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Geometry of locating sounds from differences in travel time: Isodiachrons

Abstract
Calling animals may be located from measurements of the differences in acoustic travel time at pairs of
receivers. For inhomogeneous fields of speed, locations can be made with better accuracy when the location
algorithm allows the speed to vary from path to path. A new geometrical shape, called an isodiachron, is
described. It is the locus of points corresponding to a constant difference in travel time along straight paths
between the animal and two receivers. Its properties allow an interpretation for locations when the speed
differs from path to path. An algorithm has been developed for finding the location of calling animals by
intersecting isodiachrons from data collected at pairs of receivers. When the sound speed field is spatially
homogeneous, isodiachrons become hyperboloids. Unlike a hyperboloid that extends to infinity, an
isodiachron is confined to a finite region of space when the speeds differ between the animal and each of two
receivers. Its shape is significantly different than a hyperboloid for cases of practical interest. Isodiachrons can
be used to better understand locations of calling animals and other sounds in the sea, Earth, and air.
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Geometry of locating sounds from differences in travel
time: Isodiachrons

John L. Spiesberger
Department of Earth and Environmental Science, 240 S. 33rd St., University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6316

~Received 2 June 2004; revised 15 August 2004; accepted 16 August 2004!

Calling animals may be located from measurements of the differences in acoustic travel time at pairs
of receivers. For inhomogeneous fields of speed, locations can be made with better accuracy when
the location algorithm allows the speed to vary from path to path. A new geometrical shape, called
an isodiachron, is described. It is the locus of points corresponding to a constant difference in travel
time along straight paths between the animal and two receivers. Its properties allow an interpretation
for locations when the speed differs from path to path. An algorithm has been developed for finding
the location of calling animals by intersecting isodiachrons from data collected at pairs of receivers.
When the sound speed field is spatially homogeneous, isodiachrons become hyperboloids. Unlike a
hyperboloid that extends to infinity, an isodiachron is confined to a finite region of space when the
speeds differ between the animal and each of two receivers. Its shape is significantly different than
a hyperboloid for cases of practical interest. Isodiachrons can be used to better understand locations
of calling animals and other sounds in the sea, Earth, and air. ©2004 Acoustical Society of
America. @DOI: 10.1121/1.1804625#

PACS numbers: 43.80.Ev@WWA# Pages: 3168–3177

I. INTRODUCTION

Differences in the travel time of acoustic and electro-
magnetic waves are commonly used to locate objects. Appli-
cations include the global positioning system1 ~GPS! and the
passive location of calling animals.2–9 When the speed of the
signal is constant, the difference in travel times can be con-
verted to the difference in distances by multiplying the dif-
ference in travel times by the speed. Then the method of
location is usually interpreted using hyperboloids10,11 be-
cause the hyperboloid is the locus of points whose difference
in distance from two points is constant. The hyperbola may
have been discovered by the ancient Greek mathematician
Menaechmus~circa 350 B.C.! ~p. 280-281, Vol II, Ref. 12!,
but this is not certain as most original writings have been
lost. Other geometrical interpretations of location have also
been found.11,13,14

The single-speed approximation is good enough for
some but not all applications. For greater accuracy, methods
are used that allow the speed to differ from path to path,
while still maintaining the picture of signals traversing
straight line segments. Scientists have developed these ap-
proaches for application to acoustic navigation in the
sea,15–17and to the passive location of calling animals in the
sea and air.9,18Then the question arises as to whether there is
a geometrical shape, which cannot be a hyperbola, that can
be used to interpret such locations when a constant speed is
not used.

The purpose of this paper is to show that such a shape
exists and to use it to interpret these methods of location. The
shape appears to have not been shown previously in the sci-
entific or mathematical literature, except for a paper that
gives its definition without showing its shape or describing
its properties.18 It is therefore necessary to use simple calcu-

lations to describe the properties of this shape, called an
‘‘isodiachron,’’ from the Greek words ‘‘iso’’ for same, ‘‘dia’’
for difference, and ‘‘chron’’ for time. It is the locus of points
along which the difference intravel time is constant. It re-
duces to a hyperboloid when the average speed of the signal
is the same on both paths. The isodiachron is the natural
shape to intersect to find the location of an animal when the
speed differs from path to path. In fact, the algorithm in Ref.
18 yields a probability density function for location using
isodiachrons.

Unless noted otherwise, the phrase ‘‘effective speed’’ is
defined to be the time for the acoustic or electromagnetic
signal to propagate from the animal to the receiver divided
by the Euclidean distance. Thus the effective speed includes
all spatially and temporally varying effects including those
due to refraction, diffraction, and, for acoustic signals, ad-
vection such as that due to winds or currents. Because of
advection, the effective speed from the animal to the receiver
can be different than from the receiver to the animal. The
word ‘‘speed’’ will not include effects from advection.

