, in polycrystals accelerated grain growth is also reck-
oned to always accompany final-stage sintering. The onset of
accelerated grain growth depends on the microstructure; a uni-
form size and shape distribution of pores and grains postpones
accelerated grain growth.5,6 In the best case the onset can be
postponed to about r5 92% which, for most ceramics with a
dihedral angle of 1201, coincides with the Rayleigh transition
when pore channels collapse to become isolated pores.7–9 Such
collapse results in a substantial decrease in pore pinning, which
triggers accelerated grain growth.10,11 The prevailing sintering
paradigm in the last 40 years is to mitigate this undesirable out-
come by suppressing grain boundary mobility while promoting
pore pinning. The aim is to maintain pore-grain boundary con-
tact during grain growth so that pore breakaway never occurs.

Contrary to the above paradigm, we have used a simple two-
step sintering method to sinter Y2O3, from 75% to 100% den-
sity, without grain growth.12 The key elements in this method
are (a) reaching a higher temperature T1 to conduct first-step
sintering, (b) achieving a high-density r� at T1; r

� � 75% to
render pores unstable,13 and (c) lowering the temperature to T2

to conduct second-step sintering during which there is only
densification and no grain growth. The purpose of the present
paper is to analyze in detail the sintering kinetics of Y2O3, a
model system, in order to shed light on the sintering mechanism.
The relevance of the present work to low-temperature kinetics
and nanograin ceramics will also be explored. In addition to
Y2O3, this method has been successfully applied to BaTiO3 and
Ni–Zn ferrite, which densify by solid-state diffusion, as shown in
the companion paper.14 It also succeeded in liquid-phase-con-

taining ceramics, ZnO and SiC, as reported in the recent liter-
ature.15,16

Analysis of sintering data requires a sound physical model.
Although theoretical models usually use idealized geometric as-
sumptions which may not hold in real materials,8,10,11,17–26 a
general dimensional argument originated by Herring27,28 states
that the normalized rate of densification, via grain boundary
diffusion, can be expressed as

dr
rdt
¼ FðrÞ 3gO

kT

dD

G4
(1)

Here t is the time, g the surface energy, O the atomic volume, k
the Boltzmann constant, T the absolute temperature, G the
mean grain diameter, d the width of the grain boundary, D
the grain boundary diffusivity, and F(r) an unspecified function
of density r. This argument holds for different grain size and
density provided the sintering microstructure, including the pore
distribution, is a function of density only once the length scale is
renormalized by the grain size. For a ceramic undergoing two-
step sintering, the grain boundary network is frozen, so there is
no change in microstructure other than the shrinking porosity.
This would seem to satisfy Herring’s assumption. Therefore, we
will attempt to use Eq. (1) in our analysis.

Various models of intermediate and final-stage sintering have
specified the function F(r). Typically, at r40.7, the predicted
F(r) is a gradual, decreasing function of r, which was supported
by the data of Hansen et al.26 On the other hand, Zhao and
Harmer29 found, after accounting for grain-size increase, a F(r)
that slightly increased with density in final-stage sintering. They
attributed the increase to the increased number of pores that
intersect a typical grain boundary as sintering proceeds. Came-
ron and Raj,5 however, found qualitative disagreement between
their data and all the geometrical models they examined. In-
stead, an empirical model that depicts densification as an ex-
haustion process seemed to fit their data the best.

The attainment of constant grain size throughout intermedi-
ate and final-stage sintering in second-step sintering offers an
excellent opportunity to verify Eq. (1) and evaluate F(r), which
is a main objective of our work. Once Eq. (1) is confirmed, any
deviation of the experimental data from the expected behavior
of Eq. (1) would imply important changes in the underlying
sintering kinetics.

