
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 2001

Scalable Security Mechanisms for the Internet Scalable Security Mechanisms for the Internet

Angelos D. Keromytis
University of Pennsylvania

Sotiris Ioannidis
University of Pennsylvania

Michael B. Greenwald
University of Pennsylvania

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Angelos D. Keromytis, Sotiris Ioannidis, Michael B. Greenwald, and Jonathan M. Smith, "Scalable Security
Mechanisms for the Internet", . January 2001.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-01-05.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/148
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/148
mailto:repository@pobox.upenn.edu

Scalable Security Mechanisms for the Internet Scalable Security Mechanisms for the Internet

Abstract Abstract
The design principle of restricting local autonomy only where necessary for global robustness has led to a
scalable Internet. Unfortunately, this scalability and capacity for distributed control has not been achieved
in the mechanisms for specifying and enforcing security policies. The STRONGMAN system described in
this paper demonstrates three new approaches to providing efficient local policy enforcement complying
with global security policies. First is the use of a compliance checker to provide great local autonomy
within the constraints of a global security policy. Second is a mechanism to compose policy rules into a
coherent enforceable set, e.g., at the boundaries of two locally autonomous application domains. Third is
the "lazy instantiation" of policies to reduce the amount of state enforcement points need to maintain. We
demonstrate the use of these approaches in the design, implementation and measurements of a
distributed firewall.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-01-05.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/148

https://repository.upenn.edu/cis_reports/148

Scalable Security Mechanisms for the Internet

Angelos D. Keromytis, Sotiris Ioannidis, Michael B. Greenwald, Jonathan M. Smith

{angelos,sotiris,mbgreen,jms}@dsl.cis.upenn.edu

CIS Department

University of Pennsylvania

Abstract tributed firewall.

The design principle of restricting local autonomy
1 Introduction

only where necessary for global robustness has led

to a scalable Internet. Unfort~nately, this scalabil- ~~~h of the scalability has heen achieved

ity and capacity for distributed control has not been as a byproduct of intelligent application of the end-

achieved in the mechanisms for specifying and en- to-end design principle[l7, 71, where properties that

forcing security policies. must hold end-to-end are provided by mechanisms

The STRONGMAN system described in this pa- at the end points. The resulting design keeps the net-

per demonstrates three new approaches to providing work simple and allows great local autonomy in im-

efficient local policy enforcement complying with plementing these mechanisms.

global security policies. First is the use of a compli- Security for distributed applications is arguably an

ance checker to provide great local autonomy within end-to-end property. By the end-to-end argument

the constraints of a global security policy. second is hosts should be responsible for the perceived security

a mechanism to compose policy rules into a coher- of "the internet". However, several factors currently

ent enforceable set, e.g., at the boundaries of two 10- argue against this placement of functionality. First,

cally autonomous application domains. Third is the policies are, or ought to be, specified at the granu-

"lazy instantiation" of policies to reduce the amount larity of administrative (security) domains, and not

of state enforcement points need to maintain. only at the granularity of individual hosts - there

We demonstrate the use of these approaches in the must be means of ensuring that the local enforce-

design, implementation and measurements of a dis- ment actually conforms to the larger ("global") pol-

1 formance.

In ernet \ Any alternative that attempts to avoid the perfor-
/'

/'
/' /. mance bottleneck of a centralized firewall must sup-

. Host

/.
/' port a simple (and consistent) specification of secu- [L',::. - . - . - . - . - . -

rity policy for an entire administrative domain. Since
',

\. manual or semi-automatic configuration of nodes
\.

\.
\.

and protocols to conform to a global policy has been
'.
\,
\. shown to be problematic and error-prone 1131, au-
\.

*\. I---' tomatic techniques relying on a single method of

"1 ~~~t 1 specification are desirable. The Distributed Firewall

of [2, 141 implements just such a mechanism.

However, based on experience, no single mech-
Figure 1 : A firewall's bottleneck topology.

anism exists that can address the security require-

icy. Second, some operating systems have been de- n~ents of all applications and ~rotocols. 'llere-

signed under the assumption that network security is fore multiple security mchanisms (with overlapping

mostly handled by third parties (firewalls), thus lack- scopes, such as IPSec and SSL) are in use sh-~ulta-

ing much-needed enforcement mechanisms. Third, neously in many networks. These multiple security

many security policies grant more rights to ''loca]'' mechanisms must present a single consistent system

machines and entities - an irresponsible, incompe- image to the administrator else complexity of config-

tent, or merely uninformed, coworker can compro- uration will again result in errors.

