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cavity whose upper and lower walls are subjected to non-uniform zeta potentials. Although the solutions are
in the form of infinite series, with appropriate modifications, the series converge rapidly, allowing one to
compute the flow fields accurately while maintaining only a few terms in the series. Finally, we demonstrate
that by time-wise periodic modulation of the zeta potential, one can induce chaotic advection in the cavity.
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ABSTRACT 
 
Two dimensional, time-independent and time-dependent electro-osmotic flows driven by 

a uniform electric field in a closed rectangular cavity with uniform and nonuniform zeta potential 

distributions along the cavity’s walls are investigated theoretically.  First, we derive an 

expression for the one-dimensional velocity and pressure profiles for a flow in a slender cavity 

with uniform (albeit possibly different) zeta potentials at its top and bottom walls. Subsequently, 

using the method of superposition, we compute the flow in a finite length cavity whose upper 

and lower walls are subjected to non-uniform zeta potentials. Although the solutions are in the 

form of infinite series, with appropriate modifications, the series converge rapidly, allowing one 

to compute the flow fields accurately while maintaining only a few terms in the series. Finally, 

we demonstrate that by time-wise periodic modulation of the zeta potential, one can induce 

chaotic advection in the cavity. Such chaotic flows can be used to stir and mix fluids.  Since 

devices operating on this principle do not require any moving parts, they may be particularly 

suitable for microfluidic devices. 

 

                                                 
* To whom all correspondence should be addressed:  bau@seas.upenn.edu 
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1. INTRODUCTION 
 

In recent years, there has been a growing interest in developing microfluidic systems for 

biological and chemical minute laboratories [1-3].  Often it is necessary to propel fluids from one 

part of the device to another, control fluid motion, enhance mixing, and separate fluids.  Electro-

osmosis provides an attractive means for manipulating liquids in microdevices.  The electro-

osmotic phenomenon is caused by the accumulation of a net electric charge on the solid’s surface 

that is in contact with an electrolyte solution.  As a result, counterions accumulate in a thin liquid 

layer next to the solid’s surface.  This thin layer is known as the Debye (or double) layer, and its 

thickness is typically on the order of 10nm [4].  Away from the solid’s surface, the electrolyte is 

neutral. This charge separation next to the solid wall causes either a positive or negative (ζ) 

potential difference across the Debye layer.  The magnitude of the ζ potential depends, among 

other things, on the characteristics of the solid and the liquid.  In the presence of an external 

electric field, the counterions in the double layer are attracted to the oppositely charged electrode 

and drag the liquid along.  In other words, the electric field, through its action on the counterions, 

creates a body force that, in turn, induces fluid motion.  When the Debye layer is much smaller 

than the conduit's dimensions, the electroosmotic flow can be described by specifying a slip 

velocity at the wall.   

Most of the studies to date have focused on electro-osmotic flows in straight conduits 

with uniform ζ potential along the conduit’s walls.  See, for example, Dutta and Beskok [5] and 

the references cited therein. Just a few studies have addressed electro-osmotic flows in the 

presence of non-uniform zeta potentials.  Assuming a harmonically varying, axi-symmetric zeta 

potential, Anderson and Idol [6] predicted the occurrence of secondary flows and showed that 

the average, axial electro-osmotic velocity is proportional to the axial average of the zeta 
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potential. Ajdari [7-9] studied complex electro-osmotic flows induced by non-uniform, time-

independent and time-dependent ζ potentials along the conduit’s walls. Qian and Bau [10] 

studied electro-osmotic flows in an infinite conduit whose wall potential was actively controlled 

spatially and temporally. They demonstrated that by alternating between two different flow 

fields, one could induce Lagrangian chaos that facilitates effective stirring. Erickson and Li [11] 

used surface heterogeneity to enhance mixing in a T-shaped microchannel.  

Nonuniform ζ potentials can be obtained by coating the conduit’s walls with different 

materials [12] or by using different buffer solutions.  More interestingly, both spatial and 

temporal control of the ζ potential can be achieved by imposing an electric field perpendicular to 

the solid-liquid interface [13-15].  Such a normal electric field can be imposed with the aid of 

electrodes embedded beneath the solid-liquid interface and electrically insulated from the liquid.  

Alternatively, when the solid surface is photosensitive (such as a semi-conducting TiO2 film), the 

surface charge can be modified with light [16].  

In this paper, we study electroosmotic flows in rectangular cavities with nonuniform ζ 

potentials along the cavity’s walls. The calculation of the flow field requires the solution of the 

Stokes problem.  Using the superposition method, we derive expressions for the flow field in the 

form of infinite series.  Unfortunately, the resulting series converge slowly.  Using various 

acceleration techniques [17], we recast the series in a fast converging form and demonstrate that 

just a few terms are sufficient to obtain highly accurate results. These series solutions are far 

superior both in precision and computational time to finite difference or finite elements solutions 

[18] when one desires to track the trajectories of passive tracers. The paper is organized as 

follows.  We first set up the mathematical model (section 2), and then we review the results for 

one-dimensional flow driven by both electro-osmosis and the pressure gradient between two 
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plates that are parallel to the imposed electric field (section 3). Subsequently, using boundary 

layer analysis and asymptotic matching, we reproduce the well-known result that the core flow 

can be computed using slip boundary conditions at the walls (section 4). It appears, however, that 

rigorous matching of the core and boundary layer solutions has not previously been carried out.  

The boundary layer analysis reveals the presence of additional terms in the “inner solution” that 

corresponds to the pressure gradient’s effect on the wall shear stress.  In section 5, we obtain the 

velocity profile in a slender, closed cavity far from the sidewalls.  This solution will aid us later 

in verifying the calculations of the flow field in a finite aspect ratio cavity. In section 6, we 

compute two-dimensional electro-osmotic flows in rectangular cavities with finite aspect ratios 

and with various distributions of the ζ potential along the cavities’ boundaries. Finally, following 

ideas promoted by Aref [19], we alternate periodically between two different flow fields and 

demonstrate that one can induce chaotic advection in the cavity.  The ability of such chaotic 

flows to stir the fluid is demonstrated by following the advection of passive tracer particles.  

Since the stirrer does not require any moving parts, it may be useful for stirring liquids in micro 

fluidic devices. 

