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Hardware Implementation of a Visual-Motion Pixel Using Oriented
Spatiotemporal Neural Filters

Abstract
A pixel for measuring two-dimensional (2-D) visual motion with two one-dimensional (1-D) detectors has
been implemented in very large scale integration. Based on the spatiotemporal feature extraction model of
Adelson and Bergen, the pixel is realized using a general-purpose analog neural computer and a silicon retina.
Because the neural computer only offers sum-and-threshold neurons, the Adelson and Bergen's model is
modified. The quadratic nonlinearity is replaced with a full-wave rectification, while the contrast
normalization is replaced with edge detection and thresholding. Motion is extracted in two dimensions by
using two 1-D detectors with spatial smoothing orthogonal to the direction of motion. Analysis shows that
our pixel, although it has some limitations, has much lower hardware complexity compared to the full 2-D
model. It also produces more accurate results and has a reduced aperture problem compared to the two 1-D
model with no smoothing. Real-time velocity is represented as a distribution of activity of the 18 X and 18 Y
velocity-tuned neural filters
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Hardware Implementation of a Visual-Motion Pixel
Using Oriented Spatiotemporal Neural Filters

Ralph Etienne-Cummings,Member, IEEE, Jan Van der Spiegel,Senior Member, IEEE, and Paul Mueller

Abstract—A pixel for measuring two-dimensional (2-D) vi-
sual motion with two one-dimensional (1-D) detectors has been
implemented in very large scale integration. Based on the spa-
tiotemporal feature extraction model of Adelson and Bergen, the
pixel is realized using a general-purpose analog neural computer
and a silicon retina. Because the neural computer only offers
sum-and-threshold neurons, the Adelson and Bergen’s model is
modified. The quadratic nonlinearity is replaced with a full-
wave rectification, while the contrast normalization is replaced
with edge detection and thresholding. Motion is extracted in two
dimensions by using two 1-D detectors with spatial smoothing
orthogonal to the direction of motion. Analysis shows that our
pixel, although it has some limitations, has much lower hardware
complexity compared to the full 2-D model. It also produces more
accurate results and has a reduced aperture problem compared
to the two 1-D model with no smoothing. Real-time velocity is
represented as a distribution of activity of the 18XXX and 18 YYY
velocity-tuned neural filters.

Index Terms—Vision chips, visual motion detection, VLSI neu-
ral filters.

I. INTRODUCTION

T HE VISUAL-motion detection mechanism employed by
insects, such as flies, and primates are quite different.

The effective computations performed by these organizms,
however, have been shown to be identical [1], [2]. For in-
sects, motion estimation is performed very early, immediately
following the light-sensitive omatidia, while for primates, the
motion center is area medial temporal (MT) in the cortex
[3], [4]. As a result, the fly’s motion-detection neural circuits
can be modeled with mostly nearest neighbor correlation of
the omatidia outputs to extract both direction and speed of
moving light patches. There are obvious survival benefits for
the early implementation of visual motion detection in flies.
Hence, the insect visual motion neural networks are designed
to optimally match the expected spatiotemporal characteristics
of the environment in which they live, and are consequently
narrowband and velocity-specific detectors. For primates, on
the other hand, the visual tasks required for survival are
much more complex. The environment in which primates live
has a wide range of spatiotemporal frequencies, and motion
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estimation must be performed on targets with a wide velocity
dynamic range. Since primates are visual animals, a large
portion of the cortex is dedicated to visual processing, which
is also integrated with other sensing, reasoning and behavioral
centers of the brain. Consequently, the method employed for
primate visual-motion estimation exploits the availability of
a large amount of wetware to realize robust, wide dynamic
range, general-purpose motion-estimation circuits.