mise an entire LAN. It may seem natural to repeat the solution adopted

This situation has led, for example, to the perva- by Distributed Firewalls and design a "universal"

sive use of firewalls, which enforce a single secu- high-level policy specification language. Such a

rity policy at network boundaries to protect multiple language would, ideally, specify global policies

hosts behind the boundaries from certain classes of which much be enforced across multiple heteroge-

security problems. To implement the policy globally, neous domains. However, security policies are often

the network topology must be restricted to pass all application-dependent. "Universal" high-level pol-

traffic through the firewall, as shown in Figure l . Un- icy languages are feature-rich and complex, and are

fortunately, these firewalls have many negative con- therefore clumsy and lead to mistakes. Further, such

sequences for Internet routing, flow control and per- languages often presume homogeneity, and cannot

handle mixtures of multiple mechanisms/languages ministrators should be able to independently specify

for different parts of the same network. policies over their own domain: this should be true

Therefore we argue that the correct approach is whether the administrator manages particular appli-

an architecture that ties together multiple security cations within a security domain, or manages a sub-

mechanisms within a single system image, that sup- domain of a larger administrative domain.

ports many application-specific policy languages, Other concerns in addition to scalability shape the

that automatically distributes and uniformly enforces requirements of STRONGMAN.

the single security policy across all enforcement Users/principals must be identifiable by (possibly

points, and that allows enforcement points to be cho- multiple) pure names, such as their public key, and

sen to appropriately to meet both security and perfor- not simply by userid and/or IP-address. The

mance requirements. Further, this architecture must policy system must support privilege delegation and

scale with the growth of the Internet. hierarchical management. Security must not be com-

In this paper we propose an architecture, promised by enforcement points crashing and recov-

STRONGMAN, and argue that it meets these re- ering.

quirements. Given the requirements above, several properties

of STRONGMAN follow immediately:

2 Our Approach

A scalable security system for the Internet must

handle growth in the number of users, enforcement

points, and rules pertaining to both, as well as an

ability to support a variety of applications and pro-

tocols. Policy updates must be as cheap as possible,

since these are common and often-used operations

in any system (addinglgiving privileges to a user, re-

moving/revoking privileges from a user). Security

policies for a particular application should be spec-

ified in an application-specific language, and a sin-

The low-level policy system supports "lazy in-

stantiation" of policy on the enforcement points

in order to minimize the resources consumed by

policy storage. In other words, an enforcement

point should only learn those parts of its policy

that it actually has to enforce as a result of user

service access patterns. A further benefit of this

approach is that policy may be treated as "soft

state," and thus be discarded by the enforcement

point when resources are running low and re-

covered when space permits or after a crash.

gle specification should be able to control the behav- STRONGMAN shifts as much of the opera-

ior of any needed security mechanism. Finally, ad- tional burden as possible to the end users' sys-

Compiler A Compiler B

KeyNote

Glob.1 I
Policy I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

Figure 2: KeyNoteused as a policy interoperability layer. Policy composition in STRONGMAN does not depend

on using the same compiler to process all the high-level policies.

tems because enforcement points are generally

overloaded with processing requests and medi-

ating access. As an example, in the context of

"lazy policy instantiation" described above, the

users' systems can be made responsible for ac-

quiring the policies that apply to the users and

for providing these to the enforcement points.

There is a distinction between high and low

level policy in our system; in particular, there

may be multiple high-level policy specifica-

tion mechanisms (different languages, GUIs,

etc.), all translating to the same lower-level pol-

icy expression language. A powerful, flexi-

ble, and extensible low-level mechanism that

is used as a common "policy interoperability

layer7' (as shown in Figure 2) allows us to use

the same policy model across different applica-

tions, without mandating the use of any partic-

ular policy front-end. This architecture has an

intentional resemblance to the IP "hourglass",

and resolves heterogeneity in similar ways, e.g.,

the mapping of the interoperability layer onto

a particular enforcement device, or the servic-

ing of multiple applications with a policy lingua

franca.

The system must be able to compose the inde-

pendent policy specifications in a manner which

does not violate any of them because multiple

independently specified policies may be man- plements these design principles by using the

aged at a single enforcement point. KeyNote [4] trust-management system as a basis for

expressing and distributing low-level security policy.
a Users will be identified by their public keys

(each user may have multiple keys, for differ-

ent purposes/applications). These public keys

are used in the context of various protocols to

authenticate the users to specific services. This 2.1 KeyNote

also helps prevent malicious users from tam-

pering with policies provided to enforcement
KeyNote is a simple trust management system and

points via "lazy policy instantiation".
language developed to support a variety of applica-

a The low-level policy system allows for decen- tions. Although it is beyond the scope of this paper

tralized and hierarchical management and sup- to give a complete tutorial or reference on KeyNote

ports privilege delegation to other users. Note syntax and semantics (for which the reader is re-

that delegation allows any user to be treated ferred to [41), we review a few basic concepts to

as an ''administrator'' of her &legatees; con- give the reader a taste of what is going on.

