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A Mathematical Formalism of Infinite Coding for the Compression of Stochastic A Mathematical Formalism of Infinite Coding for the Compression of Stochastic 
Process Process 

Abstract Abstract 
As mentioned in [5, page 6], there are two basic models for sources of data in information theory: finite 
length sources, that is, sources which produce finite length strings, and infinite length sources, which 
produce infinite length strings. Finite length sources provide a better model for files, for instance, since 
files consist of finite length strings of symbols. Infinite length sources provide a better model for 
communication lines which provide a string of symbols which, if not infinite, typically have no readily 
apparent end. In fact, even in some cases in which the data is finite, it is convenient to use the infinite 
length source model. For instance, the widely used adaptive coding techniques (see, for instance [5]) 
typically use arithmetic coding which implicitly assumes an infinite length source (although practical 
implementations make modifications so that it may be used with finite length strings). In this paper, we 
formalize the notion of encoding an infinite length source. While such infinite codes are used intuitively 
throughout the literature, their mathematical formalization reveals certain subtleties which might 
otherwise be overlooked. For instance, it turns out that the pure arithmetic code for certain sources has 
not only unbounded but infinite delay (that is, it is necessary to see a complete infinite source string 
before being able to determine even one bit of the encoded string in certain cases). Fortunately, such 
cases occur with zero probability. The formalization presented here leads to a better understanding of 
infinite coding and a methodology for designing better infinite codes for adaptive data compression (see 
[1]). 
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As mentioned in [5, page 61, there are two basic models for sources of data  in information 
theory: finite length sources, that is, sources which produce finite length strings, and infinite 
length sources, which produce infinite length strings. Finite length sources provide a better 
model for files, for instance, since files consist of finite length strings of symbols. Infinite 
length sources provide a better model for communication lines which provide a string of 
symbols which, if not infinite, typically have no readily apparent end. In fact, even in some 
cases in which the data is finite, i t  is convenient to  use the infinite length source model. 
For instance, the widely used adaptive coding techniques (see, for instance [5]) typically 
use arithmetic coding which implicitly assumes an infinite length source (although practical 
implementations make modifications so that it may be used with finite length strings). In 
this paper, we formalize the notion of encoding an infinite length source. While such infinite 
codes are used intuitively throughout the literature, their mathematical formalization reveals 
certain subtleties which might otherwise be overlooked. For instance, it turns out that the 
pure arithmetic code for certain sources has not only unbounded but infinite delay (that 
is, i t  is necessary to  see a complete infinite source string before being able t o  determine 
even one bit of the encoded string in certain cases). Fortunately, such cases occur with zero 
probability. The formalization presented here leads to  a better understanding of infinite 
coding and a methodology for designing better infinite codes for adaptive data compression 

(see PI). 
First, we introduce some notation. Let X = (0, . . . , b - 1) for some natural number b 

(this represents the coding alphabet). Let X m  denote the m-fold Cartesian product of X .  
Let X* denote the set of all finite strings on X ,  that is, X *  = Uz=oXm.  Let X m  denote 
the sets of all infinite length strings on X (that is, functions from the natural numbers to 
X). For x E X* and x' E X *  U X m  , the notation xx' denotes the concatenation of x and a'. 
We make no distinction between a finite string x E X * ,  and the set of all infinite extensions 
of x, that is, we equate z and {xx' : x' E Xm) .  We let u(X*) denote the a-algebra on XOa 
which is the infinite product of the discrete a-algebra on X .  We write x(l : m) for the first 
m symbols of an infinite string x E Xm. Let R be the function which converts an infinite 
string into the real number for which x is a b-ary representation, that is: 



for all x E XCO. 
An infinite length code, f ,  is a partial function from infinite length strings to  infinite 

length strings, that is, f : X" + XDO. In order for a code to  be decodable, it must be 
injective. Also, we assume that f is measurable and has a measurable inverse. In order for 
such a code to  be practically realizable, i t  must have finite delay, that is, one must be able 
to  determine any finite portion of the encoded string given a sufficiently long portion of the 
source string. We now define the delay of an infinite code. 

