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Abstract tributed firewall. 

The design principle of restricting local autonomy 
1 Introduction 

only where necessary for global robustness has led 

to a scalable Internet. Unfort~nately, this scalabil- ~~~h of the scalability has heen achieved 

ity and capacity for distributed control has not been as a byproduct of intelligent application of the end- 

achieved in the mechanisms for specifying and en- to-end design principle[l7, 71, where properties that 

forcing security policies. must hold end-to-end are provided by mechanisms 

The STRONGMAN system described in this pa- at the end points. The resulting design keeps the net- 

per demonstrates three new approaches to providing work simple and allows great local autonomy in im- 

efficient local policy enforcement complying with plementing these mechanisms. 

global security policies. First is the use of a compli- Security for distributed applications is arguably an 

ance checker to provide great local autonomy within end-to-end property. By the end-to-end argument 

the constraints of a global security policy. second is hosts should be responsible for the perceived security 

a mechanism to compose policy rules into a coher- of "the internet". However, several factors currently 

ent enforceable set, e.g., at the boundaries of two 10- argue against this placement of functionality. First, 

cally autonomous application domains. Third is the policies are, or ought to be, specified at the granu- 

"lazy instantiation" of policies to reduce the amount larity of administrative (security) domains, and not 

of state enforcement points need to maintain. only at the granularity of individual hosts - there 

We demonstrate the use of these approaches in the must be means of ensuring that the local enforce- 

design, implementation and measurements of a dis- ment actually conforms to the larger ("global") pol- 



1 formance. 

In ernet \ Any alternative that attempts to avoid the perfor- 
/' 

/' 
/' /. mance bottleneck of a centralized firewall must sup- 

. Host 

/. 
/' port a simple (and consistent) specification of secu- [L',::. - . - . - . - . - . - 

rity policy for an entire administrative domain. Since 
', 

\. manual or semi-automatic configuration of nodes 
\. 

\. 
\. 

and protocols to conform to a global policy has been 
'. 
\, 
\. shown to be problematic and error-prone 1131, au- 
\. 

\*\. I---' tomatic techniques relying on a single method of 

"1 ~~~t 1 specification are desirable. The Distributed Firewall 

of [2, 141 implements just such a mechanism. 

However, based on experience, no single mech- 
Figure 1 : A firewall's bottleneck topology. 

anism exists that can address the security require- 

icy. Second, some operating systems have been de- n~ents of all applications and ~rotocols. 'llere- 

signed under the assumption that network security is fore multiple security mchanisms (with overlapping 

mostly handled by third parties (firewalls), thus lack- scopes, such as IPSec and SSL) are in use sh-~ulta- 

ing much-needed enforcement mechanisms. Third, neously in many networks. These multiple security 

many security policies grant more rights to ''loca]'' mechanisms must present a single consistent system 

machines and entities - an irresponsible, incompe- image to the administrator else complexity of config- 

tent, or merely uninformed, coworker can compro- uration will again result in errors. 

mise an entire LAN. It may seem natural to repeat the solution adopted 

This situation has led, for example, to the perva- by Distributed Firewalls and design a "universal" 

sive use of firewalls, which enforce a single secu- high-level policy specification language. Such a 

rity policy at network boundaries to protect multiple language would, ideally, specify global policies 

hosts behind the boundaries from certain classes of which much be enforced across multiple heteroge- 

security problems. To implement the policy globally, neous domains. However, security policies are often 

the network topology must be restricted to pass all application-dependent. "Universal" high-level pol- 

traffic through the firewall, as shown in Figure l .  Un- icy languages are feature-rich and complex, and are 

fortunately, these firewalls have many negative con- therefore clumsy and lead to mistakes. Further, such 

sequences for Internet routing, flow control and per- languages often presume homogeneity, and cannot 



handle mixtures of multiple mechanisms/languages ministrators should be able to independently specify 

for different parts of the same network. policies over their own domain: this should be true 

Therefore we argue that the correct approach is whether the administrator manages particular appli- 

an architecture that ties together multiple security cations within a security domain, or manages a sub- 

mechanisms within a single system image, that sup- domain of a larger administrative domain. 