versely, administrators in such a system can
The basic service provided by the KeyNote system

simply be viewed as users with very broad priv-
is compliance checking; that is, checking whether a

ileges. This permits both decentralized manage-
proposed action conforms to local policy. Actions in
- ~

ment (different administrators/users are made
KeyNote are specified as a set of name-value pairs,

responsible for delegating and potentially re-
called an Action Attribute Set. Policies are written

fining different sets of privileges), and collab-
in the KeyNote assertion language and either accept

orative networking (by treating the remote ad-
or reject action attribute sets presented to it. Poli-

ministrator as a local user with specific privi-
cies can be broken up and distributed via creden-

leges she can then delegate to her users). Lim-
tials, which are signed assertions that can be sent -

ited privileges can be conferred to administra-
over a network and to which a local policy can defer

tors of other domains, who can then delegate .
in making its decisions. The credential mechanism

these to their users appropriately; this allows for
allows for complex graphs of trust, in which creden-

Intranet-style collaborations.
tials signed by several entities are considered when

Our architecture, named STRONGMAN, im- authorizing actions.

permit KEY1 if using strong encryption and target in 192.168.1.0/24

permit USERGROUP4 if using authentication and origin in LOCALNET and \

target in WEBSERVERS

Figure 3: A high-level IPsec policy

allow USERGROUP5 if file "/foo/bar.htmlU

allow ANGELOS if directory "/confidential" and source in LOCALNETWORK

Figure 4: A high-level web access policy

2.2 Policy Translation and Composition This decoupling of high and low level policy spec-

ification permits a more modular and extensible ap-
In our architecture, policy for different network ap-

proach, since languages may be replaced, modified,
plications can be expressed in various high-level pol-

or new ones added without affecting the underlying
icy languages or systems, each fine-tuned to the par-

system.
ticular application. Each such language is processed

by a compiler that can take into consider- TO Operate in our architecture, each high-level Ian-

ation such infomation as network topology or a user &age or GUI has to include a "referral" primitive;

database and produces a set of KeyNote credentials. this is simply a reference to a decision made by an-

At the absolute minimum, such a compiler would other IanguageJenforcement point (typically lower in

need a knowledge of the public keys identifying the the protocol stack). This primitive allows us to per-

users in the system. Other infomation is necessary form policy composition at enforcement time; de-

on a per-application basis. For example, knowledge cisions made b~ one enforcement mechanism (e-g.9

of the network topology is typically useful in speci- IPsec) are made available to higher-level enforce-

fying packel filtering policy; for web content access ment mechanisms and can be taken into considera-

control, on the other hand, the web servers' contents tion when making an access An

and layout is probably more useful. Our proof-of- this is in Figure 5.

concept languages (examples are shown in Figures 3 To complete the composition discussion, all that

and 4) use a template-based mechanism for generat- is necessary is a channel to propagate this infor-

ing KeyNote credentials. mation across enforcement layers. In our system,

this is done on a case-by-case basis. For exam- lishes cryptographic context with the remote firewall

ple, IPsec information can be propagated higher in

the protocol stack by suitably modifying the Unix

getsockopt (2) system call; in the case of a web

server and SSL, the information is readily available

through the SSL data structures (since the SSL and

the web access control enforcement are both done in

the context of a single process address space).

2.3 Credential Management

Compiled credentials are made available to end-users

through policy repositories. These credentials are

signed by the administrator's key and contain the var-

ious conditions under which a specific user (as iden-

tified by her key in the credential) is allowed to ac-

cess a service. The translation of the policy rule in

Figure 5 is shown in Figure 6.

Users who wish to gain access to some service

first need to acquire a fresh credential from one

of the repositories. It is not necessary to protect

the credentials as they are transferred over the net-

work, since they are self-protected by virtue of being

signed1. Users then provide these credentials to the

relevant service (web server, firewall, etc.) through

a protocol-specific mechanism. For example, in the

case of IPsec, these credentials are passed on to the

local key management daemon which then estab-

'1t is possible to provide credential-confidentiality by en-

crypting each credential with the public key of the intended

recipient.

or end system. It is also possible to pass KeyNote

credentials in the TLS protocol. For protocols where

this is not possible (e.g., SSL), an out-of-band mech-

anism can be used instead. We have used a simple

web server script interface for submitting credentials

to be considered in the context of an access con-

trol decision; credentials are passed as arguments to

a CGI script that makes them available to the web

server access control mechanism. To avoid DoS at-

tacks, entries submitted in this manner are periodi-

cally purged (in an LRU manner).