Definition 1 Let f : X* XCO be an infinite code and x E Xm such that f (x) = x'. Fix 
m and let N' = {n : f (x(1 : n)) C x'(1 : m)). The m digit  de lay  of an infinite code f at x 
is: 

df (m, x) = min n 
nEN' 

if there is such an n and m otherwise. In other words, it is the the number of digits of x 
needed to determine that x'(1 : m) is the first rn digits of the encoding of x under f .  We 
say that f has f inite de lay  a t  x if for all m,  the m digit delay o f f  a t  x is finite. 

In fact, this property of finite delay corresponds with continuity in the natural topologies on 
infinite strings. The topologies on infinite strings are the lexicographic order topology and 
the product discrete topology which are equivalent; see [I] for details. Note that in order 
for the decoder to  be practically realizable, it must also have finite delay which means that 
a finite delay infinite code must have a continuous inverse. In short, a finite delay infinite 
code is a homeomorphism between subsets of X". 

Now suppose we are to  design infinite codes for data compression. We need some measure 
t o  compare infinite codes in terms of their ability to  compress data. The length of any infinite 
string is infinite and so the notion of coding length is not as immediately apparent as in 
the case of finite strings. We consider the encoded length of an infinite string to  be the 
infinite sequence of the encoding lengths of all finite initial segments of that string (note 
that coding length then becomes only partially ordered and not totally ordered as in the 
case of finite coding length but this turns out to  be of little significance). Hence, we need to 
define the length of encoding of finite strings under infinite codes. However, this definition is 
also not immediately apparent because an infinite code does not necessarily encode a finite 
string with another finite string. The encoding of a finite string is the set of all infinite 
strings which are encodings of infinite extensions of the finite string (that is, the set of all 
strings which could be generated by the coder given that finite portion of the source string 
is known). In other words, the encoding of x E X *  under f : XD" -+ X" is f (x)  which 
in general is a member of u(X*).  In order to  define the notion of coding length for sets of 
u(X*),  we make an appeal to  intuition (indeed, any suggestion that a mathematical concept 
corresponds with an object that it is purported to  model is an appeal to  intuition but some 
are more apparent than others). We define the length of such sets axiomatically, that is, 
by providing certain axioms which are natural for a measure of length and then showing 
the unique measure of length satisfying these axioms. This def nition of length naturally 
extends the length of finite strings (a  finite string here is the set of its infinite extensions). 
Let 1 : a(X*)  -+ [0, m] be a length function. For a finite string x E X*, let 1x1 denote its 
length. The first axiom is simply that 1 corresponds with I . ( on X* .  



Axiom 1 For any x E X * :  

The second axiom is that 1 is monotonic. Let x ,  x' E u ( X * )  be such that x C x'. It  is 
natural that we should have l ( x )  2 l (x l ) .  For instance, if z, x' E X* then x E z' implies 
that x' is a prefix of x and so 1(x) 2 [ ( X I ) .  

Axiom 2 If x ,  x' E u ( X * )  with x x' then: 

1(x) > i (x ' )  

For the next axiom, we need the following definition. 

Definition 2 An infinite function t is a translation if there is a permutation, f : X m  + X m  
such that t f  (xx ' )  = f ( x ) x l  for each x E X m  and x' E X m  . 

A translation corresponds with an infinite code which just "moves" around some finite 
strings. Examples of translations are functions which complement the first bit of an infinite 
string or which con~plement any finite set of bits. It seems reasonable that such functions do 
not affect the length of strings. Indeed, they do not alter the length of finite length strings 
(elements of X * )  which remain finite length strings under them. This is the third axiom. 

Axiom 3 For any translation t f  and x E u(XC): 

For the next axiom, we make another definition. 

Definition 3 Let x and x' be open sets. Hence1, x = Uixi and x' = uix:  for xi ,  x: E X * .  
The concatenation of x and x' is defined as: 

The concatenation of open sets is a natural extension of concatenation of finite strings. Just 
as for I . ( on X* , the length function should be additive for concatenations. This is the 
fourth axiom. 