Attempts to implement visual-motion estimation in VLSI
hardware have followed the fly’s model [5], [6]. This has
been influenced strongly by the limited space and power
available to realize focal-plane motion detection circuits which
can be easily integrated on behaving systems such as robots,
autonomous vehicles, and gaze controllers. Consequently, the
last few years have produced some elegant focal-plane motion
detection circuits based on the fly’s model, while expanding
its spatiotemporal bandwidth and dynamic range [6]–[9]. The
approach presented here is not a competitor for these compact
focal-plane solutions. Our method requires too much hardware
for focal-plane implementation. It is, however, intended for
the scenario where a functional “silicon cortex,” with many
neurons, synapses, and axon/dendrites, is available and applied
to a problem requiring visual motion as a prerequisite. In this
paradigm, the motion-detection mechanism must be compat-
ible with the other computations performed by the “silicon
cortex.” Hence, the implementation presented here mimics the
physical organization of the primate visual system, and the
computation model for cortical visual-motion estimation.

Visual-motion estimation is an area where spatiotemporal
computation is of fundamental importance. Each distinct mo-
tion vector traces a unique locus in the space–time domain.
Hence, the problem of visual-motion estimation reduces to a
feature extraction task, with each feature extractor tuned to a
particular motion vector. Since neural networks are particularly
efficient feature extractors, they can be used to implement
these visual-motion estimators. Such neural circuits have been
recorded in area MT of macaque monkeys, where cells are
sensitive and selective to two-dimensional (2-D) velocity [4].

Here, a hardware pixel for two 1-D visual-motion esti-
mation with spatiotemporal feature extractors is presented.
A silicon retina with parallel continuous-time edge-detection
capabilities is the front-end of the system. Motion detection
neural networks are implemented on a general-purpose ana-
log neural computer, which is composed of programmable
analog neurons, synapses, axon/dendrites, and synaptic time
constants [12]. The additional computational freedom intro-
duced by the synaptic time-constants is required to realize

1057–7130/99$10.00 1999 IEEE
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(a) (b) (c)

Fig. 1. (a) 1-D motion is orientation in the space–time domain. (b) Motion detection can be realized with oriented spatiotemporal filters. (c) The distribution
of the velocity-tuned filter responses encode the stimulus velocity.

the spatiotemporal motion estimators. The motion detection
neural circuits are based on the early one-dimensional (1-D)
model of Adelson and Bergen and recent 2-D models of
David Heeger [1], [10], [11]. Since the neurons only computed
delayed weighted sum-and-threshold functions, the models
are modified. The original models require a division for
intensity normalization and a quadratic nonlinearity to extract
spatiotemporal energy. In our model, a silicon retina performs
intensity normalization with high contrast sensitivity (a binary
edge image is produced), and the quadratic nonlinearity is
replaced by rectification. In an effort to handle 2-D mo-
tion detection with a tractable hardware complexity, we use
smoothing prefilters orthogonal to the direction of motion and
two 1-D detectors. We show that this approach reduces the
amount of hardware required per pixel considerably, compared
to the full 2-D implementation of Heeger, however, it is not as
general. Compared to the two 1-D method without prefiltering,
our model produces more accurate results and has less of an
aperture problem. It does, however, require that the spectral
components of the stimuli exist in the - and - planes.
If none of the spectral power of the stimulus appears in
the - and - planes, our approach would produce
no output, while the strict two 1-D approach would produce
incorrect results. Fortunately, the binary image produced by
the silicon retina places spectral components in these planes
for most images (intensity gradients with too small contrast do
not produce a binary image). The measured tuning curves of
18 and 18 velocity-selective neural filters are presented.
The visual-motion vector is implicitly coded as a distribution
of neural activity, and the explicit velocity is computed by the
first moment of the distribution.