II. Experimental Procedure

(1) Powder Preparation

The Y2O3 powders were synthesized by a standard solution-po-
lymerization route using yttrium nitrate (Y(NO3)3, Alfa, New
York, NY) and polyethylene glycol (PEG, FW5 2000, Alfa) as
raw materials. The polymeric precursor for the Y2O3 was pre-
pared by mixing an appropriate amount of nitrate salt and PEG
into distilled water. After heating and stirring at 801C, a trans-
parent aqueous precursor solution was obtained. The precursor
solution was then heated until the solution evaporated, leaving a
soft, light brown, aerated gel. The dried gel was ground with an
agate mortar and pestle, then calcined in air at various temper-
atures to obtain Y2O3 powders with different particle sizes in the
range of 10–60 nm.
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Mg21 and Nb51 were used as cation dopants substituting
Y at 1 at.%. First, Y2O3 powders were dispersed in isopropyl
alcohol. A solution containing Mg(NO3)2 was then added into
the Y2O3 dispersion and the slurry was flocced by increasing
the pH using NH4OH. The flocced material was dried and
later calcined in air at 6001C for 2 h to yield a uniform MgO
coating on Y2O3 particles. For Nb doping, an (isopropyl) alco-
hol dispersion of Y2O3 was first mixed with a solution of nio-
bium isopropoxide, and the mixture was next hydrolyzed by
adding deionized water at room temperature. The slurry was
dried and calcined at 6001C for 2 h. To avoid SiO2 con-
tamination, powder processing was conducted using plastic
ware only, and sintering was performed using a dedicated
‘‘clean’’ furnace.

(2) Powder Compacts and Sintering

Pellets (diameter5 10 mm, thickness5 10 mm) were prepared
by die pressing followed by cold isostatic pressing. Pressure up
to 310 MPa was applied to obtain green bodies with different
densities. Subsequent sintering was conducted in air.

(A) Normal Sintering: Normal sintering up to 16001C
used a constant heating rate of 101C/min. After reaching the
desired temperature, the power was turned off to allow samples
to cool naturally in the furnace. The specimen dimensions were
measured in situ during heating in a lateral dilatometer using
dense alumina as a reference. Isotropic shrinkage was found,
which allows the density to be calculated from the current length
and the final density measured by the Archimedes method. Den-
sity data are presented in fraction or percentage of the theoret-
ical density, taken as 5.013 mg/m3 for Y2O3.

(B) Two-Step Sintering: In two-step sintering, the sam-
ple was first heated at 101C/min to T1, then cooled at 501C/min
to T2 and held there from 6 to 30 h. This schedule was chosen to
minimize densification during heating and cooling transients.
Runs interrupted after the first step or during the second step
were performed in order to examine intermediate micro-
structure. The specimen dimensions were also measured in situ
throughout two-step sintering using the same dilatometer.

(3) Characterization

Initial particle size was determined using transmission electron
microscopy, scanning electron microscopy (SEM) and X-ray
diffraction. In the Archimedes method for density measure-
ments for samples with only closed porosity, distilled water
was used as the displacement fluid and the estimated accuracy
was within70.01 g/cm3. For each experiment, the average den-
sity of three pellets was used in the analysis (their densities were
within 72% of each other). For samples with open porosity,
such as after first-step sintering, the density was estimated from
the weight and dimension of duplicate specimens; the estimates
were consistent with the data of dilatometry. Microstructures of
sintered compacts were observed in an SEM using specimens
that were either fractured, or polished and then thermally
etched. At lower densities, the mean grain (particle) size was es-
timated on the fracture surface. At higher densities, the grain
size was obtained by multiplying the average linear intercept
length of at least 500 grains by 1.56.

Dihedral angles were determined using samples sintered in a
previous study from a coarse powder (200 nm).27–29 These sam-
ples had a density of around 85%–90%, and they were subjected
to long annealing at low temperatures to develop the dihedral
angles between pores and grain boundaries. At least 200 dihe-
dral angles were measured for each material to obtain a statis-
tical distribution.

