
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 2002

Safety and Performance in an Open Packet Monitoring Safety and Performance in an Open Packet Monitoring

Architecture Architecture

Kostas G. Anagnostakis
University of Pennsylvania

Sotiris Ioannidis
University of Pennsylvania

Stefan Miltchev
University of Pennsylvania

John Ioannidis
AT&T Labs

Michael B. Greenwald
University of Pennsylvania

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Kostas G. Anagnostakis, Sotiris Ioannidis, Stefan Miltchev, John Ioannidis, Michael B. Greenwald, and
Jonathan M. Smith, "Safety and Performance in an Open Packet Monitoring Architecture", . January 2002.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-02-07.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/145
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76361289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/145
mailto:repository@pobox.upenn.edu

Safety and Performance in an Open Packet Monitoring Architecture Safety and Performance in an Open Packet Monitoring Architecture

Abstract Abstract
Packet monitoring arguably needs the flexibility of open architectures and active networking. A significant
challenge in the design of open packet monitoring systems is how to effectively strike a balance between
flexibility, safety and performance. In this paper we investigate the performance of FLAME, a system that
emphasizes flexibility by allowing applications to execute arbitrary code for each packet received. Our
system attempts to achieve high performance without sacrificing safety by combining the use of a type-
safe language, lightweight run-time checks, and fine-grained policy restrictions. Experiments with our
prototype implementation demonstrate the ability of our system to support representative application
workloads on Bgit/s links. Such performance indicates the overall efficiency of our approach; more
narrowly targeted experiments demonstrate that the overhead required to provide safety is acceptable.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-02-07.

Author(s) Author(s)
Kostas G. Anagnostakis, Sotiris Ioannidis, Stefan Miltchev, John Ioannidis, Michael B. Greenwald, and
Jonathan M. Smith

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/145

https://repository.upenn.edu/cis_reports/145

Safety and Performance in an Open Packet Monitoring Architecture

K. G. Anagnostakis* S. Ioannidis* S. Miltchev* J. ~oannidis t M. Greenwald* J. M. Smith*

*CIS Department, University of Peilnsylvania
{anagnost,sotiris,miltchev,mbgreen,jms}@dsl.cis.upenn.edu

~AT&T Labs - Research
ji@research.att.com

Abstract

Packet monitoring arguably needs the flexibility of open architectures and active networking. A sig-
nificant challenge in the design of open packet monitoring systems is how to effectively strike a balance
between flexibility, safety and performance. In this paper we investigate the performance of FLAME,
a system that emphasizes flexibility by allowing applications to execute arbitrary code for each packet
received. Our system attempts to achieve high performance without sacrificing safety by combining the
use of a type-safe language, lightweight run-time checks, and fine-grained policy restrictions. Experi-
ments with our prototype implementation demonstrate the ability of our system to support representative
application workloads on Gbitls links. Such performance indicates the overall efficiency of our ap-
proach; more narrowly targeted experiments demonstrate that the overhead required to provide safety is
acceptable.

1 Introduction

The bulk of research on Active Networks [27] has been directed towards building general infrastruc-
ture [I, 291, with relatively little research driven by the needs of particular applications. Recently the focus
has shifted slightly as researchers have begun to investigate issues such as safety, extensibility, performance,
and resource control, from the perspective of specific applications [3,22].

Network traffic monitoring is one such application. Originally used just to gather data for basic network
research, today network traffic monitoring is important for three other reasons as well. First, ISPs need to
analyze patterns of network traffic in order to adequately provision the network infrastructure. Second, the
network occasionally finds itself in abnormal situations ranging from distributed denial of service attacks
to network routing outages; real-time monitoring can potentially detect such conditions and react promptly.
Third, analysis of traffic is needed for accounting and the verification of compliance with diverse policies.

