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Fair Coalitions for Power-Aware Routing in Wireless Networks

Abstract
Several power-aware routing schemes have been developed for wireless networks under the assumption that
nodes are willing to sacrifice their power reserves in the interest of the network as a whole. But, in several
applications of practical utility, nodes are organized in groups, and as a result, a node is willing to sacrifice in
the interest of other nodes in its group but not necessarily for nodes outside its group. Such groups arise
naturally as sets of nodes associated with a single owner or task. We consider the premise that groups will
share resources with other groups only if each group experiences a reduction in power consumption. Then,
the groups may form a coalition in which they route each other’s packets. We demonstrate that sharing
between groups has different properties from sharing between individuals and investigate fair, mutually
beneficial sharing between groups. In particular, we propose a paretoefficient condition for group sharing
based on max-min fairness called fair coalition routing. We propose distributed algorithms for computing the
fair coalition routing. Using these algorithms, we demonstrate that fair coalition routing allows different
groups to mutually beneficially share their resources.
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Fair Coalitions for Power-Aware
Routing in Wireless Networks

Ratul K. Guha, Student Member, IEEE, Carl A. Gunter, Senior Member, IEEE, and

Saswati Sarkar, Member, IEEE

Abstract—Several power-aware routing schemes have been developed for wireless networks under the assumption that nodes are

willing to sacrifice their power reserves in the interest of the network as a whole. But, in several applications of practical utility, nodes

are organized in groups, and as a result, a node is willing to sacrifice in the interest of other nodes in its group but not necessarily for

nodes outside its group. Such groups arise naturally as sets of nodes associated with a single owner or task. We consider the premise

that groups will share resources with other groups only if each group experiences a reduction in power consumption. Then, the groups

may form a coalition in which they route each other’s packets. We demonstrate that sharing between groups has different properties

from sharing between individuals and investigate fair, mutually beneficial sharing between groups. In particular, we propose a pareto-

efficient condition for group sharing based on max-min fairness called fair coalition routing. We propose distributed algorithms for

computing the fair coalition routing. Using these algorithms, we demonstrate that fair coalition routing allows different groups to

mutually beneficially share their resources.

Index Terms—Wireless communication, algorithm design and analysis, energy-aware systems and routing.

Ç

1 INTRODUCTION

WIRELESS networks typically consist of nodes that must
discharge increasingly complex computing and com-

munication functionalities despite rigorous constraints on
power, bandwidth, size, and memory. Significant progress
has been made to improve hardware to address these needs
and much is being done to develop software that uses
techniques like power-optimizing algorithms. Compara-
tively less has been done to exploit sharing among nodes as
a way to address these challenges. This is unfortunate, since
sharing can yield great benefits. A variety of challenges
impede progress:

1. determining which resources can be shared,
2. deciding when to share resources, as sharing would

evidently involve a cost,
3. deciding with whom to share resources, and
4. determining how to share resources.

Often, groups of nodes rather than individual nodes are
basic entities in the sharing mechanism. The resource
expenditure/utilization of the group as a whole is more
important than that of a single node or the entire network.
Groups are often formed on the basis of membership in an
organization or a shared task. For example, employees of an

organization A may carry wearable computers that belong
to A. When these devices form an ad hoc network, they may
share resources with other devices with the objective of
minimizing the total resource consumed by the devices in
A, rather than that of all devices in the network. Thus, the
devices belonging to an organization form a natural group.
Wearable computers involved in one distributed computa-
tion may form a group. In a sensor network, different
groups would consist of sensors that monitor different
attributes such as temperature, pressure, wildlife presence,
etc. Sensors can also be deployed in the same area by
different organizations, e.g., seismic sensors can be de-
ployed in the ocean by two different agencies. Then, sensors
belonging to each agency will constitute a group. In the
above cases, the resource consumed by groups is more
important than that consumed by individual nodes as the
distributed computation can be performed and the attri-
butes can be measured even when some members fail. The
research in this case must investigate issues pertinent to the
sharing of resources from the perspective of groups.

A group is an intermingled set of nodes having a purpose
in common. We do not consider the motivation behind the
group formation, but investigate the sharing of resources
among different groups. The critical resource we focus on is
power. Nodes in wireless networks are powered by battery,
and size limitations compel the usage of low lifetime
batteries. This calls for judicious consumption of battery
power. Normally, communication consumes significantly
higher power than other operations. Nodes share power by
routing each others packets, and it is well-known that
multihop routing substantially decreases the overall power
consumption of the network [34]. We address the research
challenges that arise when nodes decide to route each
others packets with the sole objective of reducing the power
consumption of their groups.

206 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 2, FEBRUARY 2007

. R.K. Guha is with the Multimedia & Networking Lab, Department of
Electrical and Systems Engineering, University of Pennsylvania, Room
306 Moore Building, 200 South 33rd Street, Philadelphia, PA 19104.
E-mail: rguha@seas.upenn.edu.

. C.A. Gunter is with the Department of Computer Science, Siebel Center,
201 N. Goodwin, Urbana, IL 61801-2302. E-mail: cgunter@cs.uiuc.edu.

. S. Sarkar is with the Department of Electrical and Systems Engineering,
University of Pennsylvania, Room 354 Moore Building, 200 South 33rd
Street, Philadelphia, PA 19104. E-mail: swati@ee.upenn.edu.

Manuscript received 18 Sept. 2004; revised 14 Feb. 2006; accepted 14 June
2006; published online 14 Dec. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0268-0904.

1536-1233/07/$20.00 � 2007 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS



We now enumerate some of these challenges. The nodes
in a group share power by routing each other’s packets to
common destinations. Groups are said to form coalitions1

when they route each other’s packets. The first challenge is
to determine which groups would form coalitions. Pre-
sumably, a precondition for forming coalitions among
groups is that each group communicates the same amount
of information to the chosen destinations while consuming
less power after the coalition is formed. Whether or not the
precondition is satisfied depends on the routing in the
coalition and the number of possible routes can be an
exponential function of the number of nodes in the groups.
There need not even exist a routing that reduces the power
consumption of each group. Figs. 1a and 1b show that, if
each group consists of a single node, then groups do not
mutually benefit from the coalition, but this no longer holds
if the groups consist of two or more nodes (Fig. 1c). The
challenge then is to answer whether there exists at least one
joint routing that makes the coalition mutually beneficial.
The next challenge is to compute such a joint routing. We
will show in Section 3.3 that the routing that minimizes the
total power consumption of all groups may not result in
mutually beneficial coalitions, as it may increase the power
consumption of some groups. The benefit incurred by a
group due to the coalition operation is the decrease in its
power consumption after it joins the coalition. We need to
determine a routing that shares the benefit equitably. A
simplistic approach is to insist that the groups each get the
same benefit, but this can be wasteful if one group can gain
benefit without harming the others. A max-min fair [1]
routing uses the following strategy for a pair of groups:
Determine the greatest minimum benefit to be gained by
either of the two groups when sharing and maximize the
benefit of the other group so long as the changes do not
reduce this minimum. This strategy can be generalized to
multiple groups. The challenge now is to compute a max-
min fair power aware coalition routing.

Finally, the network topology is dynamic since nodes
move and the transmission condition in the links signifi-
cantly change over time. Thus, the benefits obtained

through coalition and, hence, the decisions to remain in
coalition change with time. When the topology changes,
even if the coalition operation remains mutually beneficial,
the max-min fair power aware coalition routing may
change. We therefore need a distributed and dynamic
algorithm that seamlessly adapts the computations in the
event of topology change.

In Section 2, we survey the relevant literature. In
Section 3, we provide a mathematical framework for a
coalition of two groups. This section presents several
distinctive properties of coalition routings. For example, a
max-min fair power aware coalition routing exhibits
important characteristics that do not hold for max-min fair
allocation of other resources such as bandwidth. We show
that the max-min fair coalition routing is guaranteed to
attain the desired minimum benefits for each group should
the coalition be feasible. In Section 4, we present a
polynomial complexity algorithm for computing the fair
coalition routing. This algorithm needs to solve a linear
program at a central processor, which requires the knowl-
edge of the global topology. In Section 5, we present a
distributed computing scheme which allows the routing
to be computed via simple iterative computations and
message exchanges at each participating node. In Section 6,
we generalize the framework and the computation algo-
rithms for a coalition among multiple groups in more
general networks and also consider more general models
for power consumption and signal propagation. These
coalition routing algorithms provide foundations for devel-
oping operational protocols. The design of such protocols
would require deployment of mechanisms to enforce group
routings, e.g., security checks. In Section 6, we briefly
discuss some of these issues. Refer to the Appendix for all
proofs.