Since policy is expressed is terms of credentials

issued to users, policy need not be distributed syn-

chronously to the enforcement points. Enforcement

points need not know of all the users or rules that

pertain to those users at all times; rather, they learn

these rules as users try to gain access to controlled

resources. We call this property "lazy policy instan-

tiation". This allows our system to scale well with

the number of users, rules, and enforcement points.

Enforcement points may treat credentials as soft state

and thus discard them as soon as storage resources

become scarce. Users will simply have to re-submit

these with their next access.

Adding a new user or granting more privileges to

an existing user is simply a matter of issuing a new

credential (note that both operations are equivalent).

The inverse operation, removing a user or revoking

issued privilege, can be more expensive: in the sim-

allow USER-ROOT if directory "/confidentialN \

and source in LOCALNETWORK \

and (application IPsec says "strong encryption" or \

application SSL says "very strong encryption")

Figure 5: Web access policy taking into consideration decisions made by the IPsec and SSL protocols. The

information on USER-ROOT and LOCALNETWORK are specified in separate databases, which the compiler

takes into consideration when compiling these rules to KeyNote credentials.

ple case, a user's credentials can be allowed to ex- should not increase the load or storage requirements

pire; this permits a window of access, between the on enforcement points. Thus, the most attractive ap-

time the decision is taken to revoke a user's privi- proach is proofs of validity (acquired by the user

leges and the time the relevant credentials expire. For from a "refresher" server, and provided to the en-

those cases where this is adequate, there is no addi- forcement point along with the credentials). While

tional overhead. This argues for relatively short-lived this approach is architecturally attractive, it places

credentials, which the users (rather, software on their high load on the refresher servers. The validity

systems) will have to re-acquire periodically. While verification mechanism may be specified on a per-

this may place additional burden on the reposito- credential basis, depending on the perceived risk of

ries, it is possible to arrange for credentials to expire compromise and the potential damage done if that

at different times from each other, thus mitigating occurs.

the effect on the infrastructure of multiple users (re- Finally, since KeyNote allows arbitrary levels of

)acquiring their credentials at the same time. Given delegation (through chains of credentials), it is pas-

that a large number of digital signatures will have t~ sible for users to act as lower-level administrators

be computed as a result of periodically issuing ere- and issue credentials to others. It is thus possible

dentials, this is desirable from a policy-generation to build a hierarchical and decentralized manage-

point of view as well. ment scheme, wherein the corporate network admin-

For more aggressive credential revocation, other istrator authorizes branch administrators to manage

mechanisms have to be used. Although no single their networks under some constraints. More inter-

revocation mechanism exists that can be used in all estingly, it is possible to view the administrator of

possible systems, we note that any such mechanism another network as a local user; that administrator

may then handle access to the shared resources for connect to the h t t p port on a company's internal

the remote network users, under the constraints spec- Web server is only granted to those machines hav-

ified in their credential. ing the appropriate credentials, rather than those ma-

chines that happen to be connected to an internal

wire.
3 The Distr:ibuted Firewall

In our prototype, end hosts (as identified by their

We present a distributed firewall as an example of an IP address) are also considered principals when IPsec

implementation conforming to the STRONGMAN is not used to secure communications. This allows

architecture. local policies or credentials issued by administrators

A distributed firewall (as described in [2, 141) en- to specify policies similar to Current packet-filtering

forces a single central security policy at every end- rules. Naturally, such policies or credentials implic-

point. The policy specifies what connectivity, both itly trust the validity of an IP address as an identifier.

inbound and outbound, is permitted. This policy is In that respect, they are equivalent to standard ~ a c k e t

distributed to all endpoints where it is authenticated filtering. The only known solution to this is the use of

and then enforced, thus making security an end-to- ~ ' ~ ~ t o g r a ~ h i c ~rotocols to cure ~~t~-~municat ions.

end property.
3.1 Implementation

Distributed firewalls do not rely on the topological

notions of "inside" and "outside" as do traditional Our system (implemented on the OpenBSD operat-

firewalls. Rather, a distributed firewall grants spe- ing system) is comprised of three components: (1)

cific rights to machines that possess the credentials a set of kernel extensions, which implement the en-

specified by the central policy. A laptop connected forcement mechanisms; (2) a user level daemon pro-

to the "outside" Internet has the same level of protec- cess, which implements the distributed firewall poli-

tion as does a desktop in the organization's facility. cies; and (3) a device driver, which is used for two-

Conversely, a laptop connected to the corporate net way communication between the kernel and the pol-

by a visitor would not have the proper credentials, icy daemon. Our prototype implementation totals ap-

and hence would be denied access, even though it is proximately 1 150 lines of C code; each component is

topologically "inside." roughly the same size.