ports many application-specific policy languages, Other concerns in addition to scalability shape the 

that automatically distributes and uniformly enforces requirements of STRONGMAN. 

the single security policy across all enforcement Users/principals must be identifiable by (possibly 

points, and that allows enforcement points to be cho- multiple) pure names, such as their public key, and 

sen to appropriately to meet both security and perfor- not simply by userid and/or IP-address. The 

mance requirements. Further, this architecture must policy system must support privilege delegation and 

scale with the growth of the Internet. hierarchical management. Security must not be com- 

In this paper we propose an architecture, promised by enforcement points crashing and recov- 

STRONGMAN, and argue that it meets these re- ering. 

quirements. Given the requirements above, several properties 

of STRONGMAN follow immediately: 

2 Our Approach 

A scalable security system for the Internet must 

handle growth in the number of users, enforcement 

points, and rules pertaining to both, as well as an 

ability to support a variety of applications and pro- 

tocols. Policy updates must be as cheap as possible, 

since these are common and often-used operations 

in any system (addinglgiving privileges to a user, re- 

moving/revoking privileges from a user). Security 

policies for a particular application should be spec- 

ified in an application-specific language, and a sin- 

The low-level policy system supports "lazy in- 

stantiation" of policy on the enforcement points 

in order to minimize the resources consumed by 

policy storage. In other words, an enforcement 

point should only learn those parts of its policy 

that it actually has to enforce as a result of user 

service access patterns. A further benefit of this 

approach is that policy may be treated as "soft 

state," and thus be discarded by the enforcement 

point when resources are running low and re- 

covered when space permits or after a crash. 

gle specification should be able to control the behav- STRONGMAN shifts as much of the opera- 

ior of any needed security mechanism. Finally, ad- tional burden as possible to the end users' sys- 
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Figure 2: KeyNoteused as a policy interoperability layer. Policy composition in STRONGMAN does not depend 

on using the same compiler to process all the high-level policies. 

tems because enforcement points are generally 

overloaded with processing requests and medi- 

ating access. As an example, in the context of 

"lazy policy instantiation" described above, the 

users' systems can be made responsible for ac- 

quiring the policies that apply to the users and 

for providing these to the enforcement points. 

There is a distinction between high and low 

level policy in our system; in particular, there 

may be multiple high-level policy specifica- 

tion mechanisms (different languages, GUIs, 

etc.), all translating to the same lower-level pol- 

icy expression language. A powerful, flexi- 

ble, and extensible low-level mechanism that 

is used as a common "policy interoperability 

layer7' (as shown in Figure 2) allows us to use 

the same policy model across different applica- 

tions, without mandating the use of any partic- 

ular policy front-end. This architecture has an 

intentional resemblance to the IP "hourglass", 

and resolves heterogeneity in similar ways, e.g., 

the mapping of the interoperability layer onto 

a particular enforcement device, or the servic- 

ing of multiple applications with a policy lingua 

franca. 

The system must be able to compose the inde- 

pendent policy specifications in a manner which 

does not violate any of them because multiple 



independently specified policies may be man- plements these design principles by using the 

aged at a single enforcement point. KeyNote [4] trust-management system as a basis for 

expressing and distributing low-level security policy. 
a Users will be identified by their public keys 

(each user may have multiple keys, for differ- 

ent purposes/applications). These public keys 

are used in the context of various protocols to 

authenticate the users to specific services. This 2.1 KeyNote 

also helps prevent malicious users from tam- 

pering with policies provided to enforcement 
KeyNote is a simple trust management system and 

points via "lazy policy instantiation". 
language developed to support a variety of applica- 

a The low-level policy system allows for decen- tions. Although it is beyond the scope of this paper 

tralized and hierarchical management and sup- to give a complete tutorial or reference on KeyNote 

ports privilege delegation to other users. Note syntax and semantics (for which the reader is re- 

that delegation allows any user to be treated ferred to [41 ), we review a few basic concepts to 

as an ''administrator'' of her &legatees; con- give the reader a taste of what is going on. 