Section II reviews some of the reasons and methods that
have been used to infer location when the effective speed is
spatially inhomogeneous. There must be other methods that
have been used as well, and the list of examples here is not
intended to be complete. What is important about this section
is that it highlights some of the pitfalls in hyperbolic location
methods in situations where the effective speed is not con-
stant from path to path. Section III provides the calculations
that define the isodiachron and its behavior. The paper ends
with a short summary, and provides a speculation as to why
the ancient Greek mathematicians did not apparently con-
template an isodiachron.
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II. HYPERBOLIC LOCATION IS LESS ACCURATE AND
SOMETIMES INCORRECT

A. Underwater navigation

Hydrophones are sometimes lowered from a ship to the
seafloor to locate acoustic emissions from a variety of ob-
jects. There is considerable interest in determining the posi-
tion of each hydrophone on the bottom so that locations of
acoustic emissions can be made accurately.

Quite often, the positions of the hydrophones are esti-
mated by towing an accurately located source from the ship
while the hydrophones on the bottom pick up these calibra-
tion signals. Suppose the clock for the hydrophone time se-
ries has an unknown offset with respect to the clock govern-
ing the towed source. The unknown clock offset is removed
from the problem by working with differences of signal
travel time at the hydrophone. The travel times change pri-
marily because the source transmits from different locations.
Until recently, this was usually treated as a standard hyper-
bolic location problem.

In the sea, the effective speed of sound between the
source and hydrophone varies with source location.15–17 To
explain why, assume for simplicity that the speed of sound
varies with depth only. The actual time for sound to reach a
hydrophone on the bottom from the surface depends on the
speed of sound along a ray path, which is not straight be-
cause it bends due to refraction. If the ray path were straight,
the effective speed of sound would be the same for all source
locations at the surface. But the bending changes the effec-
tive speed of sound. For cases of interest, this effective speed
can be pre-computed in a table of speed versus slant angle to
and depth of the receiver.15,17This table can be accessed by a
location algorithm.15,16

The equations relating location to differences in travel
time are nonlinear.15,16 When these equations are linearized
about a good initial guess for hydrophone location, a least-
squares problem for hydrophone location and clock offset
between the source and hydrophone can be solved by iterat-
ing the linearized equations to minimize the residuals in a
determined or overdetermined problem.15,16 The method,
called the ‘‘inhomogeneous algorithm’’ here, allows one to
assume that different paths have the same or different effec-
tive speeds. The inhomogeneous algorithm looks up the ef-
fective speed along each path as it iterates for the location of
the hydrophone on the bottom.15,16 An estimate of the error
obtained from hyperbolic location has been investigated as
follows.

Using a realistic profile of sound speed in the Atlantic, a
simulated hydrophone at 1600 m depth is estimated to have a
depth error of about 3 m when located using hyperbolic
methods~Table I, case 5, Ref. 16!. When the effective speed
of sound is allowed to vary from path to path from a pre-
computed database, the inhomogeneous algorithm yields the
correct depth for the hydrophone~Table I, Case 6, Ref. 16!.
For real data with a similar geometry, the hyperbolic location
algorithm yields a 3 merror compared with the inhomoge-
neous location algorithm~Cases 2 and 4 in Table 2.3 of Ref.
15!. There are situations where 3 m errors in hydrophone

locations are significant. Errors in the locations of receivers
often translate to much larger errors in source location.11,19

B. Solutions for animal location in air

Naturalists, biologists, acousticians, and others estimate
locations of sounds from differences of travel time on widely
separated microphones in air.20–25 Problems with hyperbolic
location are highlighted by considering a geometry where an
animal is located at Cartesian coordinate~20,100,7! m and its
signals are monitored at five microphones at~0,0,0!, ~25,0,3!,
~50,3,5!, ~30,40,9!, and~1,30,4! m respectively. For definite-
ness, assume the animal’s call has a rms. bandwidth of 1000
Hz and, following the cross correlation of the signal between
each pair of microphones, the peak signal-to-noise ratio is 20
dB. The lag of this peak has a standard deviation of 16ms
~Ref. 26!, where the lag is the difference in the travel time of
sound between the animal and two receivers. Such accuracy
can be achieved in practice.

A sequential nonlinear Monte Carlo technique is used to
estimate the probability density function for location from
simulated lags.18 The technique can accommodate spatially
homogeneous or inhomogeneous effective speeds, and al-
lows one to account for errors in the locations of the micro-
phones. Realisticprior distributions of errors are permitted
for all variables. Distributions of location can be compared
with the same statistical assumptions except for the fact that
in one case the effective speed is spatially homogeneous, and
in the other, spatially inhomogeneous. Other algorithms may
also be suitable for generating realistic location distributions,
but it does not seem prudent to summarize or compare such
techniques because the main point of this paper is not cen-
tered on a review of techniques.