In the example STRONGMAN distributed fire- Figure 7 shows a graphical representation of the

wall, endpoints are characterized by their public keys system, with all its components. The core of the

and the credentials they possess. Thus, the right to enforcement mechanism lives in kernel space and is

Authorizer: ADMINISTRATOR-KEY

Licensees: USER-ROOT-KEY

Conditions: app-domain == "web access" &&

directory "= "/directory/.*" &&

(source-address =< "192.168.001.255" &&

source-address >= "192.168.001.000") &&

(ipsec-result == "strong encryption" I /
ssl-result == "very strong encryption") -> "permit";

Signature: . . .

Figure 6: Translation of the policy rule from Figure 5 to a KeyNote credential. The public keys and the digital

signature are omitted in the interests of readability.

Application Policy Daemon

openO, closeO,
read(), write(),

ioctl() H
f User Space

match, a request is generated and inserted in the pol-

icy context queue. From there, via the device driver,

the policy daemon can get the request and respond

accordingly.

In the following three subsections we describe the

- - various parts of the architecture, their functionality,

, and how they interact with each other.

f Kernel Space
..-...-..-.- ... 3.1.1 Kernel Extensions

Network

In the UNIX operating system users create outgo-
Figure 7: Block diagram of the firewall system

ing and allow incoming connections using a number

of provided system calls. Since any user has access

comprised of the filtering routines and the rule cache. to these system calls, some "filtering" mechanism is

The policy specification and processing unit lives in needed. This filtering should be based on a policy

user space inside the policy daemon process. Any that is set by the administrator, and any incoming or

incoming or outgoing IP packets go through the fil- outgoing packet should be subject to it.

ter and are subject to the rules. If none of the rules In order to enforce our policy to every packet and

yet have a simple and elegant design, we decided
u-int32-t seq; /*Sequence Numberk/ - - - -

to filter IP traffic. To achieve this we added hooks
u-int32-t uid; /*User Idk/

in the ip-input () and ip-output () routines of
u-int32-t N; /*Number of Fields*/

the protocol stack that will execute our filtering code,
u-int32-t 1[Nl; /*Field Lengths*/

and created two data structures to assist us in this
char *field [Nl ; /*Fields*/

process.

The first data structure, or rules cache, contains a Figure 8: Policy context data structure

set of rules that packets are compared against. If a

match is found, the rule is followed to either accept decision-making strategy-

or drop the packet. The second data structure is the Every packet is intercepted at the IP layer and

policy context queue. A policy context (the C decla- checked against the rules cache. If a match is found

ration for which is shown in Figure 8) is a container then the rule is enforced. If no match is found, we

for all the information related to a specific packet. enqueue a new request to the policy context queue-

We associate a sequence number to each such con- If We have already enqueued a request for the same

text and then we start filling it with all the infoma- class of packets, no further action is necessary. Each

tion the policy daemon will need to make an access entT in the context queue also contains the last

control decision. A request to the policy daemon is packet from that packet flow; if a positive decision

comprised of the following fields: a sequence num- is received from the policy daemon, the packet is re-

ber uniquely identifying the request, the ID of the queued for processing by the IP stack.

user the connection request belongs to, the number In the next section we discuss how messages are

of information fields that will be included in the re- passed between the km~el and the policy daemon.

quest, the lengths of those fields, and finally the fields
3.1.2 Policy Device

themselves. This can include source and destination

addresses, transport protocol and ports, etc. Any cre- To maximize the flexibility of our system and al-

dentials acquired through IPsec may also be added low for easy experimentation, we decided to make

to the context at this stage. There is no limit as to the policy daemon a user level process. To support

the kind or amount of information we can associate this architecture, we implemented a pseudo device

with acontext. We can, for example, include the time driver, /dev/policy, that serves as a communi-

of day or the number of other open connections of cation path between the user-space policy daemon,

that user, if we want them to be considered by our and the modified system calls in the kernel. Our de-

vice driver, implemented as a loadable module, sup-
I I I

ports the usual operations (open (2) , c l o s e (2) ,

r e a d (2) , w r i t e (2) , a n d i o c t l (2)) .

If no policy daemon has opened / d e v / p o l i c y , Warm cache

activates the distributed firewall and initializes data
Figure 9: Average connection overhead measured in

structures. All subsequent flow of packets will go
ms for 100 TCP connections between Alice and Bob.

through the procedure described in the previous sec-

5 1.8 ms

no connection filtering is done. Opening the device

tion. Closing the device will free any allocated re-

I

sources and disable the distributed firewall.

IPF

The policy daemon reads the device for pending

requests in the policy context queue. It then handles daemon can simply flush one or more entries from

the request and returns a new rule to the kernel by the rules cache in the kernel. This way subsequent

writing it to the device, as a result of which the ap- packets will not match the existing rule set and the

propriate entry is entered in the rules cache. policy daemon will be queried for the new policy.