versely, administrators in such a system can 
The basic service provided by the KeyNote system 

simply be viewed as users with very broad priv- 
is compliance checking; that is, checking whether a 

ileges. This permits both decentralized manage- 
proposed action conforms to local policy. Actions in 
- ~ 

ment (different administrators/users are made 
KeyNote are specified as a set of name-value pairs, 

responsible for delegating and potentially re- 
called an Action Attribute Set. Policies are written 

fining different sets of privileges), and collab- 
in the KeyNote assertion language and either accept 

orative networking (by treating the remote ad- 
or reject action attribute sets presented to it. Poli- 

ministrator as a local user with specific privi- 
cies can be broken up and distributed via creden- 

leges she can then delegate to her users). Lim- 
tials, which are signed assertions that can be sent - 

ited privileges can be conferred to administra- 
over a network and to which a local policy can defer 

tors of other domains, who can then delegate . 
in making its decisions. The credential mechanism 

these to their users appropriately; this allows for 
allows for complex graphs of trust, in which creden- 

Intranet-style collaborations. 
tials signed by several entities are considered when 

Our architecture, named STRONGMAN, im- authorizing actions. 



permit KEY1 if using strong encryption and target in 192.168.1.0/24 

permit USERGROUP4 if using authentication and origin in LOCALNET and \ 

target in WEBSERVERS 

Figure 3: A high-level IPsec policy 

allow USERGROUP5 if file "/foo/bar.htmlU 

allow ANGELOS if directory "/confidential" and source in LOCALNETWORK 

Figure 4: A high-level web access policy 

2.2 Policy Translation and Composition This decoupling of high and low level policy spec- 

ification permits a more modular and extensible ap- 
In our architecture, policy for different network ap- 

proach, since languages may be replaced, modified, 
plications can be expressed in various high-level pol- 

or new ones added without affecting the underlying 
icy languages or systems, each fine-tuned to the par- 

system. 
ticular application. Each such language is processed 

by a compiler that can take into consider- TO Operate in our architecture, each high-level Ian- 

ation such infomation as network topology or a user &age or GUI has to include a "referral" primitive; 

database and produces a set of KeyNote credentials. this is simply a reference to a decision made by an- 

At the absolute minimum, such a compiler would other IanguageJenforcement point (typically lower in 

need a knowledge of the public keys identifying the the protocol stack). This primitive allows us to per- 

users in the system. Other infomation is necessary form policy composition at enforcement time; de- 

on a per-application basis. For example, knowledge cisions made b~ one enforcement mechanism (e-g.9 

of the network topology is typically useful in speci- IPsec) are made available to higher-level enforce- 

fying packel filtering policy; for web content access ment mechanisms and can be taken into considera- 

control, on the other hand, the web servers' contents tion when making an access An 

and layout is probably more useful. Our proof-of- this is in Figure 5. 

concept languages (examples are shown in Figures 3 To complete the composition discussion, all that 

and 4) use a template-based mechanism for generat- is necessary is a channel to propagate this infor- 

ing KeyNote credentials. mation across enforcement layers. In our system, 



this is done on a case-by-case basis. For exam- lishes cryptographic context with the remote firewall 

ple, IPsec information can be propagated higher in 

the protocol stack by suitably modifying the Unix 

getsockopt ( 2  ) system call; in the case of a web 

server and SSL, the information is readily available 

through the SSL data structures (since the SSL and 

the web access control enforcement are both done in 

the context of a single process address space). 

2.3 Credential Management 

Compiled credentials are made available to end-users 

through policy repositories. These credentials are 

signed by the administrator's key and contain the var- 

ious conditions under which a specific user (as iden- 

tified by her key in the credential) is allowed to ac- 

cess a service. The translation of the policy rule in 

Figure 5 is shown in Figure 6. 

