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The Theory of Chirowaveguides

Abstract

Recently a new type of guided-wave structure, named chirowaveguide was suggested by the authors. The
chirowaveguides consist of cylindrical waveguides filled with homogeneous isotropic chiral materials. Due to
the electromagnetic chirality of the material inside the waveguide, several important features area associated
with this type of guided-wave structure. In this paper, the theory of chirowaveguides is discussed and their
salient features are analyzed. It is show that the Helmhotz equations for the longitudinal components of
electric and magnetic fields in chirowaveguides are always coupled and consequently, in these waveguides
individual transverse electric (TE), transverse magnetic (TM), or transverse electromagnetic (TEM) modes
cannot be supported. As an illustrative example, the parallel-plate chirowaveguide is analyzed in detail and the
corresponding dispersion relations, cut-off frequencies, propagating and evanescent modes are obtained. In
the dispersion (Brillouin) diagram for a chirowaveguide, three regions are identified: the fast-fast-wave region,
the fast-slow-wave region and the slow-slow-wave region. For each of these regions the electromagnetic field
components in a parallel-plat chirowaveguide are analyzed and the electric field components are plotted.
Potential applications of chirowaveguides in integrated optical devices, communication systems, and printed
circuit antennas are mentioned.

Comments
Copyright 1990 IEEE. Reprinted from IEEE Transactions on Antennas and Propagation, Volume 38, Issue 1,
January 1990, pages 90-98.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/183


http://repository.upenn.edu/ese_papers/183?utm_source=repository.upenn.edu%2Fese_papers%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages

90

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 38, NO. 1, JANUARY 1990

The Theory of Chirowaveguides

PHILIPPE PELET, STUDENT MEMBER, IEEE, AND NADER ENGHETA, SENIOR MEMBER, IEEE

Abstract— Recently a new type of guided-wave structure, named chi-
rowaveguide was suggested by the authors. The chirowaveguides consist
of cylindrical waveguides filled with homogeneous isotropic chiral ma-
terials. Due to the electromagnetic chirality of the material inside the
waveguide, several important features are associated with this type of
guided-wave structure. In this paper, the theory of chirowaveguides is
discussed and their salient features are analyzed. It is shown that the
Helmholtz equations for the longitudinal comp ts of electric and
magnetic fields in chirowaveguides are always pled and quently,
in these waveguides individual transverse electric (TE), transverse mag-
netic (TM), or transverse electromagnetic (TEM) modes cannot be sup-
ported. As an illustrative example, the parallel-plate chirowaveguide is
analyzed in detail and the corresponding dispersion relations, cut-off
f ies, p gating and ev nt modes are obtained. In the
dispersion (Brillouin) diagram for a chirowaveguide, three regions are
identified: the fast-fast-wave region, the fast-slow-wave region and the
slow-slow-wave region. For each of these regions the electromagnetic
field components in a parallel-plate chirowaveguide are analyzed and
the electric field ponents are plotted. Potential applications of chi-
rowaveguides in integrated optical devices, communication systems, and
printed circuit antennas are mentioned.

1. INTRODUCTION

HE CONCEPT OF electromagnetic chirality embraces

both optical activity and circular dichroism® [1], [2]. The
phenomenon of optical activity was discovered by Arago in
1811 [3]. He found that crystals of quartz rotate the plane
of polarization of linearly polarized light transmitted in the
direction of its optical axis. Shortly thereafter, experimenta-
tion by Biot [4]-[6] on plates of quartz put in evidence the
dependence of optical activity on the thickness of the plates of
crystal and on the light wavelength. Furthermore, he discov-
ered that the optical activity also appears in certain liquids. In
1848, Pasteur [7] postulated that molecules of optically active
materials are three-dimensional chiral figures, and the chiral-
ity or handedness of these molecules causes optical activity. In
other words, optical activity is a manifestation of the chirality
of these molecules.

Chirality or handedness is a purely geometric notion that
refers to the lack of bilateral symmetry of an object. A three-
dimensional chiral object is, by definition, a body that cannot
be brought into congruence with its mirror image by trans-
lation and rotation [8], [9]. Such a body has the property of
handedness and is either right-handed or left-handed. Many of
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! Optical activity refers to the rotation of the plane of polarization of op-
tical waves by a medium while circular dichroism indicates a change in the
polarization ellipticity of optical waves by a medium.,

naturally occurring and man-made objects fall into the cate-
gory of chiral objects. A variety of sugar arrays, amino acids,
DNA and organic polymers are among the natural chiral ob-
jects while such common objects as wire helices, the Mobius
strip and the irregular tetrahedron are considered the man-
made chiral objects.