63.1 ms

The i o c t l (2) call is used for "house-keeping"

tasks. This allows the kernel and the policy daemon ~ h , daemon receives each request (see Figure 8)

to re-synchronize in case of any errors in creating or from the kernel by reading the icy device. The

parsing the request and to flush en- request contains all the information relevant to that

tries from the rule cache. connection as described in Section 3.1.1. Process-

3.1.3 Policy Daemon
ing of the request is done by the daemon using the

KeyNote system, and a decision to accept or deny

The last component of our system is the policy dae- it is reached. The decision is sent to the kernel,

mon. It is a user-level process responsible for mak- and the daemon waits for the next request. While

ing decisions, based on policies that are specified the information received in a particular message is

by some administrator and credentials retrieved re- application-dependent (in our case, relevant to the

motely or provided by the kernel, on whether to al- distributed firewall), the daemon itself has no aware-

low or deny connections. ness of the specific application. Thus, it can be used

Policies are initially read in from a file. Addition to provide policy resolution services for many differ-

and removal policies can be done dynamically. The ent applications, literally without any modifications.

filtering package implemented completely inside the Figure 10: Average roundtrip time (in ms) for 200

3.2 Experimental Evaluation

kernel, used in many open-source systems) and of ICMP ECHO-REQUEST messages.

While the architectural discussion is largely qual-

itative, some estimates of the system performance

are useful. We performed several experiments, both

varied topologies which demonstrate the value of
I I 1

maintaining consistent global security properties.

Our test machines are x86 architecture machines

of comparable node software (using IPF, a packet-

Insecure

Cold cache

Warm cache

IPF

running OpenBSD 2.8 and interconnected by 100

Mbps ethernet. More specifically, in the two-host

0.273 f 0.091 ms

0.283 k 0.089 ms

0.282 f 0.077 ms

0.283 & 0.124 ms

tests (source to sink), Alice is an 850 Mhz PI11 and
Figure 1 1 : lOOMB file transfer over TCP, measured in serves as the source. Bob, the sink, runs the dis-

tributed firewall (DF) code and is a 400 Mhz PII. ms.

In the following tables, insecure means there is shown in Figure 10. We include the standard devi-

neither DF nor IPF running, IPF n~eans we have IPF ation, as the measurements did vary slightly. These

activated, cold cache means that we have DF running two experiments show us that the cost of compliance

but the rules cache is empty and every time we go to checking in our architecture is very small (within

the daemon to get the rules. Wiarm cache means that 3% of an insecure system, except for the TCP cold

the rules are in the cache (except for the first refer- cache case which is 20% more expensive), and typi-

ence). cally better than IPF. This means that an architecture

In Figure 9 we have a server application running with decentralized enforcement does not unduly af-

on Alice; Bob runs a client which connects to the fect end-system latency.

server 100 times using different ports. This generates The measurements of Figure 1 1 have a server ap-

200 rules (for incoming and outgoing packets). In the plication is running on Alice; a client running on Bob

IPF case, those 200 rules are pre-loaded in the filter connects to Alice and transfers 100MB. It is clear

list. In the second experiment, Bob sent 200 ICMP that our system does not significantly affect network

ECHO-REQUEST messages to Alice; the results are throughput (the difference is in the order of 0.5%).

ning the distributed firewall and enforcing policy lo-

Policy ,. Host
. n cally (see Figure 14). The ethernet hub is connected

Sende
Firewall

Figure 12: Test topology with intermediate firewall.

directly to the outside world; the rest of the configu-

ration remains as in the previous experiment. To test

the scalability of the distributed firewall we varied

the number of hosts that participate in the connection

setup. As in the previous experiment we formed 100

connections to the machines running the distributed

firewall in a round robin fashion, each time varying

the number of participating hosts. We make the as-

sumption that every protected host inside a firewall

contributes roughly the same number of rules, and

in the classic centralized case the firewall will have

to enforce the sum of those rules. Therefore indi-

vidual machines will have a smaller rule base than
Figure 13: Average connection overhead measured in

a central control point. The measurements and the
ms for 100 TCP connections between hosts through a

percentile overheads are given in Figures 15 and 16.
firewall.