III. Results and Data Analysis

(1) Microstructure of Two-Step Sintering

We have previously published the microstructure of two-step
sintered Mg21-doped Y2O3 using powders with an initial parti-
cle size of 10 nm and a final dense ceramic grain size of 60 nm.12

The temperatures used were 10801C for T1 and 10001C for T2.
To contrast this observation, we here show the microstructure of
a set of coarser ceramics obtained by two-step sintering using
powders of a much larger size, 200 nm.30 These powders were
prepared by a homogeneous precipitation method using urea to
assist precipitation.31 They were spherical in shape and doped
with 1% Mg21. Two-step sintering was conducted using (1)
101C/min heating to T1 (14221C) to gain a density of 84%,
followed by cooling, and (2) reheating at 201C/min to T2 (8001C)
for 11 h to gain full density. Microstructures of the green body
after first-step sintering, and at various time during second-step
sintering, are shown in Fig. 1 to demonstrate the absence of
grain growth at T2. Throughout the second step a constant grain
size of 390 nm was maintained, which is about twice the size of
the starting powder. We are not aware of any other sintering
method that resulted in a less coarsened microstructure, from
starting powder size to dense ceramic grain size, than that in
Fig. 1. Using similar two-step sintering methods, we were able to
densify a Nb51-doped Y2O3 without grain growth in the second
step, starting with a 200 nm powder and reaching a final grain
size of 400 nm (data not shown.)

These experiments were initially conducted to search for an
appropriate (T2) temperature suitable for thermal etching of
partially dense Y2O3 in order to reveal dihedral angles between
pores and grain boundaries. Many such experiments yielded ce-
ramics that continued to densify at T2, eliminating most or all
the pores. From these experiments we concluded that T2 sinte-
ring was feasible for Y2O3 of a grain size of 60–400 nm. In
BaTiO3 and Ni–Zn ferrite, constant grain size sintering in the
70–800 nm range was also demonstrated as shown in the com-
panion paper.14

Measured dihedral angles for undoped and doped Y2O3 are
shown in Fig. 2. They are around 1101 regardless of dopants.
Therefore, doping is not likely to cause a systematic difference in
the microstructure. In particular, the critical size ratio of a pore
to neighboring grains that renders the pore thermodynamically
unstable13 in Y2O3 is likely to be similar regardless of dopants.
These results justify the use of the same F(r) in the following
analysis.

(2) F(r) as a Universal Function

The densification curves during T2 sintering are described next.
Figure 3 shows five sets of data from runs that had no grain
growth, although they varied in composition, sintering temper-
atures (T1 and T2), and starting grain size at T2. According to
Eq. (1), if the function F depends on density only, then these

Fig. 1. Summary of two-step sintering experiment using Y2O3 (with
1%Mg21) starting with spherical powders of a particle size 200 nm. No
grain growth (grain size 390 nm) was observed in the second step.
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data, plotted in a semi-log form, should fall on curves that are
vertically parallel to each other. This is indeed the case.

By plotting normalized densification rate against grain size in
a log–log form (not shown), we obtained an exponent of 3.7,
which is close to four used in Eq. (1). The normalized densifi-
cation rate was further used to determine the activation energy
of grain boundary diffusion, by rewriting Eq. (1) into

dD ¼ dr
rdt

1

FðrÞ
kT

3gO
G4 (2)

The obtained activation energies are listed in Table I and com-
pared with the data in the literature. These grain size exponent
and activation energies are essentially independent of the density
used in the data analysis, which is consistent with the assump-
tion that F(r) is a universal function.

According to Hansen et al.,26 the value of F(r) varies very
slightly between r5 0.75 and 0.85 and is around 12 000 at
r5 0.8. (Here we need to account for a factor three to convert
length measurement to density measurement.) Accepting these

values, we estimated the grain boundary diffusivity and showed
it in Fig. 4. In the above estimate, we have assumed g to be 1
J/m2 and O 7.74� 10�29 m3 in Eq. (2). The dD0 determined for
Y2O3 is (2.3670.40)� 10�12 m3/s; for Y2O3 doped with Mg21

and Nb51, dD0 are (1.0870.15)� 10�6 and (5.7970.11)� 10�17

m3/s, respectively. These values are comparable with those de-
termined from grain boundary mobilities using grain growth
data at higher temperatures (see Table I).32,33

(3) Kinetic Window for Constant Grain Size Sintering

If second-step sintering was conducted at too low a temperature
(T2), sintering proceeded for a while (typically for 5%), then
became exhausted. The normalized densification rates in Fig. 5
(curves A–C) fall below what is expected from F(r), starting at
about r5 0.85. As there was no grain growth at T2, the slow-
down may be attributed to grain boundary diffusion that also
became exhausted. At higher T2, grain growth was observed
during second-step sintering. The normalized sintering rates
again fall below what is expected from F(r), as is also shown
in Fig. 5 (curves D–F), at r40.85. This slow-down is because of
increasing grain size.