Simulated lags are computed without noise for a speed
of sound of 330 m/s and for a horizontal wind blowing at 10
m/s toward the positivey Cartesian axis.A priori distribu-
tions of the remaining variables are taken to be Gaussian but
truncated at two standard deviations~Table I!. The accurate
locations of the receivers are typical for those surveyed op-
tically. It is necessary to accommodate the effects of wind for
hyperbolic location without allowing the effective speed to
vary from path to path. This can be done in two ways, neither
of which is satisfying.

The first accommodation is to let the necessarily spa-
tially homogeneous effective speed vary by an amount equal
to the variations from path to path, i.e., a standard deviation
of 10 m/s~Table I, Hyperbolic Location 1!. The second ac-
commodation is to artificially increase the measured error in
the difference in travel times from 16ms to that which would
be due to the change in lag due to path speed variations of
dc5610 m/s over distances of the acoustic paths. An order-
of-magnitude estimate of this effect can be obtained by using
equal path lengths,L, given by the length scale of the array.
The effect is

st'A~Ldc/c2!21~Ldc/c2!2, ~1!

where to first order, the variation in travel time for one path
is Ldc/c2 andst denotes the standard deviation of the dif-
ference in acoustic travel time between the animal and two
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receivers. ForL550 m, dc510 m/s, andc5330 m/s, we
get st50.00649 s. This artificial increase is about two or-
ders of magnitude greater than the 16ms accuracy that can
be obtained for the signal limited by noise~Table I, Hyper-
bolic Location 2!.

There is no difficulty accommodating inhomogeneous
effective speeds with isodiachronic location. In this case, the
speed of sound has zero variation about the mean of 330 m/s,
and they component of the wind is given a standard devia-
tion of 10 m/s about a mean of 0 m/s~Table I, Isodiachronic
Location!.

Following application of the sequential nonlinear Monte
Carlo algorithm, incorrect animal locations are obtained
when the effective speed is assumed to be spatially homoge-
neous~Table I, Hyperbolic Location 1!. Indeed, the animal’s
100% confidence limits fory are 102.0 to 108.1 m, but its
actualy coordinate is 100 m. The 100% limits do not extend
to infinity because thea priori distributions of error are trun-
cated at two standard deviations. So givena priori distribu-
tions of receiver locations, travel time differences, and envi-
ronmental variations, this hyperbolic location method always
yields incorrect answers for the location of the animal.

If the second hyperbolic location model is used with
large errors in the lags~Table I, Hyperbolic Location 2!, the
100% confidence limits are:x between2312 and1207 m,
y between 55 and 12 000 m, andz between21200 and
1410 m. These bounds contain the correct location of the
animal, but they are so large as to be useless. The 95% con-
fidence limits are:x between 13 and 33 m,y between 57 and
540 m, andz between266 and115 m. These bounds are
about the same scale as the array itself, and still quite large
and probably not useful.

With isodiachronic location, 95% confidence limits for
the animal arex:16.6– 20.5 m, y:98.8– 101.7 m,z:3.5–
40.5 m. These are statistically consistent with the correct lo-
cation at~20,100,7! m. The large variation inz stems from
the fact that the animal and receivers are nearly coplanar.
Other confidence limits could be given but they are not
shown because the point is that isodiachronic location yields
a correct answer at a stringent confidence of 95%, and there-

fore at 100% confidence as well. This demonstrates that hy-
perbolic methods yield incorrect or useless locations whereas
the isodiachronic method yields useful and statistically cor-
rect locations.

C. Global positioning system

The GPS is used to locate receivers from differences of
travel time from synchronized emissions of electromagnetic
waves from satellites. One of the largest sources of location
error is the variation of the group speed of electromagnetic
waves for different paths through the ionosphere.1 If one uses
a GPS receiver that monitors only the single L1 frequency,
the typical residual after correcting for the GPS-broadcasted
ionospheric correction is 4 m, but could be many times that
amount.27 These errors translate to location errors of about
30 m both horizontally and vertically. If one assumes loca-
tions are obtained using a hyperbolic technique, no accom-
modation can be made for the differences in effective speed
from path to path, and these errors would be difficult to
suppress without further information. In this situation, one
could use an algorithm for location that accommodates varia-
tions in the effective speed on a path-by-path basis. Such
algorithms would yield more accurate estimates of location
than hyperbolic algorithms.