Users who wish to gain access to some service 

first need to acquire a fresh credential from one 

of the repositories. It is not necessary to protect 

the credentials as they are transferred over the net- 

work, since they are self-protected by virtue of being 

signed1. Users then provide these credentials to the 

relevant service (web server, firewall, etc.) through 

a protocol-specific mechanism. For example, in the 

case of IPsec, these credentials are passed on to the 

local key management daemon which then estab- 

'1t is possible to provide credential-confidentiality by en- 

crypting each credential with the public key of the intended 

recipient. 

or end system. It is also possible to pass KeyNote 

credentials in the TLS protocol. For protocols where 

this is not possible (e.g., SSL), an out-of-band mech- 

anism can be used instead. We have used a simple 

web server script interface for submitting credentials 

to be considered in the context of an access con- 

trol decision; credentials are passed as arguments to 

a CGI script that makes them available to the web 

server access control mechanism. To avoid DoS at- 

tacks, entries submitted in this manner are periodi- 

cally purged (in an LRU manner). 

Since policy is expressed is terms of credentials 

issued to users, policy need not be distributed syn- 

chronously to the enforcement points. Enforcement 

points need not know of all the users or rules that 

pertain to those users at all times; rather, they learn 

these rules as users try to gain access to controlled 

resources. We call this property "lazy policy instan- 

tiation". This allows our system to scale well with 

the number of users, rules, and enforcement points. 

Enforcement points may treat credentials as soft state 

and thus discard them as soon as storage resources 

become scarce. Users will simply have to re-submit 

these with their next access. 

Adding a new user or granting more privileges to 

an existing user is simply a matter of issuing a new 

credential (note that both operations are equivalent). 

The inverse operation, removing a user or revoking 

issued privilege, can be more expensive: in the sim- 



allow USER-ROOT if directory "/confidentialN \ 

and source in LOCALNETWORK \ 

and (application IPsec says "strong encryption" or \ 

application SSL says "very strong encryption") 

Figure 5: Web access policy taking into consideration decisions made by the IPsec and SSL protocols. The 

information on USER-ROOT and LOCALNETWORK are specified in separate databases, which the compiler 

takes into consideration when compiling these rules to KeyNote credentials. 

ple case, a user's credentials can be allowed to ex- should not increase the load or storage requirements 

pire; this permits a window of access, between the on enforcement points. Thus, the most attractive ap- 

time the decision is taken to revoke a user's privi- proach is proofs of validity (acquired by the user 

leges and the time the relevant credentials expire. For from a "refresher" server, and provided to the en- 

those cases where this is adequate, there is no addi- forcement point along with the credentials). While 

tional overhead. This argues for relatively short-lived this approach is architecturally attractive, it places 

credentials, which the users (rather, software on their high load on the refresher servers. The validity 

systems) will have to re-acquire periodically. While verification mechanism may be specified on a per- 

this may place additional burden on the reposito- credential basis, depending on the perceived risk of 

ries, it is possible to arrange for credentials to expire compromise and the potential damage done if that 

at different times from each other, thus mitigating occurs. 

the effect on the infrastructure of multiple users (re- Finally, since KeyNote allows arbitrary levels of 

)acquiring their credentials at the same time. Given delegation (through chains of credentials), it is pas- 

that a large number of digital signatures will have t~ sible for users to act as lower-level administrators 

be computed as a result of periodically issuing ere- and issue credentials to others. It is thus possible 

dentials, this is desirable from a policy-generation to build a hierarchical and decentralized manage- 

point of view as well. ment scheme, wherein the corporate network admin- 

For more aggressive credential revocation, other istrator authorizes branch administrators to manage 

mechanisms have to be used. Although no single their networks under some constraints. More inter- 

revocation mechanism exists that can be used in all estingly, it is possible to view the administrator of 

possible systems, we note that any such mechanism another network as a local user; that administrator 



may then handle access to the shared resources for connect to the h t t p  port on a company's internal 

the remote network users, under the constraints spec- Web server is only granted to those machines hav- 

ified in their credential. ing the appropriate credentials, rather than those ma- 

chines that happen to be connected to an internal 

wire. 
3 The Distr:ibuted Firewall 

In our prototype, end hosts (as identified by their 

We present a distributed firewall as an example of an IP address) are also considered principals when IPsec 

implementation conforming to the STRONGMAN is not used to secure communications. This allows 

architecture. local policies or credentials issued by administrators 

A distributed firewall (as described in [2, 141 ) en- to specify policies similar to Current packet-filtering 

forces a single central security policy at every end- rules. Naturally, such policies or credentials implic- 

point. The policy specifies what connectivity, both itly trust the validity of an IP address as an identifier. 