The temperature (T2) and the grain size of various samples
that successfully underwent second-step sintering to reach full
density (at least 99% in this paper) without grain growth are
marked in Fig. 6 using solid symbols. They are bordered by two
lines which delineate the ‘‘kinetic window.’’ The open symbols
below the lower boundary line are experiments that showed no
grain growth but densification was exhausted; the open circles
above the upper boundary line are ones in which grain growth
occurred. For each of the latter data, we also draw a horizontal
arrow that points to the final grain size when full density was
reached. It seems reasonable that all the arrows end at the upper
boundary line, as once within the ‘‘kinetic window’’ the grain
size should stop growing. A partial list of the successful two-step
sintering experiments (reaching nearly full density without grain
growth) is given in Table II. It is clear that the lowest T2 required
to reach full density was much lower than those reported in the
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Table I. Activation Energy for Grain Boundary Diffusion
of Y2O3

Sample

Activation energy (KJ/mol)

Present results Reference results

Y2O3 410 340,30 39829

Y–1% Mg 553 63629

Y–1% Nb 310 27229
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literature.32,33 Note that the lowest density after T1 in this table
is 75%, which is the critical density r� expected for pores with a
dihedral angle of 1101–1201 to become unstable.12 (Runs of
lower starting density did not reach full density at T2, and thus
are not included in Table II.)

The ‘‘kinetic window’’ is, to some extent, history dependent
and, thus, not unique. If the powder compact is directly sintered
at an intermediate temperature without pre-firing at the higher
temperature (T1), it follows a somewhat different trajectory.
This is illustrated by the case where 10 nm powders were used to
conduct one-step, isothermal sintering at 11001C, indicated by
the open triangle in Fig. 6. This sample sintered to full density
but also experienced considerable grain growth, bringing the fi-
nal grain size to where the broken arrow points to. Pre-firing at
T1 is therefore important for suppressing grain growth at T2.

Fully dense samples did not resist grain growth indefinitely at
T2. As shown in Fig. 7, the grain size increased after a long in-
cubation time. The grain growth curve is concave upward,
which is highly unusual because the typical (parabolic) grain
growth curve has a concave downward shape.32,34 As the driving
force for grain growth diminishes with time, the upward curva-
ture must reflect an increase in grain boundary mobility with
time, which, again, is a highly unusual observation.

(4) Mg and Nb Doping

The normal sintering and grain growth curves of three 30 nm
powders, Y2O3, Mg-doped Y2O3, and Nb-doped Y2O3 are dis-
played in Fig. 8 for comparison. Here, the highest temperature
reached was 15001C for Y2O3, 13501C for the Mg-doped sam-
ple, and 16001C for the Nb-doped sample. They clearly show
that, at higher temperatures, Mg enhances kinetics while Nb
does the opposite. At lower temperature, less shrinkage in the
Mg-doped sample is because of greater extent of coarsening in
the powder (not shown). This coarsening occurs during calcina-
tion (6001C for 2 h), and it proceeds by surface diffusion which
Mg-doping also promotes.35