2 RELATED WORK

The existing research on efficient utilization of power in
wireless networks can be classified into the following broad
categories: The first maximizes the lifetime of any given
node through optimum battery discharge strategy [6], [19].
The second varies the transmission power levels of nodes so
as to control the network topology as desired [8], [14], [23],
[25], [32]. The third reduces the power consumption by
optimizing several parameters at the MAC layer [11], [21],
[22], [31]. The last maximizes the lifetime of the network by
balancing the power consumption of different nodes [3], [4],
[17]. Another prevalent approach is to route in accordance
with a power-based metric rather than a distance metric
[34]. However, the common feature of the existing research
is that the basic entity is a node. The performance of the
network is either quantified in terms of the aggregate
performance of the nodes or that of the bottleneck node.
Hou et al. [10] propose a polynomial time algorithm to
compute lexicographic max-min (LMM) fair rate allocation
and show that this rate allocation attains the LMM node
lifetimes. The distinctive feature of our work is that the
basic entity is a group rather than a single node, and the
operations are coalitions. The performance objective we
consider is fairness and the issues significantly differ due to
the choice of the basic entity. We are concerned about the
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1. Even after forming a coalition, different groups maintain their separate
identities, associations with their individual organizations, and discharge
their individual responsibilities. The coalition operation just allows joint
routing.

Fig. 1. In (a) and (b), we show two different routings, where node a
constitutes Group A and node b constitutes Group B. Both groups need
to send traffic to the access point (AP). In (a), the farther node a routes
its traffic to b and b sends to AP. So, the routing in (a) reduces the power
cost of a, but increases that for b. In (b), each node routes directly to AP
and there is no reduction in power costs for both groups. In (c), nodes a1

and a2 constitute Group A and b1 constitutes Group B. Here, a1 can send
its traffic through b1 and b1 can, in turn, send through a2. This could result
in a decrease in the total power for Groups A and B as against the case
when the groups route to AP independently.



performance of each group rather than the network as a
whole. Relaying and caching strategies have been proposed
for node cooperation when a node decides to relay the
requests of other nodes based on its selfish interests [24],
[30]. Our research is complementary since we assume that a
group of nodes decide to route the packets of other groups
based on the interest of the group as a whole. We present an
algorithm that obtains a specific pareto optimal objective,
the max-min fair operating point.

3 MATHEMATICAL FRAMEWORK FOR COALITION OF

GROUPS

3.1 Power Model

We first present the mathematical model we use for power
consumption [7], [33]. Let the transmitted energy per bit be
Et. The received energy depends on the distance between
the transmitter and the receiver and on other phenomena
like refraction (e.g., through walls), diffraction (e.g., around
buildings), reflection (e.g., on ground and objects), scatter-
ing, and absorption. The collective variation due to these
phenomena is referred to as shadowing [26]. The received
energy at a distance d is then Et�

�1d��, where 2 � � � 6 and
� represents the link attenuation due to shadowing. For
simplification, we assume that � does not change with time
and is the same for all links [7], [33] and we relax these
assumptions in Section 6.3. We assume that the noise level is
the same at all nodes. Let Erx be the energy per bit required
to maintain the SNR necessary for successful decoding at the
receiver. Then, for successful communication, a node must
transmit each bit at energy Etx, where Etx�

�1d�� � Erx. The
power consumed by a transmitting node then is of the form
K1 þK0rErx�d

�, where K0 is a constant, r is the node’s data
rate, andK1 is the node’s idle power consumption. The node
dissipates power K1 even if it does not transmit or receive
any traffic. Let constant K ¼ K0Erx�:

The MAC and the physical layers determine K1, K, and
�. For example, � is higher for obstructed paths within
buildings. Unless otherwise stated, we will use � ¼ 4,
which corresponds to the path-loss in closed areas;
however, all analysis hold for any � � 0. Nodes may
exchange control packets for transmitting data packets; the
control packet exchange depends on the MAC protocol, e.g.,
IEEE 802.11 uses RTS, CTS packets. The energy consumed
in exchanging control packets determine the constant K0.
The linear relation between transmission power and data
rate implicitly assumes that the expected number of control
packets exchanged per data packet does not depend on the
data rate. But, for example, in IEEE 802.11, the expected
number of control packets exchanged per data packet
increases with an increase in data rates due to an increase in
collisions of RTS, CTS. Thus, strictly speaking, the depen-
dence is not linear. But, the inaccuracy due to the linear
assumption is negligible except when the energy consumed
in transmitting the control packets is comparable to that for
transmitting data packets (Fig. 2). Since the size of each
control packet is significantly less than that of a data packet,
this happens only when the expected number of control
packets exchanged per data packet is very high, which
happens only at very high data rates. Usually, in order to

avoid excessive energy consumption in retransmitting
control packets, the system does not operate at these data
rates. Thus, most power-aware routing schemes assume this
linear dependence, e.g., [3], [4], [7], [17].

3.2 Formulation for a Single Group

We consider a network with M exit points. We denote the
set of exit points (EP) as e ¼ ðe1; . . . ; eMÞ.

We model the network nodes as a Weighted Directed
Graph GhV ;E; e;Wi, where V is the node set for the group,
E is the edge set, e is the exit point set, and W denotes the
edge weights which are positive real numbers. Every
node v 2 V has at least one path to an exit point and the
outdegree of each exit point is 0. Hence, the exit points act
as a sink for data traffic. The node set V and the exit points
are defined through their coordinates in the euclidean
plane. The distance dðv; v0Þ is the distance between
node v 2 V and node v0 2 V [ e. If ðv; v0Þ 2 E; weight
wðv; v0Þ ¼ dðv; v0Þ4 and wðv; v0Þ 2W . The edge set E is
usually determined at the MAC and physical layers and
can be arbitrary except that the exit points only have
incoming edges. We now describe an example edge set.
When the node radios have limitations on maximum
transmission power for each bit, then an acceptable SNR
level can be maintained at the receiver only if the distance
from the transmitter is below a certain maximum value,
which is referred to as the transmission range ðDÞ. In such
networks, a directed edge exists from v 2 V to v0 2 V [ e if
dðv; v0Þ < D. Origin function Oi : V ! < defines the traffic
originating at a node v 2 V for each exit point (ei) in e. The
graph G and the origin functions are given.

Let the traffic on an edge ðv; v0Þ intended for exit point ei
be riðv; v0Þ 2 <. If ðv; v0Þ 62 E, then rðv; v0Þ ¼ 0. The total
outgoing traffic from a node v for exit point ei is thenP

v02V [feig riðv; v
0Þ, which is the load on node v, LiðvÞ. The

sum of the incoming traffic and the originating traffic at a
node must equal the exiting traffic. Thus, 8i and 8v 2 V ,X

v02V [feig
riðv; v0Þ ¼ OiðvÞ þ

X
v002V

riðv00; vÞ ¼ LiðvÞ: ð1Þ
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Fig. 2. We consider a network with 10 nodes such that all nodes are in
each other’s transmission range and share a single channel of capacity
11 Mbps. Node i transmits data to node ðiþ 1Þ%10 at network layer
rate r. The MAC protocol is IEEE 802.11. We plot the power consumed
by node 1 as a function of r. The power includes the power consumed in
transmitting both control and data packets.



Traffic routing is an jEjM-dimensional vector ~r whose
components satisfy (1). The components of~r are the traffics
on the corresponding edges. Under routing ~r, a node v
spends power N~rðvÞ and

N~rðvÞ ¼ K1 þK
X
i

X
v02V [feig

riðv; v0Þdðv; v0Þ4;

where the constants K1 and K are defined in Section 3.1.
Different nodes may have different energy limitations.

Thus, we assume that, for each node v, the average power
consumption is upper bounded by BðvÞ. Hence,

K1 þK
X
i

X
v02V[feig

riðv; v0Þdðv; v0Þ4 � BðvÞ:

The power expenditure of a group P~r is then the

total power consumed by all nodes in the group, i.e.,

P~r ¼
X

v2V N~rðvÞ. The group optimal power expenditure

Popt is the minimum value of P~r over all possible ~r and can

be obtained by routing the traffic over the minimum weight

path from any node v 2 V to each exit point ei 2 e for the

weights W .2 Such minimum weight paths can be computed

by well-known algorithms like Dijkstra, Bellman ford, etc.

Let v0i be the next hop node to v in such a path. If NoptðvÞ is

the power spent by a node v under optimal routing, then

NoptðvÞ ¼ K1 þK �
X
i

LiðvÞ � dðv; v0iÞ
4 and

Popt ¼
X
v2V

NoptðvÞ:
ð2Þ

3.3 Coalition of Groups

We have described the terminology and the equations for a
group of nodes. Now, consider two groups of nodes, A and
B. Let their node sets be V a and V b, respectively. Let their
group optimal power expenditures before forming a
coalition be Pa

opt and Pb
opt.

Next, we consider a combined network with Groups A
and B jointly routing to the exit points. Depending on the
network scenario, each group may route to one or more exit
points. For example, when groups correspond to an
organization, they could route to their own exit point. On
the other hand, in sensor networks, each group could route
to multiple exit points. These scenarios constitute specific
cases of our model.