It has been shown that in the case of a chiral medium made
of randomly oriented and uniformly distributed lossless, short,
wire helices, the set of constitutive relations for time-harmonic
fields (e ‘) has the form

D =¢E +itB 1

@

where €, pu, £ are real constants and represent the dielectric
constant, permeability, and chirality admittance of the chiral
medium, respectively. Moreover, it has been conjectured that
(1) and (2) apply not only to chiral media composed of helices
but also to any lossless, reciprocal, chiral media composed of
chiral objects of arbitrary shape [10]. The fundamentals of chi-
ral constitutive relations have been treated in books by Kong
[11] and Post [12]. Chirality and its effects in optical activity
began to attract attention in the electromagnetics community
with the microwave experiments of Lindman [13], [14] and
Pickering [15]. In the microwave regime, they obtained re-
sults somewhat similar to those for the optical frequencies.
They devised a macroscopic model for the phenomenon by
using microwave instead of light, and wire helices instead of
chiral molecules. They illustrated the molecular process re-
sponsible for optical activity using this model. In the most
recent past, the following papers are among those on wave
interaction with chiral media: the work on transition radia-
tion at a dielectric-chiral interface [16], electromagnetic wave
propagation through a chiral slab [17], the electromagnetic
properties of bianisotropic media [18], [11], [12], the reflec-
tion of waves from achiral-chiral interfaces [17], [19], [20],
the dyadic Green’s functions and dipole radiation in an un-
bounded, isotropic, lossless chiral medium [21], [22] and the
canonical sources and duality in chiral media [23].

In this paper, we study and analyze electromagnetic wave
propagation in guided-wave structures containing chiral ma-
terials. Such guided-wave structures we named chirowave-
guides [1]. The motivation for this study, besides its theoreti-
cal and academic importance, is provided by potential applica-
tions of chiral materials to integrated optical devices, optical
waveguides and printed-circuit elements. Furthermore, with
recent advances in polymer science, it is believed that chi-
ral materials for the millimeter wave and microwave regimes
can be made. This will open a new chapter in the design of

H=itE+B/u
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Fig. 1. A cylindrical chirowaveguide which consists of a cylindrical wave-
guide filled with a homogeneous lossless isotropic chiral material (e, g, &)-
The axis of the cylinder, which is the direction of propagation of guided
waves, is denoted by z axis.

millimeter-wave components and devices. Here, the general
features of chirowaveguides are studied, and as an example,
the case of a parallel-plate waveguide filled with a chiral ma-
terial is investigated in detail.

1I. FORMULATION OF THE PROBLEM

Consider a cylindrical waveguide of arbitrary cross section
with its axis in the direction of the z axis and filled with a
homogeneous, lossless, isotropic chiral material described by
(1) and (2). The boundary surfaces will be assumed to be per-
fect conductor (Fig. 1). The propagation is in the z direction
and, therefore, all the electromagnetic field components have
e"* as the z dependence, where + is, in general, a complex
quantity.

From the chiral constitutive relations (1) and (2), and the
source-free Maxwell equations, we find

E E E
V x V x — 20pEV x -k
H H H

where k = w,/je with w being the radian frequency of the
time-harmonic fields [21], [22]. It is known that, for a plane
wave propagation in an unbounded chiral medium, there exist
two bulk eigenmodes of propagation, a right circularly polar-
ized (RCP) and a left circularly polarized (LCP) plane wave
with wavenumbers

=0, 3

ki = topt + k2 + (wl"éc)z- @)
In the waveguide under study, however, the wavenumber along
the z axis is y to be determined for given frequencies. Consid-
ering the z dependence e?* for the field components inside the
guide and using chiral constitutive relations (1) and (2) and the
source-free Maxwell equations, the transverse components of
electric and magnetic fields inside the chirowaveguide can be
expressed in terms of the longitudinal components of E and
H. These relations can be written in the following compact
form: :

(Ey; E,; Hy: H,JT < @) [0E:, OB 0H, 0H.]"