We have kept the total number of rules constant as

In the experiment of Figure 12, we used a configu- in the IPF case, and spread them over an increas-

ration of 4 systems (300 MHz PII) interconnected via ing mmber of machines. This experiment clearly

a lOOMbps ethernet hub. One of the four machines demonstrates the benefit of eliminating intermediate

is connected to the "outside world" with 100 Mbps enforcement points, and pushing ~ecurity functions

ethernet. In the outside world there is an 850 MHz to the endpoints: a two-fold impro~ement in perfor-

machine (Alice). The "inside" 3 machines run a sim- mance conpared to the centralized approach, in addi-

p]e server accepting connections. The outside ma- tion to the increased flexibility and scalability offered

chine, through the gateway, makes 100 connections by our architecture.

in a round robin fashion to the 3 machines. Measure- 1, the IPF firewall experiments, the rules must be

ments are given in the table of Figure 13. preloaded; in an experimental configuration such as

Using the same end-hosts, we eliminate the gate- we described (with ca. 200 rules) this is a non-

way machine. with each of the client machines run- issue. In large installations however, the number of

rules can easily reach 4,000 - 5,000 (e.g., for a fi-

nancial institution we are familiar with). In an en-

vironment where simple IP address checking is in-
_.-. , , , .

sufficient, each such rule has other information asso-

ciated with it (e.g., user public keys, acceptable en- .. --.. ',. .
cryptionlauthentication algorithms, other conditions

for access). Thus, the storage requirements for net-

work layer security policy would vary from 4MB to

lOOMB or more. This requirement would be im-

posed on all enforcement points of the same network,
Figure 14: Test topology without intermediate fire-

which would then be required to have persistent stor-
wall.

age (so the policy survives crashes or power cycling).

The key observation here is that not all users can (or

do) access the same enforcement points at the same

time; our architecture takes advantage of this fact, by

only instantiating rules as-needed at an enforcement

point. The rules are limited in our system to those

needed to grant access to users actually requesting Figure 15: Average connection overhead measured in

Insecure

Cold cache

Warm cache

access. ms for 100 TCP connections spread over one, two and

three hosts respectively, using the distributed firewall.

4 Related Work

3 Hosts

48.6 ms

53.7 ms

50.5 ms

1 Host 1 2 Hosts

Traditional firewall work [6, 15, 81 has focused on

56.1 ms

84.3 ms

66.3 ms

nodes and enforcement mechanisms rather than over-

53.1 ms

62.1 ms

58.0 ms

all network protection and policy coordination.

ln OASIS[] 11, policy coordination is achieved Figure 16: Reduction of processing overhead of the

with a role-based system where each principal may distributed firewall as the number of hosts increases.

be issued with a name by one service, on the condi- The percentages represent the additional cost of the

tion that it has already been issued with some spec- distributed firewall over the insecure case and are de-

ified name of another service. Event notification is rived from Figure 15.

used to revoke names when the issuing conditions itly defined by the security administrator of a system,

are not satisfied, thus revoking access to services that and is separate from access policy.

depended on that name. Credentials are limited to
In [5] , the authors propose an algebra of secu-

verifying membership to a group or role, and OA-
~ - - -

rity policies that allows combination of authorization
SIS uses delegation in a very limited way, limiting

policies specified in different languages and issued
decentralization.

by different authorities. The main disadvantage of
Firmato's[1] "network grouping" language is lo-

their approach is that it assumes that all policies and
cally customized to each managed firewall. The lan-

(more importantly) all necessary supporting infor-
guage is portable, but limited to packet filtering. It

mation is available at a single decision point, which
does not handle delegation or different, interacting

is a difficult proposition even within the bounds of an
application domains. Policy updates force complete

operating system. Our observation here is that in fact
reloads of the rulesets at the affected enforcement

the decision made by a policy engine can be cached
points, and the entire relevant policy ruleset must be

and reused higher in the stack. Although the authors
available at an enforcement point. This causes scal-

briefly discuss partial evaluation of composition poli-
ing problems with respect to the number of users,

cies, they do so only in the context of their generation
peer nodes, and policy entries.

and not on enforcement.
A similar system in [12] covers additional config-

uration domains (such as 00s) . Differences are the The NESTOR architecture [3] defines a frame-

policy description language and the method by which work for automated configuration of networks and

the rule set is pruned for any particular device. Con- their components. NESTOR uses a set of tools

siderable work of this style has been done [9, 161. for managing a network topology database. It

Another approach to policy coordination 11 Ol pro- then translates high-level network configuration di-

poses a ticket-based architecture using mediators to rectives into device-specific commands through an

coordinate policy between different information en- adaptation layer. Policy constraints are described

claves. Policy relevant to an object is retrieved by a in a Java-like language and are enforced by dedi-

central repository by the controlling mediator. Me- cated manager processes, which pose scaling prob-

diators also map foreign principals to local entities, lems. We believe this approach has difficulty with

assign local proxies to act as trusted delegates of decentralized administration and separation-of-duty

foreign principals, and perform other authorization- concerns, due to its view of the network through a

related duties. Coordination policy has to be explic- central configuration depository.