III. GEOMETRY OF ISODIACHRONS

Since there is a need for locating signals with high ac-
curacy in spatially inhomogeneous fields of effective speed,
it would be desirable to develop a geometrical interpretation
of the problem as has been done when the effective speed is
spatially homogeneous.10,11,13,14

A hyperboloid is the locus of pointss whose difference
in distance,di j , from two points is constant. These points
satisfy

ir i2si2ir j2si5di j , ~2!

where the coordinates of the points~receivers here! are r i

and r j . Let t i and t j denote the time for sound to travel
between the source and each receiver, respectively, and de-

TABLE I. A priori distributions of independent variables involved in determining the location of a calling animal in air via hyperbolic and isodiachronic
methods. Both methods yield distributions for animal location from the differences in simulated arrival times at five microphones. Hyperbolic location requires
the effective speed to be the same for each acoustic path whereas isodiachronic location does not. Distributions~probability density functions! are Gaussian
with indicated means and standard deviations except all are truncated at two standard deviations. ‘‘True’’ indicates a variable’s mean is error-less. They
component of the wind is modeled for isodiachronic location but cannot be modeled in hyperbolic location. Instead, this wind is accounted for by including
a variation of 10 m/s for the standard deviation of effective sound speed in hyperbolic location~method 1! or by artificially increasing the measured error in
the lag from 16ms to 0.006 49 s~method 2! via Eq.~1!. A priori errors are zero for receiver one, they andz coordinates of receiver two, and thez coordinate
for receiver three. These coordinates merely define the origin and orientation of the coordinate system.

A Priori distributions

Variable Symbol

Hyperbolic location 1 Hyperbolic location 2 Isodiachronic location

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Cartesian r i(x) True 0.02 m True 0.02 m True 0.02 m
Receiver r i(y) ’’ ’’ ’’ ’’ ’’ ’’
Coordinate r i(z) ’’ ’’ ’’ ’’ ’’ ’’
Cartesian u(x) 0 0 0 0 0 0
Wind u(y) 0 0 0 0 0 10
Component u(z) 0 0 0 0 0 0
Sound speed c 330 10 330 0 330 0
Lag t i j True 16ms True 0.006 49 s True 16ms
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fine the lag ast i j [t i2t j . When the effective speed isc, Eq.
~2! is the same as

ir i2si2ir j2si5ct i j , ~3!

which is described in Cartesian coordinates with a polyno-
mial of degree two.

An isodiachron is defined to be the locus of points sat-
isfying

t i2t j5t i j , ~4!

where the effective speed depends on the spatial coordinates
of the paths. Then Eq.~4! is

ir i2si
ci~s!

2
ir j2si
cj~s!

5t i j , ~5!

whereci(s) andcj (s) denote the effective speeds to receivers
i and j , respectively, as a function ofs.

In some of what follows, it is useful to consider isodi-
achrons whereci(s) andcj (s) do not depend on locations.
This is called a ‘‘class one isodiachron.’’ Isodiachrons of
other classes are those given by Eq.~5! for which ci(s) and
cj (s) depend ons. Paradoxically, class one isodiachrons are
useful for estimating probability density functions for the
location of an animal in all realistic situations whereci(s)
andcj (s) do depend ons because of another algorithm that
uses class one isodiachrons in a particular way.18 This para-
dox is resolved in Sec. III A.

The two-dimensional isodiachron approximates a hyper-
bola in a limited region~Fig. 1!. Unlike a hyperbola, isodi-

achrons contain no points at infinity whenci(s) is unequal to
cj (s) and when the receivers are separated by a finite dis-
tance. Instead, the assumption that the difference in propaga-
tion time be constant and that the effective speeds differ,
constrains such isodiachrons to finite regions of space~Fig.
1!. The proof which follows is true for isodiachrons ofall
classes and for all realistic effective speeds as long asci(s)
andcj (s) differ.

We write the definition of an isodiachron

t i j [t i2t j5
di

ci~s!
2

dj

cj~s!
, ~6!

wheredi and dj are the distances between the animal and
receiversi and j , respectively. By assumption,ci(s) is un-
equal tocj (s). For all points in space we have

di5dj1D, ~7!

whereD must be less than or equal to the distance between
the receivers, so

D<ur i2r j u,`, ~8!

since the receiver separation,ur i2r j u, is finite. Substitute Eq.
~7! into Eq. ~6! and simplify to get

t i j 5dj S 1

ci~s!
2

1

cj~s! D1
D

ci~s!
. ~9!

All measured lags,t i j , are finite and the only way to obtain
these finite values forci(s)Þcj (s) is to demand thatdj be

FIG. 1. A, B: Two-dimensional hyperbola~dashed! compared with two-dimensional isodiachron~solid!. Locations of the two receivers~asterisks! are at
Cartesian coordinates (21,0) and~1,0!. The effective speeds of sound between the calling animal and receivers one and two are 330 and 340 m s21,
respectively. The lag,t12 , is 10.0015 s. The hyperbola is computed for an effective speed of 330 m s21. C, D: Same except the lag is20.0015 s.
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finite becauseD is finite @Eq. ~8!#. Therefore, all points on an
isodiachron are a finite distance from the receivers when
ci(s)Þcj (s).

Several facts concerning class one isodiachrons are use-
ful. We derive an expression fory(x), the locations of theirx
intercepts, and the bounds for their lags. Some of the more
complicated algebraic expressions were obtained from a
symbolic mathematical software program.