II. THEORY OF SPATIOTEMPORAL FEATURE EXTRACTION

AS MOTION DETECTORS

A. Overview

The technique of estimating motion with spatiotemporal
feature extraction emerged from the observation that a point
moving with constant velocity traces a line in the space-time
domain, as is shown in Fig. 1(a). The slope of the line is
proportional to the velocity of the point. Hence, the velocity
is represented as the orientation of the line. Spatiotemporal
orientation detection units, similar to those proposed by Hubel
and Wiesel for spatial orientation detection, can be used

for detecting motion [13]. Fig. 1(a) shows an oriented filter
sensitive only to symmetric moving features; an antisymmetric
filter is also required. Hence, quadrature pairs of oriented
filters at various scales are used to measure visual motion
in a realistic scene. In the frequency domain, the motion of
a point is also a line. The slope of the line is the velocity of
the point. Hence orientation detection filters, shown as circles
in Fig. 1(b), are used to measure the point’s velocity relative
to their preferred velocity. A population of these tuned filters,
Fig. 1(c), can be used to measure general image motion.

B. 1-D Oriented Spatiotemporal Filters

The construction of the spatiotemporal motion detection
units is based on the frequency domain representation of
visual motion. In the frequency domain, constant 1-D motion
of a point is represented as a line through the origin with
a slope where is the velocity, is the
temporal frequency, and is the spatial frequency. That is,
the Fourier transform of is . Oriented
spatiotemporal filters tuned to this velocity can be easily
constructed using separable quadrature pairs of spatial and
temporal filters tuned to and respectively, where the
preferred velocity . The phase relationship
between the filters allows them to be combined such that they
cancel in opposite quadrants, leaving the desired unseparable
oriented filter. Hence, quadrature pairs of oriented filters
are created and must be considered together to measure the
complete influence of the motion of a general image patch.
Fig. 2 shows the construction of oriented filters for 1-D
motion. Examples of separable spatial and temporal filters and
the constructed motion detectors, employed by Heeger, are
given in (1)–(3) [11]. The only requirements for successful
candidate functions are that they should be matched, band-
limited and quadrature counterparts. Equation (3) shows how
they are combined to realize oriented spatiotemporal filters

(1a)

(1b)

(2a)

(2b)
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(a)

(b)

Fig. 2. In the frequency domain, motion filters are constructed with quadra-
ture pairs of oriented spatiotemporal filters. (a) Even-oriented filters. (b)
Odd-oriented filters.

Right

or

Right (3a)

Left

or

Left (3b)

The complete velocity selective filter is constructed by
combining the even and odd oriented filters, i.e., Right
Right Right . Since this technique measures the

energy of the input signal about the preferred orientation of
the filter, it suffers from velocity/contrast ambiguity. That is,
a bright object with velocity far from the preferred value may
solicit a stronger response than a dim object closer to the
preferred value. To eliminate this effect, the output of the
velocity sensitive filter is normalized by the contrast of the
image patch at the spatial scale of the oriented filter. The final
frequency domain response of an oriented motion detection

(a)

(b)

Fig. 3. (a) 1-D motion of a point produces a broad distribution of filter
responses. (b) Motion of sinusoidal grating produces a narrow distribution of
filter responses. The centroid relays the explicit velocity.

filter is subsequently given by (4)

Right Left
(4)

is the output energy of the filter and is a bipolar repre-
sentation of velocity. Because this filter is tuned to a specific
velocity at a specific spatiotemporal frequency, the complete
model is then composed of a population of similar detectors
with various spatiotemporal tuning. The velocity is extracted
from the distribution of filter outputs, much like the motion
sensitive cells from area MT of macaque monkeys [4], [14],
[15]. Fig. 3(a) shows a possible placement of the motion filters
in the - plane. The responses of the filters to a moving
point are shown in gray scale, where black implies maximum
activity. Since the moving point has a flat power spectrum, all
filters along its velocity will be stimulated. Hence, a broad
distribution of responses is observed. The centroid of the
distribution of responses provides an optimal estimate (in the
least-squared sense) of the motion, which improves as more
filters with more overlapping passbands are used [14]. Other
heuristics may be used to extract the explicit velocity. Equation
(5) gives the relationship for the estimated velocity, where
is the number of oriented filters and ( ) is the tuned
velocity for each filter

(5)
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(a) (b) (c)

Fig. 4. Measurement of 2-D motion with oriented filters. (a) Single filter responds to a continuum of 2-D motion planes. (b) Two oriented filters
isolate the correct motion plane, but do not respond to all spatiotemporal frequencies. (c) A collection of filters isolates the correct motion plane and
spans all spatiotemporal frequencies.