The vertex set V for the combined network is then

V a [ V b. The edge set Ejoint can be determined from V and

the MAC and physical layer considerations. For example,

Ejoint can be obtained using the transmission range D, i.e.,

directed edge ðv; v0Þ 2 Ejoint for any v 2 V a [ V b and v0 2
V a [ V b [ e if dðv; v0Þ < D. Also, Ejoint is a superset of the

edge sets of each group. Again, for any ðv; v0Þ 2 Ejoint,

weight wðv; v0Þ ¼ dðv; v0Þ4. The origin functions for all the

nodes remain the same. Any vector in RMjEjointj whose

components are nonnegative and satisfy (1) is a routing in

the joint network and will be referred to as a coalition

routing. Note that rðv; v0Þ ¼ 0 if ðv; v0Þ 62 Ejoint. For an

arbitrary coalition routing ~r, we now evaluate the power

expenditure for each node. Let Ja~r and Jb~r be the total power

expenditure for nodes in Groups A and B, respectively,

under routing ~r.

Then; Ja~r ¼
X
v2V a

N~rðvÞ and Jb~r ¼
X
v2V b

N~rðvÞ:

Definition 1. Group benefit under coalition routing ~r is the
difference between the power spent by the group under
individual optimal routing before merging and the power
spent by the group for coalition routing ~r. The group benefits
form the benefit vector ~B~r, where ~B~r � ðBa

~r ; B
b
~rÞ; Ba

~r ¼
Pa
opt � Ja~r and Bb

~r ¼ Pb
opt � Jb~r .

The idea behind combining two groups is to reduce the
total power each group was spending initially. Depending
on the system, group coalition may introduce some
additional operational cost and groups would want to
benefit over and above this cost. Let t be the benefit below
which groups will not be willing to enter into a coalition.
The value of t would depend on group policies and the
overhead for the coalition.

Definition 2. A coalition is useful with a routing ~r if
minðBa

~r; B
b
~rÞ � t.

Defition 3. A coalition is useful if it is useful with some
routing ~r.

We will present an algorithm to compute such a routing~r if
one exists.

Definition 4. A minimal coalition routing is a coalition
routing that results in the optimal or the minimal total power
expenditure for Groups A and B combined.

Next, we illustrate the combination of two groups with

an example. Consider Fig. 3, in which Groups A and B

route to a single exit point. Each node generates traffic at

the rate of 1 Mbps. Let K ¼ 1, K1 ¼ 0. Optimal power

expenditure for Group A is 24 þ
ffiffiffi
2
p 4 ¼ 20 and, for Group B,

is 14 þ
ffiffiffiffiffiffiffiffiffi
4:25
p 4 � 19. For the minimal power coalition rout-

ing shown, power expenditure for A is 14 þ 2ð
ffiffiffi
2
p
Þ4 ¼ 9 and
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2. Here, the weight of a path is the sum of the weights of the links in the
path.

Fig. 3. Groups A ða1; a2Þ and B ðb1; b2Þ route to the exit point EP. Each

node sends 1 Mbps.



for B is 2ð1Þ4 þ
ffiffiffiffiffiffiffiffiffi
1:25
p 4 � 3:6. The benefit for Group A is

20� 9 ¼ 11 and for B is 19� 3:6 ¼ 15:4 and both the

components are positive. Consider now that node b2 has a

higher load to send, e.g., 5 Mbps. This will be relayed

through a2 in the coalition routing of Fig. 3. Node a2 will

have a high power consumption (24) and the benefit of

Group A will be negative (�5). This demonstrates that the

minimal coalition routing may not benefit each group.

Definition 5. A feasible benefit vector is one that results from

a coalition routing~r. The set of all feasible benefit vectors is the

feasible benefit region.

3.4 Properties of the Feasible Benefit Region

Theorem 1. The set of feasible benefit vectors is convex and

closed.

We now demonstrate that different feasible benefit vectors

can lead to disparate benefits for the groups.
For the minimal coalition routing, we can find the power

expenditure for each node, i.e., NoptðvÞ for each v 2 V a [ V b.

Further, let Jaopt and Jbopt be the powers spent by nodes of

Groups A and B, respectively, under the minimal coalition

routing.

Jaopt ¼
X
v2V a

NoptðvÞ and Jbopt ¼
X
v2V b

NoptðvÞ:

Note again that the subscript “opt” to J refers to the

minimal coalition routing for nodes of Groups A and B

combined. The benefit vector ~L corresponding to the

minimal coalition routing is then ðLaopt; LboptÞ, where Laopt ¼
Pa
opt � Jaopt and Lbopt ¼ Pb

opt � Jbopt. Let K ¼ 1 and let there be a

single exit point. The vector ~L is plotted in Fig. 4 for

different random placements of nodes. Each group has

20 nodes uniformly distributed over a square of side 100m

and the network is fully connected, i.e., each node can

directly transmit to every other node. If the benefit vector is

in the first quadrant (both coordinates are positive), then the

groups mutually benefit from being merged; otherwise, one

of the groups is a loser. Most pairs of groups benefit from a

minimal coalition, but there are many instances in which

only one group benefits. Even when a pair of groups

mutually benefits, there is often some disproportion in the

extent of benefit, with one group getting somewhat more

than the other. This motivates the fair allocation of benefits.

3.5 Max-Min Fair Benefit Vector

Definition 6. A feasible benefit vector B~r is max-min fair if, for

all i, Bi
~r cannot be increased while maintaining feasibility

without decreasing Bj
~r for some group j, for which Bj

~r � Bi
~r.

Corollary 1. The max-min fair benefit vector exists and is

unique.

The corollary follows as a consequence of Theorem 1 and

results from [28].

Definition 7. A fair coalition routing is a coalition routing that

results in a max-min fair benefit vector.

Minimum component property. If ~r is a fair coalition

routing, then minðBa
~r ; B

b
~rÞ � minðBa

~r1
; Bb

~r1
Þ for any other

coalition routing ~r1. This property follows from the

definition of the max-min fair benefit vector.

In Fig. 3, the max-min fair benefit vector when K ¼ 1 and

M ¼ 1 is (11.9,11.9). This is achieved when node b2 sends

0.78 Mbps to a2 and 0.22 Mbps directly to EP like in Fig. 5.

Proposition 1. Let ~r be a fair coalition routing. Then,

minðBa
~r; B

b
~rÞ � 0.

Thus, a coalition does not increase the power consumption

of any group if fair coalition routing is used.

Theorem 2. A coalition will be useful if and only if it is useful

with a fair coalition routing ~r.

Theorem 2 presents a necessary and a sufficient condi-

tion for deciding whether the coalition would be useful.

Theorem 3. For two groups, the max-min fair benefit vector has

equal components.

Theorem 3 will be used in developing an efficient

algorithm for computing a fair coalition routing for two

groups.
Note that, for other resource allocation problems, e.g.,

bandwidth allocation, the max-min fair vector need not

have equal components even for two contenders (Fig. 6) [5].
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Fig. 4. “Benefit vectors” under “minimal coalition.”

Fig. 5. Fair coalition routing when each node sends 1 Mbps. The

numbers next to the links are the rates.

Fig. 6. Consider two sessions (a,c) and (b,d). The numbers next to the

links are the link bandwidths. The max-min fair bandwidth for session

(a,c) and (b,d) are 3 and 1, respectively.



4 FAIR COALITION ALGORITHM (FC)

4.1 Description

We show that the fair coalition routing and the associated

benefit vector can be computed by solving the following

linear program:

FC: Maximize Z:

Subject to:

Z �Ba
~r � 0;

Z �Bb
~r � 0;

K1 þK
X
i

X
v02V a[V b[feig

riðv; v0Þdðv; v0Þ4 � BðvÞ 8 v 2 V a [ V b;

ð3Þ

X
v02V a[V b[feig

riðv; v0Þ �
X

v002V a[V b

riðv00; vÞ ¼ OiðvÞ8 v; v0 2 V a [ V b and i:

ð4Þ

The power consumption of each node is constrained in

(3) and the flows are balanced in (4). Let Z� be the objective

function value obtained from FC.

Theorem 4. The routing ~r obtained as a solution of FC is a fair
coalition routing.

Proof: Let minbenð~rÞ ¼ minðBa
~r ; B

b
~rÞ. From Theorem 3 and

the minimum component property, any feasible routing

that attains the maximum value of minbenð~rÞ is a fair

coalition routing ~r. Thus, FC computes the fair coalition

routing. tu
The exit point can solve FC to compute the fair

coalition routing and the max-min fair benefit. The linear

program involves ðM þ 1ÞjV a [ V bj þ 2 constraints and

MjEjointj þ 1 variables. Hence, the max-min fair benefit

vector and the fair coalition routing are polynomial

complexity computable [13].

For solving FC, an exit point needs to know the edge

set Ejoint and the distances between the nodes. Initially,

the nodes inform the exit point, their incident edges, and

the distances from their neighbors, and later they inform

the exit point only when these change. The MAC and the

physical layers of a node v determine its incident

edges ðv; v0Þ and ðv0; vÞ in Ejoint. Nodes can learn the

distances from their neighbors by power measurements

and positioning algorithms, some of which do not need

GPS [2].