K | ox’ 8y’ ox 'y

&)
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where
an =an=ay=au =7y [72 +M]
ap = —ay =ay = —a5 = —opé [K* — 77
a3 =axy = 20w p’vE

ayy = —ay = iwp [k* +v7)

a3 = azn = 2w’ p vk [0

axn = —ay = —iop [k* + %] /7%

and b2 = (Y2 k22 +K2), n = /e, n2 =07 /A +07ED)
and [ 17 denotes the transpose of a matrix. These relations
are generalization of a nonchiral case where & = 0. From
(5) and the wave equations (3), we obtain the following set of
equations for the z components of the field vectors E and H:

22 e
2.2 T 5.2 Y
ox* " 0y*| | H H,

2
z
H,

(1/12)E,

The above equations are coupled equations for the longitu-
dinal components of the fields E and H. The boundary con-
ditions needed for solving (6) are obtained by equating to
zero the tangential components of E on the surface of the chi-
rowaveguide. Having obtained E, and H; from (6) and the
proper boundary conditions, one can find the transverse com-
ponents of E and H from (5). We observe that for conventional
waveguides filled with nonchiral media, i.e., for §& = 0, (6)
reduces to a set of decoupled Helmholtz equations for longi-
tudinal field components.

From (6), we note that it is impossible for E, or H; to
be identically zero unless they are both zero. In other words,
neither TM nor TE modes can exist individually in a chi-
rowaveguide. When E, and H, are both zero, from (5) we
observe that either all the transverse components are zero or
h = 0. If all the transverse components are zero, the fields will
vanish identically. If # = 0, one can show, from Maxwell’s
equations, that V; x E, =0 and E, = +ie; x E,; where e, is
the unit vector along the z axis, V, = V — (8/0z) e; and the
subscript ¢ denotes the projection of a vector on the xy plane
transverse to the direction of propagation. The first relation
implies that E, can be chosen to be E; = V, ¥ where ¥ is an
arbitrary function of x and y. Using the second relation, the
scalar function ¥ is proved to be an analytic function. Since
the tangential component of E; must vanish on the boundary,
¥ must be constant over this boundary, and therefore it follows
from the theory of analytic functions that ¥ is constant over
the entire cross section of the waveguide. This implies that
E, = 0 everywhere on the transverse plane. Hence, propagat-
ing modes in chirowaveguides are all hybrid and individual
transverse electric (TE), transverse magnetic (TM) or trans-
verse electromagnetic (TEM) modes cannot be supported in
a chirowaveguide. Cylindrical waveguides filled with mag-
netically biased ferrites present somewhat similar character-

Piw?plé, { =0. (6)
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Fig. 2. A parallel-plate chirowaveguide. In this chirowaveguides, the direc-
tion of propagation is along z axis. The field quantities are all independent
of x axis.

istics [24]-[28]. However, it should be noted that chirowave-
guides, due to the reciprocal nature of chiral materials, are
reciprocal elements while waveguides containing magnetized
ferrites are not.

Returning to the set of equations in (6), let us attempt to
transform them to a pair of decoupled equations by expressing
E, and H, in terms of two new functions U, and U, as
follows:

E,=p U +pUs
)

H, =q U, +qU>

where py, p2, q1 and @, are constants to be chosen. In order
not to lose generality, we also assume that p;q; — p2q1#0.
Substituting (7) into (6), we obtain

VU, +8,U; =0
®

ViU, +8,U; =0

where S; = k2 +4%,5; = k% +?, and the constants p,
D2, q) and @, have been foundtobe p; =S, p» = 82,41 =
(k% —K2)S) /(i p2t:) and gy = —(k3 —k2)S2 /(4iw®p?E).
One can now find the solutions U; and U, of the equations (8)
subject to the boundary conditions for the field quantities E
and H. Then, the longitudinal and transverse field components
can be obtained from (7) and (5).

IT1. PARALLEL-PLATE CHIROWAVEGUIDES AND THEIR IMPORTANT
FEATURES

Up to this point the cross section of the waveguide has
been assumed to be arbitrary. Now as an illustrative example,
let us consider a parallel-plate chirowaveguide (Fig. 2). This
waveguide consists of two parallel perfectly conducting planes
of infinite extent in the x and z directions, and is filled with
a lossless, homogeneous, isotropic chiral material described
by (1) and (2). Without loss of generality, it is assumed that
the chirality admittance £, is a positive quantity. However, it
should be noted that the analysis described hereafter is also
valid for negative values of £, as long as the roles of k, and
k_, as well as RCP and LCP waves, are interchanged. The
separation of the two plates is taken to be a. For propagating
modes in the z direction, the propagation constant v must be
an imaginary quantity. Thus vy can be written as y = i3 where

8 is a real quantity to be determined. The field quantities are
assumed to be independent of the x coordinate.