      

2. MATHEMATICAL MODEL 
 

Consider the closed cavity |x|≤ L and |y|≤ H depicted in Fig. 1. The two electrodes 

mounted along the walls x= ±L induce an electric field E
r

x parallel to the x-axis. Additional 

electrodes (Ai) are embedded in the cavity’s upper and lower walls. These electrodes are not in 

contact with the liquid, and they are used to control the ζ potential at the liquid-solid interface 

[14]. The cavity contains an electrolytic solution.  We assume that the salt in the solution is fully 

dissociated and consists of equal numbers of positive and negative ions: 
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 zzz =−= −+ . (2.1) 

As a result of the interaction of the ionized solution with the static charges on the solid walls, a 

thin electric double (Debye) layer is formed next to the solid walls [4]. The motion of the 

ionized, incompressible fluid with electro-osmotic body forces is governed by the incompressible 

Navier-Stokes equation, 

 EVp
Dt
VD

ef

rr
r

ρµρ +∇+−∇= *2*
*

ˆ ,  (2.2) 

and the continuity equation, 

 0* =•∇ V
r

. (2.3) 

In the above,  is the pressure, V =(u*, v*) is the velocity vector, u* and v* are, respectively, 

the velocity components in the x and y directions, 

*p̂ *
r

fρ is the fluid density, and eρ  is the net 

electric charge density. 

 We decompose the electric potential in the cavity into two components: ),()( yxx φ+Φ .  

 satisfies Laplace’s equation, ∇ , with Φ 02 =Φ 0=







∂
Φ∂

±= Hyy
. φ  satisfies the Poisson-

Boltzmann equation [4,20], 

 





=−−=−=∇ −+

RT
FzFzcccFze φ

εεε
ρφ sinh2)( 02 , (2.4) 

where ε  is liquid’s permittivity;   eρ  is the net charge density; is Faraday constant, and cF + and 

c- are, respectively, the concentrations of the positive and negative ions that satisfy the 

Boltzmann distribution. 

 Next, we rewrite the momentum equation as   

 xf EVp
Dt
VD    * 2*2

*

φεµρ ∇−∇+−∇=
r

r

,  (2.5) 
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where ,  and Φ−∇=xE qpp −= *ˆ* , 





=

RT
FzRTcq φcosh2 0 . 

 Using 
Fz
RT  and H as the potential and length scales, respectively, we define 

RT
Fzφχ =ˆ  

and 
H
y

=Y . Furthermore, assuming that next to the solid liquid interface, 
yx ∂

∂
<<

∂
∂ χχ ˆˆ

, equation 

2.4 is simplified to  

 χχλ ˆsinh
ˆ
2

2
2

=
∂
∂
YD , (2.6) 

where 
H

D
D

*λ
λ = and 

o
D czF

RT
22

*

2
ελ =  are, respectively, the dimensionless and dimensional 

thickness of the Debye layer.  Typically,  is on the order of 10nm and λ*
Dλ D<<1.  Consequently, 

we can separate the domain into three regions: upper layer (denoted with a subscript +), lower 

layer (denoted with subscript -), and a core (neutral) layer.  In the core, 0
ˆˆ =

∂
∂

=
Y
χχ . 

 Upon integrating equation (2.6) twice, taking advantage of the smallness of λD, and 

superposing the solutions for the upper and lower layers, we obtain: 

 ( )


















 +
−







+


















 −
−







≈ −−+−

DD

YYY
λ

ζ
λ

ζ
χ 1exp

4
tanhtanh41exp

4
tanhtanh4ˆ 11  (2.7) 

In the above, the first and second terms correspond, respectively, to the potential distribution in 

the vicinity of the upper and lower walls. +ζ  and −ζ  denote, respectively, the dimensionless zeta 

potentials at the upper (+) and lower (-) walls.  When χ<<1, χχ ≈tanh  (the Debye-Hückel 

linearization), and (2.7) can be further simplified to 

 ( ) 






 +
−+







 −
−≈ +

DD

YYY
λ

ζ
λ

ζχ 1exp1expˆ _ . (2.8) 
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 Finally, we re-write the momentum equation (2.5) in dimensionless form.  We use, 

respectively, 
( )
µ
φε max+− xE

 and 
H

E x max)( +−
φε as the velocity and pressure scales.  The (-) 

sign in the velocity scale is introduced because when the zeta potential is positive, negative 

charges are in excess next to the wall, and the fluid in the double layer is driven in a direction 

opposite to Ex.  )(x±φ  is the dimensional zeta potentials.  We re-scale χ̂  with max)( +ζ  (i.e, 

( )max 
ˆ

+

=
ζ
χχ ), and assume that ( .  The modulation period T (to be introduced later) 

serves as the time scale. Accordingly, equation (2.5) becomes 

0)max ≠+ζ

 ( ) xeVp
t
VSt ˆ222 χ∇+∇+−∇=
∂
∂ r
r

 (2.9) 

In the above, 
T

HSt
ν

=  is the Stanton number and V },{ VU=
v

 is the dimensionless velocity 

vector. We also eliminated the advection term since typically electro-osmotic flows are very 

slow (on the order of µm/s). 

 

3.  STEADY ELECTRO-OSMOTIC FLOW IN AN OPEN CONDUIT 

In this section, we analyze briefly fully developed, steady electro-osmotic flows in an 

open, planar conduit with uniform ζ potentials at its top and bottom walls. Later, we will use this 

solution to construct the flow field far from the sidewalls in a closed, slender cavity.  To this end, 

we solve the x-direction momentum equation (2.9) with the boundary conditions 

 ( ) 01 =±U  and ( ) ±=± ζχ 1 , (3.1) 

where in our dimensionless scheme ζ+=1 and ζ-=α.  The velocity profile is: 

 7



Qian, S. and Bau, H., H., 2005, Theoretical Investigation of Electroosmotic Flows and Chaotic Stirring in 
Rectangular Cavities, Applied Mathematical Modeling, 29 (8), 726-753. 

 ( ) ( )
dX
dPYYYYU

2
1

2
)1(

2
)1( 2 −

+



 +

−
−

+−=
ααχ . (3.2) 

An approximate expression for ( )Yχ  is given in equation (2.8). 

 Fig. 2 depicts the velocity profiles for various pressure gradients and λD=0.01 when α=1 

(Fig.2a) and α= -1 (Fig.2b). Witness the presence of very thin boundary layers next to the 

sidewalls (Y=±1).  Within the boundary layers, the magnitude of the velocity drops quickly from 

its “core value” to a zero value at the solid surface. When 0=
dX
dP  and α=1, the flow is “plug"-

like. The cases of 0<
dX
dP  and 0>

dX
dP  correspond, respectively, to flows with favorable and 

adverse pressure gradients. Fig.3 depicts the velocity profiles for different zeta potential ratios 

with favorable ( 2−=
dX
dP , Fig. 3a) and adverse ( 2=

dX
dP , Fig. 3b) pressure gradients.  Aside 

from thin layers next to the walls, the velocity profiles are reminiscent of pressure driven flow 

between two moving, parallel plates. 

 

4. BOUNDARY LAYER ANALYSIS OF THE FULLY DEVELOPED FLOW IN AN 

OPEN CONDUIT 

 As long as the Debye layer is very thin, for all practical purposes, one can replace the 

non-slip boundary condition at the wall with a “slip velocity “ at the edge of the boundary layer 

[21]. This approximation provides a great simplification when one is computing complex flow 

fields since it eliminates the need to resolve the velocity field over vastly different length scales. 