Network traffic monitoring can benefit greatly from a measurement infrastructure with an open archi-
tecture. Static implementations of monitoring systems are unable to keep up with evolving demands. The
first big problem is that, in many cases, measurement is required at multiple points in the network. No
distributed monitoring infrastructure is currently deployed, so measurements must typically take place at
the few nodes, such as routers, that already monitor traffic and export their results. Routers offer built-in
monitoring functionality. Router vendors only implement measurement functions that are cost-effective:
measurements that are interesting to the vast majority of possible customers. If one needs measurements
that are not part of the common set, then there is may be no way to extract the needed data from the routers.
Furthermore, as customer interests evolve, the router vendors can only add measurement functionality on the

time-scale of product design and release; it can be months or years from the time customers first indicate in-
terest until a feature makes it into a product. The second big problem is that most monitoring functionality is
only accessible using mechanisms such as SNMP[6], RMON[28] or NetFlow[8]. Even if a particular router
supports the needed measurements, the management interfaces offered by these mechanisms are fixed, and
may fall short of satisfying user needs that were not anticipated at design time. Finally, the need for timely
deployment cannot always be met at the current pace of standardization or software deployment, especially
in cases such as detection and prevention of denial-of-service attacks.

In response to these problems, several prototype extensible monitoring systems [16, 3, 21 have been
developed with the goal of providing the needed flexibility, building on open architecture and active net-
working concepts. The basic goal of such approaches is to allow the use of critical system components by
users other than the network operator. However, providing users with the ability to run their own modules
on nodes distributed throughout the network requires extensible monitoring systems to provide protection
mechanisms.

Flexible protection mechanisms, and other methods of enforcing safety, are an essential part of the
architecture of any extensible measuring system for two reasons. First, users, such as researchers who
want to study network behavior, should not have access to all the data passing through a router. Rather,
fine-grained protection is needed to allow the system to enforce policy restrictions, e.g., ensuring privacy
by limiting access to IP addresses, header fields, or packet content. Second, protection from interference
is needed to guard against poorly implemented modules which could otherwise hurt functions that may be
critical to the operation of the network infrastructure.

The thrust of our research is to determine whether programmable traffic monitoring systems that are
flexible enough to be useful, and safe enough to be deployed, can perform well enough to be practical.

In LAME [3] we demonstrated that it is possible to build an extensible monitoring system using off-the-
shelf components. Further investigation demonstrated performance problems with the use of off-the-shelf
components in LAME. Our follow-on project, FLAME, presented a design that preserved the safety proper-
ties of LAME, but was designed for high performance. FLAME combines several well-known mechanisms
for protection and policy control; in particular, the use of a type-safe language, custom object patches for
run-time checks, anonymizing, and namespace protection based on trust management. In [2] we presented
preliminary results that demonstrated that FLAME largely eliminated the performance problems of LAME.

The purpose of the study in this paper is to understand the range of applications and traffic rates for which
a safe, open, traffic monitoring architecture is practical. We have implemented a number of test applications
and have used them as our experimental workload. We use the data collected from these applications to
quantify and analyze the performance costs, and to predict the workload at which our system will no longer
be able to keep up with incoming traffic.

The rest of this paper is structured as follows. We present the system architecture, including protection
mechanisms, in Section 2. In Section 3 we study the performance trade-offs of the resulting system, and
we conclude in Section 4.

2 System architecture

The architecture of FLAME is shown in Figure 1. A more detailed description is available in [2].
Modules consist of kernel-level code K,, user-level code U,, and a set of credentials C,. Module code is
written in Cyclone [lo] and is processed by a trusted compiler upon installation. The kernel-level code takes
care of time-critical packet processing, while the user-level code provides additional functionality at a lower
time scale and priority. This is needed so applications can communicate with the user or a management
system (e.g., using the standard library, sockets, etc.).

There has been a small architectural modification to FLAME since the publication of [2], after ex-

\ I /

\ */
trusted compiler

+loader
user execbtion knviionrnent

1 kernel , > , , \ i " , . I

packet dispatcher I I
I specialized data-path

Figure 1 : FLAME Architecture

perimentation under high load. The original FLAME architecture interacted with the network interface
exclusively through interrupts. As others have noted [17], under high rates of incoming network traffic, in-
terrupt handling can degrade performance. More recent versions of FLAME poll the network interface card
(NIC) to read packets to avoid performance degradation. Note that the polling technique and the resulting
performance improvement is well known and does not represent a contribution of this paper.

In terms of deployment, the system can be used as a passive monitor e.g. by tapping on a network link
by means of an optical splitter, or using port mirroring features on modem switches. Ideally, a FLAME -like
subsystem would be part of an enhanced router interface card. For the purposes of this paper, we consider
FLAME in a passive monitor set-up.

Our current system does not attempt to explore extending resource management of user processes. A
number of solutions have already been proposed for extending the Unix security model, e.g. [14]. For now,
user-space modules run as normal Unix processes.