Following the approach described in the previous section,
we find the solutions to (8). They are

Uy = Ay cos (V81 ) + Ay sin(vVS1 y) (9a)
Uz = Ay cos (V82 ¥) + Az sin(v/S2 ») (9b)

where A1, A2, A21, and A;; are constants to be determined
and S; and S, are defined earlier. Imposing the boundary
conditions for the field quantities, we obtain a set of homoge-
neous algebraic equations for these constants. For a nontrivial
solution of this, the determinant of coefficients must be zero.
This leads to the following equation for propagating modes
fory =if

2y/I1 = B/k )21 — (B/k-)]
A1 —cos(kra\/1 — (B/k)?) cos(k_a/1 —(B/k_)")}

+{2-B/kY —(B/k )} sin(kia/1—B/k)?)
1—(B/k-)) =0

This is the dispersion relation for propagating modes in a
parallel-plate lossless chirowaveguide.

It is well known that in conventional rectangular wave-
guides filled with homogeneous nonchiral materials, field con-
figuration can be obtained by superposing two or more plane
waves in a suitable manner. These plane waves propagate with
the unbounded-medium or bulk wavenumber. In a conven-
tional parallel-plate waveguide, this separation into component
waves is quite simple. In those waveguides, there are only two
component waves, and the direction of these waves depends
upon the frequency and the dimension a. In a parallel-plate
chirowaveguide, however, due to the fact that chiral media
support double-mode propagation (k.. and k_), there are four
component waves. Two of the waves are RCP propagating
with wavenumber k., and the other two are LCP propagating
with wavenumber k_. Fig. 3 shows these waves in a parallel-
plate chirowaveguide. Consider R, R,, L; and L, to be the
amplitudes of the component waves Eg;, Egy, E;; and E;p5,
respectively. Thus, these waves can be expressed as follows:

- sin(k_a (10)

ERl _ Rleik,(z cos 0+y sin o)eRl,
ER2 — R2e1k+(z cos 6—y sin o)eRZ;
E;; :Lle:k_(z cos p+y sin w)eLly

ELZ — Lzeik_(z cos @—y sin v)eL2 (11)
where eg;, €g2, €71 and e;, are the circular basis unit vectors
for the right and left circularly polarized waves in the direc-
tions 6 and ¢ (Fig. 3). Since the guided wave propagates in
the z direction with propagation constant 3, the z component
of the bulk mode wavenumbers must equal 3. Hence

kicos@ =k_ cos p=28. (12)
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Fig. 3. Cross-sectional view of the parallel-plate chirowaveguide with four
component (bulk) plane waves two of which are RCP propagating with
wavenumber k., and the other two are LCP propagating with wavenumber
k_. The arrows indicate the directions of propagation of the four bulk
plane waves.

Applying the boundary conditions at y = —a /2 and y = a/2,
we obtain the following set of equations for coefficients R,
Rz, Ll and L2

(R1, Rz, L, LAY =0 (13)
where
e—ik+a sin 6/2 _isin oe—ikm sin 6/2
eik+a sin 6/2 isin eeikuz sin 6/2

T
Al = o % as
e—ik_a sin /2 isin tpe—:k,a sin /2

eik_a sin /2 —isin <p€ik—a sin /2
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k_<B<ky,
k_ <ki<B, (18)

In region I, the phase velocity of the guided wave, i.e., vp,z =
w/B is greater than both velocities v+ = w/k4 and v_
w/k_. That is

Region II: forf, >0 17

Region III: forg. > 0.

Up,z > U= > Uy, for&, > 0. (19)

Therefore we refer to this region as the fast-fast-wave re-
gion. In region II, however, we have

for& >0, (20)

V. > Up g > Vg,

and hence we call it, the fast-slow-wave region. Finally, re-
gion III is named the slow-slow-wave region because

Vo > up > Upg for ¢, > 0. 21
Now we study each region of the dispersion diagram sepa-
rately.