Since later in the paper, we will be using the slip velocity as a boundary condition, we formally 

justify its use here. 
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 Since χ decays rapidly away from the boundaries, we divide the domain into a core 

region and two boundary layers. The core variables will be denoted with superscript (c) and the 

boundary layers variables will be denoted with +/-.  In the core region, the dimensionless 

momentum equation reduces to 

 
dX
dP

Y
U c

=
∂
∂

2

2

. (4.1).  

Integrating (4.1) twice with respect to Y, we get 

 ( ) 32
2

2
1 CYCY

dX
dPYU c ++= . (4.2) 

In the upper and lower boundary layers, we introduce the stretched coordinates 
D

Y
λ

ξ m1
=± . 

Rewriting equations 2.8 and 3.2 in terms of the boundary layer variables, we have 

 ( ) ( )±±± −= ξζξχ exp  (4.3) 

and 

 ( ) ( )[ ] ±
±

±±
+

±
±

± ++−−= ξξλξ
ζ
ζξ 4

2
2

2
exp1 C

dX
dPU D

. (4.4) 

The coefficients C2, C3, and  are obtained by matching the core and the boundary layer 

solutions.  We assume the presence of an overlap region [22] and introduce the "intermediate" 

variables 

±
4C

ν
η Ym1

=± . ν(λD) and  are chosen so that )( Dλη ± 0
)(0
=

→ D

Dim
D

λν
λ

λ
l  and 

0
)(0
=±

→ D

Dim
D λη

λ
λ
l . Accordingly, 

Dλ
ην ± ξ ± = , and .  

Asymptotically matching the solutions for various powers of ν, we require: 

11 −=−= −+ νηνηY
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++

++

→
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→

DD
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nn
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CC
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dPUU imim

DD
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 (4.5) 

and 

 

0)()(
2

exp

)1()1(
2
11

4
2

2

32
2

00

=













++








−−

−








 +−+−=

−

−
−

−−

−−

→

−

→

DD

D

D

nn

c

C
dX
dP

CC
dX
dPUU imim

DD

λ
νη

λ
νηλ

λ
νηαα

νηνη
νν λλ

ll
 (4.6) 

To obtain matching for all orders of ν, C must be on the order of (λ±
4 D), 

2
1

2
α−

=C ,  
dX
dPC

2
1

2
1

3 −
+

=
α ,  and  






 ±

−
=±

dX
dPC D 2

1
4

αλm . 

Consequently, 

 ( )
2

1
2

1)1(
2
1 2 αα +

+
−

+−= YY
dX
dPYU c  (4.7) 

 ( ) ( )[ ] ±±±
+

±
±

± 





 ±

−
+−−= ξαλξλξ

ζ
ζξ

dX
dP

dX
dPU D

D

2
1

2
exp1 2

2

m  (4.8) 

Although the pressure gradient enters into the order of in the boundary layer equation, it 

provides 0(1) contribution to the wall shear stress.  Not surprisingly, even in the presence of 

pressure gradients, the core solution can be completely resolved by assuming slip boundary 

conditions at the walls U

Dλ

c(1)=1 and Uc(-1)=α. 

 

5. STEADY ELECTRO-OSMOTIC FLOW IN A SLENDER, CLOSED CAVITY 

 When the cavity is closed, the pressure gradient is no longer independent, and mass 

conservation requires 
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 . (5.1) 0)(
1

1

=∫
−

dYYU

In the case of a slender cavity, H/L<<1, and far from the side walls, one may assume that 

0=
∂
∂

X
U . Substituting (3.2) into (5.1), we obtain 

 




























 −
−−

+
=

D
DdX

dP
λ

λα 2exp11
2

)1(3  (5.2) 

and 

 
( )

2
)1(

2
)1(2exp11

4
)1)(1(3

1exp1exp

2 +
+

−
−






























−−−

+−

+






 +
−−







 −
−−=

αα
λ

λα

λ
α

λ

YY

YYYU

D
D

DD  (5.3) 

The corresponding expressions for the core flow (when one assumes slip boundary conditions) 

are: 

 
2

)1(3 α+
=

dX
dP  (5.4) 

and 

 ( ) YYYU c

2
1)13(

4
)1( 2 αα −

+−
+

= . (5.5) 

Clearly, in the limit of λD→0, (5.2) and (5.3) reduce to (5.4) and (5.5). Fig. 4 depicts the velocity 

profiles obtained with equations (5.3) and (5.5) when α=1 (Fig. 4a) and α=-1 (Fig. 4b).  With the 

exception of thin boundary layers of 0(λD), the approximate core solution is in excellent 

agreement with the exact one.  Fig. 4b also depicts the velocity profile in the boundary layer next 

to Y=-1. For better visibility, the coordinates were stretched.  The slender core solution that we 
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derived in this section will assist us in assessing the accuracy of the two-dimensional solution for 

the flow field in a finite-length cavity. 

 

6. STEADY ELECTRO-OSMOTIC FLOW IN FINITE ASPECT-RATIO CAVITIES 

 The solution given in section 5 is valid only far away from the sidewalls.  In this section, 

we compute the flow field in a finite aspect-ratio cavity with non-uniform, slowly varying 

( 11
<<

dX
dζ

ζ
) zeta potentials along the top and bottom walls (Y=±1).  Based on the analysis of 

section 4, we use the electro-osmotic velocities as the slip boundary conditions at Y=±1. The 

time-independent, dimensionless Stokes equation is  

 






=⋅∇

∇=∇

0

2

V

PV
r

r

 (6.1) 

It is convenient to introduce the stream function Ψ such that 
Y∂

U Ψ∂
= and 

X
V

∂
Ψ∂

−= . The 

streamfunction satisfies the biharmonic equation 

  (6.2) 04 =Ψ∇

with the boundary conditions: 

 

















=±
∂
Ψ∂

=±

=±Ψ=±
=±Ψ=±

=±
∂
Ψ∂

=± ±

0),(),(

0),(),(
0)1,()1,(

)()1,()1,(

Yh
X

YhV

and
YhYhU

XXV

XUX
Y

XU

 (6.3) 

In the above, h=L/H is the cavity's aspect ratio. 
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The biharmonic equation (6.2) can be readily solved with various numerical methods. We 

choose to solve (6.2) analytically since we need an accurate (and compact solution) to compute 

the trajectories of passive tracers under quasi-static, time-periodic fluctuations in the zeta 

potential (section 7). 

