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Physical Insight Into the “Growing” Evanescent Fields of Double-Negative
Metamaterial Lenses Using Their Circuit Equivalence

Abstract
Pendry in his paper, “Negative refraction makes a perfect lens” (Phys. Rev. Lett., vol. 85, no. 18, pp.
3966–3969, 2000) put forward an idea for a lens made of a lossless metamaterial slab with n = -1, that may
provide focusing with resolution beyond the conventional limit. In his analysis, the evanescent wave inside
such a lossless double-negative (DNG) slab is “growing,” and thus it “compensates” the decaying exponential
outside of it, providing the subwavelength lensing properties of this system. Here, we examine this debated
issue of “growing exponential” from an equivalent circuit viewpoint by analyzing a set of distributed-circuit
elements representing evanescent wave interaction with a lossless slab of DNG medium. Our analysis shows
that, under certain conditions, the current in series elements and the voltage at the element nodes may attain
the dominant increasing due to the suitable resonance of the lossless circuit, providing an alternative physical
explanation for “growing exponential” in Pendry’s lens and similar subwavelength imaging systems.
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V. CONCLUSION

The preconditioning scheme adopting the interactions between ele-
ments inside a cell of the array—SSRs or thin-strips— as blocks excels
as a suitable tool to analyze systematically and most efficiently finite
composite structures in metamaterials. It has been compared with tra-
ditionally successful tools in the MoM-EFIE analysis such as the ILU
preconditioner relying on a geometrically based selection of a banded-
diagonal portion of Z , for the cases where the required resources are
available in our PC, and a blockwise memory-efficient modification for
the case of problems with very large number of unknowns. In all the
cases tested, the geometric block-diagonal preconditioner reaches con-
vergence in less number of iterations and total computational time.
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Physical Insight Into the “Growing” Evanescent Fields of
Double-Negative Metamaterial Lenses Using

Their Circuit Equivalence

Andrea Alù and Nader Engheta

Abstract—Pendry in his paper, “Negative refraction makes a perfect
lens” (Phys. Rev. Lett., vol. 85, no. 18, pp. 3966–3969, 2000) put forward an
idea for a lens made of a lossless metamaterial slab with = 1, that
may provide focusing with resolution beyond the conventional limit. In his
analysis, the evanescent wave inside such a lossless double-negative (DNG)
slab is “growing,” and thus it “compensates” the decaying exponential
outside of it, providing the subwavelength lensing properties of this system.
Here, we examine this debated issue of “growing exponential” from an
equivalent circuit viewpoint by analyzing a set of distributed-circuit
elements representing evanescent wave interaction with a lossless slab
of DNG medium. Our analysis shows that, under certain conditions, the
current in series elements and the voltage at the element nodes may attain
the dominant increasing due to the suitable resonance of the lossless circuit,
providing an alternative physical explanation for “growing exponential”
in Pendry’s lens and similar subwavelength imaging systems.

Index Terms—Double-negative (DNG) metamaterials, left-handed (LH)
metamaterials, subwavelength resolution.

I. INTRODUCTION

The idea of left-handed (LH) media, which dates back to 1967 when
Veselago [1], theoretically studied plane wave propagation in materials
inwhich he assumed both permittivity and permeability simultaneously
having negative real parts, has attracted a great deal of attention in re-
cent years. Various problems and ideas involving such media have been
proposed and studied by many research groups. One such idea, namely
a lens with possibility of perfect focusing, was theoretically suggested
by Pendry in [2]. In his analysis, Pendry shows how evanescent waves,
which are effectively responsible for subwavelength resolution, im-
pinging on a suitably designed slab of double-negative (DNG) [3] ma-
terial, may grow exponentially inside such a slab, and how this ef-
fect may “compensate” the decaying exponential taking place outside
the slab [2]. This issue of “growing exponential” and subwavelength
imaging has become the subject of interest for several research groups
working in metamaterial research (see, e.g., [4]–[7]). Analogous sub-
wavelength focusing and growing evanescent distributions have been
demonstrated in two-dimensional negative-refractive-index transmis-
sion line structures [8], [9].
In one of our previous works, we have shown how a similar phenom-