4.2 Simulation Results

We investigate the efficacy of fair coalition routing through

simulations using MATLAB. We evaluate the benefits

attained by different coalition routing schemes. We also

consider other performance attributes, such as network

lifetime, end-to-end path lengths, additional power con-

sumption for providing fairness, etc. We consider a network

with one exit point ðM ¼ 1Þ and a coalition of two groups.

Nodes of both groups are distributed in a square of side

100m. Each node generates traffic at the rate of 1 Mbps. The

value of K depends on the choice of the wireless interface,

and its effect is to scale our measurements. Thus, without

loss of generality, we consider K ¼ 1. We will later mention

details for a specific interface. Note that the benefit values

do not depend on K1. We consider a different number of

nodes, different distributions of nodes, different locations of

the exit point, different sizes of the groups, different

distances between groups, and report averages over

100 random topologies in each case.
We first consider a fully connected network, i.e., each

node can transmit directly to every other node. We assume
that both groups have an equal number of nodes, the exit
point is at the center of the square, and all nodes are
uniformly distributed in the square. In Fig. 7a, we plot the
benefit values as a function of the number of nodes. As
proved before, the max-min fair benefit vector will have
equal components. We plot the average values of the
maximum component of the benefit vector of the minimal
coalition routing (max-opt), the minimum component of the
benefit vector of the minimal coalition routing (min-opt),
and the max-min fair benefit (max-min). As expected, the
max-min group benefit is between the maximum and the
minimum components of the benefit vector of the minimal
coalition routing. Benefits initially increase and later
decrease with an increase in the number of nodes. This
can be explained as follows: Power consumption in a
routing scheme decreases if the distance between consecu-
tive nodes in a path decreases. This holds even if such a
decrease increases the number of hops. This is because the
power consumed in any routing is proportional to 1) the
expectation of the fourth power of the distance in each hop
and 2) the number of hops. When the number of nodes is
small, each group has a small number of nodes and, thus,
joint routings allow packet transmissions across hops that
are significantly shorter than those in the individually
optimal routings in each group. Thus, joint routings have
substantially lower power consumption. This effect be-
comes more pronounced with an increase in the number of
nodes for a moderate number of nodes. But, when the
number of nodes becomes really large, each group has a
large number of nodes and the hop distances and, hence,
the power consumptions in the individual optimal routings
become small as well.3 Thus, the benefits of joint routing
decrease. Nevertheless, the benefit values are still consider-
able even for networks with 200 nodes.

In Fig. 7b, we consider a different path loss exponent,

� ¼ 2, which arises in open environments. Here, the trends

are similar to Fig. 7a, but the benefits are somewhat smaller.

This is because the reduction in power consumption due to

the reduction in hop-distances dðv; v0Þ obtained by the joint

routings are less for � ¼ 2 than for � ¼ 4, as the power

consumed in a link ðv; v0Þ is proportional to dðv; v0Þ�.
We now revert to the closed environment, � ¼ 4, and

compare the lifetime of the network attained under
different coalition routing schemes. The network lifetime
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3. Recently, Zhao et al. [35] proved that when nodes are uniformly
distributed and their number n becomes large, the network transfers
�ðn=lognÞ amount of data before any node dies. In other words, the data
transferred by a network in its lifetime becomes arbitrarily large with an
increase in n. This happens because of a reduction in the distance between
consecutive nodes in the routes. Although Zhao et al. do not consider
networks with groups, their result is consistent with our observation.



can be defined in different ways, e.g., it can be considered

as the time required for a certain fraction of nodes to die, the

first time instant at which the network is disconnected, etc.

[3], [4], [34]. The lifetime of a network for all these metrics is

governed by the power consumption of the nodes that

spend high power and die faster than others. Thus, in

Fig. 7c, we plot the quantity ð �X þ �xÞ= �X, where �X is the

mean power over all nodes and �x is the standard

deviation. Note that this quantity is a measure of the

statistical maximum of the power spent by any node. Fair

coalition routing has a lower value of this quantity as

compared to the minimal. This happens because the

minimal coalition routing derives its advantages by routing

a significant amount of traffic through a few nodes. We

therefore expect that fair coalition routing will have a higher

lifetime under most metrics (i.e., all metrics that depend on

the power consumption of the nodes that consume more

power than others). To demonstrate that this is indeed the

case, we choose a particular notion of lifetime; namely, the

time required for a certain fraction (e.g., 5 percent) of nodes

to die. We assume that all nodes have the same initial

energy. In Fig. 7d, we plot the ratio between the lifetimes of

the network under the fair and the minimal coalition

routings that are computed when all nodes are functional.

We also plot the ratio of the lifetimes of the group with the

minimum lifetime under fair coalition and the group with

the minimum lifetime under minimal coalition routings.

Consistent with our expectation, the ratio is always above 1.
Fig. 7e plots the total powers spent under the minimal and

fair coalition routings and their difference. This difference

can be looked upon as the cost for providing fairness. Here,

K1 ¼ 0. The average cost is modest (18 percent) considering
the benefit (46 percent)4 obtained and the fairness achieved.

In Fig. 7f, we plot the average number of hops traversed
by each packet before it reaches the exit point. We notice
that, on an average, the fair and minimal coalition routings
use a similar number of hops. The hop count affects the
average end-to-end delay experienced by packets. But, the
delay also depends on other factors such as interference.
The detailed investigation of the delay and interference
issues in coalition routing is beyond the scope of this paper.

We now evaluate the benefits for different distributions
of nodes, different locations of the exit point, different sizes
of the groups, and different distances between groups. But,
the trends and the conclusions remain the same as in the
previous cases.

Fig. 8a shows the results for unequal group sizes. One
group is four times as large as the other. The nodes are still
uniformly distributed. The smaller group has a lesser benefit
under the minimal coalition routing in this case. The
remaining trends are the same as for groups with equal sizes.

We now investigate the effect of clustered topologies on
the benefit values (Figs. 8b and 8c). Both groups have an
equal number of nodes. In Fig. 8b, nodes of each group are
normally distributed with a variance of 25 around the
respective group centroids that are uniformly distributed.
The group with the centroid closer to the exit point has
negative benefit under the minimal coalition routing and
zero benefit under the fair coalition routing. The group
closer to the exit point loses after coalition when the
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4. The cost percent is obtained from Fig. 7e. The benefit percent is with
respect to the total power consumed prior to the coalition and is obtained
from Fig. 7a and Fig. 7e.

Fig. 7. Performance of coalition routings in networks consisting of two groups of equal sizes and nodes uniformly distributed in a square of size 100m.

(a) Benefits in closed environments. (b) Benefits in open environments. (c) Maximum node power. (d) Network lifetime. (e) Fairness overhead.

(f) Hop delay performance.



minimal coalition routing is used, but not when the fair
coalition routing is used. Here, the benefits of the fair
coalition routing starts decreasing for a much larger
number of nodes than in the uniform distribution case
(Fig. 7a), as the topology becomes pervasive only for a much
larger number of nodes. For example, when the number of
nodes in the network is 400, the benefit reduces by
25 percent as compared to the benefit in a network with
200 nodes. In Fig. 8c, we consider a network with two
clusters of equal sizes, but now the clusters include an equal
number of nodes from both groups. The nodes in each
cluster are normally distributed with a variance of 25
around the respective group centroids that are uniformly
distributed. Here, both groups obtain positive benefits
under fair coalition.

We now investigate the case when the exit point is at the
edge of the square. We consider two different distributions
of nodes: 1) uniform (Fig. 8d) and 2) normal (Fig. 8e). For
uniform distribution, the trends are similar to the case with
the exit point at the center (Fig. 7a). But, since all nodes are
now in the same side of the exit point, the paths to the exit
point contain a larger number of nodes of both groups and,
hence, the benefits are higher. For normal distribution, the
nodes of each group are normally distributed around the
centroid of the group with a variance of 25. The centroids
are equidistant from the exit point and at a distance d from
each other, where d is a measure of the separation between
the groups. In Fig. 8e, we plot the benefits as a function of d.
The benefits decrease as d increases as then fewer nodes
from one group can route the packets of the other group
due to the larger separation between the groups.

We now relax the assumption that the network is fully
connected and assume that each node can transmit directly

to only nodes within distance D. We investigate the effect of
different transmission ranges D on the benefits in Fig. 8f.
The network has 20 nodes in each group, but the
characteristics are otherwise similar to that considered in
Fig. 7a. Lower values of D will result in fewer edges in the
network. The benefit increases significantly with an increase
in D for lower values of D as more and more nodes can be
included in potential routes to the exit point. Note that the
maximum possible distance between any two nodes in this
network is 100

ffiffiffi
2
p

. A slight drop can be noticed when D is
around 10

ffiffiffi
2
p

. This is because the power consumption of the
group optimal decreases by a smaller amount than that of
the fair coalition routing. When D exceeds 18

ffiffiffi
2
p

, the curves
level off. The transmission range is now high enough to
include those nodes which would have been a part of the
coalition routing in the fully connected case.