Without loss of generality, it is convenient to decompose the problem into the four 

subproblems:  

 OOOEEOEE Ψ+Ψ+Ψ+Ψ=Ψ  (6.4) 

In the above, the first subscript indicates whether the function is even (E) or odd (O) in X.  The 

second subscript indicates whether the function is even (E) or odd (O) in Y. Accordingly, the 

boundary conditions for the various subproblems are: 

 [ )()()()(
4
1)( XUXUXUXUXU EE −++−+= −−++± ] (6.5) 

 [ ])()()()(
4
1)( XUXUXUXUXU EO −−−−+±= −−++±  (6.6) 

 [ ])()()()(
4
1)( XUXUXUXUXU OE −−+−−= −−++±  (6.7)  

 [ ])()()()(
4
1)( XUXUXUXUXU OO −+−−−±= −−++±  (6.8)  

Typically, the biharmonic equation in rectangular geometry is solved analytically with 

either biorthogonal ‘Papkovich-Fadle’ eigenfunctions [23-26] or the method of superposition 

[27]. When the boundary conditions are not smooth, Fourier series exhibit slow convergence due 

to the Gibbs phenomenon.  It is easier, however, to accelerate the rate of convergence of the 

series when using the superposition method. For the even-odd case, Meleshko [17, 28] 

demonstrated that it is possible to achieve very accurate results while retaining just a few terms 

in the modified (accelerated) series.  Following and extending Meleshko, we obtain the three 
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flow fields: ,  and . We outline the derivation below and specify the modifications 

that are needed to accommodate the EE, OO, and OE cases. 

EEΨ OOΨ OEΨ

 

EVEN ON X AND EVEN ON Y ( ) EEΨ

We further decompose  into two components EEΨ

 , (6.9) ),(),(),( YXYXYX abXY
EE EEEE Ψ+Ψ=Ψ

where 

 )sin()()1()cos()()1(),(
11

YXqshXYprYX e
L

m
e
mm

M

m m

m
XY
EE lll

l l

l

β
β

α
α ∑∑

==

−
−

−
=Ψ , (6.10) 

and has a similar structure to  with the coefficients rab
EEΨ XY

EEΨ m and sl being replaced with the 

constants a and b.  In the above, M→ ∞, L→ ∞, 

 πα
h

m
m 2

12 −
= ,                 πβ ll = , (6.11) 

 ( )
)sinh(
)cosh(

)sinh(
)sinh(

coth)(
m

m

m

m
m

e
m

Y
Y

Y
Yp

α
α

α
α

α −= , (6.12) 

and 

 
)cosh(
)sinh(

)cosh(
)cosh(

)tanh()(
h
X

X
h
X

hhXqe

l

l

l

l
ll β

β
β
β

β −= . (6.13) 

The individual terms of the series (6.10) satisfy the biharmonic equation and the impermeability 

(Ψ =0) boundary condition. The first Fourier series (with the coefficients rm) in 6.10 can 

represent any tangential velocity along |Y|=1. Likewise, the second Fourier series (with the 

coefficients ) can represent any tangential velocity along the sidewalls |X|=h.  The series ls
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ab
EEΨ is designed to mimic the dominating singularities of U  so that they do not hamper the 

rate of convergence of the series . 

)(X+

XY
EEΨ

)(X+

+

lh

m

)

)

β = lG

Fm

22

2

)l

l
−k

(J

)ξ
− )tanh(ξ

mUα+)1,

)0,,(m l

a∆−=

−=Gl

(−
=m m dXX )α

 By taking the normal derivatives of EEΨ  and requiring that the resulting series 

approximate the slip-velocity U  at |Y|=1 and the nonslip condition at  |X|=h in 

the sense of weighted residuals, one obtains an infinite set of algebraic equations for the 

coefficients r

)(XU −=

m and  of the form: ls

 , (6.14) 










−∆

=∆

∑

∑
∞

=

∞

=

l

l
l

l

l

mJrhs

mJsr

m
m

m

1
2

1
1

)0,,((

)1,,((α

where  

 2

1

(
4),,l

βα
βα

+
=

+

m

k
mkm  (6.15) 

 )coth(
(sinh

)( 21 ξξξ =∆ ,       
)(cosh

)( 22 ξ
ξξ +=∆  (6.16) 

  (6.17) mmm mJbF α − ∑
∞

=1
1 ,()(

l

l

  (6.18) ∑
∞

=

+∆
1

2 )(
m

Jahbh lβ

and 

 )
∫−

+h

h

m

XU
h

U cos()(1 . (6.19) 

The series on the RHS of the equations are summed-up in terms of tri-gamma functions (Ψ', 

Abramowitz and Stegun [29]). 

 15



Qian, S. and Bau, H., H., 2005, Theoretical Investigation of Electroosmotic Flows and Chaotic Stirring in 
Rectangular Cavities, Applied Mathematical Modeling, 29 (8), 726-753. 
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∞

=

)1()1()1,,( ''
2

1 π
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π
α

π
α iii

mJ mmm

l

l  (6.20) 
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1()

 
2
1()0,,( ''

22

2

π
β

π
β

π
β

A
ih

A
ih

A
ih

mJ
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llll  (6.21) 

In the above, A=1 when the summation is over all integer m-values and A=2 when the 

summation is over either odd or even m-values.   1−=i

lG

.  The system of algebraic equations 

(6.14) with a=b=0 can be truncated and solved for the coefficients rm and .  Kantorovich & 

Krylov [27] have shown that the resulting series is, indeed, convergent. Unfortunately, when the 

function U

ls

+(X) is not continuous, the rate of convergence may be quite slow. It is possible, 

however, to accelerate the rate of convergence by removing the dominant singularities. In other 

words, we wish to accelerate the rate of decay of the RHS of equations (6.14) as m and l  

increase. This is done by choosing the arbitrary coefficients (a) and (b) in such a way as to 

increase the rate of decay of the RHS of the algebraic equations.  The infinite sums in (6.17) and 

(6.18) are represented in terms of tri-gamma functions [17, 29].  By requiring that to the leading 

order, (6.17) and (6.18) are equal to zero (i.e., Fm=0 and =0), one can solve for a and b. 

Here we will consider only the special case of uniform ζ potentials along the top and 

bottom boundaries (i.e., U+(X)=U-(X)=U+ and Um=
h

U

mα

+

−
2 ).  Other velocity distributions can be 

handled in a similar way.  Following the process described above, we obtain 

 
)4(

2
2

2

−
=

+

π
π

h
Ua ,     and    

)4(
4

2 −
=

+

π
π

h
Ub . (6.22) 

The truncated equations (6.14) with the above values of a and b and with the infinite sums on the 

RHS replaced with tri-gamma functions are solved for rm and sl.  Next, we expand and )(Ype
m
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)(Xqe
l  into geometric series, exchange the order of summation, and sum-up the resulting inner 

series (Oberhettinger [30]) to obtain:  

 , (6.23) ),(),(),( YXbhSYXaSYX ba
ab
EE −=Ψ

where 

 ∑∑
∞

=

∞

=

+−−=
−

=
0

1111
1

)},(),({)cos()()1(),(
v

m
e
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a YvXSYvXSXYpYXS α
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 (6.24) 
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−++−=
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=
0

1212
1

)},(),({)1()sin()()1(),(
v
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b XhvYSXhvYSYXqYXS ll

l l

l

β
β

 (6.25) 

 v1=2v+1 (6.26) 

 ]
)

2
sinh(

)
2

cos(
arctan[),(1

h

hhS
πη

πξ

π
ηηξ −=  (6.27) 

and 

 ]
)cos(

)sin(arctan[),(2 πξ
πξ

π
ηηξ πη +

−=
e

S  (6.28) 

The resulting series converges rapidly, and as few as M=L=5 terms are sufficient to obtain the 

desired precision.  Additional details on the rate of convergence will be provided later in the 

paper. 