enon of “growing exponential” may occur in pairs of “conjugate” meta-
material slabs, i.e., pairs of DNG and double-positive (DPS) slabs or
pairs of single-negative (SNG) layers such as epsilon-negative (ENG)
and �-negative (MNG) layers [10]. In these cases, we have shown how
wave tunneling, transparency, and virtual image subwavelength dis-
placement may be achieved under a proper choice of combinations
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Fig. 1. Geometry of the problem and equivalent TLmodel for a TMevanescent
wave impinging on the Pendry’s perfect lens.

of metamaterial parameters and slab thicknesses, independent on the
property of the “outside” medium that surrounds the pairs of slabs. We
attributed these findings to the presence of an “interface resonance” at
the boundary between the two conjugate slabs. It is worth noting that
these pairs of conjugate slabs also supported growing evanescent fields
internally when an incident wave impinges on them. We showed how
the “interface resonance” may be explained using the circuit-element
analogy, when the conjugate distributed-circuit elements are paired to
produce similar resonances and growing distributions for the voltage
and currents.

In the present communication, we apply the same concepts to ex-
plain how Pendry’s lens may be viewed as a special case of a more
general analysis of pairs of conjugate slabs described in our previous
work [10] and how the growing evanescent field behavior in his lens
may be clearly understood using the equivalent circuit analogy. Some
of our preliminary results in this work were presented in a recent sym-
posium [11].

II. FORMULATION OF THE PROBLEM

As in Pendry’s lens case [2], here we consider a plane wave im-
pinging on a metamaterial slab with "slab="0 = �slab=�0 = �1, as
depicted in Fig. 1 (top). The electromagnetic problem can be solved by
matching the boundary conditions at the interfaces z = 0 and z = d,
obtaining the values for the Fresnel transmission and reflection coef-
ficients. The solution implies that on the plane z = 2d each plane
wave, whether propagating or evanescent, would have exactly the same
value as the one it has at z = 0, essentially showing how such an
ideal “matched” DNG slab acts as a “perfect” lens, providing an image
of the object plane at z = 0 without any limit on the resolution [2].
The evanescent waves inside this DNG slab, moreover, “grow” instead
of decaying for both polarizations. As we show in the following, an
equivalent circuit representation may provide a similar, but arguably
more familiar, behavior for voltages and currents in suitably selected
distributed circuit elements, thus providing new physical insights into
this phenomenon.

III. CIRCUIT EQUIVALENCE

Consistently with our analysis in [10], the e�jk x plane wave prop-
agation in a homogeneous isotropic medium with permittivity " and

permeability � may be viewed as formally analogous to the transmis-
sion line equations @V=@z = �j!LeqI; @I=@z = �j!CeqV , with
the equivalent series inductance per unit length Leq and equivalent
shunt capacitance per unit length Ceq being proportional respectively
to the equivalent permeability and permittivity, which in the TM case
are given by ~�eq � �[1� k2x=(!

2�")]; ~"eq � " (the TE case may be
easily obtained by duality). It is worth noting that the transmission-line
analogy may in general offer an interesting physical interpretation and
alternative insight, effectively linking the voltage and current distribu-
tions along a circuit network to their local counterparts represented by
the electric and magnetic fields. This is well known in the DPS case
[12], but it is easily extended to the metamaterial parameters, as it has
been shown in [8]–[10].
We note that even in a conventional DPS material, where � and "