For the Lucent 802.11b Orinoco card, a rate of 1 Mbps in
closed environment corresponds to 15dBm of output power
[18]. The constant K is then roughly 5:5� 10�6W=Mbit �m4.
For any value of K1, this translates to a benefit of 30 Watts
for a group with 10 nodes for the uniform case with equal
group sizes. It is also worthwhile to note that the CPU time
to compute FC, for any of the above topologies, was not
more than 0.5 seconds on a 700Mhz/256MB RAM laptop
using a simplex algorithm implementation [9].

5 DISTRIBUTED IMPLEMENTATION

The algorithm in Section 4.1 for computing the fair coalition
routing requires a centralized computation at the exit point.
Though the simplest solution, it will not be computationally
tractable when the exit points have capability similar to the
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Fig. 8. Benefit values for coalition routings for different network scenarios. (a) Skewed Group sizes. (b) Effect of clustered groups. (c) Clustered

topology. (d) Exit point at end. (e) Intergroup distance. (f) Lower transmission range D.



nodes themselves. Consider, for example, a sensor network
where a group of sensors communicate their measurements
to a common node which, in turn, transmits to, say, a
satellite. Here, we would not want to overwhelm the relay
node with the linear programming computation. Further-
more, when nodes move, the edge set E changes. For
example, when a node can directly transmit to only nodes
within its transmission range D, then links between two
nodes will be created (cease to exist) when one moves in to
(out of) the transmission range of another. Finally, the
power consumed for transmission of each bit in a link will
change with a change in the distance between the incident
nodes. The traffic generation rate of each node will also
change with time. Due to these changes, the coalition may
no longer be useful or may start being useful or the fair
coalition routing may change. Thus, FC must be solved
every time such changes occur. Rather than having the exit
point repeat the entire computation in every such instance,
it is beneficial to have a distributed implementation where
every node performs some simple iterative computations
and the values seamlessly converge to the max-min fair
solution. Based on the new max-min fair solution, the
groups can determine whether the coalition is useful
(Theorem 3) and use the fair coalition routing if they
remain in or join the coalition.

Now, we present an iterative approach to compute a fair
coalition routing for two groups. This has been motivated
by recently proposed solutions for optimization problems in
other resource allocation settings [12], [29]. Let Zn and ~rn
denote the corresponding quantities in iteration n, where Z0

and ~r0 can be arbitrarily chosen. The initial choices need not
satisfy any of the constraints. Thus, each node can select the
initial values of the loads for each of its outgoing edges
without any coordination with the other nodes. Similarly,
Z0 is selected at an exit point. Now, we define some
indicators. The benefit indicator of a group is 1 if Zn is more
than the group benefit.

�an ¼
0; if Zn þ Ja~rn � P

a
opt;

1; if Zn þ Ja~rn > Pa
opt:

(

�bn ¼
0; if Zn þ Jb~rn � P

b
opt;

1; if Zn þ Jb~rn > Pb
opt:

(

We now outline the rate update mechanism for the traffic
intended for each of the M exit points. Node congestion cvn;i
is the difference between the outgoing and the sum of the
originating and incoming traffic at node v for exit point i.
From (4),

cvn;i ¼
X

v02V a[V b[feig
rn;iðv; v0Þ � OiðvÞ þ

X
v002V a[V b

rn;iðv00; vÞ
 !

:

The node congestion indicator for node v for traffic directed
to exit point i is

svn;i ¼
0 if cvn;i ¼ 0;

1 if cvn;i > 0;

�1 if cvn;i < 0:

8><
>:

Traffic for exit point i at node v is considered balanced,
lightly loaded, or heavily loaded as svn;i is 0; 1 and �1,
respectively. For the exit point, se

n ¼ 0. The power level
indicator at node v, tvn is set to 1 if the current power
consumption exceeds the limit BðvÞ and 0 otherwise. Hence,

tvn ¼
0 if K1 þK

P
i

P
v02V a[V b[feig riðv; v

0Þdðv; v0Þ4 � BðvÞ;

1 if K1 þK
P

i

P
v02V a[V b[feig riðv; v

0Þdðv; v0Þ4 > BðvÞ:

8<
:

We present an iterative approach using the above indica-
tors. Note that svn;i and tvn can be updated at node v using the
incoming rates in the previous iteration. Now, the updates
of �an and �bn require a knowledge of the total power being
spent by the nodes of a group. We will discuss how to
acquire this information in a distributed manner.

Let f�ng be the step-sizes that satisfy limn!1 �n ¼ 0 andP1
n¼1 �n ¼ 1. For example, �n ¼ 1=n satisfies the condi-

tions. Each node v updates its outgoing traffic in edges

ðv; v0Þ 2 Ejoint as follows. ½	
þ denotes the projection on

½0;1Þ.

rnþ1;iðv; v0Þ ¼

rn;iðv; v0Þ � ��n svn;i � sv
0

n;i þþdðv; v0Þ
4ðtvn þ �anÞ

� �h i
þ

if v 2 V a:

rnþ1;iðv; v0Þ ¼

rn;iðv; v0Þ � ��n svn;i � sv
0

n;i þþdðv; v0Þ
4ðtvn þ �bnÞ

� �h i
þ

if v 2 V b:

Trivially, rnþ1;iðv; v0Þ ¼ 0 if ðv; v0Þ ¼ Ejoint.

The exit point updates Z as follows:

Znþ1 ¼ ½Zn þ �nð1� �ð�an þ �bnÞÞ
þ:

Theorem 5. For all � > 1, the iterative procedure stated above
will converge to the max-min fair benefit vector and fair
coalition routing, irrespective of the initial choice of the
iterates.

Since the convergence guarantees in Theorem 5 hold
irrespective of the initial choice of the iterates, the
procedure converges to the fair allocations even after
changes in Ejoint and the power consumed in the links.

Now, we outline a distributed scheme to implement the
iterations. Assume that we have a spanning tree connecting
nodes of each group to any one of the exit points. Refer to
Fig. 9a. Each leaf node L sends a power packet (PP)
upstream that contains the power expended by L. Each
node of a group adds all the power values in the PP arriving
from its downstream branches, adds its own power
expenditure to the sum, and sends a PP upstream with
the resulting power value. Using these group powers, the
exit point determines �anþ1 and �bnþ1 and updates Zn. The exit
point communicates �an and �bn to each group through
congestion indicator packet CP and the nodes can use these
to update their rates. The PP and CP can be separate packets
or they can be piggybacked on the data and acknowl-
edgement packets.

We now evaluate the convergence time of the distributed
implementation. We consider a fully connected network

214 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 2, FEBRUARY 2007



with 10 nodes in each group, where the nodes are uniformly
distributed in a square of side 100m and one exit point is at
the center. Each node generates traffic at the rate of 1 Mbps.
We assume that the size of each CP and PP packet is
15 bytes. The CP and the PP packets traverse a total of
12 hops per iteration. Now, if the transmission rate in each
link is 11 Mbps, then each iteration consumes approxi-
mately 0.13 milliseconds. Here, K ¼ 1, � ¼ 2;500, and
�n ¼ 1=n, 8n, Z0 ¼ 107, and ~r0 ¼~0. The benefit Zn converges
to the max-min fair benefit value of 5:5� 106 in 1,000 itera-
tions which consume 130 milliseconds (Fig. 9b). In general,
the initial convergence time will depend on how far the
initial guess is from the optimal.

We next demonstrate that the recomputations that result

from incremental changes in topology and traffic generation

rates converge much faster. We assume that, during

iteration number 2,000 (i.e., after the initial convergence),

all nodes select new locations—the new locations are also

uniformly distributed. The power consumptions in the links

now change due to the topology rearrangement, but Zn
converges to the new max-min fair value in 400 iterations,

which consumed 50 milliseconds. The convergence is faster

as compared to the initial convergence because only the

node positions were changed, while their traffic generation

rates remained the same. Thereafter, between iterations

2,400 and 6,000, nodes change their positions one by one. If a

node i’s current x-coordinate (y-coordinate) is xi, then it

selects its new x-coordinate (y-coordinate) uniformly within

½0:9xi; 1:1xi
 ð½0:9yi; 1:1zi
Þ. On an average, 60 iterations

(� 8 ms) are required for convergence for each change.