inbound and outbound, is permitted. This policy is In that respect, they are equivalent to standard ~ a c k e t  

distributed to all endpoints where it is authenticated filtering. The only known solution to this is the use of 

and then enforced, thus making security an end-to- ~ ' ~ ~ t o g r a ~ h i c  ~rotocols to  cure ~~t~-~municat ions.  

end property. 
3.1 Implementation 

Distributed firewalls do not rely on the topological 

notions of "inside" and "outside" as do traditional Our system (implemented on the OpenBSD operat- 

firewalls. Rather, a distributed firewall grants spe- ing system) is comprised of three components: (1) 

cific rights to machines that possess the credentials a set of kernel extensions, which implement the en- 

specified by the central policy. A laptop connected forcement mechanisms; (2) a user level daemon pro- 

to the "outside" Internet has the same level of protec- cess, which implements the distributed firewall poli- 

tion as does a desktop in the organization's facility. cies; and (3) a device driver, which is used for two- 

Conversely, a laptop connected to the corporate net way communication between the kernel and the pol- 

by a visitor would not have the proper credentials, icy daemon. Our prototype implementation totals ap- 

and hence would be denied access, even though it is proximately 1 150 lines of C code; each component is 

topologically "inside." roughly the same size. 

In the example STRONGMAN distributed fire- Figure 7 shows a graphical representation of the 

wall, endpoints are characterized by their public keys system, with all its components. The core of the 

and the credentials they possess. Thus, the right to enforcement mechanism lives in kernel space and is 



Authorizer: ADMINISTRATOR-KEY 

Licensees: USER-ROOT-KEY 

Conditions: app-domain == "web access" && 

directory "= "/directory/.*" && 

(source-address =< "192.168.001.255" && 

source-address >= "192.168.001.000") && 

(ipsec-result == "strong encryption" I / 
ssl-result == "very strong encryption") -> "permit"; 

Signature: . . . 

Figure 6: Translation of the policy rule from Figure 5 to a KeyNote credential. The public keys and the digital 

signature are omitted in the interests of readability. 

Application Policy Daemon 

openO, closeO, 
read(), write(), 

ioctl() H 
f User Space 

match, a request is generated and inserted in the pol- 

icy context queue. From there, via the device driver, 

the policy daemon can get the request and respond 

accordingly. 

In the following three subsections we describe the 

- -  various parts of the architecture, their functionality, 

, and how they interact with each other. 

f Kernel Space 
..-...-..-.- ........................................... 3.1.1 Kernel Extensions 

Network 

In the UNIX operating system users create outgo- 
Figure 7: Block diagram of the firewall system 

ing and allow incoming connections using a number 

of provided system calls. Since any user has access 

comprised of the filtering routines and the rule cache. to these system calls, some "filtering" mechanism is 

The policy specification and processing unit lives in needed. This filtering should be based on a policy 

user space inside the policy daemon process. Any that is set by the administrator, and any incoming or 

incoming or outgoing IP packets go through the fil- outgoing packet should be subject to it. 

ter and are subject to the rules. If none of the rules In order to enforce our policy to every packet and 



yet have a simple and elegant design, we decided 
u-int32-t seq; /*Sequence Numberk/ - - - - 

to filter IP traffic. To achieve this we added hooks 
u-int32-t uid; /*User Idk/ 

in the ip-input ( ) and ip-output ( ) routines of 
u-int32-t N; /*Number of Fields*/ 

the protocol stack that will execute our filtering code, 
u-int32-t 1[Nl; /*Field Lengths*/ 

and created two data structures to assist us in this 
char *field [Nl ; /*Fields*/ 

process. 