 

ODD ON X AND ODD ON Y ( ) OOΨ

The boundary conditions in this case satisfy U  and U . 

As before, we decompose  into two components: 

)()( XUX −−= ±± )()( XUX −+ −=

OOΨ

  (6.29) ),(),(),( YXYXYX abXY
OO OOOO Ψ+Ψ=Ψ
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The first term, , is further decomposed into a sum of two Fourier series, XY
OOΨ

)cos()()1()sin()()1(,(
11

YXqshXYprX o
m

o
mm

m

m
XY

OO lll
l l

l

β
β

α
α ∑

∞

==

−
−

−
Ψ )Y

m
∑
∞

= , (6.30) 

where 
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m = ,        πβ
2
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=

l
l , (6.31) 
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 (6.32) 

Each term of the series (6.30) satisfies the biharmonic equation and the impermeability 

(Ψ =0) boundary conditions. By taking the normal derivatives of OOΨ  at the sides |Y|=1 and 

|X|=h and taking inner products with the test functions )sin( Xmα  and cos( )Ylβ , we obtain an 

infinite set of algebraic equations for the coefficients rm and : ls
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 (6.33) 

In the above, 

 ( )
∫−

+
−−

=
h

h m

m

m dXXXU
h

U )sin()(1 1

α  (6.34) 

By studying the asymptotic behavior of the series in the RHS of equation (6.33), one can 

determine the coefficients a and b so as to force the RHS of the algebraic equations to decay 

rapidly. 

 18



Qian, S. and Bau, H., H., 2005, Theoretical Investigation of Electroosmotic Flows and Chaotic Stirring in 
Rectangular Cavities, Applied Mathematical Modeling, 29 (8), 726-753. 

Here we will consider only the special case: 
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Witness that the RHS of equation (6.33) is different for odd and even m. Consequently, we split 

rm into odd (rm
o) and even (rm

e).  Equation (6.33) becomes 
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As before, the series on the RHS are summed up in terms of tri-gamma functions (equations 6.20 

and 6.21).  The coefficients ae, ao, and b are chosen so as to render to the leading order the RHS 

of the equations zero: 

 
)4(

8
2 −
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πh
Uae ,    

)4(
)2(4

2

2

−
−

=
+

π
π
h

Uao ,    and     
)4(

4
2 −

=
+

π
π

h
Ub . (6.37) 

Below, we list the main results and omit details. 

 , (6.38) ),(),(),(),( YXbhSYXSaYXSaYX b
eeooab

OO aa
−+=Ψ
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ODD ON X AND EVEN ON Y ( ) OEΨ

The boundary conditions in this case are U  and U .  As 

before, we write stream function Ψ  as the sum of  and .   is 

decomposed into two Fourier series: 
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where  
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 πα
h
m

m =     and    πβ ll = . (6.46) 

Each term of series (6.45) satisfies the biharmonic equation and the impermeability (Ψ =0) 

boundary conditions. By taking the normal derivatives of OEΨ  at the sides |Y|=1 and |X|=h and 

taking the inner products with the test functions )sin( Xmα  and )sin( Ylβ , we obtain an infinite 

set of algebraic equations for the coefficients rm and : ls

  (6.47) 
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By analyzing the asymptotic behavior of the RHS of equation (6.47), one can choose the 

coefficients a and b so as to accelerate the rate of decay of the RHS of (6.47). 

Here we will consider only the special case of  
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We split the coefficients rm into odd and even.  By suppressing the leading order of the RHS of 

the equations, we obtain the same coefficients ae, ao, and b listed in (6.37).  As before, 
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and 
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The Accuracy of the Analytic Solutions 

A number of researchers have studied Stokes flows driven by the motion of the upper 

and/or lower walls of closed, rectangular cavities.  Gaskell et al. [26] compared the solutions 

obtained with Papkovich-Fadle eigenfunctions by Joseph and Sturges [23] and Shankar [25] with 

his own finite element calculations.  Joseph and Sturges computed the series coefficients by 

utilizing a bi-orthogonal series to construct the infinite set of algebraic equations while Shankar 

determined the series coefficients by minimizing the "total square error."  Gaskell concluded that 

when the number of terms in each series is sufficiently large (about 20), all the solutions were in 

good agreement in the cavity's interior.  The analytical solutions were able to reproduce the 

boundary conditions with an average precision of 1% only when 200 terms were used. The 

maximum error at the boundary (in the corners' vicinity) was much larger due to the Gibbs 

phenomenon.  Meleshko [17, 28] demonstrated that the method of superposition with series 

acceleration (that we used here) provides a much higher precision even at the point of singularity 

and even with only a relatively small number of terms in the Fourier series.  For illustration 
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purposes, Fig. 5 depicts the deviation between the series sum and the boundary condition when 

M=L=5, h=1, and U . Clearly, the truncated series provides an excellent 

approximation (within 0.01%) even next to the singularities at |X|=h.  In the cavity’s interior, the 

precision of the analytic solution far exceeds its precision on the boundary.  Fig.6 depicts the 

difference between the approximate core solutions U

1== −+ U

c(Y) (equation 5.5) and the two dimensional 

series solutions U(0,Y) as functions of Y when h=5, α=1 (Fig.6a), and α=-1 (Fig.6b).  Both 

solutions are in excellent agreement.  The small deviations may be attributed to h not being large 

enough. 

 

7. TIME-INDEPENDENT, ELECTRO-OSMOTIC FLOWS IN A SQUARE CAVITY 
WITH DIFFERENT ZETA POTENTIAL DISTRIBUTIONS 

 

In this section, we compute a few examples of flow fields in a square cavity (h=1) with 

different distributions of the zeta potentials along the cavity’s walls. Fig. 7 depicts the 

streamlines when the ζ potential is uniform at the top and bottom walls, U+(X)=1 and U-(X)=α, 

where α=-1 (a), α=1 (b), α=0 (c), and α=0.5 (d). When α < 0, there is only one large eddy inside 

the cavity (Fig. 7a). When α=0 (Fig. 7c), in addition to the primary eddy, Moffatt [31] corner 

eddies are visible next to the bottom corners. When α>0, the flow consists of a couple of 

counter-rotating eddies, whose size depends on α’s magnitude. When α=±1, the flow patterns 

are symmetric with respect to both the X=0 and Y=0 axes (Figs. 7a and b). When α∫±1, the 

symmetry with respect to the Y=0 axis is broken (Figs. 7c and d).  