1) Fast-Fast-Wave Region: In this region of v — B dia-
gram where 8 < k_ < k. for & > 0, the angles 6 and ¢ are

eik+a sin /2 —isin 0eik+a sin /2
e—ik+a sin 6/2 isin Be—ik+a sin 6/2

T L (14)
elk_a sin /2 isin wexk,a sin /2

e—ik-a sin /2 —isin<pe""‘-" sin /2

Nontrivial solutions are obtained when det[A4] = 0. This
leads to

2 sin @ sin {1 — cos (k_.a sin 8) cos(k _a sin @)}
+{sin 62 +sin ¢} sin(k ,a sin 6) sin(k _a sin ) =0,

15)

which is equivalent to (10). This is another form of the dis-
persion relation in the parallel-plate chirowaveguide in terms
of angles 6 and . From this relation, one can obtain the
dispersion relation (10) substituting 6 cos~!(8/k) and
¢ = cos~1(8/k_). The problem is, now, to solve (10) (or
(15)) for any given frequency and to obtain the propagation
constant 8 or angles 6 and ¢ subject to the condition (12).
Propagating modes have real 3. However, when 3 is imag-
inary, i.e., 8 = i, we have evanescent modes. These two
types of mode in the parallel-plate chirowaveguide will be
discussed in the following subsections.

A. Propagating Modes

For modes propagating in the positive z direction, the prop-
agation constant 3 is a real positive quantity. Since there exist
two bulk wavenumbers k, and k_ for an unbounded chiral
material, there are three regions in the dispersion or & — 8
diagram for the propagation constant 3, viz.

Region I: B<k_<ksi, forf. >0 (16)

real and have values between 0° and 90°. The w — 8 dia-
gram, which is also called Brillouin diagram is presented in
Fig. 4 for £ = 0.001 mho. In this figure, the dimensionless
quantity Q = wa ,/si€ is plotted versus the dimensionless guide
wavenumber along the z direction, i.e., fa = k,a cos 0. The
fast-fast-wave region is restricted to the region between the €
axis and the line k_ in the @ — (8 diagram.

The cut-off frequencies are those at which the propagation
constant 8 = 0, and consequently 8 = p = 90°. From (10),
we obtained the following expression for the cut-off frequen-
cies in a parallel-plate chirowaveguide:

nw

[Fe g
e£C+

where n = 1,2,3--- and 7. is already defined. These fre-
quencies are shown as points Ay, Az, - in Fig. 4. Equiva-
lently, the cut-off wavelengths can be written as

Ne

Qe = wea/pe = =nw— 22)

a

(23)
2

"
L
eEC+

where \. is the cut-off wavelength as measured in the medium
with £ = 0. Since 5. /9 < 1, from (22) and Fig. 4, we note
that the cut-off frequencies are closer to each other than those
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Fig. 4. Dispersion (Brillouin) diagram for propagating modes in a parallel-
plate chirowaveguide with £. = 0.001 mho. Three regions are identified:
fast-fast-wave region where 8 < k_ < k., fast-slow-wave region where
k_ < B < k. and slow-slow-wave region where k _ < k, < . It should
be noted that there are pairs of bifurcated modes with common cut-off
frequencies and differing propagation constants for any given frequency.
One of the two curves of the bifurcated pairs corresponds to the odd mode
whereas the other one corresponds to the even mode.

in a conventional waveguide filled with a nonchiral material.
It should be noted that since chirowaveguides do not sup-
port TEM modes, the lowest cut-off frequency is not zero.
From Fig. 4 we also see that the curves are bifurcated start-
ing from the same cut-off frequency 2. and then split as
Ba = kya cos @ increases. In other words, for any given
frequency greater than the lowest cut-off, there are pairs of
modes with unequal propagation constants and common cut-
off frequencies. This characteristic, which is one of the notable
features of the parallel-plate chirowaveguide becomes appar-
ent when we note that the dispersion relation given in (10)
or (15) can be written as a product of two expressions. More
explicitly we have

A=A

<Ay =0, (24)

where A is a shorthand for the dispersion relation given in
(10), and A; and A, are found to be

Ay =1 =@B/k P+ /1= Bk
2
. <k+a\/1 — Bk +k_a/1— (B/k_)2>
2

/1 - Bk — /1= B/k_Y]
. (k+a 1— B/ks) —k_a/1— (B/k-)2>
. .

(25)
It is clear from (24) that to have A = 0, either A; or A, must
be zero. This leads to a set of bifurcated modes originating
from common cut-off frequencies. For each pair of bifurcated
modes, the cut-off frequency can be obtained by having 8 =0
in the dispersion relation (10), which results in A, = A, =0
Then the expression for cut-off frequencies is obtained and
already given in (22).
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It is worth noting that although this and some other fea-
tures of chirowaveguides appear to be similar with those of
the gyrotropic (magnetized ferrite) waveguides [25], they are
different in nature. Chirowaveguides, due to the reciprocal and
isotropic nature of chiral materials, are reciprocal elements.
Furthermore, in ferrite waveguides, some of the guided-wave
characteristics change as the direction of the biasing magnetic
field changes, whereas in chirowaveguides, the filling materi-
als are isotropic, and there is no preferred direction. The dis-
persion curves in the fast-fast-wave region cross the line k_
at pairs of points which are designated as By, Cy, By, Gy, -~
in Fig. 4. Points By, B,,- - - correspond to the curve A; =0,
whereas points Cy, C,- - - belong to the curve A; = 0. At
these points, 3 = k_ = k, cos 6. The frequencies wp, as-
sociated with points By, B;,- - - are