We detail how safe execution of in-kernel code is accomplished in Section 2.1. The basic approach is
to use the set of credentials, C,, at compile time to verify that the module is allowed by system policy to
perform the functions it requests. The dark units in Figure 1 beside each K, represent code that is inserted
before each module code segment for enforcing policy-related restrictions. These units appropriately restrict
access of modules to packets or packet fields, provide selective anonymization of fields, and so on.

2.1 In-kernel Safe Execution

There are a number of major design challenges for allowing user code to execute inside the operating
system kernel: the system needs to guard against excessive execution time, privileged instructions, excep-
tions and random memory references. There has been extensive work in the operating system and language
communities that addresses the above problems [lo, 25, 21, 7, 301. FLAME leverages these techniques to
satisfy our security needs.

Bounding Execution Time. A simple method for bounding execution time is eliminating backward jumps
[l l , 191. This has the advantage of providing us with an upper bound for the execution time: linear in
the length of the program. However, such a programming model is rather limiting and hard to program in.
Another approach executes each installed module as a kernel thread and context switches between threads
when they exceed their allocated time slot. Unfortunately, this is too heavy weight for round-robin execution
of monitoring functions on incoming packets. We take a different approach, similar to [12]: we augment
the backward jumps with checks to a cycle counter; if the module exceeds its allocated execution time we

jump to the next module. On the next invocation,the module can consult an appropriately set environment
variable to check if it needs to clean-up data or exit with an error. This method adds an overhead of 5
assembly instructions for the check. If the check succeeds there is an additional overhead of 6 instructions
to initiate the jump to the next module.

Exceptions. We modified the trap handler of the operating system to catch exceptions originating from the
loaded code. Instead of causing a system panic we terminate the module and continue with the following
one.

Privileged Instructions and Random Memory References. We use Cyclone [lo] to guard against instruc-
tions that may arbitrarily access memory locations or may try to execute privileged machine instructions.
Cyclone is a language for C programmers who want to write secure, robust programs. It is a dialect of C de-
signed to be safe: free of crashes, buffer overflows, format string attacks, and so on. All Cyclone programs
must pass a combination of compile-time, link-time and run-time checks to ensure safety.

2.2 Policy control

Before installing a module in our system we perform policy compliance checks1 on the credentials this
module carries. The checks determine the privileges and permissions of the module. In this way, the network
operator is able to control what packets a module can access, what part of the packet a module is allowed
to view and in what way, what amount of resources (processing, memory, etc.) the module is allowed to
consume on the monitoring system, and what other functions (e.g., socket access) the module is allowed to
perform.

3 Experiments

This section describes a number of applications that we have implemented on FLAME and then presents
three sets of experiments. The first involves the deployment of the system in a laboratory testbed, serving
as a proof of concept. The second looks at issues of the underlying infrastructure, in order to specify the
capacity of our system on Gbitls links. The third set of experiments provides a picture of the processing cost
of our example applications, and protection overheads.

3.1 Applications

We have implemented several applications to aid in the design as well as to demonstrate the flexibility
and performance of our The applications presented here have been chosen based on two criteria.
First, we chose applications that are not currently available, but are expected to be useful, making them
likely candidates for deployment using a system such as FLAME. Second, we focused on applications that
go beyond network research to functions that are of interest to network operators.

Trajectory sampling. Trajectory sampling, developed by Duffield and Grossglauser[9], is a technique for
coordinated sampling of traffic across multiple measurement points, effectively providing information on
the spatial flow of traffic through a network. The key idea is to sample packets based on a hash function
over the invariant packet content (e.g. excluding fields such as the TTL value that change from hop to hop)
so that the same packet will be sampled on all measured links. Network operators can use this technique

'our policy compliance checker uses the KeyNote [4] system.
 he set of applications presented in [2] were mostly different. The only application studied in both this paper and in [2] is the

worm detection module.

to measure traffic load, traffic mix, one-way delay and delay variation between ingress and egress points,
yielding important information for traffic engineering and other network management functions. Although
the technique is simple to implement, we are not aware of any monitoring system or router implementing it
at this time.