Figs. 8 and 9 depict the flow field when the ζ potential distribution is not uniform along 

the bottom and top walls. When -h≤X≤-c/2, U+=-1 and U-=-α.  When c/2≤X≤h, U+=1 and U-=α. 

When |X|<c, U=ζ=0.  In the above, c (>>λD) is a small gap between the two adjacent electrodes.  
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In Fig. 9, we will demonstrate that small values of c have no significant effect on the flow 

topology as compared to the case of c=0.  Therefore, in Fig. 8, we used c=0.  Figs. 8a, b, c, and d 

correspond, respectively, to α= -1, 1, -0.5, and 0.5.  By controlling the sign and magnitude of α, 

one can control the number of convective cells.  

In Fig. 9, we examine the effect of the gap’s width (c) on the flows’ topology.  In Figs. 9a 

and b, α=-1.  In Figs. 9c and d, α=1.  When c is small (c=0.1 in Figs. 9a and c), the flow field is 

similar to the case of c=0 (Figs. 8a and b). When c is large (c=0.5 in Figs. 9b and d), the flow 

cells appear to be skewed.   

More complex patterns are shown in Fig. 10. In Fig. 10a, when -h≤X<0, U+=-U-=-0.5 and 

0<X≤h, U+= -U- =1.  In Fig. 10b, when -h≤X<0, U+=U-=-0.5, and when 0<X≤h, U+= U- =1.  In 

Fig. 10c, when -h≤X<0, U+=-0.5 and U-=1 and when 0<X≤h, U+= 1 and U- =-0.5.  In Fig. 10d, 

when -h≤X<0, U+= -0.5 and U-=-1, and when 0<X≤h, U+=1 and U- =0.5. By controlling the 

relative magnitudes of the wall’s ζ potential distribution, one can generate various flow patterns 

as well as reduce the symmetry of the flow patterns. 

 

8. CHAOTIC ADVECTION INDUCED BY ELECTRO-OSMOSIS 

So far, we have demonstrated that electro-osmosis can be used to induce complicated 

flow patterns in a closed cavity. These flows are, however, highly regular. In the absence of 

diffusion trace particles will follow the streamlines with no transport occurring transverse to the 

streamlines.  In this section, we demonstrate that by appropriate time modulation of the ζ 

potential, one can induce chaotic advection. To this end, we choose two basic flow patterns, A 

and B say, and maintain flow field type A for a time interval 0<t<T/2, and then switch to flow 

field type B for the time interval T/2<t<T. Subsequently, the process is repeated. We assume that 
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the Reynolds number is small and that the zeta potential alternations are sufficiently slow that the 

flow is quasi-static and the instantaneous flow field is given by the steady-state solution of the 

Stokes equation. This approximation has been widely used in the case of mixing problems at 

very low Reynolds numbers [19, 32-35]. For example, when studying a magnetohydrodynamic 

stirrer, Yi, Qian, & Bau [35] found that as long as St<1, the predictions of the quasi-static theory 

were in good agreement with computational results that accounted for the inertia term and with 

experimental observations. 

When the flow field alternates between patterns A and B, the instantaneous flow field is 

given by:    

 ( ) ( ) ),(),(),,( YXtfYXtftYX BBAA Ψ+Ψ=Ψ , (8.1) 

where  
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and 
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In the above, k=0,1,2,… is an integer, and the resulting flow field is periodic in time with 

periodicity T.   Functions f(t) that provide a more gradual time-wise change will only modify the 

“effective” time interval Ti without changing the qualitative nature of the flow.   

The motion of a passive tracer particle can be computed by solving the kinematic 

equations: 
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with the initial conditions  

 00 )0(,)0( YYXX ==  (8.5) 

We compute the particle’s trajectory by integrating equation (8.4) using Matlab’s 4th order 

Runge-Kutta algorithm.  

One can imagine the trajectory that a passive tracer will follow when the flow fields are 

alternately switched from pattern A to pattern B. In the time interval 
2
TkTt +<<

.Const

kT , the tracer 

will move along a segment of the curve described by A =Ψ  In the time interval 

TktTkT )1(
2

+<<+ , the tracer will follow a segment of the curve described by .ConstB =Ψ  

The net result is a zigzag path. When T is small, the particle trajectory will coincide with a path 

traced by the superposition of patterns A and B.  When T is relatively large, the zigzag path will 

cover most of the cross-sectional area, thereby providing efficient stirring.  

As already noted by Aref [19] among others, equations 8.4 are a Hamiltonian system.  

The flow conserves area, and the phase space (x, y) coincides with the physical space.  Although 

our treatment is valid only when T>>0, it is nevertheless instructive to examine the system in the 

limit of T→0.  In this limit, the flow fields A and B superpose.  By examining the various fixed 

points of the superposed field, one can obtain useful information on the advection patterns as T 

increases.   

  A few candidates for patterns A and B are depicted in Figs. 7 and 8.  Many more can be 

envisioned, and we can choose any combination.  The selection of the combination that leads to 
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the most efficient stirring is an interesting optimization problem that we do not address here.  We 

restrict ourselves to two examples:  

i. Mixing protocol A/B, where patterns A and B are depicted, respectively, in Figs. 7(a) and  

8(b); and  

ii. Mixing protocol ABCD, where patterns A and B are the same as in (i) above. Pattern C is 

similar to the one depicted in Fig. 7(b) with modified polarity (U+=U-= -1) and pattern D 

is depicted in Fig. 8(a).  The time interval for each of the patterns is T/4. 

Often stroboscopic images (Poincaré sections) are used as a diagnostic tool to determine 

the effectiveness of the stirring process. These images are obtained by integrating the kinematic 

equations and documenting the tracer’s location at the end of each period. In other words, each 

image is a superposition of snapshots that depict the location of the tracer particle at times t=kT, 

where k=0, 1, 2, … When the pattern of points that emerges lies on a smooth curve, the motion is 

deemed to be regular and provides poor mixing. When a scattered pattern emerges, the motion is 

likely to be chaotic.   

The combined flow field of protocol A/B is depicted in Fig. 11a in the limit of T 0. 

When the period T→0, the flow field is characterized by large outer eddies containing two sub-

eddies separated by a saddle stagnation point. The flow field includes one hyperbolic and two 

elliptic fixed points.  

