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Review of the Literature on Time-Optimal Control of Robotic
Manipulators

Abstract
A task that robotic manipulators most frequently perform is motion between specified points in the working
space. It is therefore important that these motions are efficient. The presence of the obstacles and other
requirements of the task often require that the path is specified in advance. Robot actuators cannot generate
unlimited forces/torques so it is reasonable to ask how to traverse the prespecified path in minimum time so
that the limits on the actuator torques are not violated.

It can be shown that the motion which requires least time to traverse a path requires at least one actuator to
operate on the boundary (maximum or minimum). Furthermore, if the path is parameterized, the equations
describing the robot dynamics can be rewritten as functions of the path parameter and its first and second
derivatives. In general, the actuator bounds will be transformed into the bounds on the acceleration along the
path. These bounds will be functions of the velocity and position. It is possible to demonstrate that the
optimal motion will be almost always bang-bang in acceleration. The task of finding the optimal torques thus
reduces to finding the instants at which the acceleration will switch between the boundaries.

An algorithm for finding the time optimal motion along prespecified paths that explores this idea will be
presented. It will be shown that so called singular arcs exist on which the algorithm will fail. Modification of
the algorithm for such situations will be presented. Also, some properties of the solutions of the more general
problem when the path is not known will be discussed. Lie-algebraic techniques will be shown to be a
convenient tool for the study of such problems.
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Abstract

A task that robotic manipulators most frequently perform is motion between speci�ed points
in the working space� It is therefore important that these motions are e�cient� The presence
of the obstacles and other requirements of the task often require that the path is speci�ed in
advance� Robot actuators cannot generate unlimited forces�torques so it is reasonable to ask
how to traverse the prespeci�ed path in minimum time so that the limits on the actuator torques
are not violated�

It can be shown that the motion which requires least time to traverse a path requires at least
one actuator to operate on the boundary �maximum or minimum�� Furthermore� if the path
is parameterized� the equations describing the robot dynamics can be rewritten as functions
of the path parameter and its �rst and second derivatives� In general� the actuator bounds
will be transformed into the bounds on the acceleration along the path� These bounds will be
functions of the velocity and position� It is possible to demonstrate that the optimal motion
will be almost always bang�bang in acceleration� The task of �nding the optimal torques thus
reduces to �nding the instants at which the acceleration will switch between the boundaries�

An algorithm for �nding the time�optimal motion along prespeci�ed paths that explores
this idea will be presented� It will be shown that so called singular arcs exist on which the
algorithm will fail� Modi�cation of the algorithm for such situations will be presented� Also�
some properties of the solutions of the more general problem when the path is not known will
be discussed� Lie�algebraic techniques will be shown to be a convenient tool for the study of
such problems�
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Chapter �

Introduction

��� Optimal control

When �nding a control that would bring a mechanical system from an initial state to the desired
goal con�guration there are often many �usually at least continuum� possible solutions� In such
cases it is desirable to �nd the solution which optimizes a certain criterion� Formally� the problem
of �nding the optimal control can be described as ��
��

Problem � Consider an n�dimensional dynamical system

�q � f�q�t�� u�t�� �����

and a functional

J � � �q�tf�� �
Z tf

t�

L �q�t�� u�t��dt ���	�

Functions fi are de�ned on the direct product IR
n � U � where U de�nes a set of admissible

controls� Among all admissible controls u � u�t� which transfer the state of the system from q�
to qf � �nd one for which the functional ��� reaches the least possible value� Time tf need not be
speci�ed in advance�

Functions f � L and � are assumed to be continuously di�erentiable� An autonomous system
�without explicit dependence on time� is assumed in the formulation of the problem although the
formulation could be easily generalized� Also� additional constraints that q and u must satisfy
could be speci�ed�

The optimal solution must satisfy necessary conditions given by the Pontryagin minimum
principle ��
��

Proposition � �Pontryagin Minimum Principle� De�ne a Hamiltonian

H�q� u� �� � L�q� u� t� � �Tf�q� u� t� ���
�

where ��t� is an n� � vector of adjoint variables� If the control u��t� is optimal and generates
the trajectory q��t�� then there exist a nonzero solution ���t� of the adjoint equations

�� � ��
�f

�q
�T� �����

	



such that for every t � �t�� tf � and for every u � U

H�q�� u�� ��� � H�q�� u� ���� �����

Furthermore� for every t � �t�� tf �
H�q�� u�� ��� � �� ����

With the help of the Hamiltonian� the system equations and the adjoint equations can be
rewritten in the following canonical form

�q �
�H

��

��T � �
�H

�q
�����

��� Time�optimal control

If � � � and L�q� u� t� � � in the statement of Problem � the value of function J becomes exactly
the time that the system takes to get from the initial state q� to the desired state qf � The input
vector u that achieves this state transition is called time�optimal control� Pontryagin minimum
principle describes how to compute the possible optimal solutions� Functions �q� u� �� that
satisfy the conditions of the minimum principle are called extremals� To calculate the extremals
a boundary value problem must be solved for the set of equations ���� If additional constraints are
imposed on q and u� a set of algebraic equations must be solved simultaneously with the boundary
value problem� Finding the numerical solution of such a system is computationally very intensive�
Furthermore� the Pontryagin minimum principle only states the necessary conditions� when the
equations are nonlinear the extremals are not unique and additional tests are necessary to
establish the optimality �Legendre�Clebsch test is an example of higher order conditions for
optimality ��
� ����

There are numerous engineering applications where time�optimal control is desired� Point�
to�point motion of robotic manipulators is a typical example� In practice the size of the robot
actuators is limited� More powerful motors are heavier and require more massive links� These
in turn require higher torques to move� The size of the motors can thus not be increased over
certain limit without decreasing the performance� To avoid the saturation of the motors the
robot manufacturers usually impose quite conservative limits on the accelerations and velocities
in their software� This means that point�to�point motions� which represent a large part of robotic
operations� are far from being time�optimal�

��� Background

Kahn and Roth were the �rst to address time�optimal control of robotic manipulators ����� A
three�link serial mechanism with constant limits on the torques was studied� The path was not
speci�ed� The authors were able to show that at least one of the actuators will operate on
the boundary� An approximate scheme based on the linearization of the robot dynamics was
proposed to compute the optimal trajectories�

A number of robotic tasks requires separate path planning� In such cases �nding the time�
optimal trajectory consists of two phases� a� path planning and b� optimization of the movement
along the chosen path� Extensive amount of work has been done on the path planning� An
important problem that is usually addressed during path planning is obstacle avoidance� The






early methods for path planning were in�uenced by the lack of methods for the control of the
motion along the path� Constant velocity and acceleration bounds were assumed and the path
was usually composed of circular and straight�line segments ����

In the last ten years the control of the manipulators along prespeci�ed paths became better
understood and e�cient algorithms were subsequently developed� Bobrow et al� ��� and Shin
� McKay ���� independently developed similar methods to compute the optimal control for
serial manipulators moving along a given path� Dynamic equations of the manipulator were
reduced to a set of second order di�erential equations in the path parameter� The bounds on
the actuator torques were transformed to the bounds on the acceleration along the path� So
called velocity limit curve was obtained from these limits which de�nes the boundary of the
feasible set in the phase�plane� By assuming that the control is bang�bang in the acceleration
the authors were able to propose a scheme to obtain the switching points� Furthermore� Shin �
McKay established that the optimal control will require only �nitely many switching points on
the portion of the path where the acceleration is saturated�

This work was followed by Pfei�er and Johanni ��	�� They noticed some additional proper�
ties of the velocity limit curve which allowed them to further simplify the computation of the
switching points� Huang and McClamroch ��� used the method for contour following� Slotine �
Yang ���� were able to add additional limitations to the velocity limit curve so that the original
algorithm became more e�cient�

McCarthy � Bobrow ���� formulated the equations for manipulators with arbitrary kine�
matic con�guration �serial chain� parallel chain or the combination of the two� and showed that
the limits on the internal forces can be handled in the same way as the limits on the actuator
torques� They demonstrated that the linear programming can be used to calculate the acceler�
ation bounds� This enabled them to compute the number of actuators that must be saturated�

Chen � Desrochers ��� tried to formally prove that the time�optimal motion along the path
will be bang�bang in the accelerations� They followed the approach from ��� and ���� to reduce
dynamic equations to a set of di�erential equations in the path parameter and then used a
generalization of the Pontryagin minimum principle to show that the control must be bang�
bang�

Shiller � Lu and Shiller ���� �� realized that under some circumstances the method proposed
in ��� and ���� fails to give the correct answer� They showed that paths exist along which the
time�optimal control will not be bang�bang in the acceleration� They characterized the points
where the acceleration will not be on the limit and called them singular points �if isolated�
or singular arcs �if connected�� Furthermore� they devised the optimal control at such points�
Their �ndings require a revision of some of the works that use the aforementioned reduction�
In ���� the singular arcs are excluded from the derivations and the claims are limited to the
paths without singular arcs� The proof in ��� fails on singular arcs and the theorems should
be reevaluated� The work by Shiller � Lu also implies that at least one of the actuators will
operate at the limit� although they did not explicitly state this fact�

A parallel line of research was conducted for the time�optimal control of manipulators in the
case when the path is not known� Such problems are much more complex since the equations
cannot be projected into two dimensions� Some of the path�planning algorithms attempt at
obtaining the time�optimal path� A review of this literature has not been done� though�

An approach to numerical approximation of the solution is presented in Shiller and Dubowsky
����� They discretized the task space and represented all possible paths in a graph� The graph
was pruned by estimating the cost of the curves so that the number of candidates was reduced to
a reasonable number� The remaining curves were approximated with B�splines and the algorithm
from ���� used to compute the time�optimal trajectory with local optimization of the control

�



points of the B�splines�
The method proposed in ���� does not give much insight into the structure of the optimal

control� The �rst theoretical work that studied the problem for mechanical systems was done by
Ailon � Langholz ���� They have shown that if there is an admissible control for the mechanical
system� there is also an optimal control which transfers the system from the initial to the desired
state in the minimum time� Furthermore� they demonstrated that for a two�link manipulator
the optimal control will be such that for any time�instant one of the actuator torques will reach
its minimum or its maximum� The authors built their proof on the theory of ordinary di�erential
equations� some topological properties of the set of admissible controls and Pontryagin minimum
principle�

More indepth investigation of the properties of the optimal control was done by Sontag �
Sussmann �	�� ���� They studied trajectories that satisfy the conditions of Pontryagin minimum
principle on which the so called switching functions are equal to �� It was shown that this
cannot be true for all the actuators� at least one will have bang�bang control� Lie�algebraic
properties of mechanical systems were derived and some additional results were proved for the
systems where all except one of the switching functions are �� The results were applied to a 	R
two�degree�of�freedom planar manipulator�

Fourquet ��� extended the work of Sontag and Sussmann� In particular� he further classi�ed
the singular trajectories� This led him to simpli�cation of the results in �	�� for the two�degree�
of�freedom manipulator�

��� Outline of the report

First the method developed by Bobrow at al� ��� for computing the time�optimal control of
serial manipulators along a given path will be presented� The general form of the dynamic
equations for the robotic manipulators will be reviewed� It will be shown how the equations
can be reduced to a set of second order di�erential equations in the path parameter when the
path of the end�e�ector is prescribed� Acceleration limits will be derived and the velocity limit
curve will be introduced� With the use of the phase plane and the velocity limit curve it will be
shown how the switching points can be obtained� provided that the control is bang�bang in the
acceleration along the path�

A discussion of the article by McCarthy � Bobrow that extends the original algorithm for a
general type of robotic systems will follow� It will be shown that the internal forces can be also
limited� The acceleration limits will be shown to be the solution of a linear program� General
theorems from the theory of the linear programming will allow to determine the number of the
saturated actuators�

Following will be the article by Shiller and Lu ���� which shows that the algorithm by Bobrow
et al� fails if the projected inertia vector contains zero components� Singular points and singular
arcs will be de�ned and it will be shown how to alter the algorithm on such segments of the
path�

Finally� the paper by Sontag � Sussmann ���� that presents some general facts about the
time�optimal control when the path is not known will be discussed� Lie�algebraic properties
of the mechanical systems will be explained� Switching functions and singular extremals will
be de�ned� Theorems that describe the structure of the time�optimal control when all but one
switching functions are identically equal to � will be presented�

�



Chapter �

Time�Optimal Control of Robotic
Manipulators Along Speci�ed Paths
�Bobrow et al��

Numerous tasks require the robot to follow a prescribed path� This might be required for
example to avoid obstacles in the working space or to avoid collisions with other robots� The
path only determines the geometric location of the points in space� the velocity pro�le of the
motion along the path is left unspeci�ed� In such cases it is often desirable to traverse the
path in the least possible time� If the actuators would not have any torque limits the traversal
time could be brought arbitrary close to zero� In all practical cases the power and therefore the
torques that the actuators can deliver are limited� The motion along the path is governed by the
dynamic equations which are nonlinear� Geometric properties of the path �curvature� will be
re�ected in di�erent terms in dynamic equations �inertial� centrifugal and Coriolis forces� during
the motion� Any algorithm that attempts at �nding the time�optimal solution must therefore
consider manipulator dynamics�

��� Robot dynamics along a speci�ed path

Let�s consider an n�degree�of�freedom serial manipulator� Con�guration of the manipulator is
given by an n � � vector of joint coordinates q� The equations of motion for the manipulator
can be obtained using Lagrange�s equations and have the form�

M�q��q � �qTC�q� �q �G�q� � �� �	���

where M�q� is an n� n symmetric� positive de�nite inertia matrix� C�q� is an n� n� n tensor
of centrifugal and Coriolis coe�cients� G�q� is an n� � vector of gravity terms and � is an n� �
vector of actuator torques� We have assumed frictionless joints�

Let r�s� be an n � � vector function which prescribes a path in the task space� A scalar
variable s parameterizes the path� The range of the actuator torques is given by the following
inequalities�

T i
min � �i � T i

max� �	�	�

where T i
min and T i

max are given constants�
The problem of �nding the time�optimal motion along the given path can be stated as�





Problem � Find a set of actuator torques that satisfy the set of inequalities ��� such that the
system governed by Eq� ��� traverses the given path in minimum time�

The path r�s� prescribes the position of the end e�ector in the task coordinates� But the
relation between the task coordinates and the joint coordinates is also given by direct kinematics
��q��

r�s� � ��q� �	�
�

When the direct kinematics is one�to�one� it is possible to express the vector of the joint coor�
dinates as a function of s�

q � f�s� � ����r�s�� �	���

Function f is an n � � vector function� From Eq� 	�� we can obtain joint velocities and
accelerations as functions of the parameter s and its derivatives�

�q � f ��s� �s

�q � f ���s� �s� � f ��s��s �	���

Prime denotes derivatives to s and dot denotes time derivatives�
We can now introduce expressions 	�� and 	�� into equations of motion 	���

M�f�ff �� �s� � f ��sg� ff � �sgTC�f�ff � �sg� G�f� � � �	��

For brevity the explicit dependence of f on s has been omitted� Equation 	� can be rewritten
as

m�s��s� c�s� �s� � g�s� � � �	���

where m� c and g are n � � vectors given by

m�s� � M�f�f �

c�s� � f �TC�f�f � �M�f�f ��

g�s� � G�f� �	���

We will refer to the vector m�s� as the projected inertia vector� Torque constraints �Eq� 	�	�
can now be rewritten as

T i
min � mi�s��s � ci�s� �s

� � gi�s� � T i
max� �	���

MatrixM was positive de�nite and we shall assume that the prescribed path r�s� is regular �the
tangent vector f ��s� is nonzero�� The projected inertia vector m�s� is therefore nonzero� If the
ith component of m is nonzero then the corresponding inequality can be rewritten as

Li�s� �s� � �s � Ui�s� �s� �	����

where

Li�s� �s� �

�
�T i

min � ci �s
� � gi��mi� if mi � ��

�T i
max � ci �s� � gi��mi� if mi � ��

�	����

and

Ui�s� �s� �

�
�T i

max � ci �s� � gi��mi� if mi � ��
�T i

min � ci �s
� � gi��mi� if mi � ��

�	��	�

�



If mi � �� the authors simply omit the corresponding inequality since it does not impose any
constraints on the acceleration� However� as it will be seen in Ch� � such cases may lead to the
so called singular arcs where the algorithm will fail�

Equations 	��� de�ne the range of the acceleration �as function of the position and the
velocity along the path� for which the manipulator can be held on the path without violating any
of the torque constraints 	�	� Each equation de�nes an interval of admissible accelerations� If the
intervals do not have common intersection the manipulator will leave the path instantaneously�
However� if the intersection is nonempty� it de�nes a set of admissible accelerations� The set is
de�ned by�

L�s� �s� � �s � U�s� �s� �	��
�

where
L�s� �s� � max

i
Li�s� �s�� �	����

and
U�s� �s� � min

i
Ui�s� �s�� �	����

The optimal control problem can now be restated as�

Problem � Given a system
�s � u�t� �	���

�nd a control u�t� which belongs to the admissible set

L�s� �s� � u � U�s� �s� �	����

that transfers the system from a given initial position s� to a desired �nal position sf in a
minimum time�

Note that the control input is the acceleration along the path and that it uniquely determines
the actuator torques through Eq� 	���

It is not di�cult to see that the solution for the problem above must be bang�bang in the
input variable u ���� If we can prove that there are only �nitely many switching points for control
u� the problem of �nding the optimal control reduces to �nding the switching points�

��� Algorithm for �nding the switching points

The cost function was originally de�ned as�

J �
Z tf

t�

�dt �	����

It is useful to reformulate the cost function by observing that

�s �
ds

dt
� dt �

ds

�s
�	����

Eq� 	��� can be then rewritten as

J �

Z tf

t�

ds

�s
�	�	��

The trajectory of the system 	�� can be represented in the s� �s phase plane� If the optimal
control is bang�bang the trajectory must be at each point tangential to one of the two directions
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de�ned by L�s� �s� and U�s� �s�� However� according to Eq� 	��� the trajectory must lie in the
admissible set where L�s� �s� � U�s� �s� �unshaded area on Fig� 	���� The boundary of this set is
called velocity limit curve and is de�ned by equation

L�s� �s� � U�s� �s�� �	�	��
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s
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L=U
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Figure 	��� Velocity limit curve bounds the admissible region in the phase plane� Switching
points occur �points S�� S	� and S
� when the trajectory switches from the acceleration to the
deceleration�

According to Eq� 	�	� we should �nd a trajectory that lies entirely within the admissible
set� satis�es the tangency constraint at each point and has the property that the velocity at
each point is greater than the velocity on any other admissible trajectory� The switching points
will occur where the trajectory switches between the acceleration and deceleration �points S��
S	 and S
 on Fig� 	����

Consider �rst the case when there is only one switching point �Fig� 	�	�� We know that the
trajectory starts with the maximum acceleration and then switches to maximum deceleration�
This suggests that we should integrate the equation

�s � U�s� �s� �	�		�

forward in time starting with the initial point �s�� �s�� �the initial and �nal velocity need not be
necessarily ��� and the equation

�s � L�s� �s� �	�	
�

backward in time starting with the �nal state �sf � �sf�� The switching point is given by the
intersection of the two trajectories�

The algorithm that gives the switching points in the general case also uses the idea of
integrating forward and backward in time with the maximum acceleration or the maximum
deceleration� Velocity limit curve determines when to switch� As already said� the velocity
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Figure 	�	� Obtaining the switching point when there is only one�

limit curve bounds the subset of the phase plane to which the trajectory must belong if the
manipulator is to follow the path without violating actuator constraints� The trajectory is only
allowed to be tangent to velocity limit curve� it cannot intersect it� Therefore the algorithm can
be formulated as�

Step � Integrate Eq� 	�		 forward starting at the initial point �s�� �s�� and Eq� 	�	
 backward
starting at �sf � �sf � to obtain segments F and B� respectively �Fig� 	�
�� If the two intersect
before intersecting the velocity limit curve there is only one switching point and we found
it� Otherwise proceed to Step 	�

Step � Suppose that the segment F intersects the velocity limit curve at �s�� �s��� After that
point the Eq� 	��� is violated so the switching point is somewhere on the interval �s�� s���
Let�s pick s � �s�� s�� and integrate Eq� 	�	
 forward in time starting at the point on F
which corresponds to s� One of the following can happen �Fig� 	�
��

� The trajectory will intersect the velocity limit curve at s � si �curve � on Fig� 	�
��
This means that s was too big� since any admissible acceleration at si will force the
manipulator to leave the path�

� The trajectory intersects the horizontal line �s � �sf �curve 	 on Fig� 	�
�� This means
that s was too small� we could increase s for some 	 � � so that the trajectory
starting on F at s � 	 would still not intersect the velocity limit curve and which
would obviously give shorter time according to Eq� 	�	��

� The trajectory is tangent to the velocity limit curve at some point �s�� �s�� and reaches
the horizontal line �s � �sf afterwards �curve 
 on Fig� 	�
�� Then s is a switching
point and s� will be a new switching point�

We must therefore �nd s for which the third case will occur� Then the point of tangency
�s�� �s�� can be taken as a new initial point and the algorithm repeated at Step ��

An useful simpli�cation that reduces the computation time is to rewrite Eq� 	�		 and 	�	

as

d �s�ds � U�s� �s�� �s �	�	��

d �s�ds � L�s� �s�� �s �	�	��
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Figure 	�
� Finding the switching point�

It is worth noting that once the optimal trajectory for the interval �s�� sf � is known the opti�
mal trajectory for any subinterval can be easily found� one just has to integrate Eq� 	�		 forward
in time and Eq� 	�	
 backward in time until the segments intersect the optimal trajectory� The
optimal trajectory for the subinterval is obtained by taking the new segments together with
the part of the old optimal trajectory between the intersections� Because of this property the
optimal trajectory is also called the switching curve�

��� Critique

The authors were able to greatly simplify the original problem by observing that the equations
of motion of the manipulator can be reduced to a set of second order di�erential equations in the
path parameter� This� together with the transformation of the torque limits to the acceleration
limits� transforms the problem of �nding time�optimal control to much simpler problem in two
dimensions� The acceleration limits suggest the de�nition of the velocity limit curve and lead
to the idea of constructing the optimal trajectory in the s� �s phase plane� which is the main
contribution of the paper� The algorithm is quite intuitive and easy to understand� although it
is not computationally as e�cient and general as the algorithm described in �����

The authors tried to formally prove the optimality of the resulting trajectory� They had to
resort to some further assumptions about the optimal control in order to accomplish this� This
assumptions reveal some weaknesses of the method� The assumptions are�

� The acceleration at any point along the path will be either equal to L�s� �s� or to U�s� �s��

� The acceleration will switch only �nitely many times between the above two values�

� The velocity limit curve is unique�

The �rst assumption is based on the fact that the optimal control of the system described
by Eq� 	�� and constraint equations 	��� has to be bang�bang to satisfy Pontryagin minimum

��



principle� However� the authors did not correctly interpret the case when some of the compo�
nents of the projected inertia vector m �Eq� 	��� are equal to zero� In such case they simply
disregarded the corresponding constraint equation� The constraint equations were derived from
the corresponding actuator limits� Therefore� when actuator i is the limiting actuator and the
corresponding component mi is zero� the correct limiting equation is �compare with Eq� 	����

T i
min � ci�s� �s

� � gi�s� � T i
max� �	�	�

This equation does not occur in the statement of the Problem 
 which means that the problem
is not equivalent to the original Problem 	� As a consequence it could happen that some of the
actuator limits become violated� It will be explained in Ch� � how the correct formulation of
Problem 
 admits optimal trajectories that are not bang�bang in the acceleration �s� However� in
most practical cases such anomalies do not occur and the original algorithm will perform well�

The authors did not try to substantiate the second assumption although the proof of opti�
mality could not be completed without it� The proof itself can be carried out in a di�erent way
�as e�g� in ����� but if the assumption is not true the algorithm will never stop� It is therefore
necessary to establish whether there are cases when the acceleration would switch in�nitely many
times between the two boundaries during the motion �such phenomenon is called chattering��
Shin and McKay ���� were able to prove that there will be only �nitely many switching points on
the optimal trajectory provided that the torque limits are analytic functions of s and �s� Finding
the switching points can then be shown to be equivalent to �nding zeroes of an analytic function�
Analytic functions only have �nitely many �isolated� zeroes so there will be only �nitely many
switching points� Of course� the optimal trajectory is unique so the properties of the trajectory
do not depend on the particular algorithm�

The third assumption is not explicitly stated� However� the algorithm will fail if the admis�
sible region in the phase�plane is not simply connected� The authors claim that their algorithm
allows the torque limits to be arbitrary functions of the joint positions and velocities� This is
not true� since the algorithm in its present form fails if the velocity limit curve is not unique�
The algorithm by Shin � McKay is more general in this respect since it works for the cases
when there are inadmissible islands in the admissible set�
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Chapter �

The Number of Saturated
Actuators and Constraint Forces
During Time�Optimal Movement of
a General Robotic System
�McCarthy � Bobrow�

The algorithm presented in the previous chapter was developed for serial mechanisms and un�
constrained motion� A question arises whether it can be extended for more general structures
and situations when additional constraints limit the motion of the manipulator� This is becom�
ing an increasingly important issue if the applicability of serial manipulators is to be enhanced�
Contacts with the environment are an integral part of any robot application and dynamic equa�
tions must be properly modi�ed to describe such interactions� In such cases it is often necessary
to impose limits on the internal forces� Examples include multiple arms holding an object� The
forces on the object are usually limited and additional constraints are necessary to ensure that
the object is �rmly grasped�

��� Constrained dynamic systems

When the manipulator interacts with the environment the equations of motion must include the
constraint forces� Formally� the constraints can be adjoined to the Lagrange equations using
the method of Lagrange multipliers� It will be shown that the dynamic equations can still be
reduced to a two dimensional space and that the algorithm from Ch� 	 can be used to obtain
the optimal path�

The general form of the equations for the constrained dynamic system is

M�q��q � �qTC�q� �q � G�q� � B�q�� � J�q�T� �
���

Symbols M � C and G are as in Eq� 	��� � is now a p� � vector of actuator torques� B�q� is an
n � p matrix describing how the torques act on the con�guration coordinates q� � is an m � �
vector of Lagrange multipliers and J�q� is an m� n matrix de�ning the velocity constraints

J�q� �q � �� �
�	�
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Vector � denotes the forces that are required to maintain the constraints�
In addition to the limits on the actuator torques

T i
min � �i � T i

max� �
�
�

one can also limit the constraint forces�

�j
min � �j � �j

max� �
���

By using the procedure from section 	��� equations 
�� can be reduced to a system of n
equations in s

m�s��s� c�s� �s� � g�s� � b�s�� � j�s�T� �
���

Quantities m� c and g are de�ned in Eq� 	��� In addition

b�s� � B�f��

j�s� � J�f�� �
��

where f is the given path �see Eq� 	����
Equations 
�� are linear in �s� � and �� Furthermore� the constraints �Eq� 
�
 and 
��� are

also linear in these variables� The maximum allowable acceleration U�s� �s� can therefore be
obtained by �nding

max �s �
���

subject to equations 
�� and inequality constraints 
�
 and 
��� The minimum allowable accel�
eration L�s� �s� can be obtained in the same way by replacing max with min in Eq� 
���

��� Linear program

The presented problem is a typical linear programming problem� Introduce

xi � �i � T i
min � �� i � �� � � � � p

xi�p � T i
max � �i � �� i � �� � � � � p

xj��p � �j � �j
min � �� j � �� � � � � m

xj��p�m � �j
max � �j � �� j � �� � � � � m

x��p�m��� � ��
x��p�m��� � ��

�
���

with additional relations

xi � xi�p � T i
max � T i

min� i � �� � � � � p
xj��p � xj��p�m � �i

max � �i
min� j � �� � � � � m

x��p�m��� � x��p�m��� � �s
�
���

Expressing � � � and �s with x and substituting into Eq� 
�� we obtain a standard form of the
linear program with 	�p�m� �� variables and p�m� � � n equations�

The theory of linear programming says that at least 	�p�m�����p�m���n� � p�m���n
variables will be equal to � in the optimal solution �which means that they will lie on the
boundary�� Since an arbitrary constant can be added to x��p�m��� and x��p�m��� without
changing the maximum �minimum� value of �s� the variables which are equal to � must be
among x�� � � � � x��p�m�� This is equivalent to saying that at least p � m � � � n torques or
internal forces will lie on the boundary�

For the special case of a serial link manipulator with the same number of links and actuators�
p � n and m � �� The result thus implies that at least one of the actuators has to be saturated�
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��� Critique

The article extends and formalizes the work from ���� It is shown that the method is applicable for
robotic mechanisms with arbitrary structure� Also� constraints can be adjoined to the equations
of motion with Lagrange multipliers� This allows more convenient derivation of the dynamic
equations and also accommodates constraints on the internal forces in addition to the limits on
the actuator torques� It is shown that when the path of the system is prescribed the equations of
motion can be reduced to the system of second order di�erential equations in the path parameter
s� Therefore� the dimension of the system is reduced from 	n to 	 �n is the number of generalized
coordinates�� The resulting system is linear in the acceleration �s� torques � and internal forces
�� The constraints are also linear� Therefore� �nding the maximum and minimum allowable
acceleration as a function of s and �s becomes equivalent to solving a linear program� From the
theory of linear programming it follows that p �m � � � n internal forces and torques will be
on the boundary� where n is the number of generalized coordinates� p the number of actuators
and m the number of �holonomic or nonholonomic� constraints� This implies that for the case
of non�redundant n�link serial manipulator �p � n and m � �� at least one of the actuators will
be saturated�

The assumptions of the article follow those in ���� Therefore� the results are not valid on
singular arcs �see Ch� �� where the dynamic relation between the velocity and the acceleration
must be used to determine the acceleration� Linear programming cannot accommodate such
relations�

The presentation generalizes the method of reducing equations of motion to equations in
path parameter� However� the algorithms presented in ��� or ���� are based on the assumption
that expressions for the acceleration limits are analytic� This allows e�cient computation of
the velocity limit curve� The limit curve obtained with the presented method will be given
numerically so the applicability of the method in these algorithms is limited�
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Chapter �

Computation of Path Constrained
Time Optimal Motions With
Dynamic Singularities �Shiller �
Lu�

In some instances the methods presented thus far fail to give the correct result� The transforma�
tion of the Problem 	 to Problem 
 �Sec� 	��� is consistent only when all the actuator limits can
be converted to appropriate acceleration bounds� When the components of the projected inertia
vector �Eq� 	��� become zero the corresponding actuator will not directly limit the acceleration
but rather the velocity� The acceleration will be indirectly limited through the dynamics of the
system�

��� Critical and singular points and arcs

Let�s state the problem of time�optimal control again�

Problem 
 Given a trajectory q � f�s� minimize the time

J �
Z tf

t�

�dt� �����

that the system described by equations

M�q��q � �qTC�q� �q �G�q� � � ���	�

takes to transfer from the initial con�guration q� to the desired con�guration qf so that the
following constraints on the actuator torques are satis�ed�

T i
min � � � T i

max� ���
�

It was shown in chapters 	 and 
 that the problem above can be reduced to the following form�

Problem � Minimize the time that the system

�s � u �����

needs to reach the �nal position sf from the initial position s� subject to the constraints

T i
min � mi�s��s� ci�s� �s

� � gi�s� � T i
max� �����
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For the de�nitions of symbols see section 	���
Note that the constraints ��� are linear in �s� and �s and therefore de�ne a polygon in the

�s���s phase plane �Fig� ����� The acceleration limits L�q� �q� and U�q� �q� were de�ned in Eq�
	��� and 	���� On the Fig� ��� they correspond to the lower and upper edge of the polygon�
respectively� By solving L�q� �q� � U�q� �q� the velocity limit curve �smax�s� is obtained� This
velocity corresponds to the rightmost vertex of the polygon �point �s�a on the abscissa�� The
�gure shows a slice of the allowable space for s � const�
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Figure ��	� Admissible polygon at a criti�
cal point�

In some cases the edges of the polygon become vertical �Fig� ��	�� This happens at the
degenerate points where mi � � for some i� The corresponding constraint equation becomes�

T i
min � ci�s� �s

� � gi�s� � T i
max� ����

The inequality de�nes a limit on the velocity

�s � �siv �����

where

�siv�s� �

�
�T i

max � gi��ci� if ci � ��
�T i

min � gi��ci� if ci � ��
�����

If the velocity limit ��� is not observed the manipulator will either leave the path or violate the
torque limit� The methods from the previous two chapters incorrectly handle such cases since
they disregard the velocity limits resulting from the zero components of the projected inertia
vector� The problem can be easily alleviated by rede�ning the velocity limit curve�

�smax�s� � minf �sa�s�� �s
i
v�s�g �����

When �smax�s� � �siv�s� the i
th actuator becomes saturated and we have an additional bound

on the maximum acceleration�
�s � �smax ������
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where

�smax �
d �smax

dt
�

� �smax

�s
�smax ������

If such a point is isolated it is called a critical point� otherwise we are on a critical arc� When the
acceleration is actually limited by this value� �smax � U�q� �q�� the maximum acceleration U�q� �q�
cannot be used without violating the constraints� Such point is called a singular point and if we
have a connected subset of singular points they form a singular arc� At isolated singular points
the derivative in ���� need not be de�ned and the right limit must be used� In any case the
trajectory will slide along the velocity limit curve until a point is reached which is not singular�

In general the velocity limit curve will consist of three types of points �Fig� ��
��

Regular points� At the regular points the velocity limit is given by equation L�q� �q� � U�q� �q�
and only a single value of the acceleration is admissible� Point A on Fig� ��
 is a regular
point�

Critical points� The velocity limit at critical points is given by Eq� ��� The values of L�q� �q�
and U�q� �q� are not equal� However� the acceleration given by the velocity limit �Eq� �����
is greater then U�q� �q� so U�q� �q� can be used as maximum acceleration� On Fig� ��
 B is
a critical point�

Singular points� The velocity limit at singular points is also given by Eq� �� and the values
of L�q� �q� and U�q� �q� are not equal� But in this case the acceleration bound given by Eq�
���� is smaller then U�q� �q� and it must be used as maximum acceleration� Point C on
Fig� ��
 is a singular point�
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Figure ��
� Regular point �A�� critical point �B�� and singular point �C��

��� Modi�ed algorithm

Geometric properties of the velocity limit curve suggest an algorithm which is computationally
more e�cient than the algorithm proposed by Bobrow et al� in ���� At every point in the phase
plane the acceleration is limited by L�q� �q� and U�q� �q�� These two tangential directions de�ne a
cone of feasible accelerations �Fig� ����� At a regular point on the velocity limit curve the two
acceleration bounds are equal and the cone degenerates to a single vector� At a singular point
the maximum feasible acceleration is de�ned by the tangent to the velocity limit curve and it
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lies inside the cone� The optimal trajectory will therefore follow the singular arcs� At a critical
point the cone is de�ned but the maximum feasible acceleration is given by U�q� �q�� Above the
velocity limit curve no feasible acceleration exists�

s

s
.

Velocity Limit Curve

Figure ���� Cone de�ning the feasible accelerations�

Parts of the velocity limit curve that are regular will determine the switching points� At such
points it is useful to know the di�erence between the feasible acceleration and the acceleration
which would force the trajectory to be tangent to the velocity limit curve


�s� � U�s� �s�� �smax � L�s� �s�� �smax ����	�

The sign of 
�s� de�nes where we can move from the velocity limit curve� If 
�s� � �� the
admissible acceleration will drive the manipulator o� the trajectory� Such points are called
sinks� When 
�s� � �� the permissible acceleration will force us to leave the velocity limit curve�
therefore such points are called sources� Where 
�s� switches sign� more precisely� switches from
sink to source� we have a switching point�

We can now formulate the algorithm for �nding the optimal trajectory�

Step � From the initial point �s�� �s�� integrate forward with the maximum feasible acceleration�
If the starting point is not on the velocity limit curve or if it is a regular or a critical point
on the velocity limit curve � this will be U�s� �s�� If the point is singular the acceleration is
given by Eq� �����

If the trajectory passes the �nal point sf � go to Step �� Otherwise the trajectory has hit
the velocity limit curve at some point �s�� �s��� go to Step 	�

Step � If the point �s�� �s�� is regular then go to Step 
� Otherwise we are either at a critical or
a singular point� Take the point �s�� �s�� as a new initial point and go to Step ��

Step � Along the velocity limit curve search for the point �s�� �s�� where 
�s� changes sign�
This is a switching point� From the point �s�� �s�� integrate backward with the maximum
feasible deceleration L�q� �q� until the trajectory intersects previously obtained segments of
the trajectory� The point of intersection is a switching point� Then take �s�� �s�� as a new
initial point and go to Step ��

Step � From the �nal point �sf � �sf� integrate backward with L�q� �q� until intersecting the pre�
viously obtained segments of the trajectory�
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��� Geometric characterization of the singular arcs