When the effective speeds,ci andcj , do not depend on
s, the isodiachron can be expressed in Cartesian coordinates
with a polynomial of degree four.18 The polynomial coeffi-
cients of degree three and four go to zero whenci and cj

approach the same valuec, leaving a second degree polyno-
mial describing a hyperbola. For class one isodiachrons in
two spatial dimensions, Eq.~5! reduces to

a1y41a2y21a350, ~10!

where

a1[
cj

422ci
2cj

21ci
4

ci
4cj

4 , ~11!

a2[2~ci
4cj

4!21~cj
4x21cj

4x0
21ci

4x21ci
4x0

222cj
2x2ci

2

12cj
4xx022cj

2ci
2x0

22cj
4t i j

2 ci
22t i j

2 ci
4cj

222ci
4xx0!,

~12!

a3[x4~cj
422ci

2cj
21ci

4!/~ci
4cj

4!1~ci
4cj

4!21~cj
4x0

4

14cj
4x3x016cj

4x2x0
214cj

4xx0
322cj

2x0
4ci

21t i j
4 ci

4cj
4

24ci
4x3x016ci

4x2x0
224ci

4xx0
322cj

4x2t i j
2 ci

2

14cj
2x2ci

2x0
224cj

4xx0t i j
2 ci

222cj
4x0

2t i j
2 ci

21ci
4x0

4

22t i j
2 ci

4cj
2x214t i j

2 ci
4cj

2xx022t i j
2 ci

4cj
2x0

2!, ~13!

where the receivers are at Cartesian coordinates (2x0,0) and
(x0,0) andx0.0. The solution fory in terms ofx can be
simplified by substitutingz5y2 in Eq. ~10! which yields a
quadratic equation inz. If z is real valued and non-negative,
solutions fory are given by6Az for a given value ofx.
Equation~10! describes a hyperbola whenci5cj .

The intersection of a class one isodiachron with thex
axis occurs wheny is zero in Eq.~5! which yields

cj ux1x0u2ci ux2x0u5cicjt i j , ~14!

wherex is thex coordinate ofs. The solutions are

x5
cicjt i j 1~ci1cj !x0

ci2cj
; x,2x0 , ~15!

x5
cicjt i j 1~ci2cj !x0

ci1cj
; 2x0<x<x0 , ~16!

x5
cicjt i j 2~ci1cj !x0

cj2ci
; x0,x. ~17!

We now investigate the possible values fort i j givenx0 ,
ci andcj . These are derived from Eqs.~15!–~17!

t i j 5
2cj~x1x0!1ci~x2x0!

cicj
; x,2x0 , ~18!

t i j 5
cj~x1x0!1ci~x2x0!

cicj
; 2x0<x<x0 , ~19!

t i j 5
cj~x1x0!2ci~x2x0!

cicj
; x0,x. ~20!

For the first case (x,2x0), t i j equals22x0 /cj as x→
2x0 . For x,2x0

]t i j

]x
5

ci2cj

cicj
; x,2x0 , ~21!

so whenci,cj

22x0 /cj<t i j ,`; x,2x0 ; ci,cj . ~22!

Similarly whenci.cj

2`,t i j <22x0 /cj ; x,2x0 ; ci.cj . ~23!

For the second case (2x0<x<x0), t i j equals22x0 /cj

and 12x0 /ci at x equal to 2x0 and x0 , respectively. In
between, we have

]t i j

]x
51/ci11/cj ; 2x0<x<x0 , ~24!

which is positive. Thus the values oft i j increase linearly in
this line segment and

22x0 /cj<t i j <2x0 /ci ; 2x0<x<x0 . ~25!

For the third case (x0,x), t i j equals 2x0 /ci at x5x0 .
For x0,x

]t i j

]x
5

cj2ci

cicj
; x0,x. ~26!

So whenci,cj ,

2x0 /ci,t i j ,`; x0,x; ci,cj ~27!

and whenci.cj

2`,t i j ,2x0 /ci ; x0,x; ci.cj . ~28!

We see thatt i j has a minimum value of22x0 /cj when ci

,cj and that thex axis is crossed twice except whent i j is
the minimum value in which case the class one isodiachron
touches thex axis once at2x0 ~Fig. 2!. Similarly, t i j has a
maximum value of 2x0 /ci whenci.cj , and the isodiachron
crosses thex axis twice except whent i j is maximum in
which case the isodiachron touches thex axis once atx0

~Fig. 3!.
We now prove that the lag bounds on thex axis (t i j >

22x0 /cj for ci,cj and t i j <2x0 /ci for ci.cj ) are the
bounds for all points on a class one isodiachron. This can be
proved by showing that all such isodiachrons intersect thex
axis because then the lag is constant everywhere on an iso-
diachron. We know that all class one isodiachrons are sym-
metric about thex axis because all class one isodiachrons
have values ofy given by6Az @see sentences following Eq.
~13!#. The isodiachron is a continuous function iny(x) be-
cause it is a polynomial. For two points on an isodiachron
given by 6y(x), there must then either be a curve joining
them through infinity~which is impossible as shown above!,
or the curve must join them through finite values and thus
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cross thex axis at a value given by Eqs.~15–17!. Thus the
lag bounds given for class one isodiachrons on thex axis are
valid for all class one isodiachrons because all class one
isodiachrons touch thex axis.