In Fig. 3(b), a moving sinusoidal grating is presented as
input. The grating’s spectrum is localized at a single point
in the - plane. Consequently, the filter responses are
narrowly distributed about the filter closest in spatiotemporal
tuning to the grating. None-the-less, a centroid of the responses
provides a good estimate of the grating’s velocity. Grzywacz
and Yuille have argued that only two filters are required to
estimate the velocity, however, the accuracy of the estimation
will decrease as the spatiotemporal spectrum of the image
and the oriented filters differ [14]. This is illustrated by the
sinusoidal grating stimulus, which produces no filter responses
if its spatiotemporal spectrum does not appear within the
passband of any of the motion detectors. Clearly, a general-
purpose motion detection system using oriented spatiotemporal
filters must cover the entire frequency range of the intended
stimulus. A mosaic of individual filters located at various
tunings, as shown in Fig. 3, can be used. In addition, this
collection of filters must also be replicated at every pixel.
Evidently, this approach is hardware implementable only in
a large system.

C. 2-D Oriented Spatiotemporal Filters

If the point exhibits 2-D ( ) motion, the problem
is substantially more complicated [11], [15]. A point executing
2-D motion spans a plane in the frequency domain. The
approach presented above for constructing oriented filters still
applies in two dimensions. The oriented filters of the form in
(6), derived from (4), respond not only to the desired motion,
but also to a continuum of motion satisfying

where and are the velocity components
defining the plane, and ( ) is the spatiotemporal
tuning of the filter. The filters and in (6) are orthogonal
to each other. This is a manifestation of the famous aperture

problem, and results from the observation that a single 2-D
oriented filter solves one equation of two unknowns. This
problem is graphically shown in Fig. 4(a)

(6a)

(6b)

(6c)

(6d)

If two sets of oriented filters are used, the correct motion
plane can be isolated (i.e., two equations of two unknowns).
However, the two filters would only cover the spatiotemporal
bands defined by their tuning and bandwidth, as shown in
Fig. 4(b). Hence, this configuration is effective only for broad-
band images. A collection of filters spanning all combinations
of ( ) in the plane of the correct motion is then
required. Fig. 4(c) shows schematically one such filter tuned
to a band of frequencies on the preferred motion plane. To
respond to a general image patch at this preferred velocity, a
number of these torus-shaped filters, with increasing radii, is
required to cover the bandwidth of the image. Equations (7a)
and (7b), shown at the bottom of the page, give the expression
for one of the torus-shaped filters. The equation assumes that
individual filters in the torus are placed such that they overlap

where and (7a)

(7b)
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at ( and the centers of the filters are
apart, where ( ) are, respectively, the bandwidths
of the separable filter components. Hence,

filters are required per torus, where
is the radius of the th torus, and is the number of

individual velocity-tuned filters used to create the torus. The
bandwidth of the wideband velocity-tuned filter is the sum of
the bandwidths of the filters ( ) in each of the tori as in
(7a) and (7b), shown at the bottom of the previous page.

The construction of the wideband velocity filter tuned to
this one motion plane requires a total of separable
spatiotemporal filters per pixel. To cover a large range of speed
and direction, many such filters are required. Assuming the
same coverage strategy as for each torus,velocity planes
are required, resulting in a total of separable filters
per pixel. In comparison, for the 1-D case, assuming the same
coverage algorithm, the number of separable filters required
is . (In a sparsely distributed example where
and the number of separable filters required is 5184
per pixel for the full 2-D model, compared to 144 for the two
1-D case.) The speed and direction of a general image patch
can be extracted from the distribution of filter responses as
given by (8)

and

(8)

Evidently, the hardware complexity for realizing the full 2-D
motion detection filters is too large and completely intractable
in current very large scale integration (VLSI) systems. Using
two 1-D detectors reduces the complexity for to
but there are some penalties. Below, we discuss the hazards
of measuring 2-D motion with two 1-D detectors. We also
propose an approach to reduce the disadvantages. We show
that our two 1-D method only approximates 2-D motion
detection in special cases. Our system promotes the special
cases.