The first data structure, or rules cache, contains a Figure 8: Policy context data structure 

set of rules that packets are compared against. If a 

match is found, the rule is followed to either accept decision-making strategy- 

or drop the packet. The second data structure is the Every packet is intercepted at the IP layer and 

policy context queue. A policy context (the C decla- checked against the rules cache. If a match is found 

ration for which is shown in Figure 8) is a container then the rule is enforced. If no match is found, we 

for all the information related to a specific packet. enqueue a new request to the policy context queue- 

We associate a sequence number to each such con- If We have already enqueued a request for the same 

text and then we start filling it with all the infoma- class of packets, no further action is necessary. Each 

tion the policy daemon will need to make an access entT in the context queue also contains the last 

control decision. A request to the policy daemon is packet from that packet flow; if a positive decision 

comprised of the following fields: a sequence num- is received from the policy daemon, the packet is re- 

ber uniquely identifying the request, the ID of the queued for processing by the IP stack. 

user the connection request belongs to, the number In the next section we discuss how messages are 

of information fields that will be included in the re- passed between the km~el  and the policy daemon. 

quest, the lengths of those fields, and finally the fields 
3.1.2 Policy Device 

themselves. This can include source and destination 

addresses, transport protocol and ports, etc. Any cre- To maximize the flexibility of our system and al- 

dentials acquired through IPsec may also be added low for easy experimentation, we decided to make 

to the context at this stage. There is no limit as to the policy daemon a user level process. To support 

the kind or amount of information we can associate this architecture, we implemented a pseudo device 

with acontext. We can, for example, include the time driver, /dev/policy, that serves as a communi- 

of day or the number of other open connections of cation path between the user-space policy daemon, 

that user, if we want them to be considered by our and the modified system calls in the kernel. Our de- 



vice driver, implemented as a loadable module, sup- 
I I I 

ports the usual operations (open ( 2  ) , c l o s e  ( 2  ) , 

r e a d ( 2 ) , w r i t e ( 2 ) , a n d  i o c t l ( 2 ) ) .  

If no policy daemon has opened / d e v / p o l i c y ,  Warm cache 

activates the distributed firewall and initializes data 
Figure 9: Average connection overhead measured in 

structures. All subsequent flow of packets will go 
ms for 100 TCP connections between Alice and Bob. 

through the procedure described in the previous sec- 

5 1.8 ms 

no connection filtering is done. Opening the device 

tion. Closing the device will free any allocated re- 

I 

sources and disable the distributed firewall. 

IPF 

The policy daemon reads the device for pending 

requests in the policy context queue. It then handles daemon can simply flush one or more entries from 

the request and returns a new rule to the kernel by the rules cache in the kernel. This way subsequent 

writing it to the device, as a result of which the ap- packets will not match the existing rule set and the 

propriate entry is entered in the rules cache. policy daemon will be queried for the new policy. 

63.1 ms 

The i o c t l  ( 2 ) call is used for "house-keeping" 

tasks. This allows the kernel and the policy daemon ~ h ,  daemon receives each request (see Figure 8) 

to re-synchronize in case of any errors in creating or from the kernel by reading the icy device. The 

parsing the request and to flush en- request contains all the information relevant to that 

tries from the rule cache. connection as described in Section 3.1.1. Process- 

3.1.3 Policy Daemon 
ing of the request is done by the daemon using the 

KeyNote system, and a decision to accept or deny 

The last component of our system is the policy dae- it is reached. The decision is sent to the kernel, 

mon. It is a user-level process responsible for mak- and the daemon waits for the next request. While 

ing decisions, based on policies that are specified the information received in a particular message is 

by some administrator and credentials retrieved re- application-dependent (in our case, relevant to the 

motely or provided by the kernel, on whether to al- distributed firewall), the daemon itself has no aware- 

low or deny connections. ness of the specific application. Thus, it can be used 

Policies are initially read in from a file. Addition to provide policy resolution services for many differ- 

and removal policies can be done dynamically. The ent applications, literally without any modifications. 



filtering package implemented completely inside the Figure 10: Average roundtrip time (in ms) for 200 

3.2 Experimental Evaluation 

kernel, used in many open-source systems) and of ICMP ECHO-REQUEST messages. 

While the architectural discussion is largely qual- 

itative, some estimates of the system performance 

are useful. We performed several experiments, both 

varied topologies which demonstrate the value of 
I I 1 

maintaining consistent global security properties. 

