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A General Theory of Sharing Graphs

Abstract
Sharing graphs are the structures introduced by Lamping to implement optimal reductions of lambda
calculus. Gonthier’s reformulation of Lamping’s technique inside Geometry of Interaction, and Asperti and
Laneve’s work on Interaction Systems have shown that sharing graphs can be used to implement a wide class
of calculi. Here, we give a general characterization of sharing graphs independent from the calculus to be
implemented. Such a characterization rests on an algebraic semantics of sharing graphs exploiting the methods
of Geometry of Interaction. By this semantics we can define an unfolding partial order between proper sharing
graphs, whose minimal elements are unshared graphs. The least-shared-instance of a sharing graph is the unique
unshared graph that the unfolding partial order associates to it. The algebraic semantics allows to prove that
we can associate a semantical read-back to each unshared graph and that such a read-back can be computed via
suitable read-back reductions. The result is then lifted to sharing graphs proving that any read-back (or
unfolding) reduction of them can be simulated on their least-shared- instances. The sharing graphs defined in
this way allow to implement in a distributed and local way any calculus with a global reduction rule in the style
of the beta rule of lambda calculus. Also in this case the proof technique is to prove that sharing reductions
can be simulated on least-shared-instances. The result is proved under the only assumption that the structures
of the calculus have a box nesting property, that is, that two beta redexes may not partially overlap. As a result,
we get a sharing graph machine that seems to be the most natural low-level computational model for
functional languages. The paper concludes showing that optimality is a by-product of this technique: optimal
reductions are lazy reductions of the sharing graph machine. We stress the proof strategy followed in the paper:
it is based on an amazing interplay between standard rewriting system properties (strong normalization,
confluence, and unique normal form) and algebraic properties definable via the techniques of Geometry of
Interaction.
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Sharing graphs are the structures introduced by Lamping to imple�
ment optimal reductions of lambda calculus� Gonthier�s reformu�
lation of Lamping�s technique inside Geometry of Interaction� and
Asperti and Laneve�s work on Interaction Systems have shown that
sharing graphs can be used to implement a wide class of calculi�
Here� we give a general characterization of sharing graphs inde�
pendent from the calculus to be implemented� Such a characteri�
zation rests on an algebraic semantics of sharing graphs exploiting
the methods of Geometry of Interaction� By this semantics we can
de�ne an unfolding partial order between proper sharing graphs�
whose minimal elements are unshared graphs� The least�shared�

instance of a sharing graph is the unique unshared graph that the
unfolding partial order associates to it� The algebraic semantics
allows to prove that we can associate a semantical read�back to
each unshared graph and that such a read�back can be computed
via suitable read�back reductions� The result is then lifted to shar�
ing graphs proving that any read�back �or unfolding� reduction of
them can be simulated on their least�shared�instances� The sharing
graphs de�ned in this way allow to implement in a distributed and
local way any calculus with a global reduction rule in the style of the
beta rule of lambda calculus� Also in this case the proof technique is
to prove that sharing reductions can be simulated on least�shared�
instances� The result is proved under the only assumption that the
structures of the calculus have a box nesting property� that is� that
two beta redexes may not partially overlap� As a result� we get a
sharing graph machine that seems to be the most natural low�level
computational model for functional languages� The paper concludes
showing that optimality is a by�product of this technique� optimal
reductions are lazy reductions of the sharing graph machine� We
stress the proof strategy followed in the paper� it is based on an
amazing interplay between standard rewriting system properties
�strong normalization� con�uence� and unique normal form� and
algebraic properties de�nable via the techniques of Geometry of
Interaction�
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� Introduction

Techniques to implement functional calculi based on the use of pointers �and
then on graphs� were known from long time �see �Wad���PJ����	 In such so

lutions sharing of graphs was implemented by pointers connecting a shared
subterm �the tree spanned by the paths rooted at a given node� to the nodes
accessing it	 The drawback of a naive implementation of such techniques was
the possibility of unwanted side
e�ects during the execution of variable sub

stitutions �see �Wad����	 In fact� to replace a term Ts for the occurrences of
a variable x by substituting a pointer to Ts for any pointer to x would apply
such a substitution in all the shared terms Tt containing x	 To �x up such a
problem of soundness� the usual solution was to create a new instance of Tt
in which to safely replace Ts for x	 Soundness were ensured but at the cost of
the duplication of any redex in Tt	 Therefore� any implementation of a func

tional calculus in which sharing be kept at the level of terms cannot avoid
duplication of redexes	

��� A �ne decomposition of the ��calculus � rule

The basic point of sharing graphs is to implement a sharing �ner than the
one obtainable keeping multiple pointers to the same subterm	 To have an
idea of how to achieve this� let us see how the � rule of �
calculus could be
implemented via a step
by
step graph reduction system in which the objects
rewritten are nodes rather than whole terms	
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Fig� 	� ��calculus � rule

Let us represent a �
term by its abstract syntax tree and� to avoid any prob

lem with the names of the variables� let us assume that all the occurrences of
a variable x in a �
term t are merged into a node �the bullet in Figure �� con

nected to the � abstraction �x�t	 According to our goal� the natural substitute
for the � rule of Figure � is the sharing � rule of Figure �	
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Fig� 
� ��calculus sharing � rule

In the sharing � rule� a new node� say a multiplexer or mux for short� is
inserted to connect the occurrences of x to the root of Ts	 The second part of
this decomposition is then the de�nition of a set of rules performing a step
by

step duplication of the term Ts� say a local and distributed duplication of Ts	
Such rules are given in Figure � �for the sake of a clear design� all the muxes
in that �gure are binary� the generalization is straightforward�	 The meaning
of most of them is self
evident� the only ones that deserve some thoughts are
�
up and absorption	
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Fig� �� Duplication rules

In �
up� the mux not only duplicates the � node that it points through its
principal port �the vertex of the triangle�� it also splits the occurrences of the
corresponding bound variable �in Figure � we have drawn just one of such
occurrences� but an analog duplication apply simultaneously to all the other
occurrences�	 In practice� duplicating a � node we also have to create a new
instance of the variable that the node bound for each new instance of �	

The �
up duplication rule is the �rst divergence from standard graph reduction
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techniques� for after the execution of a �
up we cannot say any more that the
subgraph pointed by a mux is a shared subterm	 In fact� the node inserted to
split the occurrences of the variable is not a sharing or multiplexing operator�
it is instead a sort of demultiplexing node	 �Since in most of the graphs we will
consider the orientation is not so clear as in the case of �
calculus� instead to
distinguish multiplexers into muxes and demuxes� in the body of the paper
we will rather prefer a more neutral classi�cation of multiplexers into positive
and negative muxes	� In some sense� each occurrence of the variable has been
replaced by a hole which may be �lled in two di�erent ways� according to which
instance of the shared subterm we are considering� the one relative to the left
instance of the duplicated � if we assume to access the shared part from the
left port of the mux� or the one relative to the right instance in the other case	
Hence� each demux inserted to split the variable matches with the mux below
the new instances of the � node� where by matching we mean that the edges
entering through the back port of a mux� say through its auxiliary ports� are
distinct� and that the variable occurrence connected to a given auxiliary port
is bound by the � node at the matching auxiliary port of the matching mux	
For instance� in each rule of Figure �� the auxiliary ports of each mux are
marked by a symbol� using a distinct marker for each pair of matching ports	

Furthermore� demuxes too can duplicate nodes� as shown by the 
left rule for
instance	 As a consequence the duplication of Ts is no more strictly top
down�
for demuxes move bottom
up	

The absorption rule applies when a mux reaches a free variable of Ts �let us
assume w	l	o	g	 that the we restrict to closed �
terms� so any variable free
in Ts is bound by some � external to Ts�	 The main remark about this rule
is that it cannot be safely applied in any con�guration as the one drawn in
the picture	 In fact� it is easy to build a term Ts in which a mux reaches a
variable bound by a � internal to Ts	 Some thoughts allow to realize that in
such a case to apply the absorption would not be sound	 The mux of the rule
would de�nitely have a matching mux above the �� then in the place of the
absorption it would be sound to let the mux duplicate the � �to simplify the
presentation� such a kind of � rule has been dropped in Figure �� as in the
case of �
down or �
up	

The latter is a �rst bell ring warning us that we need some local information
taking into account the global position of a node	 In this case� such an informa

tion would help has to recognize when the � is outside Ts and the absorption
rule might be safely applied	

So far� absorption is the only rule that erases muxes	 It would su�ce to elim

inate all the muxes and to complete the distributed duplication of Ts� only
if this process could be performed moving top
down only	 But the duplica

tion rules work independently from such an orientation	 Apart for the free
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variables of Ts� after a few duplication steps� the residual shared part of Ts
is a �possibly disjoint� graph delimited by a set of matching �de�muxes	 The
duplication may then continue by a random choice of any of such muxes� or
in a concurrent setting� by the simultaneous �ring of several duplication rules	
Hence� proceeding with the reduction� a mux may stop duplicating nodes in
two ways� reaching the binding port of a � node external to Ts� reaching the
principal port of a demux	 In the �rst case the absorption rule applies	 In the
second case� the two facing muxes correspond to a boundary around an empty
shared subgraph	 As a consequence it is sound to remove �annihilate� them
directly connecting each port of the mux to the matching port of the demux	

We are done	 The duplication rules plus the latter annihilation of muxes allow
to perform a complete duplication of Ts	 The � rule of Figure � can then be
split into the execution of a sharing � rule� followed by the application �in any
order� of a sequence of duplication or annihilation rules	

What we have get so far is however not yet particularly appealing	 In fact� what
we achieved is just a detailed implementation of �� but there is up to now no
relevant di�erence between an implementation based on the duplication rules
and one obtained by directly coding the duplication of Ts in some programming
language external to the graph rewriting system	 Nevertheless� all the rules we
have met� sharing � included� are local and can be �red independently from
the shape of the graph	 Hence� what does it happen if we freely execute them�
Namely� what does it happen if we execute another sharing � rule� either
internal or external to Ts� before that the duplication rules have accomplished
their task of to completely duplicate Ts�

The �rst consequence is that the muxes around the graph are no more part of
the same duplication process	 Therefore� when two of them face it is no more
sure that they are matching and that they can annihilate	 Some thoughts allow
to realize that� when a pair of non matching muxes faces� the correct rewriting
is rather the swap rule of Figure �	
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Fig� �� Mux interactions

This is the second and more important bell ring	 It warns us that we need a
way to talk about the dependencies between the nodes of a graph due to their
position in it� or to their origin	 In fact� the rewriting rules we have got contain
at least two kinds of rule that deserve to know such an information� the mux

�



interactions of Figure � and the absorption rule	 In the mux interactions� such
an information should enable us to recognize when two facing muxes have to
be considered matching�and the annihilation should then be applied�and
when such muxes are not matching�and the swap rule should be applied
instead	

The �rst attempt would be to mark each mux with a label corresponding
to the redex that created it	 Unfortunately� Lamping �who �rstly introduced
sharing graphs� see �Lam���� showed that this solution does not work� as in
certain cases� even two muxes that have been created by the same redex have
to be considered non matching	 The right solution is to have a dynamical
labeling of muxes� say an index� ensuring that the annihilation rule applies
when the muxes have the same index� and that the swap rule applies otherwise	
This introduces the next relevant ingredient for the understanding of sharing
graphs� the so
called boxes	

��� Boxes

To generalize our analysis� let us try to identify the elements characterizing
the � rule	 The rule take a subgraph and after its duplication connects its
new instances to some edges of the reducing graph	 In the �
calculus� the
subgraphs that can be involved in this process are clearly recognizable� they
are the subtrees rooted at the right edge of an  node	 More in general�
when the graphs under analysis are not trees� we might rather have a frame�
say a box� surrounding the subgraphs which might be argument of a �
like
reduction rule	 The � rule could then be depicted as a rewriting in which a
box is duplicated and displaced somewhere in the graph	 By the way� this
point of view is sound� as far as boxes can be properly rearranged after the
execution of a � rule	

A natural way to ensure this is asking that the only ways in which boxes
overlap are the trivial ones� that is� to ask that two boxes are either disjoint
or enclosed one into the other	 In the �
calculus this is de�nitely true� as it
is readily seen that� replacing a term for a variable occurrence� the box of
the replacing term is enclosed by the boxes that previously surrounded the
replaced variable occurrence	 More generally� we may say that the boxes of a
graph must properly nest� say that the graph must have a box nesting property�
and that the � rule must preserve such a box nesting property	

In the case of �
calculus� the box nesting property is equivalent to say that
�
calculus is an orthogonal rewriting system	 Therefore� to require that the
graph rewriting systems we want to study have the box nesting property means
to require that an analog orthogonality property hold for them	
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The box nesting property gives as the tools to avoid the introduction of a
global constructor for the representation of box frames	 In fact� assuming that
each node�edge is labeled by the number of boxes surrounding it� say the box
nesting level of the node�edge� we see that each node with two edges whose
levels are respectively n and n� k �with k � �� is the border of k boxes� and
that each of them can be recovered �nding the maximal connected subgraph
containing the nodes whose edges are at a level greater or equal than n � i�
for i � �� �� � � � � k	

These simple thoughts just give us a solution to the troubles with the appli

cation of the absorption rule	 In fact� it is readily seen that a � node external
to Ts may bound a variable internal to Ts only if its level is lower than the
level of the root of Ts	 Furthermore� any node internal to Ts has a level greater
or equal than the root of Ts	 Hence� let us assume to label the mux inserted
by the sharing � rule with an index equal to the level n of the �� pair re

duced by the rule	 Since a box frames Ts �see Figure ��� its root is at level
n� �	 The index of the mux can then be seen as a sort of discriminant� say a
threshold� that is capable to recognize when to stop the duplication	 Namely�
a mux duplicates all the nodes at a level greater or equal than its threshold
m� if during this process the mux reaches a � node with a level n � m� the
absorption rule applies and the mux is absorbed by the � node	

The use of levels opens however another problem� how to correctly reassign a
level to each node�edge of a new instance of Ts	 According to the shape of the
boxes of a �
term� the di�erence k between the level n � k of the occurrence
of a variable and the level n of the � node binding it is the number of boxes
in which the corresponding instance of Ts must be enclosed	 Since �ring the
� rule the box around Ts disappears� it means that each node�edge of such a
new instance of Ts must be increased by k � �	 It is worth to note that since
k might be equal to ��in the case that the variable occurrence does not close
any box�a � rule might also imply the decreasing by � of all the levels in Ts	