Qp, = wp,a/pe = ™ [T (26)
n &

with n = 1,2,3,--
ated with points C;, G- -
transcendental equation:

tan (Qc,.nl\/zcnc> =

-, and frequencies w., (or ) associ-
are the solutions to the following

Eene
\/Sc’)c(1+£ e )
@7

It must be noted that for the nonchiral case where &, =0,
the two lines k, and k_ become a single line k, the dispersion
curves approach the line k asymptotically, points By, B;,- - -
join Cy, Cz,-- - and all together move to infinity and the fre-
quencies associated with these points become infinitely large
as expected from (26).

By applying the proper boundary conditions to (9a) and
(9b), the coefficients A1, A2, A1, and Ay; are determined.
These coefficients are related through the following expres-
sions:

Ay =Aph (28a)

_ 51 cos(v/81a/2) cos(\/—a/Z)
Az = S> cos(\/—a/Z) Aun (28b)
Ay = — S1 sm(\ﬁa/Z) (280)

S, sm(\/—a/Z) Az

Substituting these coefficients into (9a) and (9b) and using
(7) and (5), we obtain the electric field components in the
parallel-plate chirowaveguides. They are

S ,
E, = —An\/gl' {lm/SE sin (v/S1 »)

cos(v/§1a/2) . }
+ k- \/_cos(\/— ) sin (v/S2 )

S
oy [o {k+¢s—2cos<¢§y>

sin (v/S1a/2) }
+k_VS1 a2 cos(VS2y)p  (29a)
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E, = iBAny 3" { _ V5, sin(v5T)
2

cos(v51a/2) . }
+ V81 w0 (V50a/2) sin (v/S2 )

+iBA12\/§ {\/s—zcoumy)

sin(v/S1a/2) S }
- V5 (5D cos (V52 5)

E. =81An {COS(\E)*) - %%Z% COS(\KS‘_zy)}

sin(v8,a/2) }
sin (v/S2a /2) sin(V829) ¢ -

(29b)

+ 8141 {Sin(\/S_l}’) -

(29¢)

Similarly, the magnetic field components in the parallel-plate
chirowaveguide can also be obtained.

There are several important features associated with (28)
and (29). First, one must note that for any propagating mode
inside a parallel-plate chirowaveguide, either A; = 0 or
A, = 0. Each corresponds to an arm of the bifurcated modes
in the dispersion diagram. Second, it follows from (28a) and
the previous statement, that when A; equals zero, Ay van-
ishes, whereas when A, = 0, A, disappears. As a result, for
that arm of the bifurcated mode corresponding to A; =0, E;
and H, are odd functions of the y coordinate (with the ori-
gin of y axis located at the middle of the waveguide thick-
ness) and Ey, E,, Hy, and H, are even functions of the
y coordinate. This arm, therefore, corresponds to the even
mode. On the other hand, for the other arm of the bifurcated
mode corresponding to A, = 0, E, and H, are even func-
tions of y whereas Ey, E,, H,, and H, are odd functions
of the coordinate y. Hence, this arm corresponds to the odd
mode. Finally it is worth noting that in the nonchiral limit
when £, approaches zero, one of the modes of the bifurcated
pair approaches conventional TM mode, whereas the other ap-
proaches the usual TE mode in the parallel-plate waveguide.?
As is well known, in parallel-plate waveguides filled with non-
chiral isotropic materials, the dispersion curves for TE modes
overlap those of the TM modes. Therefore, the two curves of
bifurcated pairs in the parallel-plate chirowaveguides become
a single curve as £, approaches zero. Fig. 5 presents the elec-
tric field components inside a parallel-plate chirowaveguide as

a function of y/\ for £ = 0.001 mho and @/\ = 0.56.
The transverse components of the magnetic field H can

be expressed in terms of the transverse components of E as

follows:
. = kik_
H, —i%e 78 E,
H, B it Ey
nVkik—
2When &, approaches zero, S, = S, = /k%* — 2. From the dis-
persion relation given in (10), we get sin(y/k%? —fB2a) = O resulting
in sin(y/k2 —B2a/2) = 0 or cos(y/k? —B%a/2) = 0. Therefore, care