III. M EASURING 2-D MOTION WITH TWO 1-D DETECTORS

A. Overview

Measuring 2-D motion with two 1-D motion detectors is
fraught with problems. In special cases, however, the two 1-D
detectors do produce the correct 2-D results. First, we present
the problems with the two 1-D approach, and subsequently,
we identify the cases where it produces the correct results.
Lastly, we show how our system promotes the special cases
and how it is constructed.

(a) (b)

Fig. 5. (a) Measuring 2-D motion with a 1-D detector is aperture limited
and (b) produces errors.

B. Two 1-D Motion Detection

Consider a 1-D motion detector for-velocity. It is realized
with a row of pixels, and the measured motion is reported
at the central pixel. When a 2-D stimulus falls across its
receptive field, a single sample of the stimulus is taken in the

-direction, and in the -direction, the number of samples
corresponds to the spatial scale of the detector. Clearly, the
aperture problem in the -direction is more severe than in the

-direction for an -velocity detector. Fig. 5(a) shows this
process schematically. The velocity reported by an- and

-detector pair is given by (9) for a line oriented atto the
horizontal and moving with velocity ( )

- and - (9)

Equation (9) illustrates both the aperture problem and the
propensity for two 1-D detectors to provide extremely wrong
measurements as the orientation of the 2-D stimulus ap-
proaches 0 or 90 On the other hand, if the stimulus is
a vertical or a horizontal line, the correct aperture limited
measurement is obtained.

To understand the impact of a general 2-D image patch
on 1-D detectors, the frequency domain analysis is more
illuminating. A 1-D -velocity detector is oriented in the

- plane, but extends infinitely in . The inverse is
true for the -velocity detector. Consequently, as shown in
Fig. 5(b), the motion of any image patch from a continuum
of motion planes matching the passband of the filter will
produce an incorrect response. The only correct response is
produced by the detector located in the- plane, where
the motion plane intersects the - plane. Unfortunately,
the latter detector is triggered only if the image patch has
spectral components in this plane. Nonetheless, it is better
to report zero motion rather than the incorrect velocity. Two
1-D motion detection measures the correct 2-D motion if the
passband of the 1-D detectors are restricted to the- and

- planes, and if the stimulus has spectral energy in those
planes. This implies that the infinite extent of the passband of
the 1-D detectors in the direction orthogonal to motion must be
suppressed. Furthermore, the image must either already have
spectral components in the - and - planes, or must
be forced to have so. Our system attempts to realize these two
constraints.
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C. Realizing 2-D Motion Estimation with Two 1-D Detectors

To restrict the frequency response of the 1-D motion de-
tectors to the - and - planes, a smoothing prefilter
is applied in the direction orthogonal to motion. If the pre-
filter has infinite spatial scale, this is identically realized. In
our system, an approximation is obtained with a smoothing
“Gaussian” filter with twice the spatial scale (15 pixels) of
the largest scale motion filter (7 pixels). An approximation of
a Gaussian prefilter is chosen to reduce the high frequency
side-lobes of the smoothing filter. Furthermore, smoothing
at a larger scale than the motion detection and using a
tapered smoothing kernel suppress edge effects.1 Moreover,
the receptive field of the 1-D detector is widened in the
smoothing direction. Consequently, the aperture problem is
reduced in our model compared to the two 1-D case without
prefiltering, however, motion blurring across object boundaries
will be more prevalent. The two 1-D images that are produced
are used as inputs for the 1-D detectors.