It is not di�cult to see how to perform such a reindexing during the duplication
of Ts	 Each auxiliary port of a mux should bring an o�set by which to increase
the level of the instance of the node duplicated by it	

Our duplication rules of Figure � should then be completed by inserting thresh

olds and levels	 We omit to redraw them at this point� for we will detailedly
discuss such a rewriting system �see Figure ��� in section �	 We only remark
that the idea that a mux with threshold m� lifts the levels above m� apply
also in the swap rule	 In fact� assume that the thresholds of the two muxes are
m��m� and that m� 	 m�	 Each new instance of the mux with threshold m�

is lifted by the o�set q of the corresponding port of the mux with threshold
m� �see Figure ���	
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��� Soundness

The soundness of the approach based on levels is easily provable for the case
in which a sharing � rule is followed by a whole duplication of Ts	 In this
case muxes never change their thresholds and the only case of mux interaction
that can arise is the annihilation rule	 When sharing � and duplications are
interleaved �hereafter� when not otherwise speci�ed� we will include mux in

teractions into duplications�� things become instead greatly involved	 Muxes
thresholds can arbitrarily change and it is not di�cult to build a case in which
two muxes that was created by the same redex meet with di�erent thresholds	

The core of the paper is devoted to prove soundness in the general case of
a rewriting system whose graphs have the box nesting property� and whose
rewriting rule is the analog of the � rule of �
calculus	 We will prove that
for any sharing graph�intuitively a graph obtained by applying a sequence
of sharing � and duplication rules�there is a corresponding graph without
muxes� write G �� R�G� and say R�G� is the read�back of G� s	t	 sharing �
and duplication rules are sound w	r	t	 such a read
back	 Namely� we will prove
that the following diagrams commute�

G G �

R�G� R�G ��

�s

�

�

G G �

R�G� R�G ��

�

�

���

where �s denotes sharing �� and 
 denotes duplication rule	

According to the diagram on the left� we see that each �s correspond to a
��nite� non empty sequence of � reductions� the execution of a � inside a
shared part implies the simultaneous reduction of all the instances of that
redex	

The diagram on the right
hand side expresses instead that the read
back of
a sharing graph is invariant under 
	 Furthermore� strong normalization and
con�uence�that are easily provable in the case �s followed by a maximal
sequence of 
�still hold in the general case	 Hence� the syntactical read

back we could de�ne via 
� i�e�� interpreting a sharing graph G as a shared
representation of its 
 normal form NF��G�� coincides with the semantical

�



one�

G

NF��G�

R�G�

�

�

� ���

The proof of the previous results requires a careful study of the unfoldings of a
sharing graph	 In fact� the de�nition of the map R splits in two steps� �rstly�
the individuation of a proper unfolding U of G� write U �� G� in which all
the muxes are unary� then� the de�nition of R for such a graph U	 Assuming
the uniqueness of the unfolding U� say the least�shared�instance of G� the
read
back can then be de�ned in the general case taking R�G� � R�U�	

Intuitively� the least
shared
instance U of G is a representation of R�G� in
which the reindexing of the nodes has not yet been accomplished	 At the
same time the unary muxes of U mark the border of a sharable subgraph� for
the image in G of each of them is a mux	 Nevertheless� to associate the correct
graph R�U� to the unshared graph U �a graph is unshared when all its muxes
are unary� is not an easy task	 Apart for levels� R�U� is obtained from U just
replacing its unary muxes by direct connections	 But to reassign levels is not
direct in the general case� despite its simplicity for �
calculus graphs� in which
the tree shape forces the existence of a unique level assignment	

Also the de�nition of least
shared
instance is not direct� as we cannot simply
take an unshared graph for which there is a graph morphism M � U � G	
Because of the matching of muxes� not all the paths are admissible unfolding
G� and thus not all the U de�nable via graph morphisms are correct	

Most of the paper is devoted to de�ne the correct unfolding partial order
��� by which to obtain the least
shared
instance of a sharing graph G as the
minimal element s	t	 U �� G	 In order to do this we have to develop an
algebraic semantics of sharing graphs by which to characterize the shape of a
proper unfolding morphism M � U �� G	 In this way� we will get an algebraic
characterization of the proper unshared graphs for which there is a shared
representation� and at the same time this will give us a characterization of the
�proper� sharing graphs as the ones for which U �� G is de�ned	

The read
back of proper unshared graphs is an immediate consequence of their
algebraic semantics	 Furthermore� such a semantics will also allow to prove
that diagram ��� and diagram ��� hold when G and G � are proper unshared
structures� provided that �s is replaced by an unshared version of the � rule�
say �u rule� positioned midway between � and �s�in a �u rule the duplica

tion of a box is still executed globally� the reindexing is instead demanded to
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some unary muxes inserted at the principal doors of the duplicated boxes �the
principal door of a box is the generalization of the root of Ts�	 Such a decom

position of � re�ects in a decomposition of the proof of soundness	 In fact�
given a sharing graph G� we will prove that any �s or 
 reduction G � G �

can be simulated on its least
shared
instance U obtaining as result the least

shared
instance of G �	 Therefore� diagram ��� is just diagram chasing of the
previous results�

G G �

U U �

R�G� R�G ��

�s

�

�u

�

�

�� ��

G G �

U U �

R�G� R�G ��

�

�

�

�

�� ��

���

Strong normalization� con�uence� uniqueness of the 
 normal form� and di

agram ��� can then be lifted to sharing graphs exploiting the upper part of
diagram ���	

All these results will be proved under the only assumption that the graph
rewriting system has the box nesting property	 Furthermore� we will see that
the algebraic semantics is indeed an abstract characterization of that property�
since we will see that the proper sharing graphs de�ned by it are the ones which

 normalize to a graph without muxes for which the box nesting property
holds	

��� Optimality and other related works

Sharing graphs were introduced by Lamping �Lam��� to implement L�evy�s
optimal reductions of �
terms �L�ev���	 Several re�nements of them where suc

cessively proposed by Gonthier et al	 �GAL��a�GAL��b�� and by Asperti and
Laneve �AL���Asp���	 The work of Gonthier et al	 addressed how Lamping�s
formalism could be interpreted inside the so
called Geometry of Interaction
�GOI� of Girard �Gir���� Asperti presented a more categorical justi�cation of
the technique� Asperti and Laneve gave a generalization of the methodology
to the so called Interaction Systems� the subclass of the Combinatory Reduc

tion Systems for which it is possible to �nd a Curry
Howard analogy with
a suitable intuitionistic logic	 Furthermore� Asperti used sharing graphs to
implement an optimal version of an ML
like functional language �AGN���	

The main concern of all these studies was the implementation of optimal

��



reductions	 Hence� the set of rules that they proposed was the minimal one
useful for such a result	 Here� we revert instead the point of view	 The main
concern is to get a distributed and local implementation of �
like rules	

The general framework in which our results will be achieved will not allow
to connect our sharing graphs to optimality in the usual way based on redex
families or labels	 Nevertheless� in the case in which this makes sense� optimal
implementations are obtained just assuming that the duplication rules are
applied following a lazy reduction strategy	

Let us be more precise showing how this applies in the example developed so
far	 To execute the rules of Figure � following a lazy strategy means that a
mux duplicates a node only when the presence of the mux might hide a �

redex	 For instance� a mux whose principal port is connected to the left port
of an  node might hide a redex� for one of its auxiliary port might be �or
become� connected to a �	 According to this� the only two duplication rules
unavoidable in such a lazy strategy are 
left and �
up	 Further� dropping
the other rules� not only has no impact on the computational power� it also
improves e�ciency� since in this way no � redex is unnecessarily duplicated	
For instance� let us assume that there be a mux above the  node of a �

redex	 The application of an 
up should be followed by a �
up	 But this
would create an instance of the redex for each auxiliary port of the mux	

According to the interpretation of muxes in terms of fans and brackets �see
section �	��� such a lazy system is exactly the optimal one	

One of the main consequences of the previously described change of perspective
is that the proof technique is completely di�erent from the usual ones based
on a direct interpretation of sharing graphs into GOI	 For instance� the proof
technique of Gonthier et al	 rests on the fact that the optimal rules de�ne an
interaction system �for the de�nition of interaction system see �Laf���� and
that this kind of rules are sound w	r	t	 the paths de�nable using GOI	 In fact�
the paths of GOI give a way to extract the normal form of a proof net without
reducing it or� in the case of �
calculus where a term might not have a normal
form� to extract its weak head
normal
form	 Hence� any rule sound w	r	t	 this
set of paths can be safely applied� as it does not change the denotation of
the graph	 It might seem that such an approach make use of the weakest
conditions necessary for a proof of soundness� and then we would expect that
it would be able to prove the widest set of sound rules	 On the contrary� apart
for 
left and �
up� the duplication rules are hardly provable following it	 The
point is that it does not exploit the knowledge about the shape of a sharing
graph that we can infer knowing that it is the result of a sharing reduction	

Besides� even our algebraic semantics characterizes proper sharing graphs
without assuming that they are the result of a reduction	 Nevertheless� it
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exploits the methods of GOI to �nd the paths that de�ne the read
back of a
sharing graph �This point is not explicit in the paper	 It is indeed implicit in
the de�nition of least
shared
instance we will give	 For the case of �
calculus� a
more direct presentation based on paths can be found in �Gue���	� The proper
sharing graphs de�ned in this way contain the ones obtainable as a result of
a sharing reduction and maybe it could be also proved that the two classes
coincide	

The result of such an approach is the integration between some algebraic tech

niques in the style of GOI and a more traditional proof technique exploiting
properties of the duplication rules as con�uence and strong normalization	 We
believe that such an integration is one of the principal novelty of the paper	

Another relevant point of the solution we propose is that it represents a sort
of abstract sharing graph machine	 Di�ering from optimal implementations�
in such a sharing graph machine we do not need any external machinery to
read
back the result of a computation	 The duplication rules internalize the
read
back into the system� and at the same time� a lazy application of them
allows to compute via optimal reductions	

Finally� the point of view of the paper also has a good proof theoretic moti

vation	 It �ts into a well
known approach in which dependencies between the
formulas of a proof �net� are represented by means of indexes	 For a detailed
discussion of these connections we refer the reader to �GMM��a�	

��� Overview of the paper

The body of the paper starts with a formal de�nition of the structures we will
study �section ��	 The main di�erence w	r	t	 what done so far is that we will
present sharing graphs as hypergraphs	 Hence� what was a node up to now will
become a hyperedge� say a link� and what was an edge will become a vertex	
Furthermore� we will introduce two special kinds of link� box door links� to
delimit the border of boxes� contraction links to merge vertices	 We will de�ne
levels of links and vertices� and we will de�ne boxes in terms of levels	

In section � we will show the relevant calculi �tting in our structures of links	

The set of links used to build sharing graphs will be completed in section �� af

ter the introduction of muxes	 There� we will also give the equivalence between
muxes and Gonthier�s fan and brackets	

In section � we will de�ne sharing morphisms� the basic tool by which to
unfold a sharing graph	 We will also address why the unfolding problem is so
di�cult and requires the introduction of the algebraic semantics that we will
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give in section �	

The following part� starting from section �� is the technical core of the paper	
A summary of the results achieved in it is contained in section �	

� Leveled structures

We take the point of view that nets �the graphs of the calculi to be imple

mented� are hypergraphs	 A leveled net is then a set of named hyperarcs� the
so
called links� connected by vertices that we will call arrows	 To both� links
and arrows� we associate a level�despite we will later see that some levels
are indeed redundant	 The name of a link� say its type� �xes its cardinality
and gives the constraints to which the link level and the levels of its incident
arrows must accord	

��� Hypergraphs

Let V � fv�� v�� � � � g be a denumerable set of primitive objects called vertices	
A directed hyperedge� or hyperarc� is an ordered pair e � �et� eh� of �possibly
empty� disjoint sequences of vertices	 The �rst element �et� of the pair is
the tail of e� the second one �eh� the head of e	 Since we will usually draw
hyperarcs according to the top
down orientation�the tail of a hyperarc above
its head�we will also say that any vertex vt in the tail of a hyperarc e is
above it� that any vertex vh in the head of e is below it� and conversely� that
e is above vh and that e is below vt	

A hypergraph is a pair G � �V�E�� where V is a denumerable set of vertices
and E is a denumerable set of hyperarcs whose vertices range over V	

A vertex v of the hypergraph G is an arrow if there is at least a hyperarc
above or below it� and there is no pair of links e � and e �� s	t	 v is either below
both e � and e ��� or above both e � and e ��	 In other words� assuming to say that
� is below �above� v when there is no hyperarc below �above� v� an arrow is
determined by a pair �ea� eb� � �E � f�g�� n f�����g s	t	 ea is above v and eb
is below v	 When � � fea� ebg the arrow v is called a root arrow	 In particular�
when ea � �� the root v is said a source arrow � otherwise� when eb � �� it is
said a target arrow	

Remark � Let G be a hypergraph whose vertices are arrows	 Its dual G� is a
directed graph� as all its edges�the arrows ofG�have only one source and one
target node	 This explains why we call arrows the vertices of our hypergraphs
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and why� in drawing G� a vertex will be represented by an �arrow� from the
link above to the link below it	

An �undirected� path of G is an alternated sequence � � v�e�v� � � � ekvk of
vertices vi and hyperarcs ei� s	t	� �i� ei �� ei��� �ii� vi�� and vi are distinct
doors of ei	 According to this de�nition� a sequence � is a path of G i� it is
an undirected path �a sequence of edges� of G�	 Therefore� we will say that G
is connected and acyclic when G� is	

��� Structures of links

De�nition � �link� A link is a hyperarc e with�

	i
 a name� the type of e�
	ii
 a set of named input ports� one for each arrow above e�
	iii
 a set of named output ports� one for each arrow below e�

�

premise

conclusion

doorsarrowslink

input ports

output ports

Fig� � A link of type � with two input ports and two output ports�

The arrows above a link e are the premises of e� the arrows below e are
the conclusions of e� both premises and conclusions are the doors of e	 �See
Figure � for the graphical representation of links	� A link with no premises is
a source link	 A link with no conclusions is a target link	 Isolated links with
no doors are not allowed	