Axiom 4 If x and x' are open sets then: 

'Because the basis X* of the topology is countable. 
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In fact, we only need this axiom to hold for finite unions of finite strings rather than arbitrary 
open sets (which are countable unions of finite strings). The fifth axiom is continuity. This 
one is perhaps somewhat difficult to justify because there is really no equivalent notion for 
finite strings. Let x E X*. We have that limx(1 : n) = {x) and it would seem natural to 
choose l(x) = co. Also, liml(x(1 : n)) = oo and so liml(x(1 : n)) = l(limx(1 : n)). The 
final axiom asserts the extension of this to arbitrary measurable sets. 

Axiom 5 If x, 21,  2 2 , .  . . E a(X*)  and limi xi = x2 then: 

Now we define the code length for measurable sets to  be a set function obeying the axioms 
described above, which we prove defines a unique set function. 

Theorem 1 There is a unique set function, 1 : u(X*) i [O,co], satisfying the Axioms I ,  
2, 3, 4 and 5. Let p be the Lebesgue measure on the real line. The unique set function a t  a 
measurable set x is given by: 

Proof. See [I] for a proof. 

An infinite source is a distribution on a set of infinite strings, i.e. a stochastic process, on 
the measurable space (X*, a(X*)) .  Note we do not immediately assume any of the special 
properties typically attributed to sources in information theory such as independence and 
identical distribution, ergodicity, stationarity, etc. We will assume that the infinite sources 
have no atoms, that is, there are no infinite strings of positive probability (for example, if 
the symbols are chosen independently then the only distributions having an atom are those 
in which some symbol has probability one and so our assumption is not terribly restrictive). 

A measurable partition of X* is a countable partition X I ,  2 2 , .  . . of X M  and such that 
xi E a (X*)  for all i. Now let P be an infinite source, f an infinite code and X I ,  2 2 , .  . . a 
measurable partition. The P-average coding length of x l ,  x2, . . . under f is Ci P(xi)l( f (xi)). 
Given an infinite source P, there is a method, known as arithmetic coding, of deriving 
an infinite code which achieves the minimal P-average coding length3 for all measurable 
partitions. The arithmetic code basically corresponds with the cumulative distribution 
function4 for P. However, as mentioned previously, the arithmetic code does not have 
finite delay for certain distributions. For instance, the distribution which chooses an infinite 
string of 0's and 1's independently and with non-dyadic probabilities has infinite delay at 
certain infinite strings (indeed, it is not even well-defined at certain strings). However, these 
problems occur only on a countable set (which has zero probability since we have assumed 
that the source has no atoms). In fact, the arithmetic code can be defined on a set of P 
probability 1 on which it has finite delay: 

'Using the usual notion of limits of sets. 
3The minimal P-average coding length of a measurable partition is the entropy of the partition under P. 
*The concept of a cumulative distribution function makes sense for any measurable space which uses the 

Bore1 a-algebra based on an order topology which turns out to be the case here. 



Theorem 2 Let P be a source distribution without atoms and let F be its cumulative dis- 
tribution function, that is, F ( x )  = P({z l  c X m  : x' 5 x)). There is an infinite code, 
f : X m  + X" such that f has finale delay and P(f-'(X")) = 1 and such that: 

for all x E f-'(Xm). In fact, f achieves the minimal P-average coding length for a11 
measurable partitions of X". 

Proof. See [I] for a proof. 0 

Also, given an infinite code which is "admissible" in a certain sense, there is an infinite 
source P for which it achieves the minimal P-average coding length for all measurable 
partitions. In [2, page 121, they define static and adaptive modeling for coding. Since 
ultimately these modeling techniques produce an infinite code, and since, as mentioned 
above, this code has some distribution for which it has minimal average coding length, 
every code can be considered as a static code (in fact, this is the case for finite codes as well 
which can be shown using the Kraft inequality and some other facts). The advantage of 
adaptive codes is that,  while they are optimal for some distribution, they are nearly optimal 
for some wide class of distributions. Thus, adaptive codes have the advantage of being 
statistically "robust" for important classes of distributions. Hence, we can design "optimal" 
adaptive codes using methodologies from robust statistics such as Bayesian and minimax 
decision rules over the classes of distributions of interest. This is explored further in [I]. In 
particular, we extend some of the work of 141 and [3]. 
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