The power spectrum of the image must exist in the– ,
and – planes for the two 1-D detectors to measure
2-D motion, albeit aperture limited. For wideband images,
such as points, lines or abrupt edges, the power spectrum
already exists in these planes. In these cases, other than the
aperture limitations, the two 1-D detectors produce the correct
2-D results if the detectors are limited to the – and

– planes. For a narrow-band image, such as a sinusoidal
gratings and plaids, there are no spectral components in
these planes. Here, our 2-by-1-D detectors would produce no
results, while the version without prefiltering would produce
incorrect results. Our system, however, goes one step further
and places some spectral components in the- and -
planes. This is performed by the silicon retina front end,
which converts all images to binary images of edges. The
sinusoidal plaid is thus converted into a square plaid, which is
a wideband image. The additional benefit of the silicon retina
is outlined below. Equation (10) outlines, mathematically, how
the two components of motion can be extracted. Fig. 6 shows
schematically how correct 2-D motion can be extracted with
the two orthogonal sets of 1-D oriented filters

(10a)

(10b)

D. Modified Two 1-D Construction

In addition to the modifications mentioned above, there
are two further changes required for implementing oriented
spatiotemporal filters with a relatively small number of ana-
log neurons, synapses, axons/dendrites, and synaptic time
constants. The first modification handles the need for con-
trast normalization. In Section II-A, we argued that contrast

1An oriented line that extends beyond the smoothing window moving in
the direction orthogonal to the 1-D detector will produce and error similar to
(9) unless these edge pixels are suppressed.

(a)

(b)

Fig. 6. (a) 2-D motion detection with two 1-D filters isolated to the!x-!t
and!y-!t planes produce correct results. (b) The oriented filters are organized
in the!x–!t and!y–!t planes for wideband wide-range velocity detection.

normalization was required to remove the speed-contrast am-
biguity. This is realized by dividing the filter response by the
magnitude of the spatial contrast falling within its receptive-
field. Unfortunately, ratios can not be easily implemented
with linear sum-and-threshold neurons. We eliminate the need
for contrast normalization by performing edge detection and
labeling before motion detection. That is, a silicon retina is
used to image the scene, to compute, in parallel, a 2-D con-
volution of the image with a band-limited Laplacian operator
and to form a binary image of edges [6], [16]. The binary
image is realized by thresholding the positive lobe of the
edges ( ) to the maximum voltage. This process has
the effects of creating a spatiotemporally robust wideband
image of strong edges with identical contrast. Furthermore,
this procedure removes the potential singularity in (4) and
(7) for noisy and low contrast images. This is equivalent to
incorporating a confidence measure, as proposed by Uraset
al., when reporting visual-motion measurements [17]. Here
we measure the motion of robust edges, which produce high
confidence results. Fig. 7 shows a block diagram of the silicon
retina.

The second modification is to replace the quadratic nonlin-
earity with a full-wave rectification. In Sections II-B and II-C,
the filter response is squared to extract its energy content.
This has the additional feature of rectifying the response.
Since multiplication is also hard to realize with simple linear
sum-and-threshold neural networks, the squaring operation
is replaced by a full-wave rectification. In this case, the
output of the filter is the square-root of the energy. Full-wave
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Fig. 7. The block diagram of silicon retina.

rectification can be easily implemented with half-wave recti-
fied linear neurons. In our system, each 1-D oriented filter is
given by

Right

Right Right (11a)

Left

Left Left (11b)

Right Left (11c)

IV. CONSTRUCTING THESPATIOTEMPORAL MOTION FILTERS

A. Overview

Two 1-D motion detection can be used to approximate
the full 2-D model with a much reduced hardware com-
plexity per pixel. Section II-B outlines the steps for creating
oriented filters tuned to 1-D motion. Coupled with the pre-
conditioning of the image, using the silicon retina and the
smoothing prefilters, the two 1-D detectors are realized with
two 1-D sets of filters tuned to the and directions,
respectively. Quadrature pairs of spatial and temporal filters
are required to construct the oriented filters. The spatial
and temporal filters are used to realize the separable spa-
tiotemporal filters that are not velocity selective. Due to
their independence and separability, the velocity nonselec-
tive spatiotemporal filters are obtained simply by cascading
the spatial and temporal filters. The individual spatial and
temporal filters have narrow bandwidths, hence a number of
these filters are required to cover the expected bandwidth
of the input image. Here, three spatial and three temporal
quadrature pairs are used, resulting in 36 velocity nonselective
filters. Using these velocity nonselective separable filters, 18
oriented velocity selective nonseparable spatiotemporal filters
are created. These 18 filters are composed of nine pairs tuned
to the same spatiotemporal frequency and speed, but opposite
directions.