are positive, the value of Leq in the TM case and Ceq in the TE case
may become negative, when k2x > !2�", i.e., for an evanescent wave.
As is well known, a negative equivalent inductance or capacitance at
a given frequency may be interpreted effectively as a positive (disper-
sive) capacitance or inductance at that frequency, respectively [8], [10].
Therefore, for the TM case the evanescent plane wave propagation in
a DPS medium may be modeled using a transmission line with a neg-
ative series inductance per unit length and a positive shunt capacitance
per unit length, which effectively implies a positive series capacitance
per unit length and a positive shunt capacitance per unit length. In such
a C � C line, which is a ladder network made of capacitors, currents
and voltages cannot “propagate” along the line, but instead they have
an evanescent behavior, consistently with the electromagnetic coun-
terpart. When a DNG material or an ENG or MNG medium is used,
their suitable equivalent TL models may exhibit anomalous properties
consistent with the features of wave propagation in such media. For
the TE polarization, one may consider Table I showing the equivalent
TL model for plane waves in lossless homogeneous isotropic media,
with all possibilities for signs of the real part of their permittivity and
permeability, both for the cases of propagating and evanescent waves.
When losses are present, � and/or " have complex values, which trans-
lates into positive series resistance and/or shunt conductance in the TL
model. (A similar table for the TM polarization was presented in [10].)
If we now consider Pendry’s lens problem, the equivalent 1-D TL

model may be depicted as in Fig. 1 (bottom), where a TM evanescent
wave, impinging on a “matched” DNG slab, is considered. In the
figure, we have considered k2x > !2�0"0 = !2�slab"slab, which
gives an evanescent wave in the vacuum and inside the slab. The
primary parameters of the TL sections may be derived from the
previous discussion: when the equivalent inductors or capacitors are
negative, in the figure they are respectively shown as effective capac-
itors or inductors, i.e., since Ceq < 0 and Leq < 0, we have
(j!Ceq )�1 = j!Le� , and j!Leq = (j!Ce� )�1. More-
over, since for Pendry’s “matched” DNG slab Ceq = �Ceq

and Leq = �Leq for any kx, their values satisfy the following
relations:

Leq Ce� = Le� Ceq = !�2 8kx: (1)

From this relation, we get the following expressions for the sec-
ondary parameters Z and � of each line segment, shown in (2) at the
bottom of the page, which ensure that the magnitudes of the character-
istic impedances and of the wave numbers are the same in the two lines,

jZjslab � ! Leq Le� = ! Ceq Ce�
�1

� jZjvac
�2slab � �Leq =Le� = �Ceq =Ce� � �2vac

8kx (2)
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TABLE I
EFFECTIVE TL MODELS IN LOSSLESS DPS, DNG, ENG, MNG SLABS FOR THE TE PROPAGATING AS WELL AS EVANESCENT WAVES

and that they are all imaginary quantities (since the wave is evanescent).
Nothing is said in (2) on their signs, but they may be derived from the
following considerations.

The signs of the imaginary wave numbers � in theC�C and L�L
ladders have to be negative, to ensure the exponential causal decay in an
infinite or a matched line with e�j�z propagating factor. For what con-
cerns the signs of the characteristic impedances for an L�L orC�C
line, we obviously expect to have inductive or capacitive characteristic
impedance for these lines, respectively. (A more rigorous demonstra-
tion may be obtained by adding a small amount of losses to the TL
parameters, in order to select the proper branches of the square roots
with positive real part, similarly to what shown in [3].) This results in
the following expressions (where we choose always the positive sign
for the square roots):

�vac = �j Ceq =Ce� ; �slab = �j Leq =Le�

Zvac = j! Ceq Ce�

�1

; Zslab = j! Leq Le� :

(3)

These formulas clearly show that, unlike the case of propagating
wave interaction with this DNG slab where the impedances are
matched [2], [3], for the evanescent waves the two media are not
impedance-matched, since Zvac = �Zslab, but on the other hand at
the interface a resonance arises, giving rise to a reflection coefficient
R = Zvac � Zslab=Zvac + Zslab = 1. This “interface” resonance is
the key in understanding the anomalous behavior of this setup, and the
circuit analogy gives a further insight into this phenomenon.