De�nition � �structure of links� A structure 	of links
 G over the signa�
ture  	a set of link names
 is a hypergraph in which�

	i
 all the vertices of G are arrows�
	ii
 there is at least a 	source or target
 root arrow�
	iii
 the names of the links range over �

The source arrows of a structure G are the premises of G� the target arrows are
the conclusions of G	 Since a structure does not contain isolated vertices it is
immediate that no vertex can be both premise and conclusion of G	 Premises
and conclusions are the doors of G �and doors�G� denotes their set�	 The links
above a conclusion of G or below a premise are the door links of G �and
dlinks�G� denotes their set�	
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����� Substructures

Given a structure G over � we denote by lnk�G� the set of its links and by
vtx�G� the set of its arrows	 Furthermore� if � � � we denote by lnk��G� the
set of the links of G of type �	

Let G be a structure	 A substructure R of G� or G�substructure� is a structure
s	t	 vtx�R� � vtx�G� and lnk�R� � lnk�G�	 Since a structure does not contain
isolated vertices� it is readily seen that the G
substructures coincide with the
parts of lnk�G�	 In fact� not only any G
substructure R is uniquely determined
by the set lnk�S� � lnk�G� but� given a set of links E � lnk�G�� there exists a
�unique� G
substructure s	t	 lnk�R� � E	 The standard inclusion relation and
set operations apply to G
substructures according to their interpretation as
set of links	 Further� P�G� will denote the set of the G
substructures	

��� Boxes

To implement boxes we use two reserved link types called box door links� the
� �of
course� or principal door link � the 	 �why
not� or auxiliary door link	
Both these links have two doors� the external and the internal door �denoted
by edoor�e� and idoor�e�� respectively�	 For the reader acquainted with linear
logic proof
nets� the reasons of the names 	 and � are self
evident� even if at
this level of abstraction we could have chosen any other pair of names	

Remark � According to Figure �� we will generally assume that the external
door of a box door link is a conclusion of the link and that the internal one
is a premise	 Such an orientation is however not mandatory� for instance� in
the case of the �
calculus we will swap the arrows of the � links in order to
preserve the natural orientation of �
terms	

De�nition � �box� Let G be a structure of link� A box of G is a connected
G�substructure B s�t��

	i
 there is a unique arrow pdoor�B� � doors�B��the principal door of B�
which is external door of an � link pdlink�B��

	ii
 all the arrows adoors�B� � doors�B� n fpdoor�B�g�the auxiliary doors of
B�are external doors of 	 links�

According to the previous de�nition� a box contains its door links	 This choice
is just a matter of taste	 For instance� as a consequence of the merging of 	

and contraction links� in �GMM��a� we prefered to not include box door links
into the corresponding boxes	

Remark � The relevant point of De�nition � is the connectedness of boxes	
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The reader acquainted with linear logic should have already noted that this
means to forbid weakenings� for weakening links might split boxes in sev

eral disjoint components	 A solution to this problem has been proposed in
�GMM��b�� where� by a small modi�cation of the underlying sequent calcu

lus� weakening links are connected to axioms	 We will come back to this issue
discussing garbage collection �section ��	��	

����� Box nesting property

The only way in which boxes may overlap is the trivial one	 Namely� two boxes
are either disjoint or enclosed one into the other	 Further� in the second case
they cannot have the same principal door link	

De�nition 	 �box nesting property� Let boxG � lnk��G� � P�G� be an
assignment of boxes to the � links of the structure G� We say that G with
the boxes BXG � fboxG�e� j e � lnk��G�g has the box nesting property� when
B� 	 B� �� � implies either B� 
 B� or B� 
 B�� for any B�� B� � BXG�

As an immediate consequence of this de�nition� we see that�

�i� If pdlink�B�� � pdlink�B��� then B� � B�� for any B�� B� � BXG	
�ii� The box nesting property does not forbid doors�B�� 	 doors�B�� �� �	 In

fact� even though two boxes always have distinct principal doors� they
might share some auxiliary door links	

����� Box nesting level

The box nesting property gives us a way to avoid the introduction of any global
link for the representation of boxes	 The technique rests on the assignment of
a level to each link�arrow corresponding to the number of boxes enclosing it	
According to this intended interpretation� the levels of the arrows incident to
a box door link are the ones given in Figure �	

�
n

	p��
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n��

n

n�p

n

internal

external

Fig� �� Exponential links�

In an � link we always have a di�erence of � between the internal and the
external door�for an � link is always principal door of just one box	 Such a
di�erence is rather equal to p � � in a 	 link�for a 	 link may be auxiliary
door of several or even � boxes	 Note that the levels of the links are an harmless
exception to our intended interpretation	 In fact� even if box door links belong
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to the boxes of which they are door links� the level of an � or a 	 link is equal
to the level of its external door	

In the case of any other link of the signature� the level of the link and the
levels of its doors coincide �see Figure ��	

�
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n

n

n

n

Fig� �� Levels of a link�

De�nition 
 �leveled structure� An �
structure G over the signature �
f�� 	g is a structure of links with a level assignment �G � �vtx�G� � lnkG�� N

which associates a non�negative level to each vertex and each link of G s�t��
	 i
 �G�v� � � for any v � doors�G�� 	 ii
 levels accord with the constraints of
Figure �� for the box door links� and of Figure �� for the links of type � � �

Remark � We stress that all the conclusions of an �
structure have level �	

Remark �� To label both arrows and links with a level is actually redun

dant� we might get the same result assigning levels to arrows only� or to links
only �in the latter case� provided that levels strictly represent box nesting
depths�	 In fact� links� levels might be recovered from arrows� levels� and vice
versa	 Both such choices correspond to solutions presented in literature	 To
label links is more faithful to the original presentation of optimal reduction
algorithms �see �Lam���GAL��a�GAL��b�AL���Asp����	 To label arrows has
instead a more tight correspondence with the logical interpretation of nets
�see �MM���GMM��a��	

��� Leveled boxes

Levels can be used to avoid the introduction on an explicit box constructor	

De�nition �� �leveled box� Let G be an ��structure and let e� � lnk��G��
The �
box of e� is the G�substructure box�G�e�� s�t�� being B � box�G�e���

	i
 pdlink�B� � e� i	e	� e � dlinks�B��
	ii
 e � lnk��G�� for any e � dlinks�B��
	iii
 B is connected�
	iv
 �G�v� � �G�e��� for any v � doors�B��
	v
 �G�v� � �G�e��� for any arrows v � vtx�B� n doors�B��

Note that we explicitly exploit connectedness of boxes	
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According with previous notations� BX�
G is the set of boxes de�ned by the

function box�G� and �the �
structure G has the box nesting property� means
that G with the boxes BX�

G has the box nesting property	

Fact �� Let BXG be the boxes of a structure of links G� Let �G be the map
assigning to each arrowlink of G its box nesting level� If G has the box nesting
property� then BXG � BX�

G�

Remark �� The converse of the previous fact is not true	 In fact� we may
easily construct an �
structure for which the box nesting property does not
hold	 Furthermore� even in the case that the �
structure G have the box nesting
property� its levels might di�er from the ones induced by the box nesting	 The
latter case has however no impact on our study� Independently from the origin
of the levels� it su�ces that the corresponding �
structure has the box nesting
property	 One of the key step of our theory will be the introduction of an
algebraic semantics �see section �� characterizing the �
structures for which
the box nesting property holds �see Proposition ���	

��� Contraction

To complete the assumptions on the calculi we are interested in� we assume
that they contain a contraction operator	 Namely� a contraction link�being
� its name�with k� � doors� the k � � contracting doors and one contracted
door	 All the contracting doors of a � link e are external doors of 	 links �see
Figure ��� and are connected to ports of e having the same name �in other
words the contracting ports are indistinguishable�	 In the following� we will
use adoors�e� to denote the set of the contracting �auxiliary� doors of a � link
e and pdoor�e� to denote its contracted �principal� door	
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������ ������
n n n

contracting arrows

contracted arrow

Fig� �� Contraction link�

Because of the previous assumptions� the orientation of � links must accord
with the orientation of 	 links�therefore� as in the following we will only meet
	 links whose external door is their conclusion� the orientation of � links will
correspond to the one in Figure �	

Remark �� We admit the presence of unary contraction links	 Their in

tended interpretation is a direct connection between their doors	 In spite of
this� for technical reasons� we add the assumption that a 	 link is always
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followed by a � link� which implies to insert a dummy unary contraction link
below some 	 links �this allows a more directed de�nition of sharing morphism�
De�nition ���	 A di�erent possibility would have been to merge 	 and � link
�as for instance has been done in �GMM��a��	

� Examples

The next are the relevant examples to which our methodology applies	 They
are indeed the ones for which sharing graphs have been introduced	 Their de

scription is not complete� for we just want to point out their box rewriting
rules	 For each of them we give anyhow a pointer to an unabridged presenta

tion	

��� ��calculus

The use of box door links to explicitly delimit the border of boxes implies that
��
structures slightly di�er from the graphs used in the introduction�apart
for the fact that what was a node in one of such graphs becomes a link in a
��
structure	
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Fig� �� ���terms�

Figure � gives the links used to build ��
structures	 The labels at the vertices
of the arrows de�ne the formation rules by which to build the correct ��

structures� say ��
nets	 The introduction of box door links and contraction
also cause a small change in the � rule	 In fact� the � rule does not involve
any more just a pair ��� but also the � link connected to the right port of
the  link� and the contraction and the 	 links connected to the binding port
of the � link	 Taking into account these considerations� the reformulation of
� is direct� and because of this we omit to draw it	

��� MELL

The links for the multiplicative
exponential fragment of linear logic �MELL�
are drawn if Figure ��	 Since contraction� 	 and � links have been borrowed
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from the exponentials of MELL� to complete the system it su�ces to add mul

tiplicative and identity links	 Because of the restrictions we have imposed in
the de�nition of box� weakening cannot be directly introduced �for a treatment
of weakening see �GMM��a��	 Hence� our MELL is without weakening	

ax

n

A
n

A�
n

cut

n

A

n

A�

n O
n

A

n

B

n

AOB
n

�
n

A

n

B

n

A� B
n

�n

	A

n

	A

n

	A
n

���

	
n

A
n�p

	A
n

�
n

A
n

�A
n��

Fig� 	�� MELL proof ��nets

The correct MELL �
structures� or MELL proof �
nets� are the ones obtainable
by the step
by
step translation of aMELL proof� or by checking that a structure
built according to the labeling given in Figure �� satis�es a given correctness
criterion �see �Gir����� for instance the Danos and Regnier�s one	

The rewriting rules are the usual ones� see �Gir��� for their complete set	 The
only one relevant for our purposes is however the exponential cut
elimination
that will be depicted in Figure ��	

��� Pure proof nets

Pure proof nets �see �Reg���� are the nets corresponding to the interpretation
of �
calculus inside linear logic given by the isomorphism �O � O  O�
that using O instead of � becomes 	IOO  O� where I and O are two
constants s	t	 I � O� and O � I�	 The links are then the same of MELL�
while formulas di�er	 There are only four types of formulas� I� 	I� say inputs�
and O� �O� say outputs	 Any input formula is the dual of the corresponding
output formula� i�e�� I � O�� 	I � ��O��� and X�� � X� for any X	 The rules
for link composition are given in Figure ��	
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Fig� 		� Pure proof ��nets

It is immediate to see that apart for the identity links� and for name and
orientation of the other links� there is a direct embedding of ��
nets into pure
proof �
nets� replace each � link with a O link and each  link with a �
link� then� insert a suitable cut or ax link in any place where the orientation
of the arrows would otherwise be inconsistent	 The set of the pure proof �

nets is however much wider than the one obtainable translating ��
nets and
is de�ned by the same correctness criteria used to de�ne MELL proof �
nets
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�see �Reg����	 Nevertheless� not any pure proof �
net can be interpreted as a
MELL proof �
net�for instance� for the nets obtained by translating ��
nets�
the pure proof �
net is also a MELL proof net only if the corresponding �
term
is typable	

The rewriting rules are the same of MELL	 Hence� the relevant one for our
purposes is the box interaction that will be depicted in Figure ��	 The main
di�erence between ��
nets and pure proof �
nets is that the � rule of the �rst
ones splits in two phases in the second ones	 Firstly� an interaction between
the O and � links above the box door links of the redex� then a box interaction
as the one of Figure ��	 This explains why there are pure proof �
nets which
are not image of any ��
net�executing some � rules� we might have done
the O�� interactions only	 Besides� assuming to complete all such � rules the
result is the image of a ��
term	 The latter property holds in general for any
pure proof �
net and not only for the one obtained by reducing the image of
a ��
net �see �Reg���� for more details�	

� Sharing structures

The link in charge of the lazy duplication of boxes is the multiplexer	 As for
contraction and box door links� we assume that its type O is a reserved name	

De�nition �� �multiplexer� A k�ary multiplexer or k
mux is a link of type
O with�

	i
 one principal port�
	ii
 a sequence of k � � auxiliary ports� whose names a�� � � � � ak are chosen

over a denumerable set of symbols� say N� with the proviso ai � aj i�
i � j�

	iii
 an associate non�negative integer m� the threshold of the mux�
	iv
 an associate sequence of k integers q�� � � � � qk� the 	auxiliary port
 o�sets�

s�t� qi � �� for i � �� �� � � � � k�

The level of a mux eO is equal to its threshold� that is� ��eO� � m�

In a mux eO the principal door pdoor�eO� may be either a conclusion or a
premise�in the �rst case eO is a positive mux� in the second case it is a
negative mux	 The auxiliary doors adoors�e� accord with the orientation of
the principal one�in a positive mux they are premises� in a negative mux
they are conclusions	

Figure �� gives the relations between the levels assigned to the doors of a mux
�and the graphical representation of a mux link�	 Namely�
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� each o�set qi is the di�erence between the level of the i
th auxiliary door
and the principal door�

� the threshold m is lower than the level of the principal door	

a� ai��� ak���

m

n

n�q� n�qi n�qk
��� ���

m�n
qi��� i���			 �k

Fig� 	
� The mux �multiplexer� link�

De�nition �� �s�structure� A 	leveled
 sharing structure or s��structure
over  � f�� 	� �g is an ��structure over  � f�� 	� ��Og in which� for any � � �
all the links of type � have a �xed set of named ports�

It is worth to summarize some consequences of the previous de�nition	 In any
s�
structure�

�i� For any � � � all the links of type � have the same cardinality	
�ii� The port names of a link of type � �  are distinct	
�iii� Box door links and contractions are the only links whose cardinality is

not strictly �xed	
�iv� Non unary contractions are the only links in which several distinct ports

�all the contracting arrows� have the same name	

��� Muxes� fans� and brackets

Muxes could be easily reformulated in terms of fans and brackets	 Figure ��
gives the translation for the binary case	 We see that a mux is a way to
aggregate suitable patterns of fans and brackets	 The o�set q of each auxiliary
port corresponds to a sequence of q� � brackets followed by a croissant	 The
unique fan used in the binary case is replaced by a tree of fans with k leaves
in the case of a k
mux	
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Fig� 	�� Equivalence between muxes and brackets�
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� Unfolding the sharing

De�nition �	 �sharing morphism� An s
morphism 	sharing morphism

is a surjective homomorphism of s��structures M � G� � G� whose restriction
to doors�G�� is injective� Namely� M is a map from lnk�G�� � vtx�G�� to
lnk�G�� � vtx�G�� s�t��

	i
 M�lnk�G��� � lnk�G�� and M�vtx�G��� � vtx�G���
	ii
 the links e and M�e� are of the same type�
	iii
 if the arrow v is connected to the port with name a of the link e� then

M�v� is connected to the port with name a of the link M�e��
	iv
 �G�

�x� � �G�
�M�x��� for any x � lnk�G�� � vtx�G���

	v
 if v� v � � doors�G�� and M�v� � M�v ��� then v � v ��

It is worth to note that an s
morphism establishes a bijection between the
doors of G� and G�	 In fact� as it maps roots to roots� a door of G� is de�nitely
image of a �unique� door of G�	

Contraction and muxes are the unique links that may change cardinality via
an s
morphism	 Nevertheless� muxes and � links present a relevant di�erence	
In fact� while it is impossible to equate two auxiliary ports of a mux via an
s
morphism� we may de�nitely have M�v� � M�v �� for some � link e� and
some pair v� v � � adoors�e��	

Figure �� is an example of s
morphism between two �s�
structures	
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Fig� 	�� Sharing morphism�

Proposition �
 The s��structures are a partial order w�r�t� the relation �
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de�ned by �G � G � when there exists an s�morphism M � G� G ���

Proof� Re�exivity and transitivity of � are immediate	 So we need to show
antisymmetry only	 Namely� we have to prove that G � G � and G � � G

implies G  G � �i�e�� they are isomorphic�	 Let M � G � G � and M � �

G � � G	 These two s
morphisms induce two corresponding pairs of surjective
maps between lnk�G� and lnk�G ��� and between vtx�G� and vtx�G ��	 Thus�
j lnk�G�j � j lnk�G ��j and j vtx�G�j � j vtx�G ��j� that is� both M and M � are
isomorphisms	 �

��� Unshared structures

A relevant case of s�
structures are the ones in which there is no sharing at
all� that is� in which all the muxes are unary	 In our intention� they should be
the minimal elements of the equivalence classes that � de�nes	

De�nition �� �lift� A lift is a multiplexer with only one auxiliary port�

De�nition �� �unshared structure� A u��structure over the signature 
is an s��structure over  in which all the muxes are lifts�

Unfortunately� the relation � is not yet the unfolding ordering we are looking
for� since the presence of contraction links implies that a u�
structure might
not be minimal	 For instance� let us take a u�
structure U such that all its
doors are conclusions of a contraction� there exist a denumerable set of u�

structures U � s	t	 U � � U�the k
th of them can be built making k instances
of U and merging the � links above corresponding conclusions	

��� Correctness of the unfolding

The absence of a minimal element is not the only lack of �	 The quest for a
correct de�nition of the unfolding partial order faces with an even stronger
problem� not all the less
shared
instances de�nable via � can be considered a
�correct� unfolding of an s�
structure G	
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Fig� 	� Matching of ports
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In fact� let us assume that G contain a pair of binary muxes e� and e� with
��e�� � ��e��	 In our aims this situation corresponds to a case of matching
muxes	 Therefore� in a correct s�
structure there should be a perfect matching
between the ports of e� and the ports of e�� and any �correct� unfolding of
G should preserve such a property	 For instance� let U be a u�
structure s	t	
M � U � G	 Any pair of lifts e ��� e

�
� of U s	t	 M�e �i� � ei� with i � �� ��

should be matching	 Referring to Figure ��� this means that each pair e ��� e
�
�

should be the image of one of the paths drawn on the left
hand side pair of
muxes	 Any unfolding of G containing an image of one of the paths drawn on
the right
hand side pair of muxes should instead be forbidden in any correct
unfolding of G	

� Overview of the main results

The algebraic semantics we are going to present in section � formalizes the
matching problem we mentioned in the previous section	 Such a semantics is an
algebraic characterization of the proper u��structures�the only u�
structures
which are �correct� unfoldings of sharing graphs	 Via a suitable restriction of
the s
morphisms� we get at the same time a characterization of the proper s��
structures�the s�
structures for which there exists a correct unfolding �i�e��
s	t	 among their less
shared
instances there is a proper u�
structure�	

In more details	 Once de�ned the proper u�
structures� we will restrict � to
a partial order �� �is a proper unfolding of�� and we will de�ne proper an
s�
structure G when U �� G for some proper u�
structure U	

That �� is the right unfolding partial order will be proved in section � showing
that�

�i� Any proper �
structure is the only element of its equivalence class w	r	t	
the transitive� re�exive and symmetric closure of ��	

�ii� The proper u�
structures are minimal w	r	t	 ��	
�iii� For any proper s�
structure G� there is exactly one proper u�
structure

U� say the least�shared�instance of U� for which U �� G	

The basic tool to prove such properties is the read
back reduction system� or

 rules� that we will de�ne in section ��a direct implementation of the in

terpretation of muxes as reindexing
duplication operators	 In fact� properness
will be proved stable under the step
by
step unfolding performed applying
the 
 rules	 Moreover� we will see that the proper s�
structures are indeed
the s�
structures which 
 normalize to an �
structure with the box nesting
property	
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The uniqueness of the least
shared
instance of a proper s�
structure will allow
to semantically associate an �
structure to each proper s�
structure	 In fact� the
notion of solution of a u�
structure� that we will introduce to de�ne properness�
will give us a natural way to semantically read�back an �
structureR�U� from a
proper u�
structure U� to take as semantical read
back of a proper s�
structure
the semantical read
back of its least
shared
instance	 Such a de�nition will be
proved sound w	r	t	 the 
 rules and� moreover� we will show that the 
 normal
form of a proper s�
structure coincides with its semantical read
back	

Soundness of properness and read
back w	r	t	 � rule will be shown in sec

tion ��	

	 Algebraic semantics

To introduce the algebraic part� a prelude on the naive attempts that origi

nated this kind of approach	

��� Lifting functions

It is natural to interpret a u�
structure U as a representation of the structure
N obtainable removing the lifts of U and merging the pairs of corresponding
arrows that otherwise would remain dangling	 Nevertheless� it is readily seen
that this procedure would erase the boxes of U �if any�� for in general there
would not be a unique way to reassign a level to each arrow�link of N �the
�
structures are a remarkable exception to this� the levels of their links�arrows
are determined once given the underlying �
tree�	

To understand the nature of the problem� it is worth to attempt a direct
algebraic interpretation of lifts� following the idea that a lift with o�set q is
a sort of bracket delimiting the part of a structure� say its scope� that has to
be lifted by the o�set q	 As an arrow might be in the scope of several lifts
�to simplify� let us assume that lift scopes are substructures whose border
is made of lifts with the same parameters� and that lift scopes have a well

nesting property similar to the one of boxes�� we need a general way to reason
about the displacement of levels that take place at a given arrow	 Hence� let
us assume that each arrow carry a function fv � Z� Z assigning a local name
to each level� that is� let fv�n� be the actual value of the level n at the arrow
v	 By the way� in order to get a sound renaming at each arrow� we should also
impose some restrictions on the functions f� as for instance their monotonicity	
Anyhow� let us go on without too details� our purpose is just to show why
such an approach is still too weak	
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The �
structures are the base case	 In them� there is no reindexing at all� for
there are no lifts around	 Thus� any arrow of an �
structure should carry the
identity function	 In the u�
structures instead� the interpretation of a lift eO
as a reindexing �or shifting� operator for the levels above its threshold leads
to associate to eO a functional �m�q � ZZ� Z

Z �being m the threshold and q

the o�set of eO� de�ned by

�m�q�f��i� �

�
f�i� when i � m

f�i� q� otherwise

and to assume that

fvp � �m�q�fva�

where vp � pdoor�eO� and fvag � adoors�eO�	

Therefore� the functions assigned to the arrows v of U should have the shape

fv � �m��q��m��q� � � ��mk�qk�id� ���

with a factor �mi�qi for each lift that contains v in its scope	

Provided to succeed assigning a function fv to each arrow v	 We see that
fvp���vp�� � fva���va�� for any lift eO	 Hence� given a u�
structure U we could
read
back an �
structure N just assigning the level fv��U�v�� to each arrow of
U and removing the lifts contained in it	 �For the sake of completeness� some
other constraints should be added to the one for lifts in order to ensure that
proper levels are assigned to the doors of 	 and � links� but for the moment
this is irrelevant	�

The latter procedure is the base of the semantical read
back we will give
in section �	�	 Nevertheless� the approach based on the functional � is still
inadequate� it does not ensure that two lifts with the same threshold connected
through their principal ports have the same name and o�set �see section �	��	
Besides� even when this happens� it does not ensure that the function assigned
to the premise of the positive lift is equal to the function assigned to the
conclusion of the negative one� which is mandatory if we want that� after the
replacement of a symmetric pair of facing lifts by an arrow connecting their
auxiliary ports� the assignment of the functions f be preserved	

��� Lifting operators

Having in mind the last considerations of the previous section� we aim at
�nding a better algebraic interpretation of lifts by a further step of abstraction	
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Let D be a domain with a family fL�m�q� a� j m�q� a � Z�m � �� q � ��g of
indexed endomorphisms� say lifting operators �see section �	��� for which the
equations�

L�m�q�� a���d�� � L�m�q�� a���d��

implies q� � q� � a� � a� � d� � d�
�LO��

L�m�� q�� a��L�m�� q�� a�� � L�m�� q�� a��L�m� � q�� q�� a�� �LO��

L�m�� q�� a���d�� � L�m�� q�� a���d��

i� �d � L�m� � q�� q�� a���d� � d� �L�m�� q�� a���d� � d�
�LO��

hold provided m� 	 m�	

Remark �� Equation �LO�� encodes the matching problem described in sec

tion �	�	 Equation �LO�� corresponds to the idea that� when m� 	 m�� to lift
the levels above m� by q� and the levels above m� by q� is equivalent at to
lift the levels above m��q� by q� and the levels above m� by q�	 This fact is
immediate for positive o�sets and is true even when qi � ��	 It corresponds
to the analogous commutativity equation�

�m��q� �m��q� � �m��q� �m��q��q� �

Equation �LO�� is the analog of the swap equation �LO��� but for the case in
which a certain d� can been obtained applying two di�erent operators� that is�
L�m�� q�� a���d�� � d� � L�m�� q�� a���d��	 Its aim is to force the uniqueness�
modulo Equation �LO��� of the way in which such a d� is constructed� i�e��
that d� � L�m�� q�� a��L�m�� q�� a���d�� for some �unique� d	

We want to �nd a semantics that assign a suitable product like the one of equa

tion ��� to each arrow of a u�
structure� assuming that the lifting operators
L�m�q� a� take the place of the integer functionals �m�q	 But to accomplish
our project� we still need a better axiomatization of lifting operators �in the
style of Danos and Regnier�s dynamic algebra� e�g�� see �DR���� and a detailed
study of their properties	

��� Left inverses of lifting operators

The endomorphisms L�m�q� a� are injective �by equation �LO���	 Hence� each
L�m�q� a� has a left inverse L�m�q� a�	 Such an inverse is however not unique
in general� since it may assume any value outside the codomain of L�m�q� a�	
But� if we consider partial functions too� the natural left inverse F� of a partial
endomorphism F is the less de�ned partial transformation F� s	t	 FF�F � F

�i�e�� dom�F�� � codom�F� and F� �F�d�� � d� for any d � dom�F��	
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In more details� for any endomorphism L�m�q� a�� we have that�

�L�m�� q�� a�� � � �L�mk� qk� ak��
� � L�mk� qk� ak� � � �L�m�� q�� a���

where

L�m�q� a��d� �

�
 d when d � L�m�q� a�� d�

� when d �� codom�L�m�q� a��

�being L�m�q� a��d� �� just a denotation for d �� dom�L�m�q� a���	

We get in this way a monoid LSeq� of injective partial transformations of D
that is closed under left inversion� for it is immediate that

L�m�q� a�� � L�m�q� a��

Furthermore� LSeq� is a left inverse semigroup� and the equations �LO���� can
be nicely reformulated in it	

Remark �� All the results of the paper could be indeed obtained without
left inverse lifting operators	 In fact� �nding the solutions of a u�
structure
�section �	�� we will use lifting operators only �cf� �GMM��a��	 Nevertheless�
their introduction simplify the proof of some algebraic properties and� more
important� gives a better idea of the relations between our algebraic approach
and Geometry of Interaction	

��� The inverse semigroup LSeq�

First� a remind of the de�nition of �left� inverse semigroup	

De�nition �� �left inverse semigroup� An inverse semigroup with � is a
monoid S with an absorbing element 	 i	e	� an element � s�t� �F � � � F �� for
any F
 closed under an involution operation ���� s�t�� for any F�F��F� � S �

F�� � F

�F�F��
� � F�

� F
�
�

hFiF � F

hF�i hF�i � hF�i hF�i

where hFi � FF��

The axioms of inverse semigroups allow to immediately prove that�
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�i� Each hFi is invariant under involution and is an idempotent of S� i�e��

hFi� � hFi

hFi hFi� hFi

since hFi hFi� hFiFF� � FF� � hFi	
�ii� Each idempotent of LSeq� may be written as hFi for some F and is then

invariant under involution� i�e��

FF � F implies hFi � F

FF � F implies F� � F

since� if FF � F� then F � hFiF � hFi hF�i � hF�i hFi � F� hFi �

�hFiF�� � F�� and then hFi � F	 Which in particular implies �� � � and
�� � �	

A lifting operator is a triple of integers L�m�q� a�� withm�a � � and q � ��	
The index m is the threshold of the lifting operator� the index q is its o�set �
the index a is its name	 For each lifting operator there is a corresponding
barred triple L�m�q� a� called its left inverse	

De�nition �� �LSeq�� The inverse semigroup LSeq� is the smallest inverse
semigroup generated by composition of lifting operators and left inverse lifting
operators according to the axioms�

L�m�q� a�� � L�m�q� a� �LS��

L�m�q� a�L�m�q� a� � � �LS��

L�m�q�� a��L�m�q�� a�� � � if q� �� q� or a� �� a� �LS��

L�m�� q�� a��L�m�� q�� a�� � L�m�� q�� a��L�m� � q�� q�� a�� �LS��

L�m�� q�� a��L�m�� q�� a�� � L�m�� q�� a��L�m� � q�� q�� a�� �LS��

when m� 	 m��

The natural model of LSeq� is the monoid generated by the indexed endomor

phisms of D �the lifting operators� and by their left inverses �the left inverse
lifting operators�	 Under this interpretation� it is readily seen that�

�i� The constant � is the nowhere de�ned partial transformation of D 	
�ii� Any idempotent hFi of LSeq� is the identity function restricted to the

codomain of F� i�e�� dom�hFi� � codom�F�	 In particular� � is the identity
endomorphism of D 	

�iii� Axioms �LS�� and �LS�� are equivalent to equation �LO��	 Axiom �LS��
coincide with equation �LO��	 Axiom �LS�� corresponds to the only if
part of equation �LO�� �the if part is subsumed by equation �LO���	
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��� Lifting sequences

A lifting sequence H is a �nite product of lifting operators	 The monoid LSeq is
the smallest one containing the lifting operators �i�e�� no left inverse operator
L�m�q� a� belongs to it�	

By iterated application of axiom �LS��� each lifting sequence is equivalent to
a �unique� sequence in canonical form with the thresholds non
decreasingly
ordered� i�e�� for anyH there exists a sequence H �

Q
��i�kL�mi� qi� ai�� with

mi � mj if i 	 j	

By induction on the length jHj � k of the lifting sequence� it is indeed direct
to see that H�H � hH�i � � �note that this accord with the interpretation
in terms of partial endomorphisms of D � for codom�H�� � dom�H� � D �	

Let n� � n�	 A lifting sequence from n� to n� is a product of lifting operators
H �
Q

��i�kL�mi� qi� ai� in which

n� � mi 	 n� �
X
��j�i

qj�

for i � �� �� � � � � k	

De�nition �� �LSeq�n�� n��� The monoid LSeq�n�� n�� is the smallest one
containing the lifting sequences from n� to n��

The last de�nition is sound as it is invariant under application of axiom �LS��	
Furthermore�

LSeq � LSeq����� �
�
n�


LSeq��� n�

for LSeq�n�� n�� � LSeq�m��m��� when m� � n� and n� � m�	

The global o�set jjHjj of a lifting sequence is the sum of the o�sets of its lifting
operators� i�e�� if H �

Q
��i�kL�mi� qi� ai�� then

jjHjj �
X
��i�k

qi�

Let H �
Q

��i�kL�mi� qi� ai� be a lifting sequence and let r be an integer s	t	
mi � r � �� for i � �� �� � � � � k	 The lifting of H by the o�set r is the lifting
sequence

H�r �
Y
��i�k

L�mi � r� qi� ai��
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Fact �� Let n� � n� � n��

	i
 n� � jjHjj � n�� for any H � LSeq�n�� n���
	ii
 If H� � LSeq�n�� n�� and H� � LSeq�n�� n��� then�

	a
 H�H� � LSeq�n�� n���

	b
 H�H� � H�H
�jjH�jj

� �

	c
 H�
�H� � H� �H

�jjH�jj

� ���
	iii
 For any H � �n�� n��� there exists a unique pair H� � LSeq�n�� n�� and

H� � LSeq�n�� n�� s�t� H � H�H��

Proof� The �rst two items are immediate by induction on jHj	 For the last
one� let H �

Q
��i�kL�mi� qi� ai� be in canonical form	 Let h be the �rst

index for which n�Qi � mi �where Qi �
P

��j�i qj� if any� or let h � k � �

otherwise	 Let us take H� �
Q

��i�hL�mi� qi� ai� and H� �
Q

h�i�kL�mi �

Qh� qi� ai�	 By de�nition� H� � LSeq�n�� n�� and H� � LSeq�n�� n��	 Further

more� H�H� � H�H

�Qh

� � H	 The construction of H� and H� also proves
their uniqueness	 �

Proposition �	 �canonical form� For any F � LSeq�� with F �� �� there is
a unique pair H��H� � LSeq s�t� F � H�H

�
��

Proof�

�existence� By induction on jFj	 The cases jFj � � and F � L�m�q� a�F�

are direct	 So� let us take F � L�m�q� a�F�	 By the induction hypoth

esis� we have F � L�m�q� a�H�H

�
�� for some H��H� � LSeq	 Let H�

be in canonical form	 By Fact ��� there are H � LSeq���m� and H �
LSeq�m��� s	t	 H � H�H�	 If H� � LSeq�m � ����� then L�m�q� a�H �

H
�q
� L�m�q� a�H� � H

�q
� H�L�m�q� jjH�jj� a�� and thus the thesis	 Other


wise� H� � L�m�q� a�H �
� with H �

� � LSeq �by the hypothesis F �� �� and
thus L�m�q� a�F � H �

�H
�
�	

�uniqueness� Let us start proving that the following claims hold for any
H��H� � LSeq� �i�H�H

�
� � � i� jH�j � jH�j � �� �ii� hH�i � hH�i i�H� �

H�	 For the �rst claim� let us assumeH� � L�m�q� a�H �	 For any pair q �� a �

s	t	 q �� q � or a �� a �� we would get � � L�m�q �� a ��H�H
�
�L�m�q �� a �� � �	

Hence� jH�j � �� etc	 For the second claim� let H�H
�
� be a canonical form

of H�
�H�	 We have � � H�

� hH� iH� � H�
� hH�iH� � H�

�H� �H
�
�H��

� �

H�H
�
�H�H

�
� � H�H

�
�	 From which� �by the previous claim� jH�j � �	 In

an analogous way we prove that jH�j � � and then that H�
�H� � �	 Hence�

H� � hH�iH� � hH�iH� � H�	

Let H�H
�
� and cH�

cH�
� be two canonical forms of F	 We have hH�i �

hFi � hcH�i	 Which impliesH� � cH� andH� � cH�	 Hence� to conclude we
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just have to show the uniqueness of the canonical form of a lifting sequence
H	
The case H � � is subsumed by the claim	 So� let L�m�� q�� a��H� �

H � L�m�� q�� a��H� be canonical forms� and w	l	o	g	 let m� � m�	 If
m� 	 m�� then H� � L�m��q�� q�� a��H

�q�
� L�m�� q�� a��� that leads to the

contradiction H�L�m�� q
�
�� a

�
�� � � when q �

� �� q� or a �
� �� a�	 Hence� the

only possibility is m� � m�� and then also q� � q�� a� � a�	 Concluding�
from the initial canonical forms we have got two shorter equivalent ones
H� � H�	 �

The elements of LSeq� can then be written in canonical form assuming that
both H� and H� of Proposition �� are canonical	

Remark �
 A key assumption in the latter proof is � �� �	 We could then
reformulate the proposition saying� The only model of LSeq� in which Propo

sition �� does not hold is the trivial one	

��� LSeq lower semilattice

The lifting sequences are partially ordered by the binary relation�

H� v H� when H� � H�H

for some lifting sequence H � LSeq	 In fact�

� the re�exivity� H � H ��
� the transitivity� H� v H� v H� implies H� � H�H and H� � H�HH ��
� the antisymmetry� H� � H�H and H� � H�H

� implies � � H�
�H� �

H�
�H�H

� � H�
�H�HH � � HH �� and thus H � H � � �	

Fact �� Let H��H� � LSeq�

H� v H� i� H�
�H� � LSeq i� hH�iH� � H��

Proof�

�i� hH�iH� � H� implies H�
�H� � LSeq� Let H�H

�
� be the canonical form

of H�
�H�	 By hypothesis� H�H

�
�H� � H�H�H

�
� � H�� which implies

H�
� � �	 Thus� H�

�H� � H� � LSeq	
�ii� H�

�H� � LSeq implies H� v H�� Let H � H�
�H�	 We have H� �

H�H
�H � hH�i hH�iH� � hH�i hH�iH� � hH�iH� � H�H� and thus

H� v H�	
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�iii� H� v H� implies hH�iH� � H�� If H� � H�H� then hH�iH� �

hH�iH�H � H�H � H�	 �

The meet of two lifting sequences H� and H� is de�ned by�

H� uH� �

�
L�m�q� a��H �

� uH �
�� if Hi � L�m�q� a�H �

i� for i � �� �

� otherwise

By an easy induction on H� it is not di�cult to check that� the de�nition of
u is sound� H� uH� v Hi� for i � �� �� and that H v Hi for i � �� �� implies
H v H� uH�	

Fact �� The sets LSeq and LSeq�n�� n�� are lower semilattices for the partial
order v with � as minimum and u as greatest�lower�bound operator�

It is also not di�cult to see that u distributes on the composition of lifting
sequences in the following relevant case	

Fact �� Let H��H
�
� � LSeq�n�� n�� and H��H

�
� � LSeq�n�� n��� We have that

H�H� uH �
�H

�
� � �H� uH �

���H� uH �
���

��� Lifting assignments

De�nition �� �lifting assignment� A lifting assignment for a u��structure
U is a map A � vtx�U�� LSeq s�t� 	see Figure ��
�

	i
 A �v� � LSeq��� ��v��� for any v � vtx�U��
	ii
 A �vi� � SeA �ve�� for some Se � LSeq���ve�� ��vi��� when vi and ve are

respectively the internal and the external doors of a box door link e 	 i	e	�
a 	 or an � link
�

	iii
 A �vp� � L�m�q� a�A �va�� when vp � pdoor�eO� and fvag � adoors�eO�

for a lift eO s�t� m � ��eO�� q � ��va� � ��vp�� and a is the name of the
auxiliary port of eO�

	iv
 A �v�� � A �v��� when v� and v� are doors of the same link e� and e is
neither a box door link nor a lift�

The second and third items of the previous de�nition are compatible with the
�rst one �by Fact ���� the fourth item is a special case of the second one� for
in such a case ��v�� � ��v�� and LSeq�n� n� � f�g	 Further� for any box door
link e� the parameter Se for which A�vi� � SeA�ve� is uniquely determined
by the lifting sequences assigned to the internal and external doors vi and ve
�it is indeed determined by A�vi� only� see Fact ���	
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Fig� 	�� Lifting assignment �S� � LSeq�n�n � p� and S� � LSeq�n�n � ����

Remark �� The constraints of the box door links encode that such links are
global boundaries for the scope of the reindexing operators associated to lifts	
Moreover� the introduction of the parameters Se also corresponds to the idea
that we can take the interior of a box and lift it by any quantity� provided
that no level inside the box become lower than the level of the box doors	 �To
this purpose� let us note that� given H � LSeq�n�� n��� we have n� � n�� jjHjj

�Fact ���	 Hence� interpreting jjHjj as the global quantity by which we increase
the levels above n� � �� we see that the previous constraint on the levels is
not violated at the box door links	� There is however a remarkable di�erence
between principal and auxiliary door links	 The reindexing parameter of an
� link e��the lifting sequence Se� relating the values assigned to the internal
and the external doors of e��is an independent parameter� at least from the
interior of box��e��	 On the contrary� the reindexing parameter of a 	 link is not
independent	 In fact� a 	 link may only erase the reindexing operators intro

duced by the principal doors of the boxes of which the link is auxiliary door�
or introduced by reductions executed inside such boxes	 We will farther see
that this has a direct correspondence in the dynamics of boxes we will discuss
is section ��� and in the read
back reduction system that we will introduce in
section �	

��� Solutions of a u��structure

As a consequence of Remark ��� we see that� among all the lifting assignments
for a u�
structure U� we need a way to pick up one of them for each choice of
the parameters S� associated to the � links	

In the relevant cases of �
calculus and MELL the problem has an immediate
solution�in the second case� provided that the levels of the structure corre

spond to the ones induced by the box nesting� see �GMM��a�	 In fact� the
topology of the corresponding structures forces the uniqueness of the lifting
assignment once �xed the parameters S�	 Unfortunately� in the general case
this is not true	 The solution is to exploit the u operator to prune away the
parts of a lifting assignment for U which are not introduced by lifts of U or
by parameters S�	

A map S from the � links of a u�
structure U to LSeq is said an internal state
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of U when S �e�� � LSeq���pdoor�e���� ��pdoor�e� � ����	

By what previously said on the parameters Se� any lifting assignment deter

mines a unique internal state of U s	t	 S �e� � Se	

A lifting assignment for U is an S �assignment when� for any e� � lnk��U�� the
constraints of De�nition �� hold with He� � S �e��	

The partial order relation and the meet operation between lifting sequences
extend �pointwise� to lifting assignments�

A� v A� i� �v � vtx�U� � A��v� v A��v�

and analogously for the internal states of U� replacing vertices with � links	

Fact �� If A� is an S��assignment for the u��structure U and A� is an S��
assignment for U� then A� uA� is an �S� uS���assignment for U�

Proof� Let e be an � link� we haveA��ve�uA��ve� � �S��e�uS��e�� �A��ve�u
A��ve�� �by Fact ���	 And so on for the other kinds of link	 �

The latter fact implies that� for any internal state S with at least an S 

assignment� the set fA j A is an S 
assignment of Ug is closed under meet
and has a minimum	