Finally, between iteration 6,100 and 8,100, the nodes change

their traffic generation rates one by one. If a node i’s current

generation rate is OðiÞ, then its new rate is uniformly

distributed within ½0:95OðiÞ; 1:05OðiÞ
. Now, on average

after each change, Zn converges to the new max-min fair

value in 20 iterations (� 3 ms).
Groups join or remain in the coalition if and only if the

new max-min fair benefit Zn exceeds the minimum required
benefit t (Theorem 3), and they use the corresponding fair
coalition routing whenever they are in a coalition. To
prevent routing instability and oscillations, the groups
evaluate the coalition formation decision and alter the
routing only when 1) the current value of Zn substantially

differs from that at the previous decision epoch and 2) Zn
remains at its current value for some time which ensures
convergence. Determination of these necessary deviations
and time durations and also the security mechanisms
required to enforce the coalition formation decisions and
the fair coaliton routing constitute separate research topics
and are beyond the scope of the current work. However, we
briefly discuss some of the security issues in Section 6.4.

6 DISCUSSION AND GENERALIZATIONS

We now describe how the framework we have proposed
and the analytical results we have obtained can be
generalized to include several additional features of
practical relevance.

6.1 Multigroup Fair Coalition Algorithm

We now investigate the max-min fair benefit vector and

fair coalition routing when multiple ðnÞ groups attempt to

form a coalition. Definition 6 also defines the max-min fair

benefit vector in this case. This case is significantly

different from the two group case discussed earlier. Let

Pi
opt be the minimum possible power spent by Group i to

route to the exit points before joining the coalition. Also, let

Ji~r be the power spent by nodes of Group i under coalition

routing ~r. The benefit for Group i is then Bi
~r8I ¼ 1 . . .n

with Bi
~r ¼ Pi

opt � Ji~r. The benefit vector for the coalition

routing is ~B~r � ðB1
~r; B

2
~r . . .Bn

~r Þ.
We mention some important properties of fair coalition

routing for multiple group coalition.

Proposition 2. Consider three groups, A, B, and C. Consider

three separate coalitions (A, B), (B, C), and (A, B, C). If the
pairwise coalitions (A, B) and (B, C) are mutually beneficial

for each group (i.e., the benefit for each group under some
coalition routing is positive), then the coalition (A, B, C) is

beneficial for each group.

A counterexample presented in Fig. 10 shows that the
converse is not true.

The components of the max-min fair benefit vector need

not be equal when more than two groups combine. Refer to

Fig. 11, where each node generates 1 Mbps. Here, M ¼ 1

and K ¼ 1.
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Fig. 9. Distributed implementation. (a) Exchange of PP and CP. Circles and pentagons denote the two groups. Let the power spent by nodes a, b,

and c be 1, 2, and 3, respectively. The PPs sent by a, b, and c have power values 1, 2, and 6, respectively. (b) Convergence for the distributed

computation. Here, � ¼ 2;500 and �n ¼ 1=n; 8 n, Z0 ¼ 107, and ~r0 ¼~0. During iteration 2,000, nodes change their positions. After iteration 2,400,

nodes change their positions one by one (by �10 percent) till iteration 6,000. After iteration 6,100, the transmission rates change (by �5 percent).



Now, we present the multigroup FC algorithm. This

algorithm solves a sequence of linear programs. Note that
solving a single linear program is not sufficient since the
components of the max-min fair benefit allocation need not
be equal in this general case.

Let I ¼ f1 . . .ng, INC refer to the individual node
constraints (3), and LF refer to the load flow condition (4)
generalized to multiple groups.

Stage1: Maximize: Z:

Subject to:Z � Bi
~r 8i 2 I

~r satisfies INC and LF.

Let Z�1 be the objective value and ~r�1 be the routing obtained

from above. Let equal ¼ ft : Bt
~r�
1

¼ Z�1g.

Substage1 For each k 2 equal,
Maximize: Bk

~r :

Subject to:Bi
~r � Z�1 8i 2 I n fkg

~r satisfies INC and LF.

Let ~rk be the routing corresponding to the kth maximization

8k 2 equal. Let e1 ¼ fn : Bn
~rn
¼ Z�1g.

Stage2: Maximize: Z:

Subject to:Z � Bi
~r 8i 2 I n e1

Bi
~r � Z�1 8i 2 e1

~r satisfies INC and LF.

Let Z�2 be the objective value and ~r�2 be the routing obtained

from above. Let equal ¼ ft : Bt
~r�
2

¼ Z�2g.

Substage2 For each k 2 equal
Maximize: Bk

~r :

Subject to:Bi
~r � Z�2 8i 2 I n e1 n fkg

Bi
~r � Z�1 8i 2 e1

~r satisfies INC and LF.

Let ~rj be the routing corresponding to the jth maximization

8j 2 equal. Let e2 ¼ fn : Bn
~rn
¼ Z�2g. Similarly in the ith step.

Stagei: Maximize: Z:

Subject to:Z � Bi
~r 8i 2 I n e1 n e2 . . . n ei�1

Bi
~r � Z�t 8i 2 et 8t ¼ 1 . . . ði� 1Þ

~r satisfies INC and LF.

Theorem 6. The routing ~r obtained as a solution of multigroup

FC is a fair coalition routing.

Fig. 12 shows benefits for fair coalition routing for three

equal sized groups spread over a square of side 100m. Here,

M ¼ 1 and K ¼ 1.

6.2 Receiving Power

We have so far assumed that a node does not consume

any power when it is receiving information. We now relax

this assumption and assume that the receiving power of a

node is proportional to the incoming traffic rate. The total

power expenditure of a node v is the sum of the power

spent to transmit load
P

i LiðvÞ and to receive loadP
iðLiðvÞ �OiðvÞÞ. Thus,

N~rðvÞ ¼ K1 þK
X
i

X
v02V [feig

riðv; v0Þdðv; v0Þ4

þK0
X
i

LiðvÞ �OiðvÞð Þ

¼ K1 þK
X
i

X
v02V [feig

riðv; v0Þdðv; v0Þ4

þK0
X
i

X
v002V

riðv00; vÞðfrom ð1ÞÞ:

Ja~r ¼
X
v2V a

N~rðvÞ:

Similarly; Jb~r ¼
X
v2V b

N~rðvÞ:

The max-min fair benefit vector and the fair coalition

routing can be computed by substituting the expressions for

Ja~r , Jb~r in FC with the above.5

The distributed algorithm remains similar except for the

rate update strategy which needs to be modified. We

describe the update strategy for rnþ1ðv; v0Þ when v 2 V a and

ðv; v0Þ 2 Ejoint: The update strategy for rnþ1;iðv; v0Þ when v 2
V b and ðv; v0Þ 2 Ejoint can be obtained by interchanging a

with b in the following:
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Fig. 11. D is the transmission range. The max-min fair benefit for the star

and the circle group is 14D4=16, while that for the pentagon group is

zero.

5. Now, Pa
opt (Pb

opt) can still be obtained by routing the traffic using the
minimum weight path in Group a ðbÞ, but the weight of a link ðv; v0Þ is now
Kdðv; v0Þ4 þK0 instead of dðv; v0Þ4. This happens since we assume that the
receiving power depends only on the received rate.

Fig. 12. We average the minimum, second minimum, and the largest

component over 100 topologies.

Fig. 10. All three groups, A, B, and C, will benefit if routing together but

no two taken at a time will be mutually beneficial.



rnþ1;iðv; v0Þ ¼

rn;iðv; v0Þ � ��nðsvn;i � sv
0

n;i þ dðv; v0Þ
4�anÞ

h i
þ

if v 2 V a; v0 2 e:

rnþ1;iðv; v0Þ ¼

rn;iðv; v0Þ � ��n svn;i � sv
0

n;i þ K0=K þ dðv; v0Þ4
� �

�an

� �h i
þ

if v; v0 2 V a:

rnþ1;iðv; v0Þ ¼

rn;iðv; v0Þ � ��nðsvn;i � sv
0

n;i þ dðv; v0Þ
4�an þ �bnÞ

h i
þ

if v 2 V a; v� 2 V b:

The convergence guarantees in Theorem 5 hold.

6.3 Generalized Propagation Model

We first consider a simple generalization where �ðv; v0Þs are

different for different links, but do not change with time.

This happens when the environment is static. Now, for

successful communication to v0, a node v must transmit each

bit at energy Etx, where Etx�ðv; v0Þ�1dðv; v0Þ�� � Erx: The

power consumed by node v under routing ~r is then

K1 þK
P

v02V [feg rðv; v0Þ�ðv; v0Þdðv; v0Þ
�. Thus, dðv; v0Þ� must

now be replaced with �ðv; v0Þdðv; v0Þ� everywhere (note that

�ðv; v0Þdðv; v0Þ� can be obtained by measuring the signal

strength at receiver v0). The framework remains the same

other than this change, and all analytical guarantees hold.

We next consider the case that the environment and,

hence, �ðv; v0Þ changes with time for each link ðv; v0Þ.6 The

time duration during which �ðv; v0Þ does not change for a

link ðv; v0Þ is referred to as the coherence time of the link.

Coherence times are large when nodes move around

slowly, e.g., when the maximum node velocity vmax is

lower than 5 m/s, the coherence time is c=ðvmax � fÞ ¼
ð3� 108Þ=ð5� 2:4� 109Þ ¼ 25 ms [26, p. 165]. Here, f is the

center frequency of the signal and c is the speed of light.