We have implemented trajectory sampling as a FLAME module that works as follows. First, we compute
a hash function h(x) = d(x) mod A on the invariant part d(x) of the packet. If h(x) > B , where B < A
controls the sampling rate, the packet is not processed further. If h(x) < B we compute a second hash
function g(x) on the packet header that, with high probability, uniquely identifies a flow with a label (e.g.
TCP sequence numbers are ignored at this stage). If this is a new flow, we create an entry into a hash
table, storing flow information (such as, IP address, protocol, port numbers etc.). Additionally, we store a
timestamp along with h(x) into a separate data structure. If the flow already exists, we do not need to store
all the information on the flow, so we just log the packet. For the purpose of this study we did not implement
a mechanism to transfer logs from the kernel to a user-level module or management system; at the end of
the experiment the logs are stored in a file for analysis.

Round-trip time analysis. We have implemented a simple application for measuring an approximation
of round-trip delays observed by TCP connections passing through a network link. The round-trip delays
experienced by users is an important metric for understanding end-to-end performance, mostly due to its
central role in TCP congestion control[l5]. Additionally, measuring the round-trip times observed by users
over a specific ISP provides a reasonable indication of the quality of the service provider's infrastructure,
as well as its connectivity to the rest of the Internet. Finally, observing the evolution of round-trip delays
over time can be used to detect network anomalies on shorter time scales, or to observe the improvement (or
deterioration) of service quality over longer periods of time. For example, an operator can use this tool to
detect service degradation or routing failures in an upstream provider, and take appropriate measures (e.g.,
redirecting traffic to a backup provider) or sin~ply have answers for user questions.

The implementation of this application is fairly simple and efficient. We watch for TCP SYN packets
indicating a new connection request, and watch for the matching TCP ACK packet in the same direction.
The difference in time between the two packets provides a reasonable approximation of the round-trip time
between the two ends of the c~nnection.~ For every SYN packet received, we store a timestamp into a hash-
table. As the first ACK after a SYN usually has a sequence number which is the SYN packet's sequence
number plus one, this number is used as the key for hashing. Thus, in addition to watching for SYN
packets, the application only needs to look into the hash table for every ACK received. The hashtable can
be appropriately sized depending on the number of flows and the required level of accuracy. A different
algorithm that computes both RTTs and RTOs, but is significantly more complex and is not appropriate for
real-time measurement, as well as an alternative, wavelet-based method are described in [13]. Note that
this algorithm does not work for parallel paths where SYN and ACK may be forwarded on different links.
Retransmission of the SYN packet does not affect measurement, as the timestamp in the hashtable will be
updated. Retransmission of an ACK packet introduces error when the first ACK is not recorded. If this
happens rarely, then this error does not affect the overall RTT statistics. If hapenning frequently, due to a
highly congested link, this will be reflected in the overall statistics, and should be interpreted accordingly
(there will be a cluster of samples around typical TCP Timeout values).

3~actors such as operating system load on the two end-points can introduce error. We do not expect these errors to distort the
overall picture significantly, at least for the applications discussed here. These applications take statistics over a number of samples,
so individual errors will not significantly alter the result. In fact, individually anomalous samples can be used to indicate server
overload or other phenomena.

Worm detection. The concept of "worm" and techniques to implement them have existed since the early
descriptions in[5,26]. A worm compromises a system such as a Web server by exploiting system security
vulnerabilities; once a system has been compromised the worm attempts to replicate by "infecting" other
hosts. Recently, the Internet has observed a wave of "worm" attacks[l8]. The "Code R e d worm and its
variants infected over 300,000 servers in July-August 2001.

This attack can be locally detected and prevented if the packet monitor can obtain access to the TCP
packet content. Unfortunately, most known packet monitors only record the IP and TCP header and not the
packet payload. We have implemented a module to scan packets for the signature of one strain of "Code
Red" (the random seed variant):

. . . GET / d e f a u l t . i d a ? p

NNNN
If this signature is matched, the source and destination IP addresses are recorded and can be used to take
further action (such as blocking traffic from attaclung or attacked hosts etc.). Despite the ability to locally
detect and protect against worms, widespread deployment of an extensible system such as FLAME would
still have improved the fight against the virus.

It is worth noting that the "Code R e d worm attacked the Internet by exploiting a security bug less than
4 weeks after the bug was first discovered. The worm attacked over 300,000 hosts within a brief period
after it was first launched. Only the most supple virus detection systems are likely to be able to respond
promptly enough to have shut down this threat. While most intrusion detection systems do provide rule-
based extensibility, it is unlikely, had code-red been more malicious, that the correct rules could have been
applied on time.