The effect of Mg and Nb doping in two-step sintering paral-
lels that in normal sintering and grain growth. This is evident in
Table II in which T2 is clearly lower for Mg-doped samples than
undoped samples. The opposite effect is seen for Nb doping.
The ‘‘kinetic windows’’ of constant grain-size sintering at T2 are
outlined for doped Y2O3 in Fig. 9. Compared with Fig. 6 for
undoped Y2O3, these windows are shifted in temperature to re-
flect the enhanced/depressed kinetics because of doping. As be-
fore, the arrows in Fig. 6 indicate the extent of grain growth at
higher temperatures. Again, the arrows end at the upper bound-
ary of the ‘‘kinetic window.’’ We also show, by triangles, two
doped samples of 10 nm powders, sintered in one step at inter-
mediate temperatures. As they have a substantially different
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versal density function F(r). Same notation as in Fig. 3. No grain growth
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h; B, 12501, 10001C—10 h; and C, 12501, 9501C—10 h. Grain growth
was observed in D, 13101, 13001C—10 h; E, 13101, 12501C—10 h; and F,
13101, 12001C—10 h.
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Fig. 6. Temperature (T2) and grain size used for second-step sintering
in Y2O3. Solid symbols are ones reaching full density without grain
growth; open symbols did not. Data above the upper boundary had
grain growth (arrow from initial to final grain size); data below the lower
boundary did not fully densify. Triangle represents a one-step sintering
experiment at the temperature shown, with grain size starting at the tri-
angle and growing to the arrowhead, when full density was reached.

Table II. Two-Step Sintering of Y2O3 (30 nm Powders)

Sample r0 (%)

After first-step sintering After second-step sintering

T1 (1C) t1 (h) r1 (%) G1(nm) T2 (1C) t2 (h) r2 (%) G2 (nm)

Y2O3-1 44 1250 0 75 122 1150 20 99.5 125
Y2O3-2 44 1250 0 75 122 1100 30 99.0 123
Y2O3-3 44 1310 0 80 138 1150 20 99.6 140
Y2O3-4 44 1310 0 80 138 1100 30 99.6 140
Y2O3-5 44 1350 0 85 160 1150 20 99.5 165
Y2O3-6 44 1350 0 85 160 1100 30 99.0 162
Y2O3-7 44 1400 0 88 200 1150 20 99.5 202
Y2O3-8 44 1400 0 88 200 1050 40 99.0 196
Y–1%Mg-1 44 1250 0 78 116 1100 20 100 120
Y–1%Mg-2 44 1250 0 78 116 1050 30 100 118
Y–1%Mg-3 44 1300 0 84 155 1050 20 100 157
Y–1%Mg-4 44 1300 0 84 155 1000 20 100 160
Y–1%Nb-1 44 1450 0 82 115 1250 20 99.2 120
Y–1%Nb-2 44 1450 0 82 115 1200 40 99.0 118
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thermal history, their grain size trajectories were again not
bounded by the boundary lines.

IV. Discussion

To achieve densification without grain growth, grain boundary
diffusion needs to be maintained while grain boundary migra-
tion is suppressed. It is well known that the kinetics of these two
processes are decoupled when solute drag of the grain boundary
is involved, because the latter entails lattice diffusion that has a
higher activation energy. Indeed, solute drag is an effective
strategy for controlling abnormal grain growth in final-stage
sintering.2 In our case, however, solute drag cannot be a signif-
icant factor as the same phenomena were also observed in (Mg)-
doped samples that showed enhanced grain boundary kinetics.
We previously suggested that another drag mechanism, because
of relatively immobile triple points (including three-grain junc-
tion lines, four-grain junction points and their equivalent in-
volving grain/pore junctions), may provide a decoupling
mechanism.10,11 This idea is schematically sketched in Fig. 10
that delineates the grain boundary mobility Mb and junction
mobility Mj, assuming the latter has a higher activation energy.
The mobility of the grain boundary network, which is required
to allow grain growth in a polycrystal, is given by
(Mb
�11Mj

�1)�1. Therefore, the network mobility follows the

grain boundary mobility at high temperature and junction mo-
bility at low temperature, and below the temperature when
MbBMj it is essentially frozen despite considerable grain
boundary diffusion. Direct observation of triple point drag
has been reported by Czubayko et al. in high purity zinc tri-
crystals at low temperature.36,37 They found the moving grain
boundaries maintained a (triple-point) dihedral angle o1201 in
order to exert a force on the grain junction to pull it forward. At
higher temperatures, the dihedral angle reverted to 1201, indi-
cating little triple-point drag. The same drag could occur in our
samples at T2. Meanwhile, as densification does not involve
grain boundary migration, it still proceeds via grain boundary
diffusion.