Equation (2) and the previous consideration, in fact, imply that at
each of the two interfaces between vacuum and the DNG slab, the ad-
jacent series elements Ce� and Leq would resonate at the fre-
quency of operation for any kx (this is of course the circuital counter-
part of the surfacewaves supported by such an interface [2], [13], which
indeed play a key role in the physics of the subwavelength imaging
[5]–[7]). Therefore, looking at the right interface (node n = n0 in the
figure), we note that the voltage at the left node of this Leq (n � 1
in the figure) is the same as the voltage at the right node of this Ce�

(n0
� 1 in the figure). Consequently, the next two adjacent shunt ele-

ments Le� and Ceq are now in parallel and they are also in res-
onance, again according to (2). Repeating this argument, we note that
effectively a segment of theC�C line with length d would be in reso-
nance with the entire L�L line that represents the matched DNG slab

with the same thickness d. In fact, we expect that the voltage and cur-
rent at every node i are the same as those at the corresponding node i0.
Therefore, the voltage and current at one end (node 0) of this “resonant
pair” ofC�C andL�L lines (each with length d) would be the same
at those at its other end (node 0’), which implies that this pair appears
to become “transparent” to the rest of the structure. This also means
that if in the C � C segment we have a decaying exponential voltage
(which is the only physical possibility), we should have a “growing ex-
ponential” voltage in the L � L segment in order to have the voltage
nodes the same at the beginning and at the end of this pair. In fact, due
to the multiple reflections at the two interfaces, each with an “infinite”
reflection coefficient, the “reflected growing” exponential builds up in
the steady-state regime and totally dominates the impinging decaying
exponential in the DNG slab by itself. It is important to underline here
that the presence of the “growing” exponential in the L � L line is
due to the “interface” resonance at the boundary between the C � C
and L � L lines, and it is not just only due to the L � L line (i.e.,
the DNG slab) by itself [as confirmed also by (3)]. In other words, in a
dual scenario if we had had a “vacuum” slab sandwiched between two
semi-infinite DNG half spaces, following a similar argument we would
have seen the growing exponential in the vacuum slab region!
A further confirmation of the presence of the growing exponential in

theL�L line segment sandwiched as in Fig. 2may be found directly by
solving such a circuit network. Let us excite this circuit with a steady-
state time-harmonic voltage source Vexc at a given node in the semi-
infinite C �C transmission line on the left of the L�L segment. We
have shown above that the pair of L � L segment together with the d
-long C�C segment is in resonance and thus “transparent” to the rest
of the structure. Therefore, we expect to have the voltage and current
in the left C � C segment to be related as follows:

Iexc =
Vexc
Zvac

= j! Ceq Ce� Vexc =
j Vexc

! Leq Le�

(4)

as in any matched or infinite line. For the same reason, the node volt-
ages and branch currents along the C � C line in the left decay ex-
ponentially, due to the imaginary value of �vac shown in (3), until we
get to the left interface between the C � C and L � L lines, which
is denoted in the figure with node “0”. Let us denote the node voltage
at this interface V0, and the series branch current I0, which can be ex-
pressed as I0 = j! Ceq Ce� V0, following (4). As we move into
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theC�C line, we can evaluate the node voltage Vn and the current In
in the following branch at the nth node with the recursive relations:

V (n) = V (n� 1)� j!Leq I(n� 1)

I(n) = I(n� 1)� V (n)=(j!Le� )

V (0) = V0

I(0) = j! Ceq Ce� V0

= �j! Leq Le�

�1

V0 = I0: (5)

This is analogous to the Fibonacci problem, and the explicit solution
may be written for even n as

V (n) =
V0(4 + 1)n=2�1

(2)n�1

�
n�2

k=0

n� 1

k

� n� k � 1

k + 1
(2 + 1) + 2

p
 � 1

2 + 1p
4 + 1

k

I(n) =
I0(4 + 1)n=2�1

(2)n�1
�

�
n�2

k=0

n� 1

k

� n� k � 1

k + 1
(2 + 1) + 2

p
 + 1

2 + 1p
4 + 1

k

(6)