On the other hand, we know of a mechanism that is able to deliver virus defenses at least as fast as the
worm - another worm. A safe open architecture system can allow properly authenticated worms (from,
say, CERT) to spread the defense against a malicious worm. In the future, detecting a worm may not be
as simple as searching for a fixed signature, and more complicated detection and protection programs may
require the flexibility of programmable modules.

Finally, providing a general-purpose packet monitoring system is likely to reduce cost due to the shared
nature of the infrastructure, increase impact by coupling the function with network management (to allow,
for example, traffic blocking) and result in more wide-spread deployment and use of such security mecha-
nisms.

Real-time estimation of long-range dependence parameters. Roughan et al. [24] proposed an efficient
algorithm for estimating long-range dependence parameters of network traffic in real-time. These parame-
ters directly capture tha variability of network traffic and can be used, beyond research, for purposes such as
measuring differences in variability between different trafficlservice classes or characterizing service qual-
ity. We have ported the algorithm to Cyclone and implemented the appropriate changes to allow execution
as a module on the FLAME system. Some modifications were needed for satisfying Cyclone's static type
checker and providing appropriate input, e.g., traffic rates over an interval. The primary difference between
this module and the other applications is that it needed to have separate kernel and user space components.
This requirement arises because the algorithm involves two loops: the inner loop performs lightweight pro-
cessing over a number of samples, while the the outer loop performs a more computationally intensive task
of taking the results and producing the estimate. As the system cannot interrupt the kernel module and
provide scheduling, the outer loop had to be moved to user space.

remote LAN UPENN DSL Lab

Figure 2: Network configuration used for experiments

3.2 Experiment setup

Given the distributed nature of the trajectory sampling and round-trip delay analysis applications, the
testbed used for our experiments is shown in Figure 2 and involves two sites: a local test network at the
University of Pennsylvania, and a remote LAN connecting to the Internet through a commercial ISP using
a DSL link. The mean round-trip delay between the two sites is 24 ms. The test network at Penn consists
of 4 PCs connected to an Extreme Networks Summit l i switch. The switch provides port mirroring to allow
any of its lirks to be monitored by the FLAMEsystem on one of the PCs. All PCs are 1 GHz Intel Pentium
Ill with 512 MB memory, OpenBSD 2.9 operating system except for the monitoring capacity experiments
where we used the Click [20] code under Linux 2.2.14 on the sending host. The FLAME system, as well
as the host shown above the switch use the Intel PR0/1000SC Gigabit NIC. The hosts below the switch in
Figure 2 have Alteon Acenic Gigabit NICs. The host router in the remote LAN is a 1 GHz Intel Pentium
111 and connects several hosts using Fast Ethernet.

3.3 Testbed demonstration

In this section we demonstrate the use of the round-trip delay analysis and trajectory sampling modules
on our experimental setup. We have installed the round-trip delay analysis module on the two FLAME
monitors, on the remote LAN and the PENN DSL test network. We initiated w g e t to recursively fetch
pages, starting from the University of Pennsylvania main web server. In this way we created traffic to a large
number of sites reachable through links on the starting Web page. The experiment was started concurrently
on both networks to allow us to compare the results. One particular view of 5374 connections over a 1 hour
period is presented in Figure 3, clearly showing the difference in performance which is in part due to the
large number of local or otherwise well connected sites that are linked through the University's Web pages.

We also executed the trajectory sampling module and processed the data collected by the module to
measure the one way delay for packet flowing between the two networks. The clocks at the two monitors
were synchronized using NTP prior to the experiment. Note that appropriate algorithms for removing clock
synchronization error, such as those described in [23], can improve the accuracy of such measurements in
operational use. However, for the sake of illustrating the use of applications of our system this problem
was not further addressed. The results are shown in Figure 4. Note that this is different from simply using
ping to sample delays, as we measure the actual delay experienced by network traffic. The spikes show our
attempts to overload the remote LAN using UDP traffic.

	Safety and Performance in an Open Packet Monitoring Architecture
	Recommended Citation

	Safety and Performance in an Open Packet Monitoring Architecture
	Abstract
	Comments
	Author(s)

	tmp.1182269469.pdf.ciapW