The crossover depicted in Fig. 10 and the kinetic windows
shown in Figs. 6 and 9 provide helpful guides to experimental
design but are probably not unique in view of the evidence of
history dependence and thermal hysteresis/transisent in our
study. Such evidence includes (a) slowdown and exhaustion of
diffusion at low temperature, (b) incubation time for grain
growth to initiate after constant grain-size sintering, and (c)
thermal history dependence of the kinetic window. This may be
caused by the slow equilibration of defect configurations on the
grain boundaries, pore surface, and pore/grain junctions at low
temperatures. Therefore, at intermediate times, long transients
and possibly metastable states may reign. Meanwhile, pre-firing
at T1 may have locked pore/grain junctions into stable config-
urations that are not kinetically accessible at T2, and the grain

Fig. 7. Density and grain size of Y2O3 (with 1% Mg21) sintered in the
second step at 10001C for 60 h. Sample previously preheated to 11201C
(T1) without holding.
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boundary movement may entail the transition states of these
configurations that have activation barriers insurmountable at
T2. As a result, pre-firing at T1 followed by sintering at T2 may
enhance the pinning effects and make possible constant-grain-
size sintering.

Another possible reason that a higher T1 is required for two-
step sintering is the different sintering mechanisms below and
above the critical density. Below the critical density, particle
coarsening and repacking (not unlike that in liquid-phase sinte-
ring) are the mechanisms responsible for densification,35 because
otherwise the pores should grow as expected from the theory of
Kingery and Francois.13 Although particle coarsening is
achieved by surface diffusion, which typically has a lower acti-
vation energy than grain boundary diffusion, some repacking
events could require more robust kinetics available only at a
higher temperature. If so, a higher T1 would be needed. On the
other hand, once the critical density is reached, grain boundary
diffusion alone is sufficient to cause densification even if the
microstructure is frozen, as illustrated by our experiments.
Therefore, a lower T2 will suffice as long as it is not too low
to exhaust diffusion.

The temperature range in the kinetic windows depicted in
Figs. 6 and 9 widens with grain size. This shape has also been
observed in BaTiO3 and Ni–Zn ferrite,14 suggesting that it is a
general feature for T2 sintering. If so, we may conclude that a
larger grain size may postpone the exhaustion of diffusion at
lower T2 and the non-parabolic grain growth at higher T2. As
the driving force for grain growth decreases with grain size, the
delay of grain growth by increasing grain size is reasonable.
Meanwhile, the delay of diffusion exhaustion by increasing grain
size is consistent with the common notion that grain boundary
diffusion may be limited by source/sink actions (e.g., kinks and
ledges required to provide and accommodate atoms and point
defects) at small grain sizes.38–41 As diffusion proceeds, some of
these kinks and ledges are eliminated by migrating atoms/point
defects; after that diffusion may be exhausted if sources/sinks
are not replenished by fresh nucleation. The size effects on nu-
cleation are well known; for example, a source/sink in the form
of a screw dislocation loop entails a nucleation energy that is
inversely proportional to the grain size, so that a threshold stress
on the order of 2g/G, amounting to 20 MPa for a grain size of
100 nm, is obtained. Such sluggish kinetics for source/sink nu-
cleation may be eventually overcome after a long incubation
time. According to Fig. 7, this requires 10 h at 10001C with Mg
as ‘‘sintering aid.’’ Such a long incubation time is not entirely
surprising given that Y2O3 has a melting point of 24401C, so
most of our T2 experiments fell below or were around 0.5 of the
homologous temperature.