Although the theoretical investigation predicts the singular arcs it is not clear whether they can
really occur� Recall that the singular arcs occur when one of the components of the projected
inertia vector m�s� becomes �� Eq� 	�� suggests

m�s� � M�f�f � � �M�f
�� � � � �Mnf

�� ����
�

where Mi is the ith row of the inertia matrix� The possible locations of the critical points are
the curves where one of the components ofm�s� becomes �� Since vectorsMi are not zero� these
are the curves for which the tangent vector is perpendicular to the corresponding row Mi� Such
curves are called zero inertia curves and can be obtained by solving a di�erential equation

Mi�
�

i � �� ������

for the function �i�s�� Points where the path is tangent to zero inertia curve �i are possible
critical points� Critical arc can occur when a segment of the path matches the zero inertia curve
�i� The necessary condition for occurrence of critical points and arcs is that the actuator i
becomes the saturated actuator �which means that the vertical line is an edge of the polygon
on the �gure ����� Furthermore� if the maximum admissible acceleration U�s� �s� is greater than
the acceleration given by Eq� ����� critical points and arcs become singular�

��� Critique

The paper by Shiller � Lu is a very detailed exposition of the issues involved in the time�optimal
control of the path�constrained motion of robotic manipulators� The authors reinterpret the
�ndings in ���� ���� and ��	� and generalize the methods and algorithms which were presented
there� By geometrical reasoning about the polygon representing the permissible region in the
�s���s plane they explain what the maximal and the minimal accelerations are� They show that
the point of the velocity limit curve corresponds to a vertex of the polygon� It is explained
how the vertex can degenerate to an edge leading to the appearance of the critical points and
arcs� By studying the constraints on the critical arcs the authors observe that the maximum
acceleration could be limited by an expression that depends on the dynamics �Eq� ����� and not
only on the state of the system� In some cases this acceleration limit leads to the singular points
and arcs� On such segments the acceleration is not given by the bounds L�s� �s� and U�s� �s� as
was wrongly assumed in the previous works� The authors propose a corrected version of the
algorithm presented in ��	� to account for singular points and arcs� The algorithm is therefore
the most general solution for obtaining the time�optimal control along the prespeci�ed path�

In the paper it is assumed that the actuator bounds are constant� The resulting admissible
set in the �s���s plane is a polygon and as a consequence the admissible region in the s� �s plane
is simply connected� More general torque constraints result in topologically more complicated
regions� both in �s���s and in s� �s plane� In such cases the geometric interpretation of the critical
and singular points is still valid� However� the proposed algorithm is not general enough for the
regions which are not simply connected� In practice such regions will occur if the friction is in�
cluded in the dynamic equations or if more realistic non�constant torque limits are used� It might
be therefore more appropriate to modify the algorithm presented in ���� which accommodates
admissible regions with more complex topology�
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Chapter �

Time�Optimal Control of
Manipulators �Sontag � Sussmann�

In the previous chapters we have been studying time�optimal control along a given path� A path
is usually given by an o��line obstacle�avoidance algorithm or some other path�planning method�
We have seen that e�cient algorithms exist which construct the time�optimal trajectory�

There is no equivalent procedure that would give the optimal solution in the general case
when also the path has to be found as a part of the optimization task� The application of
Pontryagin minimum principle transforms the problem to solving two�point boundary�value
problem� In addition� the in�uence functions on the constraint surfaces must be found by some
iterative method� Alternatively� dynamic programming can be used� In both cases the methods
are computationally demanding� It is therefore desirable to understand the properties of the
time�optimal solutions� This could potentially lead to the development of e�cient algorithms�

��� Lie theoretic properties of mechanical systems

Once more� let�s recall the equations of motion for a mechanical manipulator�

M�q��q �N�q� �q� � � �����

We collected the centrifugal terms� Coriolis terms and gravitational forces into the vectorN�q� �q��
The inertia matrixM�q� is positive de�nite� so the equations can be rewritten as an a�ne system

�x � f�x� �G�x�u � f�x� �
nX
i��

giui� ���	�

with

u � ��

x �

�
q

�q

�
�

f�x� �

�
�q

�L�q�N�q� �q�

�
�

G�x� �

�
�

L�q�

�
� ���
�
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Abbreviation L�q� � M�q��� is used� The matrix M�q� is symmetric� positive de�nite� which
implies that L�q� is also symmetric and positive de�nite� Let�s denote by G the space generated
by columns of G� that is G � spanfg�� � � � � gng�

We shall de�ne the notion of the Lie bracket �u� v� of vector �elds u and v�

�u� v� �
�v

�x
u�

�u

�x
v �����

The Lie bracket of two vector �elds is another vector �eld� so the operation can be iterated�
We will shorten the notation by writing uv in place of �u� v� and more generally f�f� � � � fn for
�f�� �f�� � � � �fn��� fn� � � ��� It is easily veri�ed that the form of vector �elds f and gi implies that
the matrix ffg�� � � � � fgng has the form

ffg�� � � � � fgng � �

�
L�q�
R�q�

�
�����

The form of R�q� is not important for our discussion� Equations ��
� ��� and the positive�
de�niteness of L�q� imply that vectors fg�� � � � � gn� fg�� � � � � fgng are linearly independent for
each q� Some additional observations can be made� Let Zi denote the set of all functions on IR

�n

which are polynomials of degree at most i as functions of �q�� � � � � �qn �by convention Zi � f�g if
i � ��� Now de�ne a class Si of the vector �elds with a property that the �rst n components
belong to Zi and the last n components to Zi��� It is then not too di�cult to check that if
u � Si and v � Sj then �u� v� � Si�j �

Observing that f � S� and gi � S�� we can conclude that for all i� j � n

gigj � ��

gifgj � G� ����

��� Singular extremals

Suppose we have an a�ne system of the form

�x � f�x� �G�x�u �����

where f is an n� � vector function and G an n�m matrix function� and we want to minimize
the time that it takes to transfer the system from an initial state x� to a �nal state xf subject
to the constraints on the control vector

Li � ui � Ui� �����

Note that the constraints can be rewritten in the form C�u� � � where C is a 	m � � vector
function� The solution of the time�optimal control problem is given by the Pontryagin minimum
principle� First� the Hamiltonian is de�ned

H�x� u� �� � � � �T �f�x� �G�x�u� � �TC�x� u� �����

where � is an n � � vector of in�uence functions and � is a 	m � � vector of multipliers� The
solution must satisfy the equations