where  = Le� =Leq . The values of V (n) and I(n), as in any
pseudo-Fibonacci series, grow exponentially with n. This growth con-
tinues until we reach the right interface of the L�L segment. Beyond
this interface, we are in the C � C segment, and with a similar ar-
gument we expect to have a decaying exponential with symmetrical
values as in the L� L segment, i.e., V (j0) = V (j); I(j0) = I(j) for
any 0 � j � n. Therefore, the maximum values of V (n) and I(n) are
expected to be at the interface n = n0, as predicted by Pendry in his
DNG slab [2]. We have thus far shown how a “growing” exponential
behavior inside a matched DNG slab of thickness d may be justified
using the circuit equivalence with the L�L and C �C lines. In fact,
as we have mentioned in our previous work, one can suggest that this
field behavior may also exist when a DNG slab is juxtaposed with a
“conjugate” DPS slab of the same thickness (in the present case, this
DPS layer is part of the outside vacuum region), or an epsilon-negative
(ENG) slab paired with a mu-negative (MNG) slab of equal thickness
[10] (and these cases would show total transparency independently of
the parameters of the outside region surrounding the system).

In principle, this anomalous transparency is independent of the thick-
ness of the two slabs (or in Pendry’s lens of the DNG slab itself), as
long as the slabs have equal thickness d. However, an important ques-
tion may arise here: May we still have a growing exponential behavior
inside the DNG slab (or equivalently inside the L� L line here), if its
thickness becomes infinite, i.e., if we have a semi-infinite DNG space?
According to the analysis presented here, the answer is as follows: we
need both interfaces to achieve this exponential growth, therefore this
effect may not take place if the second interface is at infinity. Moreover,
due to the multiple resonances/reflections that are necessary for the
phenomenon to build up, a thicker slab should be more sensitive to the
inherent losses of the setup and more time should be also required for
the phenomenon to build up and reach the steady-state regime. There-
fore, even if the second interface is too far apart (and not at infinity) in
practical systems the growing exponential may disappear. This is con-
sistent with the findings reported in the literature (see, e.g., [14], [15]).

It is known, however, that an interface between the semi-infinite
matched DNG and DPS media may indeed support a surface plasmon
wave [2], [5], [13]. In this case, for an incoming evanescent wave, the
transverse impedances of the two regions are complex conjugate of
each other, i.e., ZL�L � �ZC�C = jX , and therefore the Fresnel
“reflection” and “transmission” coefficients for such an incident
evanescent wave become infinite, as we have previously found for
each of the two interfaces in the circuit analog. We reiterate that this
in principle does not violate any physical law, since these coefficients
here describe the relation between an “incident” evanescent wave
and its “reflected” and “transmitted” evanescent waves, neither of
which carries any real power. So when we have a source in front
of the interface between two semi-infinite matched DNG and DPS
media, the resonant surface wave may be excited along the interface,
resulting in an infinitely large field value. However, on both sides of
this interface, the fields, albeit infinitely large, decay exponentially,
since the field distribution represents a surface wave propagating along
such an interface.

IV. EFFECTS OF LOSS AND MISMATCH IN MATERIALS

Thus far we have assumed complete losslessness and match between
the DNG and the outside region.When loss and/or mismatch in the ma-
terial parameters is present, we expect to have certain variations to the
field distribution in this geometry, and as the DNG slab gets thicker,
such variations would be more sensitive to the presence of loss andmis-
match, as also anticipated. This sensitivity is mainly due to the presence
of the surface wave supported by the slab (notice that the matched slab
without losses, in fact, does not support any surface wave, even thought
the two interfaces delimiting the slab would do so). If the structure sup-
ports a surface wave with a given kx > k0, in fact, the reflection and
transmission coefficients for the DNG slab would no longer be flat for
all kx, but instead would experience a peak (or a singularity in case of
no loss) at the value of kx for which the surface wave is supported. This
has been shown by others in several recent papers studying this phe-
nomenon [16]–[18] and indeed limits the overall resolution to certain
extent, which can still be subwavelength, better than the conventional
resolution.
The effects of loss and mismatch may again be explained by the

equivalent circuit models described here. In the ideal lossless matched
case, we showed that for any value of kx, the Ce� series capacitors
are all in resonance with the corresponding series Leq and simi-
larly everyCeq shunt capacitor is in resonance with a corresponding
shunt Le� . The quality factor Q, of such a resonance is thus infin-
itely large. However, the loss in the system causes the quality factor
Q to become finite, resulting in a quicker drop of the transmission for
high kx (for which the equivalent electrical length of the TL increases).
Moreover, the mismatch does not allow a “perfect” resonance between
the inductors and capacitors mentioned above for all value of kx : only
for certain kx such a resonance may still occur.