When T=0, the system is autonomous and integrable.  When T>0, the system may no 

longer be integrable.  As T increases, chaotic behavior arises both because of the disruption of 

the hyperbolic fixed point and the perturbation of the tori.  In the first instance, the stable and 

unstable manifolds of the hyperbolic point (in the Poincare section) intersect transversely 

infinitely many times to form a homoclinic tangle and a "hyperbolic mixing region".  
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Additionally, according to the Poincare-Birkhoff theorem [36], the tori with rational period ratios 

(Γ/T) will deform significantly and form a "petal" structure that leads in the Poincare section to 

the formation of a sequence of new hyperbolic (saddle) and elliptic fixed points.  Like the 

original hyperbolic point, these newly formed hyperbolic points will give rise to chaotic 

behavior.  In summary, in our system, there are two interacting mechanisms that lead to chaotic 

advection.  This process is illustrated in Fig. 12 when T=0.6.  The figure depicts the stroboscopic 

image (Poincare section) of passive tracer particles' trajectories initially inserted at (-0.4, 0), (-

0.25, -0.5), (-0.25, -0.4), (-0.1, -0.2), (-0.1, -0.3), (0, 1.0e-3),  (0.1, 0.2), (0.1, 0.3), (0.25, 0.4), 

(0.25, 0.5), and (0.45, 0). Witness the emergence of the chaotic region resulting from the 

homoclinic tangle and the formation of new hyperbolic and elliptic points. 

As the period T is further increased, the passive tracer particle inserted at (X0, Y0)=(0, 

0.01) strays away from the “regular path”, and it circulates from the upper right region to the 

bottom left region (Fig. 11b). As T is further increased to T=2 (Fig. 11c), the fraction of the 

cavity’s area visited by the tracer also increases.  Figs. 11b and 11c indicate the presence of 

isolated regions bound by KAM surfaces through which the tracer particles do not pass.  As T 

increases, the size of these isolated islands decreases, and they are barely visible in Fig. 11d 

(T=8). Given the symmetries of each of the flow patterns, the appearance of the isolated islands 

is not surprising [37]. Presumably, more effective stirring would be achieved by minimizing the 

symmetries of flow patterns A and B.  Alternatively, the KAM surfaces might disappear if one 

were to adopt a quasi-periodic alternation protocol instead of the periodic one that we used here.  

In Fig. 11d (T=8), the chaotic region spreads to cover most of the cavity and nearly wipes out the 

regular regions indicating an effective stirring process.  
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Fig. 13 depicts the trajectories of passive tracers when protocol ABCD is used.  Fig. 13a 

depicts the superimposed flow field (T 0), and Figs.13b and 13c depict the trajectories of a 

particle initially positioned at location (x, y)=(0.3, 0.3) when T=2 and T=4, respectively. As in 

Fig. 11, as T increases, so does the complexity in the cavity. 

 In order to better illustrate the stirring process, like Aref [19], we inserted a square 

material blob (i.e., dye) of edge size 0.1 with 104 particles, initially centered at (0, 0), and we 

tracked the deformation of the material blob. Figs. 14 and 15 depict, respectively, the evolution 

of the blob for the protocols of A/B and ABCD when T=8. In each case, we integrated the 

trajectories of 104 particles, initially uniformly distributed within the blob.  The particles' 

trajectories were tracked for the time interval 0<t<20T.  These figures illustrate the blob’s 

stretching and folding process. Ultimately, the fluid particles spread to cover almost the entire 

area of the cavity. 

Although some of the basic flow patterns presented here are similar to the ones calculated 

in previous works on chaotic advection in cavity flows [38-40], the present study differs from the 

previous efforts in a number of ways. Prior workers used finite difference techniques to calculate 

the flow field.  These calculations required a great amount of computer resources.  In contrast, 

we derived quasi-analytical solutions for the flow field that provide a much better precision than 

the finite difference solutions with a relatively small computational effort, and do not require 

interpolation.  In contrast to prior works, in which one or more of the stirrer’s boundaries had to 

be set into motion, the proposed stirrer does not require any moving parts. Finally, local control 

of the zeta potential allows one to obtain a rich plethora of flow patterns that may not be feasible 

to realize by other means.  
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In most cases of electroosmotic flows, the surface roughness exceeds the thickness of the 

electric double layer.  Although the surface roughness distorts locally the electric and flow fields 

next to the boundary, it has little effect on the bulk flow [41].  

 

9. CONCLUSION 

In this paper, we have studied electro-osmotic flows in cavities in which the zeta 

potential along the cavities walls varies both spatially and temporally.  Asymptotic and quasi-

analytic solutions for the flow field were derived, respectively, for the cases of the slender and 

finite aspect ratio rectangular cavities. In the latter case, solutions have been derived for various 

canonical cases. By accelerating the rate of convergence of the series, we were able to obtain 

highly accurate solutions while maintaining just a few terms in the series.  These series solutions 

have a clear advantage over finite difference and finite element solutions, particularly when one 

desires to track the progression of passive tracer particles; not only do they provide 

computational economy, they also save the need for interpolation, which would be required in 

finite difference and finite elements simulations.  Non-uniform, wall zeta potentials lead to the 

formation of complex flow patterns.  By temporally varying the wall’s zeta potential, one can 

obtain chaotic advection that may provide efficient stirring.  The stirring efficiency is somewhat 

compromised due to the appearance of islands.  However, the ability to locally control the zeta 

potential allows one to induce a plethora of flow patterns and minimize the presence of 

symmetries in the flow.  Furthermore, the islands might be eliminated with the use of aperiodic 

alternations of the flow patterns.  Since the electro-osmotic stirrer does not require any moving 

parts, it is particularly suitable for applications in microfluidic systems.  
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LIST OF CAPTIONS 

1.  A rectangular cavity equipped with two electrodes (|X|=h) in contact with the liquid. These 

electrodes induce a uniform electric field in the x-direction. Additional electrodes (Ai, 

i=1,2,3, and 4) are embedded in the upper and lower walls of the cavity beneath the 

surface.  These electrodes are used to control the walls’ zeta potential. 

2.   Velocity profiles for various pressure gradients when α=1 (a) and α= -1 (b). . 01.0=Dλ

3.   Velocity profiles for different zeta potential ratios (α) when dP/dX=-2 (a) and dP/dX=2 

(b). . 01.0=Dλ

4.   Velocity profiles within a closed cavity. α=1(a) and α=-1(b). The solid line and symbols 

(o) correspond, respectively, to the exact and approximate core solutions. In (b), the 

horizontal upper and vertical RHS scales are blown up to facilitate a better appreciation of 

the boundary layer structure (dash line).  . 01.0=Dλ

5.   The difference between the computed velocities at the boundary and the exact values. 

M=L=5, h=1, and U . 1)( =+ XEE

6.   The difference between the slender cavity’s one-dimensional solution and the solution of 

the biharmonic equation when h=5, α=1 (a) and α= -1 (b). 

7.  Streamline patterns for electro-osmotic flow with uniform ζ potentials at the top and 

bottom surfaces. U+=1 and U-=α, h=1, and M=L=5. (a) α= -1, (b) α= 1, (c) α= 0, and (d) 

α= 0.5 

8.  Streamline patterns for electro-osmotic flow with non-uniform zeta potentials at the top 

and bottom surfaces.h=1 and M=L=5. When -h≤X≤0, U+= -1 and U-= -α. When 0≤X≤h, 

U+= 1 and U-=α. (a) α= -1, (b) α= 1, (c) α= -0.5, and (d) α= 0.5 
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9.  The effect on the streamline patterns of the width of the gap (c) between two zones with 

different ζ potentials.  When -h≤X≤ -c, U+= -1 and U-= -α.  When c≤X≤h, U+= 1 and U-=α, 

and when |X|<c, U+= U-=0. (a) c=0.1 and  α=-1, (b) c=0.5 and  α=-1 , (c) c=0.1 and  α=1, 

and (d) c=0.5 and α=1. h=1 and M=L=5. 