�x �
�H

��

��T � �
�H

�x
������

		



and in addition
�H

�u
� �� ������

�i�t�

�
� �� if Ci�x� u� � �
� �� if Ci�x� u� � �

����	�

As mentioned� the solutions �x� u� �� that satisfy the above equations are called extremals�
It can be shown that when the function

�i � �Tgi� ����
�

is nonzero� the corresponding input variable ui must take the value on one of the boundaries �if
�i � � then ui � Li otherwise ui � Ui�� If the function �i changes sign� the input ui switches
from one boundary to the other� From this reason the function �i is also called switching
function� When the switching function is zero the corresponding control is said to be singular�
If the switching function only has �nite number of zeroes� the control ui will be bang�bang�
When the switching function �i is identically equal to zero the corresponding extremal is said
to be ui�singular� The extremal is singular if it is ui�singular for some i�

To implement the optimal control the calculated optimal trajectory is often used as the
open�loop trajectory� the system is linearized along the trajectory and a linear controller is used
to regulate the deviations from the trajectory� When the control is ui�singular� input ui has no
e�ect on the Hamiltonian �see Eq� ����� Therefore� the linearized system will not be controllable�
This motivates the study of singular extremals�

Now �x an extremal and take the switching function �i� We can calculate the derivative�

��

i � ��Tgi � � �gi

� �

�
��f �Gu�T

�x
�

�T

gi � �T
�
�gi
�x

�f �Gu�

�

� �T
�
�gi
�x

�f � Gu��
��f � Gu�

�x
gi

�

� �T �f � Gu� gi� ������

Second equality follows from Eq� ����� The linearity of the Lie bracket allows us to rewrite Eq�
���� as

��

i � �T �f� gi� �
X
j

uj�
T �gj � gi� � �T �f� gi� ������

The last equality follows from Eq� ��� Now� let Ni denote the set of limit points of zeroes
of 
i and N �

i the set of limit points of zeroes of 
�i� The switching function is continuously
di�erentiable� therefore Ni � N �

i � At points in Ni the following equations hold�

�Tgi � ��

�T �f� gi� � �� �����

Suppose that the above equations hold for all i� Vectors gi and fgi form a basis for IR�n� Eq� ���
thus imply that � � � which contradicts the requirement of the Pontryagin minimum principle
that � should be nontrivial on the extremal� We can therefore formulate the following

Proposition � If the extremal �x� u� �� is uj�singular for all j �� i� then ui is bang�bang�

	




By considering the second derivative of the switching functions and again using the argument
that � is nontrivial one can state an even stronger claim

Proposition � If �x� u� �� is uj�singular for all j �� i and the trajectory x�t� remains in a set
Pi consisting of the points where the vectors

fgj� j � �� � � � � ng 	 ffgj � j � �� � � � � n� j �� ig 	 fffgj � j � �� � � � � n� j �� ig

span the entire space� then ui will be constant 	equal to either Li or Ui
�

It can be shown that if the trajectory remains in a further restricted subset of Pi� the controls
uj � j �� i can be calculated from the value of ui�

��� Critique

The paper by Sontag � Sussmann is the �rst that investigates the structure of the general time�
optimal control for mechanical systems� By using the Lie�algebraic techniques the authors are
able to show a number of special properties of such systems� They show that one of the controls
must be bang�bang if all the others are singular� They also show how to calculate the control if
the trajectory possesses some further properties�

The paper opens a vast new area for research and a lot of questions remain unanswered�
The authors concentrate on the trajectories that are singular for all but one input variable� It
is very unlikely that such case would appear in practice� For example� if we know what the
time�optimal path is and apply the algorithms from the �rst chapters� we will get a control
which saturates one actuator at a time� however the saturated actuator changes along the path�

It is not clear how to apply the theorems that were derived in the paper� They require
characterizations of the set Pi� The authors use their theory for a two�link manipulator and even
in such simple case they used a symbolic package and an extensive search to �nd the expressions
de�ning Pi and further restricting it to a set where the other control can be calculated� The work
by Fourquet ��� extends and simpli�es some of the results for the 	�link manipulator however
even for this case the structure of more general extremals remains unknown�
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Chapter �

Conclusion

In the last ten years substantial amount of work has been done on the time�optimal control of
robotic manipulators� Two predominant directions of research are present�

� Optimization of motion along prespeci�ed path�

� Optimization of motion when only the boundary conditions are speci�ed�

The body of work that deals with the �rst problem is quite extensive� The �rst e�cient
algorithm for �nding the optimal trajectory was proposed in ���� independently by ��� and �����
The algorithm has been later simpli�ed ��	� and modi�ed to account for singular trajectories
�����

Through these works a number of facts have been established� It has been shown that the
equations of motions with torque limits can be reduced to a second order di�erential equation
with the limits on the acceleration and the velocity ��� ���� The acceleration limits can be
obtained by solving a linear program ����� The time�optimal solution will require at least one
actuator to be saturated ����� When only the acceleration limits are active� the trajectory will
require bang�bang control of acceleration and if the expressions for the joint variables in terms of
the path parameter are piecewise analytic� there will be only �nite number of switches ����� On
singular arcs the velocity limits are active and the acceleration is given by the time derivative
of the velocity limit �����

Presently� a major thrust of research is directed towards the extension of the algorithm for the
multiple�arm con�gurations �
� 	� �� Recently� an extension of the algorithm that includes the
actuator dynamics has also been proposed �	��� The problem which has not been addressed in
the literature is how to obtain the optimal trajectory for kinematically redundant manipulators�
In such a case the equations of motion cannot be reduced solely to di�erential equations in the
path parameter and the proposed phase�plane based algorithm will not be adequate� It would be
also interesting to study the time�optimal control for manipulators with kinematic and actuator
redundancy where some additional cost function has to be minimized�

The investigation of the time�optimal control without path constraints has been very limited�
The article by Sontag � Sussmann ���� opened many important questions which still remain to
be solved� The Lie�algebraic techniques that were used for the investigation are undoubtably a
useful tool for the study of the optimal control of mechanical manipulators in general�

Sontag � Sussmann investigated only the case when all but one of the controls are singular�
The study was motivated by the fact that linearization along such trajectories will yield uncon�
trollable system� However� the experiments with the time�optimal motions along a prespeci�ed
path show that di�erent actuators become saturated as the motion progresses� This suggests

	�



that the same will be true for the time�optimal solution in the general case� The practical value
of the presented results thus seems to be very limited�
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