Our test machines are x86 architecture machines 

of comparable node software (using IPF, a packet- 

Insecure 

Cold cache 

Warm cache 

IPF 

running OpenBSD 2.8 and interconnected by 100 

Mbps ethernet. More specifically, in the two-host 

0.273 f 0.091 ms 

0.283 k 0.089 ms 

0.282 f 0.077 ms 

0.283 & 0.124 ms 

tests (source to sink), Alice is an 850 Mhz PI11 and 
Figure 1 1 : lOOMB file transfer over TCP, measured in serves as the source. Bob, the sink, runs the dis- 

tributed firewall (DF) code and is a 400 Mhz PII. ms. 

In the following tables, insecure means there is shown in Figure 10. We include the standard devi- 

neither DF nor IPF running, IPF n~eans we have IPF ation, as the measurements did vary slightly. These 

activated, cold cache means that we have DF running two experiments show us that the cost of compliance 

but the rules cache is empty and every time we go to checking in our architecture is very small (within 

the daemon to get the rules. Wiarm cache means that 3% of an insecure system, except for the TCP cold 

the rules are in the cache (except for the first refer- cache case which is 20% more expensive), and typi- 

ence). cally better than IPF. This means that an architecture 

In Figure 9 we have a server application running with decentralized enforcement does not unduly af- 

on Alice; Bob runs a client which connects to the fect end-system latency. 

server 100 times using different ports. This generates The measurements of Figure 1 1 have a server ap- 

200 rules (for incoming and outgoing packets). In the plication is running on Alice; a client running on Bob 

IPF case, those 200 rules are pre-loaded in the filter connects to Alice and transfers 100MB. It is clear 

list. In the second experiment, Bob sent 200 ICMP that our system does not significantly affect network 

ECHO-REQUEST messages to Alice; the results are throughput (the difference is in the order of 0.5%). 



ning the distributed firewall and enforcing policy lo- 

Policy ,. Host 
. n cally (see Figure 14). The ethernet hub is connected 

Sende 
Firewall 

Figure 12: Test topology with intermediate firewall. 

directly to the outside world; the rest of the configu- 

ration remains as in the previous experiment. To test 

the scalability of the distributed firewall we varied 

the number of hosts that participate in the connection 

setup. As in the previous experiment we formed 100 

connections to the machines running the distributed 

firewall in a round robin fashion, each time varying 

the number of participating hosts. We make the as- 

sumption that every protected host inside a firewall 

contributes roughly the same number of rules, and 

in the classic centralized case the firewall will have 

to enforce the sum of those rules. Therefore indi- 

vidual machines will have a smaller rule base than 
Figure 13: Average connection overhead measured in 

a central control point. The measurements and the 
ms for 100 TCP connections between hosts through a 

percentile overheads are given in Figures 15 and 16. 
firewall. 

We have kept the total number of rules constant as 

In the experiment of Figure 12, we used a configu- in the IPF case, and spread them over an increas- 

ration of 4 systems (300 MHz PII) interconnected via ing mmber of machines. This experiment clearly 

a lOOMbps ethernet hub. One of the four machines demonstrates the benefit of eliminating intermediate 

is  connected to the "outside world" with 100 Mbps enforcement points, and pushing ~ecurity functions 

ethernet. In the outside world there is an 850 MHz to the endpoints: a two-fold impro~ement in perfor- 

machine (Alice). The "inside" 3 machines run a sim- mance conpared to the centralized approach, in addi- 

p]e server accepting connections. The outside ma- tion to the increased flexibility and scalability offered 

chine, through the gateway, makes 100 connections by our architecture. 

in a round robin fashion to the 3 machines. Measure- 1, the IPF firewall experiments, the rules must be 

ments are given in the table of Figure 13. preloaded; in an experimental configuration such as 

Using the same end-hosts, we eliminate the gate- we described (with ca. 200 rules) this is a non- 

way machine. with each of the client machines run- issue. In large installations however, the number of 



rules can easily reach 4,000 - 5,000 (e.g., for a fi- 

nancial institution we are familiar with). In an en- 

vironment where simple IP address checking is in- 
_.-. , , , . 

sufficient, each such rule has other information asso- 

ciated with it (e.g., user public keys, acceptable en- .. --.. ',. . 
cryptionlauthentication algorithms, other conditions 

for access). Thus, the storage requirements for net- 

work layer security policy would vary from 4MB to 

lOOMB or more. This requirement would be im- 

posed on all enforcement points of the same network, 
Figure 14: Test topology without intermediate fire- 

which would then be required to have persistent stor- 
wall. 

age (so the policy survives crashes or power cycling). 