We now return to the universal sintering function F(r). Un-
like the previous reports of Zhao and Harmer25 (r490%) and

Hansen et al.26 (75%oro95%), our F(r) decreases much more
rapidly, by a factor of about 4.5 from r5 0.75 to 0.9, and by
another factor of about 10 from r5 0.9 to 0.99. In contrast,
Hansen et al. found a decrease of no more than a factor of three
in total, and Zhao et al. reported a slight increase. Interestingly,
our data in Fig. 3 are empirically consistent with an exponential
decay, i.e., F(r)Bexp(�cr) where c is a rather large constant,
around 24 for r40.88. This form of F(r) has been previously
noticed by Cameron and Raj.5 To understand these differences,
we note that in normal sintering, the microstructure is constant-
ly refreshed by grain growth, bringing the remaining pores to
coalesce and then to relocate at the newly formed four-grain
junctions. As a result, the diffusion distance in normal sintering
could remain commensurate with the characteristic grain size
even as densification progresses. In our experiments, however,
the grain boundary network is frozen. Therefore, as pores
around smaller grains that have a shorter diffusion distance
are removed first, the remaining pores around larger grains that
have a longer diffusion distance remain and become dominant.
The effective pore spacing thus constantly moves toward the
larger-size end of the grain size distribution, which may be re-
sponsible for the exponential-like decrease of F(r). This decrease
is very steep, because an increase in the pore spacing by a factor
of two lowers the normalized sintering rate by a factor of 16
according to Herring.27

Despite the rapid decrease of F(r), constant-grain-size sinte-
ring at T2 still offers the advantage of lower sintering temper-
ature. Using powders of the same initial particle size, the lowest
T2 achieved in our experiments was always lower than the tem-
perature of conventional isothermal sintering. For example, for
30 nm powders, the lowest T2 successfully used for Y2O3 was
10501–11001C, whereas isothermal sintering at 12001C for 10 h
was required to reach 99% density. Likewise, for Mg-doped
Y2O3 at the same initial powder size, the lowest T2 successfully
used was 10001–10501C, whereas isothermal sintering at 11001C
for 10 h was required to reach full density. This illustrates the
advantage of lowering the sintering temperature to maintain a
constant grain size once the critical density is reached. It is also
clear that further advances in sintering dense nanograin ceram-
ics may come from using finer powders and/or other processing
methods to achieve the critical density with an even finer micro-
structure. In the companion paper, we provide one such exam-
ple using high green density (61%) to lower T1.

14

Lastly, we acknowledge that the discrepancy in F(r) between
our data and the previous studies makes our earlier estimate of
dD0, based on the model of Hansen et al.,26 inaccurate. How-
ever, the uncertainty here is of the order of 10–50, which is well
within the scatter of typical diffusion data. Therefore, our con-
clusion that second-step sintering proceeds by grain boundary
diffusion should remain valid.

V. Conclusions

1. Two-step sintering in Y2O3 with and without a dopant
proceeds by grain boundary diffusion. The suppression of grain
growth may be attributed to triple point immobility, which is
facilitated by high-temperature (T1) pre-firing.

2. Constant grain-size sintering of Y2O3 to nearly full
density was achieved at 8001C, which is less than 0.4 of the
homologous temperature. The kinetic window for second-step
sintering has a characteristic shape, spanning a wider tempera-
ture range with increasing grain size. At higher temperatures,
grain growth occurs, for which the driving force diminishes as
grain size increases. At lower temperatures, diffusion manifests
long transients and eventually comes to exhaustion especially
at smaller grain sizes. Dopants may enhance or suppress the
overall kinetics and shift the temperature range of the kinetic
window, but not affect the above general features.

3. The pre-factor in the Herring’s scaling law in constant
grain size sintering follows an exponential decay. It implies a
gradual increase of pore spacing. This is because pores around

Fig. 10. Schematic Arrhenius plot for grain-boundary diffusion,
mobility of pore/grain-boundary junction or four-grain junction, and
intrinsic mobility of grain boundary (without drag) which is parallel
to grain-boundary diffusion.
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larger grains are more difficult to sinter, and they become dom-
inant later.

4. Applying two-step sintering to Y2O3, a coarsening ratio
of two, from powder particle size to dense ceramic grain size,
was achieved using 200 nm powders. This ratio was 6 for 10 nm
powders, which is still much lower than in conventional sinte-
ring. Therefore, the two-step method offers a promising
approach for fabrication of bulk nanograin ceramics.
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