The fair coalition routing can now be recomputed every

time �ðv; v0Þ changes. Since the distributed algorithm

converges fast in the presence of incremental changes,

the rate allocation can seamlessly adapt to changes in

�ðv; v0Þ. However, if �ðv; v0Þ changes rapidly, statistical

information must be used to determine the link rates and

the transmission powers. Specifically, the transmission

powers and the routing can be determined assuming that

�ðv; v0Þ ¼ E �ðv; v0Þ½ 
 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var �ðv; v0Þ½ 


p
, as with a high prob-

ability, �ðv; v0Þ � E �ðv; v0Þ½ 
 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var �ðv; v0Þ½ 


p
.

6.4 Trust Issues

We assume that members of a group trust one another and
are willing to jointly route packets to save power in the
interest of the group as a whole. We assume that when
groups agree to form a coalition, they trust one another to
use the fair coalition routing. There is related work [20] on
how to detect cheating in which one or more parties do not
support their agreed routing rules. Nodes in a group can
use security schemes to ensure that they route for other

nodes in the same group and in groups that are participat-

ing in the coalition. Within a group, one can identify trusted

members with public key certificates and thereafter estab-

lish a symmetric key for authenticating individual packets.

Different groups can be authenticated via third party public

key repository. This can prevent nodes from masquerading

as nodes of some other group that is already a part of an

active coalition. This leads to a natural question as to what

is the cost incurred to enforce group routing.
We tested whether this incurs significant additional

power if it is done with IPSec tunnels [16] between

neighboring nodes. To get an idea of the processing

overhead, we let a Dell L400 laptop running Windows

2000 generate constant bit rate UDP traffic over an 802.11b

network. The payload rate was fixed at 4 Mbps. For various

security parameters, we measured the time for the laptop to

die down.7 Fig. 13 shows the results for three cases

averaged over five runs of the experiment. The first column

shows that the laptop battery died in 95 minutes after

sending 2861MB of data in plaintext. Header overhead

accounts for the rate of 4.016 Mbps to send 4 Mbps of

payload. Authentication used null-encrypted ESP [15] with

SHA1 for message authentication codes; encryption used

ESP with SHA1 and 3DES. Encryption has a significant

effect on power, but it is not really needed to enforce group

routing. We can assume that nodes encrypt end-to-end and

do not need hop-by-hop encryption. Hence, it is possible to

enforce group routing efficiently with only modest power

costs by using authentication with null encryption. Thus, it

is clearly worthwhile to use group routing.
IPSec is a sufficiently efficient enforcement mechanism

when the number of nodes is less than 50. This is because

each node is likely to route to only a few others. Thus, about

50–100 tunnels are required and these can all use null

encryption. There are techniques that work efficiently for

larger groups (see, for example, the IETF documents from

the Multicast Security working group, msec) but these seem

unnecessary if the nodes are laptops. For sensor networks, a

more specialized security protocol may be necessary. A

comprehensive design of security mechanisms is beyond

the focus of this paper.
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6. When the environment is not static, �ðv; v0Þ is modeled as a random
variable whose logarithm is normally distributed with mean zero and a
variance of 5-12dB depending on the environment [26].

7. Before each experiment, the laptop was charged fully from a
completely dead battery to nullify battery memory and hysteresis and
was subsequently switched off for 2 hours to eliminate heating-related
discrepancies.

Fig. 13. IPSec Costs.



7 CONCLUSIONS

We have studied the problem of forming coalitions between
groups of nodes with the intent of saving power. We found
that an application of max-min fair techniques to this
problem yields an efficient and balanced approach which
we call fair coalition routing. We developed a theory and
algorithms for fair coalition routing. We have carried out a
range of simulations that demonstrate that fair coalition
routing is practical and beneficial in common cases.

APPENDIX

Proof of Theorem 1. Consider two possible coalition

routings between A and B. Let Pa
~r1

and Pb
~r1

be the

powers expended for routing ~r1 by Groups A and B,

respectively, and Pa
~r2

and Pb
~r2

similarly for routing ~r2. The

benefits vector for routing ~r1 is ðPa
opt � Pa

~r1
; P b

opt � Pb
~r1
Þ

and for routing ~r2 is ðPa
opt � Pa

~r2
; P b

opt � Pb
~r2
Þ. Consider a

new routing that sends � fraction of traffic through

routing ~r1 and 1� � fraction through routing ~r2. Since

P~r is a linear function of ~r, we have the new power

expenditure as � � Pa
~r1
þ ð1� �Þ � Pa

~r2
for Group A and

� � Pb
~r1
þ ð1� �Þ � Pb

~r2
for Group B. The benefit vector for

the new routing is then

Pa
opt�ð� �Pa

~r1
þð1��Þ �Pa

~r2

� �
; P b

opt� � �Pb
~r1
þð1��Þ �Pb

~r2
Þ

� �
;

which is

� � Pa
opt�Pa

~r1
; P b

opt�Pb
~r1

� �
þð1��Þ � Pa

opt�Pa
~r2
; P b

opt�Pb
~r2

� �
:

Hence, the set of feasible benefit vectors is convex. tu
Proof for Proposition 1. Let~r be a fair coalition routing and

minðBa
~r ; B

b
~rÞ < 0. Consider the routing ~r1 in which each

group uses its group optimal. Then, Ba
~r1
¼ 0Bb

~r1
¼ 0 and

minðBa
~r ; B

b
~rÞ < minðBa

~r1
; Bb

~r1
Þ. Thus, from the minimum

component property, ~r is not a fair coalition routing,
which is a contradiction. tu

Proof for Theorem 2. Let ðBa
~r ; B

b
~rÞ be the benefit vector

under fair coalition routing ~r. If the minimum is greater
that t, then all other components are also greater than t.
Hence, ~r will result in a useful coalition.

Now, we prove the “only if” condition using contra-
diction. Let the minimum component of the max-min fair

benefit vector be less that t. Also, suppose a routing ~r1

exists such that minðBa
~r1
; Bb

~r1
Þ � t. Thus, ~r is not a fair

coalition routing from the minimum component prop-

erty. This is a contradiction. tu
Proof for Theorem 3. Consider two Groups A and B. Let ~r

be a fair coalition routing. Suppose that Ba
~r > Bb

~r. From

Proposition 1, Ba
~r � 0 and Bb

~r � 0. Thus, Ba
~r > 0 since A

benefits from the coalition it sends traffic to at least one

node in B. Now, consider a coalition routing ~r� in which

Group A sends � fraction of traffic through the joint

routing ~r and 1� � fraction of traffic through its group

optimal, 0 < � < 1. B routes as in~r. Clearly, ~r� is feasible.

Now, consider the links ðv; v0Þ from Group A nodes

(v 2 V a) to Group B nodes (v 2 V b) in the joint routing.

Since, in the optimal routing, nodes in A do not route

their traffic through the nodes in B, for each such ðv; v0Þ,P
i r
�ðv; v0Þ �

P
i rðv; v0Þ and for some v 2 V a and v0 2 V b,P

i r
�ðv; v0Þ <

P
i rðv; v0Þ. Hence, Jb~r� < Jb~r . Now, Bb

~r ¼
Pb
opt � Jb~r and Bb

~r�
¼ Pb

opt � Jb~r� : Since Jb~r� < Jb~r , Bb
~r�
> Bb

~r

for any � 2 ð0; 1Þ: Since Ba
~r > Bb

~r, when � is sufficiently

close to 1, Ba
~r� > Bb

~r�, but then ~r does not satisfy the

minimum component property. This is a contradiction.tu
We will use the following concepts in proving

Theorem 5.

Consider a convex and continuous function f defined

on a convex set F � Rk. Then, a vector w0 2 Rk is called

a subgradient of f at a point y0 2 F if it satisfies

fðyÞ � fðy0Þ � ðw0, y� y0Þ8y 2 F . An interior point y0 of

F is the minimum point of f in F if and only if ~0 belongs

to the set of subgradients at y0.

Proof for Theorem 5. Let gðvÞ ¼
P

ið
P

v0 riðv; v0Þ �OiðvÞ �P
v00 riðv00; vÞÞ and

zðvÞ ¼ K1 þK
X
i

X
v02V a[V b[feig

riðv; v0Þdðv; v0Þ4 �BðvÞ:

P: Maximize : F ð~r; ZÞ ¼ Z � �sð~r; ZÞ where

sð~r;ZÞ ¼
X

v2V a[V b

ðjgðvÞj þmaxð0; zðvÞÞÞ þmaxð0; Z �Ba
~rÞ

þmaxð0; Z �Bb
~rÞ:

Let ~Q � ð~r; ZÞ. Let ~Q� � ð~r�; Z�Þ be the optimal solution

and U� be the optimal value of F ð~r; ZÞ. We prove this in

two steps. In the first step, we prove that P has the same

solution as FC for � > 1. In the second step, we prove that

the routing obtained by the iterative approach converges

to the optimal solution of P, i.e., limn!1 k~rn � ~r�k ¼ 0,

where ~rn is the routing obtained in the nth iteration and

k~Xk denotes the norm of ~X, i.e., if X � ðx1; x2 . . .Þ, then

k~Xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 . . .

p
. The result follows.