must be taken in finding the limits of sin(v/S1a/2)/sin(/52a/2) and
cos (/S1a/2)/ cos (v/S2a /2) in (29) when & approaches zero.
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Fig. 5. Magnitudes of electric field components in a parallel-plate chi-
rowaveguide as a function of y/\ for the fast-fast-wave region (Horizontal
axis has an arbitrary unit). £, and a/\ are taken to be 0.001 mho and 0.56,
respectively. There are two bifurcated dispersion curves for each cut-off
frequency. a) field profiles of the upper mode (even mode) of the first pair
of bifurcated modes; and b) field profiles of the lower mode (odd mode)
of the first bifurcated modes.

where = y/p/e. For & =0, k. = k_ = k and (30) reduces
to the corresponding expression in a conventional parallel-
plate waveguide.

2) Fast-Slow-Wave Region: In this region of the  — 8
diagram, which is restricted to the region between the lines
k,and k_,i.e., k_ <B <k, for & >0, 8 is a real angle
between 0° and fg, and ¢ is a pure imaginary angle ig;. In
this region of the diagram, the dispersion relation is

211 — B/k Bk —1]

{1 —cos (kra\/1 — (B/k)?)cosh (k_a\/(B/k_)* — 1)}
+ {2 — (B/k)* — (B/k-)*} sin(kia\/1 — (B/k1)?)

-sinh(k_a/(B/k_)* —1) =0 31
and
k, cos @ = k_coshy; = 8. (32)

The dispersion curves in the fast-slow-wave region are pre-
sented in Fig. 4. In this region, the LCP plane waves propa-
gate along the z-axis with a propagation constant greater than
k_. Therefore S, is imaginary and the LCP portion of the
transverse field components are described by the hyperbolic
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Fig. 6. Magnitudes of electric field components in a parallel-plate chi-
rowaveguide as a function of y/\ for the fast-slow-wave region (Horizontal
axis has an arbitrary unit). £ and a/\ are taken to be 0.001 mho and 0.84,
respectively. There are two bifurcated dispersion curves for each cut-off
frequency. (a) field profiles of the upper mode (even mode) of the first
pair of bifurcated modes. (b) Field profiles of the lower mode (odd mode)
of the first bifurcated modes.

functions. Thus the LCP waves can be regarded as slow waves
inside the waveguide. Such waves, in a simple parallel-plate
waveguide filled with a nonchiral isotropic medium, could
not satisfy the boundary conditions. In the parallel-plate chi-
rowaveguide, however, since both RCP and LCP waves exist
and the angle 6 for RCP waves and S are still real quantities,
combination of these two sets of waves, RCP and LCP, gives
rise to a physical solution satisfying the boundary conditions.
This is another important feature of a chirowaveguide. In this
region, the electric field components have the same form as
in (29). However, S, is an imaginary quantity while S; is still
real. Fig. 6 illustrates the variations of the electric field com-
ponents as a function of y/\ for a/\ = 0.84 and £, = 0.001
mho. Note that the field profiles in this figure are plotted for a
value of a/\ different from that of Fig. 5. This is because, for
a given pair of bifurcated modes, in order to be in the fast-
slow-wave region of the dispersion diagram, the frequency
must be greater than that of the fast-fast-wave region. There-
fore, we choose the value of a /\ = 0.84, greater than that of
Fig. 5 (> a/\ =0.56 of Fig. 5) to stay on the same pair of
bifurcated modes and to present the field profiles of the same
pair in the fast-slow-wave region. If one desires to plot the
field profiles in the fast-fast-wave and fast-slow-wave regions

for a single value of a/\, the field profiles of two different
pairs of bifurcated modes can be plotted.

The transverse components of the magnetic field H are re-
lated to the transverse components of E through the same
relation given in (30).

3) Slow-Slow-Wave Region: The propagation constant 8
is greater than both k. and k_ in this region of w —f diagram,
which is between the $-axis and the line k.. It turns out that
in a parallel-plate chirowaveguide, a propagating mode does
not exist in the slow-slow-wave region. This implies that, in
a parallel-plate chirowaveguide, it is impossible to have a sit-
uation where both RCP and LCP component waves propagate
as slow waves along the z-axis.