10. Streamline patterns for the electro-osmotic flow when there are non-uniform zeta 

potentials at the top and bottom surfaces. h=1 and M=L=5. When -h≤X≤0, U+= -0.5 and U-

=α1. When 0≤X≤h, U+=1 and U-=α2. (a) α1=0.5, α2= -1, (b) α1= -0.5, α2= 1, (c) α1=1, α2= 

-0.5, (d) α1= -1, α2= 0.5 

11. Stroboscopic images of the flow field induced by protocol AB when T=0 (a);  T=1(b); T=2 

(c); and T=8 (d). (X0, Y0)=(0,0.01), 0<t<3000T, h=1, and M=L=5 

12.   Stroboscopic images of the flow field induced by protocol AB when T=0.6. (X0, Y0)= (-0.4, 

0), (-0.25, -0.5), (-0.25, -0.4), (-0.1, -0.2), (-0.1, -0.3), (0, 1.0e-3),  (0.1, 0.2), (0.1, 0.3), 

(0.25, 0.4), (0.25, 0.5), and (0.45, 0). h=1 and M=L=5. 

13.  Stroboscopic images of the flow field induced by protocol ABCD when T=0 (a); T=2(b); 

and T=4 (c). (X0, Y0)=(0.3,0.3), 0<t<3000T, h=1, and M=L=5. 

14. The deformation of a material blob of edge size 0.1 initially (t=0) centered at (0,0) when 

T=8. Stirring protocol AB. (a) t=0; (b) t=2T; (c) t=4T; (d) t=6T; (e) t=7T; (f) t=8T; (g) 

t=10T; (h) t=12T; and (i) t= 20T 

15. The deformation of a material blob of edge size 0.1, initially (t=0) centered at (0,0), when 

T=8. Stirring protocol ABCD. (a) t=0; (b) t=1T; (c) t=2T; (d)t=3T; (e)t=4T; (f) t=5T; 

(g)t=6; (h) t=7T; and (i) t= 20T 
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Fig. 1: A rectangular cavity equipped with two electrodes (|X|=h) in contact with the liquid. These 

electrodes induce a uniform electric field in the x-direction. Additional electrodes (Ai, i=1,2,3, and 4) are 

embedded in the upper and lower walls of the cavity beneath the surface.  These electrodes are used to 

control the wall zeta potential. 
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Fig. 2: Velocity profiles for various pressure gradients when α=1 (a) and α= -1 (b).
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Fig. 3: Velocity profiles for different zeta potential ratios (α) when dP/dX=-2 (a) and
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Fig. 4: Velocity profiles within a closed cavity. α=1(a) and α=-1(b). The solid line and 

symbols (o) correspond, respectively, to the exact and approximate core solutions. In (b),

the horizontal upper and vertical RHS scales are blown up to facilitate a better appreciation

of the boundary layer structure (dash line).  . 01.0=Dλ
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Fig. 5: The difference between the computed velocities at the boundary and the exact

values. M=L=5, h=1, and U . 1)( =+ XEE
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Fig. 6: The difference between the slender cavity’s one-dimensional solution 

and the solution of the biharmonic equation when h=5, α=1 (a) and α= -1 
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Fig. 7: Streamline patterns for electroosmotic flow with uniform ζ potentials at the top and
bottom surfaces. U+=1 and U-=α. h=1 and M=L=5. (a) α= -1, (b) α= 1, (c) α= 0, and (d) α=
0.5 

-1 0 1
-1

0

1
(a)

-1 0 1
-1

0

1
(b)

-1 0 1
-1

0

1
(c)

-1 0 1
-1

0

1
(d)

 
Fig. 8: Streamline patterns for electroosmotic flow with non-uniform zeta potentials at the top and
bottom surfaces.h=1 and M=L=5. When -h≤X≤0, U+= -1 and U-= -α. When 0≤X≤h, U+= 1 and U-

=α. (a) α= -1, (b) α= 1, (c) α= -0.5, and (d) α= 0.5
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Fig.9: The effect of the gap width (c) between two zones of different ζ potentials on the streamline

patterns.  When -h≤X≤ -c, U+= -1 and U-= -α.  When c≤X≤h, U+= 1 and U-=α, and when |X|<c, 

U+= U-=0. (a) c=0.1 and  α=-1 (b) c=0.5 and  α=-1 , (c) c=0.1 and  α=1, and (d) c=0.5 and α=1. 

h=1 and M=L=5. 
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Fig. 10: Streamline patterns for the electroosmotic flow with non-uniform zeta potentials at the

top and bottom surfaces. h=1 and M=L=5. When -h≤X≤0, U+=-0.5 and U-=α1. When 0≤X≤h,

U+=1 and U-=α2. (a) α1=0.5, α2= -1, (b) α1=-0.5, α2= 1, (c) α1=1, α2=-0.5, (d) α1=-1, α2= 0.5 
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Fig. 11: Stroboscopic images of the flow field induced by protocol AB when T=0 (a);  

T=1(b); T=2 (c); and T=8 (d). (X0, Y0)=(0,0.01), 0<t<3000T, h=1, and M=L=5 
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Fig. 12: Stroboscopic images of the flow field induced by protocol AB when T=0.6. (X0, Y0)= (-0.4, 0), (-

0.25, -0.5), (-0.25, -0.4), (-0.1, -0.2), (-0.1, -0.3), (0, 1.0e-3),  (0.1, 0.2), (0.1, 0.3), (0.25, 0.4), (0.25, 0.5), 

and (0.45, 0). h=1 and M=L=5. 

 
 

 

 
Fig. 13: Stroboscopic images of the flow field induced by protocol ABCD when T=0 (a); T=2(b);

and T=4 (c). (X0, Y0)=(0.3,0.3), 0<t<3000T, h=1, and M=L=5. 
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Fig. 14: The deformation of a material blob of edge size 0.1 initially (t=0) centered at (0,0) when T=8. Stirring

protocol AB. (a) t=0; (b) t=2T; (c) t=4T; (d) t=6T; (e) t=7T; (f) t=8T; (g) t=10T; (h) t=12T; and (i) t= 20T 
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Fig.15: The deformation of a material blob of edge size 0.1 initially (t=0) centered at (0,0) when T=8. Stirring

protocol  ABCD. (a) t=0; (b) t=1T; (c) t=2T; (d)t=3T; (e)t=4T; (f) t=5T; (g)t=6; (h) t=7T; and (i) t= 20T 
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