The key observation here is that not all users can (or 

do) access the same enforcement points at the same 

time; our architecture takes advantage of this fact, by 

only instantiating rules as-needed at an enforcement 

point. The rules are limited in our system to those 

needed to grant access to users actually requesting Figure 15: Average connection overhead measured in 

Insecure 

Cold cache 

Warm cache 

access. ms for 100 TCP connections spread over one, two and 

three hosts respectively, using the distributed firewall. 

4 Related Work 

3 Hosts 

48.6 ms 

53.7 ms 

50.5 ms 

1 Host 1 2 Hosts 

Traditional firewall work [6, 15, 81 has focused on 

56.1 ms 

84.3 ms 

66.3 ms 

nodes and enforcement mechanisms rather than over- 

53.1 ms 

62.1 ms 

58.0 ms 

all network protection and policy coordination. 

ln OASIS[] 11, policy coordination is achieved Figure 16: Reduction of processing overhead of the 

with a role-based system where each principal may distributed firewall as the number of hosts increases. 

be issued with a name by one service, on the condi- The percentages represent the additional cost of the 

tion that it has already been issued with some spec- distributed firewall over the insecure case and are de- 

ified name of another service. Event notification is rived from Figure 15. 



used to revoke names when the issuing conditions itly defined by the security administrator of a system, 

are not satisfied, thus revoking access to services that and is separate from access policy. 

depended on that name. Credentials are limited to 
In [5] ,  the authors propose an algebra of secu- 

verifying membership to a group or role, and OA- 
~ - - - 

rity policies that allows combination of authorization 
SIS uses delegation in a very limited way, limiting 

policies specified in different languages and issued 
decentralization. 

by different authorities. The main disadvantage of 
Firmato's[ 1 ] "network grouping" language is lo- 

their approach is that it assumes that all policies and 
cally customized to each managed firewall. The lan- 

(more importantly) all necessary supporting infor- 
guage is portable, but limited to packet filtering. It 

mation is available at a single decision point, which 
does not handle delegation or different, interacting 

is a difficult proposition even within the bounds of an 
application domains. Policy updates force complete 

operating system. Our observation here is that in fact 
reloads of the rulesets at the affected enforcement 

the decision made by a policy engine can be cached 
points, and the entire relevant policy ruleset must be 

and reused higher in the stack. Although the authors 
available at an enforcement point. This causes scal- 

briefly discuss partial evaluation of composition poli- 
ing problems with respect to the number of users, 

cies, they do so only in the context of their generation 
peer nodes, and policy entries. 

and not on enforcement. 
A similar system in [12] covers additional config- 

uration domains (such as 00s) .  Differences are the The NESTOR architecture [3] defines a frame- 

policy description language and the method by which work for automated configuration of networks and 

the rule set is pruned for any particular device. Con- their components. NESTOR uses a set of tools 

siderable work of this style has been done [9, 161. for managing a network topology database. It 

Another approach to policy coordination 11 Ol pro- then translates high-level network configuration di- 

poses a ticket-based architecture using mediators to rectives into device-specific commands through an 

coordinate policy between different information en- adaptation layer. Policy constraints are described 

claves. Policy relevant to an object is retrieved by a in a Java-like language and are enforced by dedi- 

central repository by the controlling mediator. Me- cated manager processes, which pose scaling prob- 

diators also map foreign principals to local entities, lems. We believe this approach has difficulty with 

assign local proxies to act as trusted delegates of decentralized administration and separation-of-duty 

foreign principals, and perform other authorization- concerns, due to its view of the network through a 

related duties. Coordination policy has to be explic- central configuration depository. 



5 Concluding Remarks uation on real traffic, and extending the uses of 

out system with new application-specific policy lan- 

STRONGMAN is a new security policy management guages. 

architecture. Its approach to scaling is local enforce- 

ment of global security policies. The local autonomy 

provided by compliance checking permits the archi- 
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