Step 1. Select ~Q such that sð~QÞ > 0. For such ~Q, there

always exists a component of the subgradient that is less

than or equal to 1� � and 1� � is less than 0. Therefore,
~0 does not belong to the set of subgradients. Hence, ~Q

cannot be an optimal solution for P. Therefore, all

solutions of P involve ~Q for which sð~QÞ ¼ 0. Also, for

sð~QÞ ¼ 0, the value of the objective function of FC and P

are equal. Therefore, for � > 1, any optimal solution of P

is an optimal solution of FC.
Step 2. Choose an arbitrary � > 0. Let �0 ¼ �=2. For

any �0 > 0, define D�0 as D�0 ¼ f~Q : F ð~QÞ � U� � �0g.
From Theorem 27.2 [27], it follows that there exists an
� ¼ �ð�0Þ > 0 such that

D�  ~Q : k~Q� ~Q�k � �0
n o

: ð5Þ

Consider n, for which ~Qn 62 D�. Therefore, F ð ~QnÞ <
U� � �:

The update equations at the nodes of Groups A and B
can be compactly stated as

~Qnþ1ðv; v0 ¼ ½~Qnðv; v0Þ þ �n ~�n
þ;
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where ~�n is the subgradient of F ð~r; ZÞ. It follows from the

definition of subgradients that

ð~�n; ~Qn � ~Q�Þ � F ð ~QnÞ � U� < ��:

Now, k~�nk � T , where

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2ð1þ L4Þ2N2 þ ð2� þ 1Þ2

q
;

L is the maximum distance between any two nodes, and

N is the total number of nodes in the network.

k~Qnþ1 � ~Q�k2 ¼ k½~Qn þ �n ~�n
þ � ~Q�k2

� k~Qn þ �n ~�n � ~Q�k2

¼ k~Qn � ~Q�k2 þ �2
nk~�nk

2 þ 2�nð~�n; ~Qn � ~Q�Þ
< k~Qn � ~Q�k2 þ T 2�2

n � 2��n:

Since �n ! 0, �n � �=T 2 when n is sufficiently large. For

all such n,

k~Qnþ1 � ~Q�k2 < k~Qn � ~Q�k2 � ��n: ð6Þ

Suppose there exists a N 0� <1 such that ~Qn 62 D� for all

n � N 0�. Therefore, there exists N� � N 0� such that (6)

holds for all n � N�. Adding the inequalities obtained

from (6) for n ¼ N� to N� þm, we obtain

k~QN�þmþ1 � ~Q�k2 < k~QN�
� ~Q�k2 � �

XN�þm

n¼N�

�n;

which implies that k~QN�þmþ1 � ~Q�k ! �1 as m!1
since

P1
1 �n ¼ 1. This is not possible since

k~QN�þmþ1 � ~Q�k � 0:

Hence, the supposition was incorrect. Hence, there exists

a sequence n1;� < n2;� < . . . such that ~Qni;� 2 D� for all

I ¼ 1; 2; . . . . Let i1 ¼ n1;�. Since �n ! 0, there exists i2 such

that �n � minð�0=T ; �=T 2Þ; 8 n � ni2;�. Let i0 ¼ maxði1; i2Þ.
Consider the following cases:

Case 1. n ¼ nj;� for some j � i0. Here, ~Qn 2 D� and,
from (5), it follows that k~Qn � ~Q�k � �0 < �.

Case 2. n ¼ nj;� þ 1 for some j � i0. Then,

~Qn ¼ ~Qnj;�þ1 ¼ ½~Qnj;� þ �nj;�~�nj;� 
þ:

Thus,

k~Qn � ~Qnj;�k ¼ k½~Qnj;� þ �nj;�~�nj;� 
þ � ~Qnj;�k
� k~Qnj;� þ �nj;�~�nj;� � ~Qnj;�k
¼ �nj;�k~�nj;�k � U�nj;� � �0:

From the above, and since k~Qnj;� � ~Q�k � �0 (Case 1),

we get

k~Qn � ~Q�k � k~Qnj;� � ~Q�k þ k~Qn � ~Qnj;�k � �0 þ �0 ¼ 2�0 ¼ �:

Case 3. nj;� þ 1 < n < njþ1;� for some j � i0. Also,
~Qn0 62 D�8nj;� < n0 < njþ1;�. From (6), it follows that

k~Qn0þ1 � ~Q�k < k~Qn0 � ~Q�k. Thus, k~Qn � ~Q�k < k~Qnj;�þ1 �
~Q�k: Since k~Qnj;�þ1 � ~Q�k � � (Case 2), k~Qn � ~Q�k � �.

From Cases 1, 2, and 3, it follows that k~Qn � ~Q�k �
� 8n � ni0;�: Since � is arbitrary, limn!1 k~Qn � ~Q�k ¼ 0,

and since ~Q � ð~r; ZÞ, we have limn!1 k~rn � ~r�k ¼ 0. tu
Proof for Proposition 2. Consider the joint routing ~r1 under

which 1) A and B jointly route to the exit points without
using any node in C and both groups have positive
benefits and 2) C routes optimally to the exit point
without using nodes of Groups A and B. Under ~r1,
Group C has zero benefit and Groups A and B have
positive benefits. Such ~r1 exists because the coalition
between A and B is mutually beneficial. Now, using ~r1,
we construct a coalition routing~r that will make benefits
of all three groups positive. Since the coalition between B
and C is mutually beneficial, at least one node in C can
send traffic through at least one node in B. Let b1 and c1
be such a node pair. Let c1 send � fraction of its traffic to
b1, where � > 0, and 1� � fraction of its traffic using its
group optimal. Now, for any � > 0 under~r, the benefit of
Group C will be greater than that under ~r1 (as nodes in C
route less traffic under ~r than under ~r1) and, hence,
positive. Also, the benefits of Groups A and B under~r is
less than that under ~r1, as nodes in Groups A and B route
more traffic under ~r than ~r1. But, � can be suitably
reduced to keep the benefits of Groups A and B positive.
Hence, a routing ~r exists under which all three groups
have a positive benefit.

Proof for Theorem 6. Consider a feasible benefit
vector ~B~r such that there exists subsets y1; y2 . . . yk such
that for k � n, y1 [ . . . yk ¼ f1 . . .ng and the following
conditions hold:

1. Bi
~r ¼ B

j
~r if i, j 2 ym for each m 2 f1 . . . kg.

2. Bi
~r > Bj

~r i f i 2 ym and j 2 ym�1 for each
m 2 f2 . . . kg.

3. For any i 2 ym, while maintaining feasibility, Bi
~r

cannot be increased without reducing Bj
~r for some

j 2 y1 [ . . . ym.

Then, ~B~r is a max-min fair benefit vector.

Each stage of the linear program has a feasible

solution. Let the program yield a routing ~r� and

terminate at stage k. Clearly, ~B~r� is feasible. Note that

e1 [ . . . [ ek ¼ f1 . . .ng. We will show that ~B~r� satisfies

the above properties with y1 ¼ e1; . . . ; yk ¼ ek. Note that
Bi
~r�
¼ Z�m 8 i 2 em and 1 � m � k. Also, Z�1 < Z�2 . . . < Z�k .

Thus, Properties 1 and 2 hold. Let Property 3 not hold.

Then, there exists a routing ~r1 such that Bi
~r�
> Z�m for

some i 2 em and Bj
~r1
� Bj

~r�
for each j 2 fe1 [ . . . [ emg.

Case A. Let Bj
~r1
� Z�m for each j 2 femþ1 [ . . . [ ekg,

but then ~r1 is a feasible solution of a substage of stage m
and, therefore, i 62 em.

Case B. Let Bj
~r1
< Z�m for some j 2 femþ1 [ . . . [ ekg.

Then, we have two feasible benefit vectors ~B~r1
and ~B~r�

such that Bj
~r1
� Bj

~r�
for each j 2 fe1 [ . . . emg, Bi

~r1
> Z�m,

and Bj
~r�
> Z�m for each j 2 femþ1 [ . . . ekg.

Let ~Að�Þ ¼ � ~B~r� þ ð1� �Þ ~B~r1
for 0 < � < 1. Now,

from Theorem 1, ~Að�Þ is a feasible benefit vector. For

each � > 0, Ajð�Þ � Bj
~r�

for each j 2 fe1 [ . . . emg and

Aið�Þ > Z�m. For � close to 1, Ajð�Þ > Z�m for each

j 2 femþ1 [ . . . ekg. Let �0 be one such �. Then, like in
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Case A, ~Að�0Þ is a feasible solution of a substage of stage

m and i 62 em. This is a contradiction and, thus,

Property C also holds. tu
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