A three-dimensional isodiachron can be formed by rotat-
ing the two-dimensional isodiachron around thex axis ~Fig.
1!. The closed form solution for isodiachronic location can
yield four solutions from four receivers. This can be under-
stood geometrically as follows. The first pair of receivers
constrains the source to a class one isodiachron. A third re-
ceiver introduces a second isodiachron which can intersect
the first one along two different closed curves~e.g., in the
region betweenx between 0.5 and 1 in panel B of Fig. 1!. A
fourth receiver introduces a third isodiachron which can in-
tersect the two closed curves at at most four points. In this

case, a fifth receiver is needed to determine which of the four
points is correct.

Because class one isodiachronic and hyperbolic surfaces
can deviate significantly from one another in the vicinity of
the receivers, hyperbolic locations can yield incorrect an-
swers while isodiachronic locations are correct, even when
accounting for errors.

A. Class one isodiachrons are useful when the
effective speed is spatially inhomogeneous

The paradox is that class one isodiachrons are useful for
estimating the probability density function for an animal’s
location when the effective speed varies in any realistic man-
ner, including effects from advection. Understanding the
paradox comes from the way this isodiachron is used by a
Monte Carlo algorithm.18

A constellation is the minimum number of receivers
needed to yield unambiguous solutions for location. For
three-dimensional locations without prior knowledge of the
animal’s location, the constellation consists of four or five
receivers, depending on the location of the animal.18

An analytical solution for the animal’s location is avail-
able for any constellation.18 The solution requires~1! the
effective speeds between the animal and each receiver,~2!
locations of the receivers, and~3! the values of the lags.
When the effective speed includes advective effects, the al-
gorithm needs to do an extra step because the effective speed
depends on the location of the animal, but one does not ini-
tially know the location of the animal without using the ana-
lytical solution. A solution to this problem is given later, but
for now it is important to state that no first guess for the
animal’s location is made by any hyperbolic location tech-
nique. The relevant part of the Monte Carlo algorithm is
explained next.18

When the effective speeds are unaffected by advection,
the Monte Carlo algorithm adopts any realisticprior prob-
ability density functions for~1! the effective speed between
the animal and each receiver,~2! the errors in the Cartesian
coordinate of each receiver in the constellation, and~3! the
measured lags. A sample is drawn from each of the distribu-
tions yielding a set called a ‘‘configuration.’’ A configuration
that does not yield at least one real-valued solution for loca-
tion is discarded because the samples could not have jointly
occurred. A ‘‘valid configuration’’ is one where there is at
least one real-valued analytical solution for location. Each
real-valued analytical solution for location is a point at which
class one isodiachrons from all possible receiver pairs inter-
sect. The Monte Carlo algorithm has established one set of
effective speeds between the animal and each receiver in the
constellation from the valid configuration. The Monte Carlo
algorithm continues to find a sufficient number of valid con-
figurations such that convergence is obtained for the prob-
ability distribution of the animal’s location. The collection of
effective speeds from all Monte Carlo runs provides an esti-
mate for all the effective speeds that are consistent with the
data, the cloud of possible animal locations, and the clouds
of possible receiver locations.

Class one isodiachrons are a mathematically and com-
putationally convenient and efficient means for obtaining the

FIG. 2. The lags,t i j , for isodiachrons as a function of theirx intercepts.
Receiversi and j are at Cartesian (x,y) coordinates (2x0,0) and (x0,0),
respectively. The effective speeds of the signal between receiversi and j and
the isodiachron areci andcj , respectively, andci,cj . t i j 5t i2t j where the
times for the signal to travel between the isodiachron and receiversi and j
are t i and t j respectively. Note that the lags must occur in the interval
22x0 /cj<t i j ,` @Eqs.~22!, ~25!, and~27!#.

FIG. 3. Same as Fig. 2 exceptci.cj . In this case all isodiachrons have lags
t i j <2x0 /ci @Eqs.~23!, ~25!, and~28!#.
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distribution of the animal’s location because they accommo-
date an analytical solution for location when the effective
speed differs from path to path and they accommodate mod-
els for sound speed and advection that are realistic when
used with the Monte Carlo algorithm.18 More specifically,
the analytical solution for location is derived18 by using the
fact that ir i2si25ci

2t i
2 , and then subtracting the equation

for i 51 from the equations fori .1 whereci is a specified
effective speed that is independent of the animal’s location.
When the equation fori 51 is subtracted from any other
equation fori .1, the resulting equation specifies that the
animal resides somewhere on the locus of points for which
the difference in travel time to receiversi .1 and i 51 is a
constant. This is a class one isodiachron. With a constella-
tion, one has enough difference equations to yield an analyti-
cal solution for location.18