5 Concluding Remarks uation on real traffic, and extending the uses of

out system with new application-specific policy lan-

STRONGMAN is a new security policy management guages.

architecture. Its approach to scaling is local enforce-

ment of global security policies. The local autonomy

provided by compliance checking permits the archi-
References

tecture to scale comfortably with the Internet infras- ,,] BARTAL, Y., MAYER, A., NISSIM, K., A N D

tructure. WOOL, A. Firmato: a novel firewall management

Our distributed firewall implements- toolkit. In Proceedings of the 1999 iEEE Symposium

on Security and Privacy (May 1999), pp. 17-3 1. tion on OpenBSD was used to quantify some bene-

fits of STRONGMAN. As we have shown in Section [21 B E ~ L O v , N , S , M. ~ i ~ ~ ~ i b ~ ~ ~ d pirewalls. ,.lo-

3.2, this implementation has higher throughput and gin: magazine, special issue on security (November

better scalability than a baseline firewall constructed 1 999).

using IPF. It accommodates considerable complex-
[3] BHATT, S., KONSTANTINOU, A,, RAJAGOPALAN,

ity in policies: the policy compliance checker com- S., A N D YEMINI, Y. Managing Security in Dy-
poses policy rules into a coherent enforceable set for namic Networks. In Proceedings of the 13th

each boundary controller, and lazy instantiation re- USENIX Systems Administration Conference (LISA)

duces the state required at enforcement points. The (November 1999).

removal of topological constraints in firewall place-
[4] BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J.,

ment facilitates other Internet protocols and mecha-
AND KEROMYTIS, A. D. The KeyNote Trust Man-

nisms. agement System Version 2. Internet RFC 2704,

STRONGMAN is the first architecture for provid- September 1999.

ing strong security services which can scale with the [s] BONATTI, P., Dl VIMERCATI, S. D. C., A N D

Internet. Security enforcement is pushed to the end- SAMARATI, P. A Modular Approach to Compos-
points, consistent with end-to-end design principles. ing Access Policies. In Proceedings of Computer

Since the enforcement points are coupled only by and Communications Security (CCS) 2000 (Novem-

their use of a common global policy, they possess ber 2000), pp. 1 64-1 73

local autonomy which can be exploited for scaling.
[6] CHESWICK, W. R., A N D BELLOVIN, S. M. Fire-

Among our goals for future work are experiments walls and Internet Security: Repelling the Wily

with a larger scale deployment, validating lazy eval- Hacker. Addison-Wesley, 1994.

[7] CLARK, D. D. The Design Philosophy of the

DARPA Internet Protocols. In Proc. SICCOMM

1988 (1988), pp. 106-1 14.

[8] GREENWALD, M., SINGHAL, S., STONE, J., AND

CHERITON, D. Designing an Academic Firewall.

Policy, Practice and Experience with SURF. In

Proc. of Network and Distributed System Security

Symposium (NDSS) (February 1996), pp. 79-91.

[9] GUTTMAN, J. D. Filtering Postures: Local Enforce-

ment for Global Policies. In IEEE Security and Pri-

vacy Conference (May 1997), pp. 120-1 29.

[lo] HALE, J., GALIASSO, P., PAPA, M., AND SHENOI ,

S. Security Policy Coordination for Heterogeneous

Information Systems. In Proc. of the 15th Annual

Computer Security Applications Conference (AC-

SAC) (December 1 999).

[1]] HAYTON, R., BACON, J. , A N D MOODY, K. Ac-

cess Control in an Open Distributed Environment.

In IEEE Symposium on Security and Privacy (May

1998).

[I21 HINRICHS, S. Policy-Based Management: Bridg-

ing the Gap. In Proc. of the 15th Annual Com-

puter Security Applications Conference (ACSAC)

(December 1 999).

1131 HOWARD, J. D. An Analysis Of Security On The

Internet 1989 - 1995. PhD thesis, Camegie Mellon

University, April 1997.

[14] IOANNIDIS, S., KEROMYTIS, A., BELLOVIN, S.,

AND SMITH, J . Implementing a Distributed Fire-

wall. In Proceedings of Computer and Commu-

nications Security (CCS) 2000 (November 2000),

pp. 190-199.

[15] MOGUL, J. C. Simple and flexible datagram access

controls for UNIX-based gateways. In Proceedings

of the USENIX Summer 1989 Conference (1989),

pp. 203-22 1.

[I 61 MOLITOR, A. An Architecture for Advanced Packet

Filtering. In Proceedings of the 5th USENIX UNIX

Security Symposium (June 1995).

[17] SALTZER, J. H., REED, D. P., A N D CLARK, D. D.

End-to-end arguments in System Design. ACM

Transactions on Computer Systems 2, 4 (November

1984), 277-288.

	Scalable Security Mechanisms for the Internet
	Recommended Citation

	Scalable Security Mechanisms for the Internet
	Abstract
	Comments

	tmp.1182348906.pdf.qLqso