De�nition �� �solutions� Let U be a u��structure with an S �assignment�
The minimum S �assignment for U is the S 
solution of U� In particular� for
the quiescence internal state I 	being I �e� � � for any e � lnk��U�
� the
I �solution is said the quiescence solution of U�

An example of s�
structure with a quiescence solution is theMELL s�
structure
in Figure ��	 Near each arrow of the s�
structure we have written �framed� the
lifting sequence that the quiescence solution assigns to that arrow	 Near each 	

link e� there is instead the value of the corresponding internal parameterHe��
note that such parameters are not equal to �� even though we are considering
a quiescence solution	

��� Semantical read�back

The relevance of the solutions of a u�
structure� and in particular of its qui

escence solution� is that they allow to remove the lifts from the structure
recovering at the same time a sound level assignment �cf� section �	��	 In fact�
for any S 
solution A of a u�
structure U� it is readily seen that�
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Fig� 	�� An example of quiescence solution�

�i� �U�v� � jjA �v�jj � �� for any v � vtx�U��
�ii� �U�ve�� jjA �ve�jj � �U�vi�� jjA �vi�jj� when vi and ve are respectively the

internal and the external door of a box door link e�
�iii� �U�vp� � jjA �vp�jj � �U�va� � jjA �va�jj� when vp � pdoor�eO� and fvag �

adoors�eO� for some lift eO	

De�nition �� �readback� Let U be a u��structure with quiescence solution
Q� Its read
back R�U� is the ��structure obtainable from U�

	i
 associating to each arrow v its actual level �IU �v� � �U�v� � jjQ�v�jj�
	ii
 replacing each lift eO and its doors vp and va by a unique arrow with level

�IU �vp� � �IU �va� connecting the ports to which vp and va were connected�

The �
structure in Figure �� is the read
back of the u�
structure in Figure ��	

���� Proper structures

Using the solutions of a u�
structure we are now able to characterize the
�proper� unfoldings of s�
structures	

De�nition �	 �complete unfolding� A triple M � U �� G is a complete
unfolding of the s��structure G� and U is a least
shared
instance of G� when�

	i
 M � U � G�
	ii
 U has an S �solution for any internal state S �
	iii
 if A is a solution of U� then M�v� � M�v �� and A �v� � A �v �� implies
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Fig� 	�� Read�back�

v � v �� for any v� v � � vtx�U� n
S
e��lnk��U� adoors�e���

Remark �
 The reasons because of which in item �iii� we exclude v� v � �S
e��lnk��U� adoors�e�� are merely technical	 The distinction between two con


tracting arrows s	t	 A �v� � A �v �� and M�v� � M�v �� is ensured by the fact
that the same property cannot hold for the internal doors of the 	 links above
them	

Remark �� To require the existence of a solution for any internal state ac

cords with the idea that the reindexing parameter H� of the � lifts is an inde

pendent parameter	

De�nition �� �proper s�structure� An s��structure is proper when it has
a complete unfolding�

Remark �� According to De�nition �� the partial order �� is �at� a proper
�
structure is related only with its least
shared
instance �later we will prove
that the least
shared
instance of a proper s�
structure is unique�	 However� the
relation �� could be extended de�ning G� �� G�� say G� is a proper unfolding
of G�� when G� and G� are proper s�
structures with the same least
shared

instance and G� � G�	 Besides� in our study we will use only the case in which
G� is unshared	 For this reason� in the following we will use U �� G to denote
that U is the least
shared
instance of G	

Any u�
structure with an S 
solution for any internal state S is proper� e�g��
the u�
structure in Figure ��� and the identity s
morphism is its complete
unfolding	 An example of proper s�
structure is instead drawn in Figure ���
its least
shared
instance is the u�
structure in Figure ��	
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Fig� 	�� A proper s��structure�

The �rst step toward the acknowledgment of�� as the proper unfolding partial
order is the proof that a proper s�
structure G has a unique least
shared

instance	 Such a result is direct when G is an �
structure	 The proof for the
general case �see Proposition ��� rests instead on the read
back reduction
system we are going to introduce in section �	


 Readback reductions

Let G be a proper s�
structure whose complete unfolding is unique	 The nat

ural way to associate an �
structure to G is de�ning the read
back of G as the
read
back of its least
shared
instance	

De�nition �� �readback� Let G be a proper s��structure with a unique
U �� G� The read
back of G is the ��structure R�G� � R�U��

��� 
 rules

The test bed for the latter de�nition of semantical read
back is the read�back
rewriting system� or 
 rules� of Figure �� �all the muxes in the picture are
binary since the extension to the k
ary case is direct�	 Such rules implement the
interpretation of lifts that guided us so far� taking into account the additional
duplicating task that k
muxes have w	r	t	 lifts	 We recognize three sets of rules�

�i� the propagations or duplications �at the top in Figure ���� in which �

stands for a generic type�
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�ii� the absorption �at the center in Figure ����
�iii� the mux rules �at the bottom in Figure ���	

Note that the stem of the arrows have been omitted in the propagation and
mux rules of Figure ��	 The reason is that the drawings for such rules are
indeed schemata valid independently from the orientation of the arrows �e�g��
in the ��	
propagation the principal door of the mux might be the internal
door of the box door link�	
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Fig� 
�� Read�back rewriting system �� rules��

The propagation rules correspond to the idea that a mux has to reindex and
duplicate every link it founds at a level greater than its threshold�see the
side
condition of the rules	 �The proviso m 	 n in the �
propagation rule
is actually redundant� by de�nition� ��eO� � ��pdoor�eO�� for any mux eO	
Nevertheless� to stress that in an �
propagation the mux is acting on a link
whose level is above its threshold� we prefered to restate it adding the proviso	�
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The proviso on the propagation rules forbids their application in the case the
principal door of a mux with threshold m is the internal door of a box door
link whose level is lower or equal than m	 The absorption rule covers such a
case when the box door link e� is a 	 link�it corresponds to the idea that e�
is a boundary to the reindexing operators originated inside the boxes that e�
closes	 There is instead no rule for the case in which the box door link e� is an
� link�it corresponds to the fact that the reindexing �and duplication� that
e� may impose do not depend on the contents of its box �see also Remark ���	
Hence� the missing � link case has to be regarded as an unlikely situation�it is
not incidentally that this con�guration cannot arise in a proper s�
structure�
see Fact ��	

The two mux 
 rules implement the idea that mux thresholds are a machinery
to correctly match muxes	 The swap rule corresponds to the fact that two
muxes with di�erent thresholds denote independent reindexing
duplication
operators	 Therefore� the interaction of a pair of them must preserve all the
I�O connections of the pair	 At the same time� the interaction must properly
lift the thresholdm� of the higher mux� since a mux with thresholdm� lifts all
the levels above it� and then m� � m� too	 �We stress that� generalizing the
rule to the k
ary case� the interacting muxes may have di�erent cardinalities	�
The annihilation rule corresponds instead to the matching property described
in section �	�� the only legal paths crossing a pair of facing muxes with the
same threshold connect ports with the same name and o�set	

The �rst property to check is that any proper s�
structure G is rewritten by 

reduction into a proper s�
structure	 This will be done in Lemma �� showing at
the same time that any 
 reduction of a proper s�
structure can be simulated
on its least
shared
instance	 But for this purpose we need the invariance of
properness at least when G is a u�
structure	

Lemma �� If U �� U �� then U is a proper u��structure i� U � is a proper
u��structure�

Proof� Let r � U �� U �	 We see that when r is any 
 rule but an �

propagation� the u�
structure U has an S 
solution i� U � has a corresponding
S 
solution	 Hence� let r � �eO� e�� be an �
propagation s	t	 q is the o�set of eO
�assume that a 
 redex r is a pair �eO� e�� where eO is the mux of r and e is the
link s	t pdoor�eO� � doors�e��	 In this case� U has an S 
solution i� U � has a
corresponding S �
solution� being S � the internal state s	t	 S ��e�� � S �e��

�q

and S ��e� � S �e� otherwise	 �

The key property of the 
 rules is the possibility to simulate any 
 reduction
of a proper s�
structure by a 
 reduction of its least
shared
instance	
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Lemma �� Let G� be a proper s��structure and let U� �� G�� For any G� ��

G�� there exists U� ��
� U� s�t� U� �� G��

Proof� Let M� � U� �� G� and let r be a redex of G�	 The counterimage
of r is a set of redexes M��

� �r� that may contain only a case of critical pair�
two �or more� lifts whose principal doors are contracting doors of the same �
link	 When r is an absorption� any of such critical pairs is trivially con�uent	
When r is a 	
propagation� all the lifts in the critical pairs are equal� since
U� is proper	 Thus� it is readily seen that in this case too all the critical
pairs are con�uent	 Hence� let us execute in any order the redexes in the set
M��

� �r�� closing the critical pairs present in it	 The result is the proper u�

structure U� �by Lemma ��� U� is de�nitely proper�	 The s
morphism between
M� � U� �� G� is the one induced by the function mapping any residual of
e � lnk�U�� into the corresponding residual of M��e�	 �

Finally� we can show that the de�nitions of proper s�
structure and read
back
are sound	

Proposition �� Let G be a proper s��structure� For any read�back reduction
G�� G

�� we have that�

	i
 G � is proper�
	ii
 G has a unique U �� G i� there is a unique U � �� G �� in which case
	iii
 R�G� � R�G ���

Proof�

�i� It is an immediate consequence of Lemma �� and Lemma ��	
�ii� �if � Let U� �� G �� U�	 By Lemma ��� Ui ��

� U � by a sequence of
reductions corresponding to G�� G

�	 By inspection of the rules� we see
that this is possible only if U� � U�	 �only if � Revert the arrows of the

 rules and proceed as in the previous case	

�iii� By inspection of the 
 rules� we see that R�U� � R�U ��	 �

It is worth to note that the invariance of properness under 
 reduction holds
for the s�
structures too	 Such an invariance will be farther exploited to prove
that an s�
structure is proper i� it normalizes to a proper �
structure	

Lemma �� If G �� G �� then G is a proper s��structure i� G � is a proper
s��structure�

��



Proof� The if part has been already proved	 By Lemma ��� the only if part
holds when G is a u�
structure	 To lift the result to the s�
structures� let us
note that even the simulation property can be reversed	 Namely� if G �� G

�

and U � �� G �� then there is U �� G s	t	 U��
� U

�	 �

��� Local con�uence of the 
 rules

Unfortunately� the 
 rules are not locally con�uent in general	 Nevertheless�
the 
 rules are strongly normalizing and con�uent on proper s�
structures
�see Proposition ���	 To prove such a result let us start proving that local
con�uence holds� modulo some mux permutations� for the s�
structures in
which each mux eventually interacts with some other link �Lemma ���	

Let eO be a mux whose principal door is not auxiliary door of another mux	
We say that eO forms a deadlock when no 
 rule can be applied to it	

Fact �	 �deadlockfreeness� An s��structure G is deadlock
free when there
is no G��

� G
� s�t� G � contains a deadlock� Any proper s��structure is deadlock�

free�

Proof� Let U �� G	 If U would contain a deadlock� the constraints of Def

inition �� would be unsatis�able for at least the quiescence internal state	
Thus� there is no deadlock in U	 It is indeed easy to verify that the presence
of a deadlock in G would imply the presence of a deadlock in U	 Thus� there
is no deadlock in G� and more generally there is no deadlock in any proper
s�
structure	 �

The read
back reduction system has several critical pairs	 They can be classi

�ed under two patterns� absorption
propagation and propagation
propagation	

The absorption
propagation critical pairs do not cause any problem� they are
con�uent for any value of the thresholds� o�sets� and port names	

The propagation
propagation pairs cause instead the loss of the locally con

�uence	 Nevertheless� let us note that when the s�
structure is proper�

�i� If the pair is formed of two muxes with the same threshold whose principal
doors are doors of the same link� then the two muxes have the same set
of port o�sets and names� and the critical pair is con�uent �for a proper
s�
structure is deadlock
free�	

�ii� If the muxes have di�erent thresholds� the result depends on the order in
which the two propagation redexes r� and r� of G are contracted	 But�
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there are two reductions G
r�����

� G� and G
r�����

� G� s	t	 G� and G�

coincide modulo the permutation of muxes in Figure ��	
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Fig� 
	� Mux permutation equivalence�

The mux permutation equivalence is the symmetric� transitive and re�exive
closure � of the rule in Figure ��	

The equivalence relation � is sound w	r	t	 to properness and unfolding	 In fact�
if G� � G�� then U� � U�� where Ui �� Gi for i � �� �	

Lemma �
 The proper s��structures modulo � are locally con�uent under 

reduction� Namely� the diagram

G� H�

G� H�

G� H�

�

�

�

�
�

�

�
�

commutes for any pair of proper s��structures G�� H�� and for any pair of 

reductions G� �� G�� H� �� H��

Sketch of the proof� The complete proof is a tedious analysis of all the
possible con�gurations	 The key idea is that G� and H� are equal in all respects
apart for some substructures T�G�� � T�H�� composed of muxes only� that
w	l	o	g	 we may assume to be trees	 When r � G� �� G� and s � H� �� H�

does not involve the root mux of any of such trees� the lemma follows from
the already remarked property that the diagram commutes when G� � H�	 In
the other cases� let T�G�� �or mutatis mutandis T�H��� be the tree whose root
mux form the redex r with a link e	 There is a reduction R � G� ��

� G
� s	t	 all

the muxes of T�G�� have interacted with a residual of e �assume that� when
a residual of e annihilates interacting with a mux e � of T�G��� the interaction
is complete for all the muxes of T�G�� following e

� too�	 Since r and s are the
�rst reductions of the corresponding sequences R and S� the property is proved
showing that the diagram commutes replacing R and S for r and s	 �

We stress that the previous lemma could be reformulated replacing proper
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s�
structures with deadlock
free s�
structures� since deadlock
freeness is the
only property of the proper s�
structures that has been used in the proof	

��� Existence of the read�back

The next two propositions show that the algebraic semantics is indeed a way
to talk about the 
 rules	

Proposition �� Let G be a proper s��structure�

	i
 There is no in�nite 
 reduction of G�
	ii
 G has a unique 
 normal form�

Proof�

�i� Let Q be the quiescence solution of a proper u�
structure U	 Let us take�
�a� k� �

P
e�L

P
v�doors�e� jjQ�v�jj� where L � lnk�U� n lnkO�U��

�b� k� �
P

e�lnkO�U� jjQ�pdoor�e��jj	
Any propagation or absorption rule decreases k�� but may increase k�	
Any mux rule decreases k�	 Therefore� any 
 rule decreases the pair
�k�� k�� �w	r	t	 the lexicographic order�� and because of this there is no
in�nite 
 reduction of U	 To conclude� let us take U �� G� it follows by
Lemma �� that there is no in�nite 
 reduction of G �note that a single

 reduction of G is simulated by a non
empty sequence of 
 reductions
of U�	

�ii� The uniqueness of the normal form up to � follows by the previous item�
Lemma ��� and Newman�s Lemma	 Furthermore� a 
 normal form N of
G cannot contain muxes� for G is deadlock
free	 Thus� N is unique	 �

Proposition �� Any proper s��structure G has a unique least�shared�instance
and R�G� is the unique 
 normal form of G�

Proof� The unique least
shared
instance of a proper �
structure N is N it

self� the quiescence solution of N associates � to each arrow of N� thus�
M�v� � M�v �� i� v � v � for any M � N �� G� etc	 As a consequence� G
has a unique least
shared
instance �by Proposition ��� and R�G� is de�ned	
By the invariance of the read
back under 
 reduction �Proposition ��� we can
then conclude that N � R�N� � R�G�	 �
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� Properness and box nesting property

We will now see that in order to get a proper structure the box nesting property
is a necessary requirement	 Moreover� we will see that properness is indeed an
implicit characterization of the box nesting property	

Proposition �� An ��structure is proper i� it has the box nesting property�

Proof�

�if� Let S be an internal state of U	 Let us take the sequence of internal
states I � S��S�� � � � �Sk � S de�ned in this way� Si�e�� � S �e�� if
�U�e�� 	 i andSi�e�� � � otherwise	 Let A� be the quiescence solution of U	
For i � �� we inductively de�ne Ai���v� � S �e��Ai�v� when v � box�U�e��

for some e� � lnk��U� s	t	 �U�e�� � i� and Ai���v� � Ai�v� otherwise	 The
previous de�nition is sound because of the box nesting property� and gives
a sequence of assignments Ai which are indeed the Si
solution of U	

�only if� Let e�� e� � lnk��U� be s	t	 box��e�� 	 box��e�� �� �	 W	l	o	g� let
�U�e�� � �U�e��	 By the de�nition of box�� we see that v � vtx�box�U�e���

implies v � vtx�box�U�e���	 Hence� box
�
U�e�� � box�U�e��	 When �U�e�� �

�U�e��� let S�� be an internal state of U s	t	 S���e� �� � i� e � fe�� e�g	 We
see that box�U�e�� � box�U�e��� since e� � dlinks�box�U�e���	 But in this case�
U has an S��
solution i�S���e�� � S���e��	 Thus� e� � e�	 When �U�e�� 	
�U�e��� we have that e� � box�U�e�� n dlinks�box�U�e���	 Thus� box

�
U�e�� 


box�U�e��	 �

The maps box�U and BX�
U can be extended to the case in which U is a proper

u�
structure replacing the actual level function �IU for �U in De�nition �� �this
is sound even if U is an �
structure� as in such a case �IU � �U�	 Hence� we
have a notion of box nesting property for the u�
structures too	 A relevant
consequence of the results on the 
 reductions is that properness and box
nesting property are equivalent also in this case �note that to de�ne �IU and
then R�U� we su�ce the existence of the quiescence solution of U�	

Proposition �� A u��structure is proper i� it has a quiescence solution and
the box nesting property�

Proof�

�only if� By de�nition any proper u�
structure U has a quiescence solution	
The rest of the proof is by induction on the length of a normalizing 


reduction of U	 The base case is proved by Proposition ��	 For the induction
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step� let U �� U �	 There is a one
to
one correspondence f between the
links of U which are not lifts and the links of U � which are not lifts	 By
inspection of the 
 rules� we see that f�e� � box�U ��f�e��� i� e � box�U�e���
for any e � lnk�U� n lnkO�U� and any e� � lnk��U�	 Thus� U has the box
nesting property i� U � has the box nesting property	

�if� By inspection of the proof of Lemma ��� we see that the existence of a
quiescence solution su�ces to prove that the 
 rules are strongly normalizing
and that the unique 
 normal form of U is R�U�	 Proving the only if part�
we have already seen that the box nesting property is invariant under 

reduction	 Thus� R�U� has the box nesting property� and by Proposition ��
it is proper	 That U is proper follows by the invariance of properness under

 reduction �Lemma ���	 �

Proposition �� An s��structure G is proper i� its 
 normal form is an ��
structure for which the box nesting property holds�

Proof� By the invariance of properness �Lemma ���� an s�
structure is proper
i� its 
 normal form N is	 Since all the proper s�
structures are deadlock
free
�Fact ���� the proper �
structures are the only proper s�
structures in 
 normal
form	 By Proposition ��� we conclude thatG is proper i�N has the box nesting
property	 �

The latter propositions have two relevant consequences that will be used in
the following	 The �rst one is that� for any internal state of a u�
structure U
and any e� � lnk��U�� the level its solution A assigns to idoor�e�� is lower or
equal than the level that A assigns to any arrow contained in box�U�e�� �as for
the actual levels induced by the quiescence solution� we say that A assigns
the level �AU � �U�v� � jjA �v�jj to the arrow v�� and is strictly greater when
we assume that the internal state does not force a decreasing of ��	

Lemma �� Let U be a proper u��structure� For any v � vtx�U� and any
e � lnk��U�� we have that�

	i
 v � box�U�e� i� v is connected to e and �AU �v� � �AU �idoor�e��� for any
S �solution A �

	ii
 v � box�U�e� i� v is connected to e and �AU �v� � �AU �idoor�e�� for any
S �solution A s�t� jjS �e�jj � ��

Proof� By induction on the length of a normalizing 
 reduction	 The state

ment of the lemma is invariant under 
 reduction �see the proof of Lemma ���	
The if part of the proof of Proposition �� gives a way to build a generic so

lution of an �
structure	 By inspection of this construction we see that the
lemma holds for any �
structure	 �
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The second consequence is that any S 
solution of a u�
structure U can be
built starting from the quiescence solution of U� following a procedure similar
to the one used for the �
structures in the proof of Proposition ��	

Lemma �� Let A be an S �solution of a proper u��structure U� For any
e� � lnk��U�� we have that

A �v� �

�
A��v�S �e��

�q� when v � vtx�box�U�e��� n doors�box
�
U�e���

A��v� otherwise

where q� � jjA��edoor�e���jj and A� is the S��solution of U� being

S��e� �

�
� when e � e�

S �e� otherwise
�

Proof� Let A� be the S�
solution	 We start proving that the A de�ned in
the statement is an S 
assignment	 The lifting assignment constraints hold
by hypothesis for U n box�U�e��	 Furthermore� for any v � vtx�box�U�e���� we
have that A �v� � A��v�S �e��

�q� � LSeq��� �U�v��� since �U�v� � jjA��v�jj �
�U�e�����q� �by Lemma ��� andS �e�� � LSeq��U�e��� �U�e�����	 So� we left
to verify if the lifting assignment constraints hold for any e � box�U�e��	 The
only relevant case is e � adoors�box�U�e���	 Let vi � idoor�e� and ve � edoor�e�	
By Lemma ��� we know that �U�ve� � jjA��ve�jj � ��e�� � � � q�	 Thus�
A��vi�S �e��

�q� � HS �e��
�q��jjA��ve�jjA��ve�� with HS �e��

�q��jjA��ve�jj �
LSeq��U�ve�� �U�vi��	 It is then easy to check that if A would not be the S 

solution of U� then A� would not be the S�
solution of U	 �

�� Sharing graph machine

We are now ready to prove that the s�
structures plus the 
 rules are the
abstract machine by which to obtain sharing implementations of calculi whose
rewriting rules are similar to the �
rule of the �
calculus or to the exponential
cut
elimination rule of linear logic	

���� Box reductions

An example of the box reduction rules we want to implement is drawn in
Figure ��	 The example depicts the �pure� proof net case	 But� independently
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from the calculus under analysis� there is a general pattern characterizing the
global or � rewriting rules for which we can give a sharing implementation	

�i� In a � rule� the principal door link e� of a box B� interacts with several
	 box door links e�� � e

�
� � � � � which may either be auxiliary doors of a box

B� or not� respectively when ��idoor�e��� � ��edoor�e��� or ��idoor�e��� �
��edoor�e���	

�ii� None of the 	 links ei� is auxiliary door of box��e��	
�iii� The result of the interaction is a new structure in which�

�a� there is an instance Bi� of B� for each ei��
�b� the box around each Bi� is removed �i�e�� its � link is erased� and Bi�

is pushed inside the boxes of which ei� is auxiliary door�
�c� each ei� is erased and its internal door is connected to pdoor�e��

i �i�e��
the copy of pdoor�e�� in B

i
���

�d� each � link e� which was below a door v of B� is transformed into a
� link  e� s	t	 pdoor� e�� � pdoor�e��� and adoors� e�� � �adoors�e�� n

adoors�B��� � fvi j v � adoors�e�� 	 adoors�B��g	
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Fig� 

� Interacting boxes� global ��� rule�

Remark �� The extent of the previous pattern is not completely de�ned	
For instance� to faithfully reproduce the schema of Figure �� in the �
calculus
structures� we should split the usual beta rule in two interactions �i�e�� we
should switch from �
terms to pure proof nets�� a �rst one merging the top
arrow of the redex to the body arrow of the � link� a second one that� apart for
the cut link� would be an instance of the rule of Figure ��	 We could instead
prefer to maintain the usual formulation of beta rule assuming that it is a valid
instance of the pattern in Figure ��	 In fact� all the theorems we are going
to give in the next sections are still valid under this assumption	 Besides� in
order to not be worthlessly abstract� we will refer to the schema of Figure ��
when it will help in exposing the proofs of the forthcoming theorems	
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Remark �	 In terms of levels� to push Bi� inside the boxes of ei� means to
increase all the levels in Bi� by the o�set qi � ��idoor�ei��� � ��edoor�ei��� � �

�operation denoted by the superscript �qi in Figure ���	 By the restriction
on the levels of a structures� we see that this e�ectively means to enclose Bi�
inside qi�� � � new boxes when ei� is auxiliary door of some boxes �see B�q

� in
Figure ���� otherwise� when ei� did not close any box� it just means to remove
the box around Bi� �see B��

� in Figure ���	

���� Sharing � rule

Our aim is to show that� just assuming that the �
nets of the calculus to be
implemented have the box nesting property� the global version of the � rule
in Figure �� may be replaced by the sharing or �s rule of Figure ��	
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�� Interacting boxes� shared ��s� rule�

In more details� we want to prove that� applying with no restriction the �s�

rules to an �
net N� we obtain a proper s�
structure G whose read
back R�G�

is a � reduct of N	

Before to go on with this plan� let us note that the � rule is sound w	r	t	 the
box nesting property	

Fact �
 The box nesting property is stable under � reduction�

���� Unshared reductions

The last step towards the achievement of our goal is the proof of a simulation
property for �s similar to the one already proved for 
 �Lemma ���	 Unfor

tunately� in the case of �s the procedure is not so direct as in the case of the

 rules� since the �s
reduct of a u�
structure is a u�
structure only when the
contracted redex is unary �i�e�� it involves only one 	 link�	

There is however a way to transform a k
ary � redex into a set of unary ones	
In fact� let us split the reduction of a � redex r � �e�� fe

�
� � � � � � e

k
� g� in two

steps �assume to represent a � redex by the pair formed of the box door links
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involved in it�� �rstly� the box B� of the � link e� is duplicated� creating an
instance Bi� for each e

i
� �see Figure ���� secondly� each of the k redexes �e�� fe

i
�g�

is reduced applying the � rule	 The �rst step of this decomposition de�nes a
box duplication rule transforming a k
ary � redex into k unary redexes	
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�� Interacting boxes� box duplication�

The previous decomposition can be exploited to de�ne the unshared version
of the � rule we need� the �u rule� just replacing �s for � in the second step	

The � rule can be applied to �
structures only	 Exploiting the de�nition of
boxes we gave for the proper u�
structures �see section ��� the �u rule can
be instead used to reduce proper u�
structures�this is not possible for � as
we would be in trouble reindexing the thresholds of the lifts	 This approach
is sound	 In fact� the �u
reduct of a proper u�
structure U is a proper u�

structure and its read
back is the correct �
reduct of R�U�	

Lemma �� Let U be a proper u��structure� If U ��u U
�� then U � is proper

and R�U��� R�U� ��

Proof� Let U � U �� be a box duplication �see Figure ���	 Each arrow�link
of U �� is a residual of a unique arrow�link of U	 More formally� the residual
relation ��
 vtx�U��vtx�U ��� is de�ned by� �i� v �� vi� if v � vtx�B�� and v

i is
the i
th instance of v� �ii� pdoor�e�� �� pdoor�e��

i� if e� is the contraction link
of the redex� �iii� v �� v� if v is not one of the previous cases	 And analogously
for ��
 lnk�U�� lnk�U ���	

Let r � U��u U
�� with r � �e�� fe

�
� � � � � � e

k
� g�	 For any internal state S of U ���

let us take S i�e� � S �ei�� when e � B� and e �� ei� and S i�e� � S �e�

otherwise� for i � �� � � � � k	 Let A i be the S i
solution of U	 By Lemma ��� all
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the A i coincide outside B�� and in particular� A ��v� � A ��v� � � � �
def
� A �v��

when v �� v	 The previous map A �v� can then be extended to the whole
vtx�U ��� de�ning A �v� � A i�vi�� when v � B� and v �� vi	 The map A is the
S 
solution of U ��	