Consider an effective speed that is affected by advec-
tion, such as wind. A configuration is drawn from prior dis-
tributions of the~1! wind, ~2! speeds,~3! receiver coordi-
nates,~4! lags, and~5! the location of the animal,s. This
configuration contains draws from theprior wind and source
distributions. These were not drawn when advection was un-
important. One can always form a prior distribution for the
location of the animal because one can use a uniform distri-
bution in space with boundaries that are so large as to en-
compass every possible location. For example, one could
know that sounds from a cricket would originate within 200
m of a receiver. Next, the effective speed between the animal
and each receiver is obtained from

ci5Ci1U+~s2r i !/di , ~29!

whereCi is the draw from the speed distribution~the scalar
field!, U is the draw from the vector wind distribution and
the open circle denotes dot product. Note that this draw for
the effective speed depends on a random guess for the loca-
tion of the animal. The analytical solution for location is now
obtained as before, yielding locations1 . The closest real-
valued solution,s1 , to the randomly chosen location for the
animal,s, is accepted if

us12su,e, ~30!

wheree is some small value such as 0.1 m. If all analytical
solutions,s1 , are complex, they are discarded and a fresh
draw is made for a configuration. Otherwise, the effective
speed is updated from Eq.~29! using s1 in place ofs. This
procedure iterates a maximum number of times. On each
iteration the analytical solution for location is accepted if the
difference between the analytical solution fors and the most
recent guess fors is less thane. We then have a valid con-
figuration. The configuration is discarded if the maximum
allowed number of iterations is exceeded, and one starts with
fresh draws for the five categories of variables until one has
sufficient numbers of valid configurations to yield accurate
estimates of the distribution of the animal’s location. Be-
cause effects from advection are incorporated into the effec-
tive speed, the geometrical interpretation for the analytical
solution for location is based on class one isodiachrons as
before. We see that realistic variations of advection and

sound speed are accounted for in the probability distribution
of the animal’s location.

B. Example in air

Consider a two-dimensional geometry where five receiv-
ers are located at Cartesian coordinates~0,0!, ~25,0!, ~50,3!,
~30,40!, and~5,30! m ~Fig. 4!. An animal is located at~22,2!
m. The speed of sound is assumed to be a typical 330 m/s,
and a wind is blowing in the positivey direction at 10 m/s.
With R receivers there are

Nt5R~R21!/2, ~31!

possible lags (t i j ,i 51,...,R21; j 5 i 11,...,R) so for R55,
we getNt510. All ten lags are computed without error and,
for each, the isodiachron and hyperbola are drawn. The hy-
perbolas are drawn for an effective speed of 330 m/s. Some
of the hyperbolas look like the isodiachrons and others do
not ~Fig. 5!. Isodiachrons all intersect the animal location
exactly, but the hyperbolas do not, as it is impossible for
them to accommodate variations in effective speed from path
to path with the hyperbolic assumption. No attempt has been
made to find a single effective speed that minimizes the re-
siduals from a central intersection point, but this is not im-
portant to do in this context because the hyperbolas would
not intersect at a point anyway, and some of their shapes are
quite different than the isodiachrons~Fig. 5!.

The location of the animal in Fig. 4 coincides with the
point of intersection of the isodiachrons because this ex-
ample uses error-less values for the variables that determine
location ~lags, receiver locations, and effective speeds!. The
presence of errors dictates that there are an infinite number of
possible animal locations consistent with measurements.
With truncated prior distributions of error for the pertinent
variables~lags, receiver locations, and effective speeds!, the
infinite number of possible locations can be confined to a
finite region. The nonlinear Monte Carlo algorithm18 draws
from the prior distributions of these variables to find animal
locations for which all ten isodiachrons intersect at one
point. These locations form clouds of feasible locations of
the animal. The feasible locations near the animal have sets
of 10 isodiachrons that look like those in Fig. 4.

C. Example in ocean

Consider a two-dimensional geometry where five receiv-
ers are located at Cartesian coordinates~0,0!, ~4000,0!,
~1500,3000!, (250,22000), and (2000,23000) m~Fig. 6!.
Suppose these receivers are located near a zonal front where
the speed of sound is 1500 m/s to the south and 1525 m/s to
the north of thex axis ~Fig. 6!. Suppose a whale calls at
(3960,220) m. Then the effective speed of sound is 1500
m/s for all receivers except the one at~1500,3000! m where
it is 1524.8 m/s because the signal crosses the front to the
north. Hyperbolic locations assume the effective speed is
1512.5 m/s. This is the average of the speeds on either side
of the front. Isodiachrons and hyperbolas are drawn without
data error.