B. Evanescent Modes

For evanescent modes, the propagation constant must be a
complex quantity. Let us take 8 to be ia where « is a real
quantity. Thus ¥ = — and both angles 6 and ¢ are complex

angles. That is
0 =0,+1i6; 33)
= +ip. (34)

Since evanescent modes occur for frequencies below cut-off,
the real part of the above angles, i.e., 6, and r must be 90°,
Substituting 8 = i« into (10), and (33) and (34) into (12), we
obtain

211 + (e /k )20 + (afk_)2)

{1 —cos (ksa\/T+(a/k,)?) cos (k-a\/T + (@/k_)%)}
+ {2+ (a/ks) + (afk_)?}

- sin (k+a\/l_+(m) sin(k_a W) =0.

(35

and

k. sinh; = k_ sinh ¢; = . (36)

These equations are analyzed the same way the dispersion
relations were treated for the propagating modes. The corre-
sponding dispersion diagram is presented in Fig. 7. We note
that the evanescent modes are also bifurcated. These double
evanescent modes can be examined using a method similar to
that used for propagating modes.

IV. CoNcLusioN

We have studied and analyzed a new class of wave-
guides, chirowaveguides, which can be made of cylin-
drical waveguides containing homogeneous isotropic chiral
materials. Propagation properties of electromagnetic waves
guided by such waveguides have been investigated, and
some of their novel and salient features have been dis-
cussed. It has been shown that due to coupling of Helmholtz
equations for the longitudinal components of electric and
magnetic fields, chirowaveguides are unable to support in-
dividual TE, TM or TEM modes. In these waveguides,
modes are hybrid, TE and TM modes are always cou-
pled and the coupling coefficients are proportional to the
chirality admittance £, of the material inside the wave-
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Fig. 7. Dispersion (Brillouin) diagram for evanescent modes in a parallel-

plate chirowaveguide with £, = 0.001 mho. It should be noted that there are
pairs of bifurcated modes with common cut-off frequencies and differing
attenuation constants for any given frequency. One of the two curves of
the bifurcated pairs corresponds to the odd mode whereas the other one
corresponds to the even mode.

guide. The rotation of the polarization ellipse of the electric
field also occurs in chirowaveguides. However, this rotation
differs from the phenomenon of Faraday rotation in longitudi-
nally magnetized ferrite waveguides by the fact that the former
is reciprocal and independent of the sense of wave propagation
whereas the latter is not.

As an illustrative example, we have studied, in detail, a
parallel-plate chirowaveguide and its properties. The disper-
sion relations, Brillouin diagrams, cut-off frequencies, prop-
agating and evanescent modes for this chirowaveguide have
been obtained and analyzed thoroughly. It has been shown
that the propagating and evanescent modes are bifurcated. The
three regions in the Brillouin diagram, viz. the fast-fast-wave,
fast-slow-wave and slow-slow-wave regions have been identi-
fied. The additional region in the Brillouin diagram, i.e., the
fast-slow-wave region is one of the important characteristics
of chirowaveguides. For each region, the electromagnetic field
components in the parallel-plate chirowaveguide have been an-
alyzed.

Notable features of chirowaveguides can have potential ap-
plications in integrated optical devices, telecommunications
electronic systems and printed-circuit elements. Optical chi-
rowaveguides can be a new type of dielectric waveguides in
integrated optics. The bifurcated modes which have common
cut-off frequencies and unequal propagation constants for any
given frequency can be used as multichannel networks in such
optical components. The chirowaveguides can also be used
in optical directional couplers. In directional couplers, which
are also used as optical switches, the goal is to transfer energy
from one fiber waveguide, say waveguide 4 into an adjacent
fiber waveguide B. This energy transfer occurs through the
overlapping of fields between the two waveguides. It is well
known that the maximum energy transferred from guide A
to guide B occurs when the phase-matched condition is ful-
filled. That is when the wavenumbers of guide A and guide B
are identical. Since chirowaveguides exhibit mode bifurcation,
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even for a single-mode design, at any frequency of operation,
one can have two modes with two different guide wavenumbers
propagating down the chirowaveguide 4. In this case, it would
be sufficient, for a optimum energy transfer from guide A to
guide B, to have only one of these two wavenumbers matched
with the wavenumbers of the neighboring waveguide B. This
would offer a great flexibility and reliability in the design of
optical directional couplers and photonic switches.

Due to the fact that the parallel-plate chirowaveguides, un-
like their nonchiral counterparts, cannot support modes with
zero cut-off frequency, they can be used as substrates and/or
superstrates in integrated-circuit antennas to reduce signifi-
cantly the surface-wave power, and consequently increase the
radiation efficiency of such antennas.
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