Let qi � �U�idoor�e
i
��� � �U�e�� � � and let ai be the name chosen for the lift

inserted reducing the i
th � redex of U ��	 For any internal state S � of U ��� let
us take the internal states S��e� and S �e� s	t	� �i� S��e� � S �e� � S ��e��
when e �� ei� � �ii� S��e

i
�� � �� �iii� S �ei�� � L���e��� qi� ai�H

i� being A�

the S�
solution of U �actually S� is an internal state of U ��� but we use
the same name for the internal state of U obtained replacing S��e�� � � for
S��e

i
�� � �� and HiA��edoor�e

i
��� � A��idoor�e

i
���	 By Lemma �� and by the

result of the previous paragraph� the S 
solution of U �� is s	t	 A �v� � A��v�

when v �� B�� and A �vi� � A��v�S �ei��
�r when v � B� and v �� vi� where

r � jjA��pdoor�e���jj	

The map A � obtained restricting A to vtx�U ��� 	 vtx�U �� �since all the �

reduced redexes are unary each arrow of U �� has at most one residual� is the
S �
solution of U �	 Thus� U � is proper� for the previous procedure applies to
any S �	

The way in which A � is constructed shows that �take S � equal to the quies

cence internal state� �IU �v� � �IU ��v� when v �� B�� and �IU �v� � qi � �IU ��vi�

when v � B� and v �� vi	 That is� R�U��� R�U ��	 �

Proposition �� Let G� be a proper s��structure and let U� �� G�� For any
G� ��s G�� there exists U� ��

�u
U� s�t� U� �� G��

Proof� Let r � G� ��s G�	 The corresponding reduction � � U� ��
�u

U� we

are looking for is a development of the redexes R � M��
� �r�� with M� � U� ��

G�	 The complete unfoldingM� � U� �� G� is instead the natural one induced
by the residual relation	

Before to give all the details of the proof let us note that the residual relation
de�ned in the proof of Lemma �� can be de�ned for any rule and extended to
redexes in the natural way	 We already remarked that �� is a partial one
to

many relation in the case of box duplication �i�e�� y �� x and z �� x only if
y � z�	 In the case of �s it is indeed an injective partial function	

Let r � U� � U � by a box duplication	 For any v � � vtx�U ��� let us de�ne
M ��v �� � M�v� if v �� v �� and analogously for the links	 ThoughM � � U � � G��
the proper u�
structure U � is not a least
shared
instance of G�	 In fact� for any
internal state S s	t	 S �e�� � � S �e�� � with e� �� ei� and e� �� e�� if v �� vi

and vi � box�U ��ei��� then M ��v�� � M ��v�� and A �v�� � A �v��� where A
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is the S 
solution of U �	 Nevertheless� we stress that such internal states are
the only ones for which we can simultaneously have M ��v�� � M ��v�� and
A �v�� � A �v��� for some v� �� v� that are not contracting arrows of a � link	

A �nite development of box duplications relative to the set R is a sequence
of box duplication rules � � � U� �� U � s	t	 U � does not contain any residual
of r � R and� for any r � � � �� there is r � R s	t	 r �� r �	 Finite developments
of box duplications de�nitely exist �actually all the developments are �nite��
for instance� reduce the redexes of R using an innermost
outermost strategy	
We have already seen that M � � U � � G�	 Furthermore� any redex r � of U �

s	t	 M ��r �� � r is unary	 Hence� let ai be the name of the lift port to which
idoor�ei�� is connected in G�� and let � �� � U � ��s U� be obtained reducing all
the �unary� redexes R � � f�e �� � fe

�
�g� jM

��e ��� � e��M
��e ��� � ei�g� and inserting a

lift with port name ai for each redex �e �� � fe
�
�g� s	t	M

��e ��� � ei�� for i � �� �� � � � 	
By construction� there is M� � U� � G� �the natural one induced by the
restriction of M � to the arrows of U��	 Moreover� the way in which names are
assigned to lifts� plus the concluding remark of the previous paragraph� allows
to state that M� � U� �� G�	

To conclude the proof� just note that U�
� �� U � �

��� U� can be easily rearranged
in a sequence of �u reductions	 �

�� Sharing reductions of nets

We now have all the ingredients we need to state our main results�

�i� We know how to semantically and syntactically read
back an �
structure
from a proper s�
structure�remind that G ��

� R�G� �see Proposi

tion ���	

�ii� We know that properness and box nesting property are tightly related
�see section ��	

�iii� We know that �s and 
 reductions of proper s�
structures can be simu

lated by corresponding reductions of proper u�
structures �see Lemma ��
and Proposition ���	

�iv� We know that �s and 
 are sound w	r	t	 read
back	

In other words� the rules �s and 
 de�ne an abstract computational system�
say a sharing graph machine� in which the implementation of the global rule
� is decomposed in a set of atomic steps	

In order to formalize the latter claim by a theorem� let us introduce some �nal
notations	

��



���� Nets

Let N be an �
structure over the signature �f�� 	� �g	 We say that N is correct�
or that it is a ��net� when it satis�es some given correctness criterion that
subsumes the box nesting property	

A proper s�
structure over � f�� 	� �g is correct� say a s��net� when its read

back is a �
net	 Further� given a set Nets of correct �
nets� we will say that
a set SNets of proper s�
structures over  is the set of the correct s�
nets
corresponding to Nets� when G � SNets i� R�G� � Nets	

���� Net rewriting systems

A net rewriting system over the signature  �let us implicitly assume that
f�� 	� �g 
 � is a triple � � ��Nets������� where Nets��� is some set of
�
nets� and �
 Nets��� � Nets��� is the congruence induced by some set
of graph rewriting rules	 Moreover� � � � is the only rule involving box door
links and contractions	

De�nition �� �sharing implementation� The sharing implementation of
a net rewriting system � � ��Nets������ ���� is the 	sharing
 net rewrit�
ing system �s � � � fOg� SNets������s ��� ����� where SNets��� is the
set of s��nets corresponding to Nets����

Theorem �� Let �s be the sharing implementation of the net rewriting sys�
tem � � ��Nets������ ����� We have that�

	i
 for any �s reduction G ��
s

G �� there is a corresponding � reduction
R�G���

 R�G ���
	ii
 for any � reduction N ��

 N �� there is a corresponding �s reduction
N��

s
N ��

	iii
 �s is strongly normalizing i� � is�
	iv
 �s is con�uent i� � is�
	v
 any �s normal form of G � SNets��� is a � normal form of R�G��

Proof�

�i� Since it is trivial to see that G�� G
� impliesR�G��� R�G ��� it follows

immediately from Lemma �� and Proposition ��	
�ii� A standard strategy for �s is a reduction strategy s	t	 each �s is followed

by a normalizing 
 reduction	 By Proposition �� and Proposition ��� we
see that r � N �� N

�� implies � � N
r��s G ��

� R�G� � N ��� where � is
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standard	 Thus� for any N��
 N

� there is a standard strategy reduction
s	t	 N��

s
N �	

�iii� The 
 rules are strongly normalizing �Proposition ���	 Hence� a �s re

duction �s contains an in�nite number of them i� it contains an in�nite
number of rules �s or �	 As a consequence� any in�nite �s reduction �s
contains an in�nite number of rules �s or �	 But this is possible i� the �
reduction � corresponding to �s is in�nite	

�iv� Trivial	
�v� Remind that the 
 normal form of a proper s�
structure G is equal to

R�G� �see Proposition ���	 �

���� Optimality

Sharing implementations are tightly related to �
calculus optimal reductions
�L�ev��� and to their generalization to Interaction Systems �AL���	 Anyhow�
because of the generality of the rewriting system �� such a correspondence is
restricted to the implementation of the � rule only	

Let us assume the hypotheses and notations of Theorem ��	 A �s reduction
�s � G �s G

� is ��optimal when the number of �s rules executed by �s is
lower or equal than the number of �s rules applied by any other equivalent
reduction � �s � G �s G

� �i�e�� �s can be obtained from � �s applying the rules
of L�evy�s permutation equivalence� see �L�ev����	

A ��duplicating rule is a 
 rule in which the redex �eO� e� is formed of a mux
eO whose principal door is the internal door of a box door link e	 Let �o �
o�
be the set of all the �s �
� rules but the �
duplicating ones	

Theorem �� Any �o reduction is ��optimal�

Proof� Let �o � G��
o
G �	 By hypothesis� there are no erasing � redexes �in

each � redex there is at least a 	 link� and the � rules do not erase � redexes	
Hence� at least a residual of each r � �o must be reduced in any reduction
� � G ��

s
G �	 Moreover� any redex r of G� s	t	 G ��

o
G� has at most a

residual in any G� s	t	 G� ��
o
G�	 �

By the way� the �
optimal reductions correspond to the usual �
calculus or
linear logic optimal reductions ��Lam���GAL��b�GAL��a�AG���� when �s is
the corresponding sharing implementation �cf� section �	��	 In such cases� to
delay or to not execute a �
duplicating rule does not hide any � redex	 In
fact� for any � redex r of R�G�� there is a reduction G��

�o
G � s	t	 the image

of r in G � is a � redex �note that R�G �� � R�G��	 As a consequence� it is not

��



di�cult to prove that for any � or MELL s�
net G� if N is the � normal form
of R�G�� then the �o normal form of G is an s�
net G � s	t	 R�G �� � N	

Besides� an analog property does not old in the general case	 In fact� let us
assume that � is not con�uent	 This means that � is not con�uent	 Hence�
let �� and �� be two � reductions internal to a box B of an �
net N	 Let
us assume that in N there are at least two instances of B� say B � and B ��	
A possible reduction of N is � �i�

��
j � N �� Nij� in which � �i is internal to B �

and � ��j is internal to B ��� with i� j � f�� �g	 For the sake of simplicity let us
also assume that each Nij is in normal form	 If G is a proper s�
structure in
which B � and B �� are shared� there is no �
optimal reduction G �o G�� s	t	
R�G��� � N��� and analogously for N��	

The latter point shows that the 
 rules are not just a nice way to present
L�evy�s optimality	 They give indeed a low
level implementation interesting
per se� that applies even to systems for which L�evy�s optimality cannot be
de�ned	

���� Box erasing and garbage collection

As already pointed out in Remark ��� our de�nition of box forbids a direct
implementation of MELL with weakening	 It might seem that this also imply
the impossibility to erase boxes	 Luckily� the latter point is instead false	 In
fact� a box may be erased� provided that  contain an erasing link suitably
shaped for this purpose� say an � link	 �In De�nition �� we asked that the
only rewriting rules involving box door links are � and 
	 As we need that
an � link erase box door links too� the use of an erasing link would imply a
slight reformulation of the de�nition of sharing implementation	 Besides� this
would not hurt Theorem ��� the only consequence would be a more involved
statement	�

For instance� let us take the case that the � link be a sort of mux with �

auxiliary ports	 According to this� an � link at level m erases any link to
which it is connected but box door links of level n� when n � m� and muxes	
�Instantiating the �
propagation rule to the case of �� we see indeed that
such an �
propagation rule erases the mux involved in it	 So� the meaning of
the previous restriction is that a mux eO is not erased by an � link e� when
doors�e�� � adoors�eO�	� According to the restriction on levels� an � link stops
its erasing at the internal port of a box door link whose level is lower than its
threshold	 Then� let r � �e�� fe�g� be a � redex of an �
structure G �for the sake
of simplicity let us start with the case without muxes� s	t	 above e� there is an
� link e� with �G�e�� � �G�e����	 It is readily seen that the �s reduction of r
might be followed by an erasing reduction sequence ending with the complete

��



erasing of box��e��	 Namely� G �� G �� for some G � in which in the place of
box�G�e�� there is a set of 	 links�the auxiliary doors of box�G�e���each one
below an instance of e�	 Besides� in the general case� an � link might stop
at the auxiliary door of a mux� and consequently a subgraph that should be
erased might rather remain alive	 In order to erase such a garbage� we should
lost most of the sharing contained in the net	

Independently from the formulation of the � link� the previous example opens
a problem of garbage collection completely independent from the one of sound

ness� which was indeed our main concern in this paper	 Anyhow� because of the
relevance of such a problem in any practical use of sharing graphs� a detailed
study of garbage collection is one of our future goals	

�� Conclusions and further work

The box nesting property is the minimal �and natural� requirement under
which the sharing reductions can be used to get a local and distributed im

plementation of �
like rules	 It is our aim to study how the class of the calculi
having the box nesting property relates with the classes already studied by
the term graph rewriting community	 As shown by the relevant examples of
�
calculus and MELL� a wide set of calculi �ts in this class	 Asperti and Laneve
�AL��� proved that sharing graphs can be used for the so
called Interaction
Systems� a subset of the Combinatory Reduction Systems for which there is
a corresponding intuitionistic logic	 Our requirement seems weaker and more
general� so we expect to �nd a much wider class	

Lafont�s Interaction Nets are the natural system to compare with sharing
graphs �Laf���	 Sharing graphs are interaction nets whose interactions are no
more restricted to the principal ports of the interacting elements and with the
additional information of levels	 We think that the relation between interac

tion nets and sharing graphs is similar to the relation between Combinatory
Logic and �
calculus	 Both such systems are Turing complete and based on an
applicative principle� but to simulate the reduction of a �
term inside Com

binatory Logic may greatly increase the length of the reduction	 In spite of
this� Lafont�s interaction combinators �Laf��� and the work of Fern�andez and
Mackie �FM��b�FM��a� on how to encode term rewriting systems into inter

action nets might give useful insights for the determination of the class of
systems implementable by sharing graphs	

One of the restriction we imposed to � rule is that in a � redex �e�� fe
�
� � � � � � e

k
� g�

no ei� can be an auxiliary door link of box��e��� that is� we forbade a box to
interact with itself	 All the results of the paper should hold even dropping such
a constraint	 Nevertheless� we chose to eliminate such cases since their presence

��



would have involved the description of �	 Furthermore� the analog of a box
interacting with itself is the � rule �x�T�� T��x�T�x�� that is� a calculus with
an explicit recursion operator	 Hence� we prefered to maintain the distinction
between � and � also in sharing graphs and to reserve a separate study for
the �
like rules in which an object interacts with itself	

We already stated that �s plus 
 give an abstract machine by which to get
sharing implementations	 Further� such a sharing graph machine seems the
natural low
level model of �
calculus	 We hope that this would �nally lead
to a satisfactory measure for the cost of �
calculus reductions� and that this
would �nally lead to a way to compare �
calculus with the computational
models used in complexity theory	 We think that the interest in the de�nition
of a suitable notion of cost and of complexity classes for sharing computations
is even more appealing after the results of Asperti �Asp��� and Lawall and
Mairson �LM��� showing that L�evy families are unlike to be the cost model of
�
calculus reductions	
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