Some of the hyperbolas look like isodiachrons, and oth-
ers do not~Fig. 6!. When isodiachronic location18 is used to
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locate the whale, theNt510 isodiachrons always intersect at
the same point. The hyperbolas can never intersect at the
same point, and their mismatches indicate the inability of
hyperbolic geometry to find a correct location when the ef-
fective speed differs from path to path. Even when one ac-
counts for errors in the effective speeds, the lags, and the
locations of the hydrophones, isodiachrons always intersect
at the same point and hyperbolas do not.18

D. Other examples

Isodiachrons could be used to locate animals when the
effective speeds are greatly different from path to path. For
example, a modeling study28 indicates that low-frequency
sounds from a fin whale could travel to hydrophones through
different paths. Some receivers close to the whale could pick
up only the first acoustic path through the sea, while other
distant receivers could pick up only the acoustic path that
propagates below the sea floor because the paths through the
water could be blocked by seamounts. The effective speed
through the water and solid Earth can differ by more than a
factor of 2.28

There are other possibilities. Sounds created by some
animals can reach receivers through both the air and the solid
Earth.29,30 Seals flap their flippers on the surface and the
sound propagates in air and water to distant receivers.31 All
these animals could be located with isodiachrons.

IV. CONCLUSION

When one seeks accurate locations for a calling animal
from measurements of the time differences of signals, con-
sideration must be paid to the differences in effective speed
along different paths if such differences exist. Differences in
effective speed are significant enough in air and water to
have led researchers to adopt models for location that allow
the effective speeds to differ from path to path.15–18Path-to-
path variations in effective speed are inconsistent with a geo-
metrical interpretation based on a hyperbola. Instead, one
can visualize a new geometrical shape, called an isodiachron,
to interpret location in this situation. The isodiachron is the

FIG. 4. Left column: The ten isodiach-
rons corresponding to the ten lags de-
rived from an animal at Cartesian co-
ordinate ~22,2! m ~circle! in air and
recorded at five receivers~X’s!. One of
the receivers at~25,0! m is close to the
animal so its X is not resolved but is
visible in Fig. 5. The bottom shows the
isodiachrons within a few meters of
the animal.Right column: Same ex-
cept these are the ten hyperbolas. The
speed of sound is 330 m/s and a spa-
tially homogeneous wind is blowing in
the positivey direction at 10 m/s. The
hyperbolas are derived by assuming
the effective speed of sound is 330
m/s. Note the hyperbolas do not inter-
sect at the same point nor do they in-
tersect the animal~bottom right!.
Some of the isodiachrons are similar
to the hyperbolas, and some are quite
different ~Fig. 5!.

FIG. 5. Same as Fig. 4 except only the isodiachron~solid! and hyperbola
~dashed! corresponding to one particular lag are shown.
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locus of points corresponding to a constant difference in
travel time along straight paths between the animal and two
receivers. Isodiachrons differ significantly in shape from hy-
perboloids for many problems of practical interest~Figs.
4–6!.

It seems interesting to speculate why ancient Greek
mathematicians did not think about isodiachrons. The hyper-
bola was discovered by them~pp. 280, 281, Vol II, Ref. 12!.
Why did they conceive of hyperbolas? Perhaps the answer to
this question is not currently known due to the loss of ancient
documents. But something is known about the motivation for
geometry and in the use of a hyperbola during these times.
The word ‘‘geometry’’ comes from the Greek words geo for
Earth and metron which means to measure. The emphasis on
measuring the Earth was a principal motivation for the
Greek’s development of this branch of mathematics.12

The earliest known written reference to a hyperbola
mentions Menaechmus who used it to solve the problem of
how long to make the side of a cube so as to double its
volume, a problem that today is solved by knowing how to
compute a cube root of a number~pp. 280, 281, Vol. II, Ref.
12!. There are two ancient documents describing the origin
of this problem. The first explains that God asked the Delians
via an oracle to double the size of an altar to rid themselves
of a plague~p. 257, Vol. I, Ref. 12!. The workman did not
know how to double a volume, and asked Plato for help, who
himself did not know the method of solution. The second
document explains that an ancient tragic poet portrayed Mi-
nos preparing a tomb for Glaucus in the shape of a cube
whose sides were a hundred feet in length. There was a de-
sire to double the volume as to be more suitable for royal
burial ~pp. 257–259, Vol. I, Ref. 12!. Thus the hyperbola’s
first known reference occurs in the context of solving a prac-
tical problem.

The idea of measuring location from the propagation
time of signals is conveniently done using electronic equip-
ment developed in the modern age. It is plausible that ancient
Greeks would not consider the isodiachron because it would
perhaps have been too distant from the problems of their day,
though they may have had the mathematical tools needed to
derive the geometrical shape.

Besides allowing a general physical interpretation for
location in spatially inhomogeneous media of effective
speed, isodiachrons are the geometrical shapes that are inter-
sected for an analytical solution for location18 ~Figs. 4, 6!.
Isodiachrons revert to hyperboloids when the effective speed
is spatially homogeneous.
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