V. CONCLUSION

Considering the plane wave interaction with Pendry’s “perfect”
lens, we have shown how this problem may be treated equivalently
as a finite segment of L � L line, representing the DNG slab for
the evanescent wave, sandwiched between two semi-infinite segments
of C � C lines, representing the outside DPS regions for the TM
evanescent wave. In this analogy, voltages and currents represent the
electric and magnetic fields. We have analyzed the overall circuit,
showing the possibility of explaining the growing exponential term
for the electromagnetic field along the DNG segment as a resonant
phenomenon in the circuit, with an analogous growth of voltage and
current distributions. The model is effective also in presence of losses,
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which are represented by resistances and conductances and may give
further insights into the anomalous phenomenon of subwavelength
imaging utilizing metamaterials.
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Backscattering from Square Plates Illuminated With
Vertical Polarization

R. Alexander Ross

Abstract—The geometrical theory of diffraction is used to describe
backscattering by a square flat plate as a function of aspect angle. When
the plate is illuminated with vertical polarization, singly diffracted terms
are augmented by a new doubly diffracted contribution that accounts for
grazing phenomena. The latter term is obtained from a related analysis that
describes bistatic scattering from a flat plate. Predictions are compared
with numerical results from the method of moments for plates between 2
and 7 wavelengths on a side. The modified theory accurately predicts the
radar cross section of square plates as small as 3 wavelengths on a side.

Index Terms—Geometrical theory of diffraction (GTD), grazing inci-
dence, radar cross section (RCS), square flat plates.

I. INTRODUCTION

Electromagnetic scattering from flat surfaces has been treated ex-
tensively by Keller’s geometrical theory of diffraction (GTD) [1] and
by the uniform theory of diffraction (UTD) [2]. Ross [3] applies GTD
with multiple diffraction to predict backscattering from rectangular
flat plates. Tiberio and Kouyoumjian [4] use UTD to analyze grazing
incidence on strips. Polka et al. [5] compare UTD predictions with
measurements for narrow rectangular plates and present measure-
ments of the oscillation in radar cross section (RCS) with frequency
at grazing incidence. Pelosi et al. [6] examine a square plate to point
out difficulties in applying GTD. Sitka et al. [7] include a first-order
comparison of the modified equivalent current (MEC) and corner
diffraction calculations of backscattering from a small square plate.
Senior [8] discusses grazing phenomena in an investigation of disk
scattering at edge-on incidence. Beyond determinate analyzes, Hes-
tilow [9] reported a statistical analysis of the average RCS of cylinders
and rectangular plates over a symmetric window around broadside.
These studies do not remedy the failure of aysmptotic theory to ac-
count for grazing phenomena observed with finite rectangular plates at
least several wavelengths on a side. Both backscattering and forward
scattering can exhibit large effects when a plate is illuminated near
edge-on incidence with vertical polarization.
The topic of greatest interest in this paper is monostatic scattering

from square plates. However, bistatic scattering is used as part of the
monostatic solution. Briefly, grazing phenomena are interpreted as the
bistatic contribution that is doubly diffracted at the rear edge of the
plate. Formulas are derived using GTD and include an empirical term.
Accuracy is demonstrated by comparing predictions with calculations
based upon the method of moments (MoM).

II. ANALYSIS

Fig. 1 shows a plate lying in theY �Z plane of the coordinate system
used for analysis. The square plate is 2a on a side. It is assumed to be
vanishingly thin compared to a wavelength, and perfectly conducting.
Illumination by a plane wave is depicted with the wave propagation
vector confined to theX � Y plane. The monostatic aspect angle � is
measured from the X-axis and the phase reference is the origin. Our
investigation is restricted to vertical polarization: in Fig. 1, theE vector
is parallel to the Z-axis. The size of the plates varies from 2� to 7�,
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