Fig. 8. Spatial presmoothing orthogonal to the direction of motion produces
two 1-D images.

B. Spatial Prefiltering

Section III indicates that a smoothing prefilter is required
to eliminate frequency components in the spatial direction
orthogonal to the 1-D motion filters (see fig. 8). The scale
of the prefilter is set to provide a good approximation of
a delta function in the frequency domain, while not over
smoothing the image. Clearly, as the scale of the smoothing
filter increases, multiple independent objects can be combined.
The measured motion will then be the average motion in
the pixel’s receptive field. An approximation of a Gaussian
low-pass filter of 15 pixels, half kernel [1, 0.97, 0.9, 0.8,
0.6, 0.35, 0.05, 0.01], is used since the motion detector is
constructed of 7 7 image pixels.

C. Spatial Filters

The chosen spatial filters quadrature pairs are discrete ap-
proximations of first- and second-order derivatives of Gaussian
functions. The first-order derivative provides an odd function,
while the second-order derivative provides an even function.
The space constant of the filter pair is set by the number of
pixels used. That is, the spatial extent of the filter will be
three pixels for the highest frequency filters and seven pixels
for the lowest frequency filters. The sums of the positive and
negative coefficients are 0.5 and 0.5, respectively, for all
scales. Table I shows the coefficients used to implement the
three scales of the spatial filter pairs. Equation (12) gives the
general expression for filters in frequency space, whereis
the number of coefficients in the half kernel. Equation (13)
gives the expression for . This is also repeated in the

-direction

(12a)

(12b)

(13a)

(13b)
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TABLE I
SPATIAL FILTER COEFFICIENTS

D. Temporal Filters

Bandpass filters are chosen to realize the temporal filter
quadrature pairs. These filters must have nearly identical
magnitude responses and delays, but the phase difference must
be . For identical delays, the characteristic equations for
the pair must the same. Zeros at the origin are used to alter the
phase of the filters. Equation (14) gives the general expressions
for the odd and even pair. The pole locations govern the
passband location of the filters. Here, the value of is the
dominant pole, while and control the frequency cut-
off of the filters. The cut-off frequencies and are
20 and 40 times respectively. Fig. 9 shows plots of the
magnitude and phase of (14) with rads/s. Three
temporal filters are implemented for each spatial scale,
33.33, 11.11, and 5.0 rads/s, in each direction

(14a)

(14b)

E. Oriented Spatiotemporal Filters

The oriented filters are realized by cascading the spatial
and temporal filters as shown in Fig. 10. The figure shows the
implementation of one pair of velocity-tuned filters, tuned to
opposite directions. The remaining eight pairs per dimension

(a)

(b)

Fig. 9. The magnitude and phase plots for the even and odd temporal filters
for � = 11:11 rads/s from (14). (a) Magnitude responses of the temporal
filters. (b) Phase response of the temporal filters.

Fig. 10. Cascading the spatial and temporal quadrature filter pairs realizes
the nonseparable oriented filters.

are similarly constructed. Equation (15) gives the frequency
domain representation of the filter for

rads/s and a spatial sampling frequency

Right

(15)
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Fig. 11. The power spectrum of the velocity-tuned filter in (15).

of 10 mm . This filter is realized using and .
Fig. 11 shows a plot of the power spectrum of the filter in
(15). From the plot, and noting that corresponds to 10
mm a theoretical velocity tuning of 8.8 mm/s is obtained.
Similar plots provide the preferred velocity for all 18 filters per
dimension. Note that the same tuning speed is obtained but in
opposite direction for Left and Right filters (from Fig. 10).
A mosaic of nine such filters is formed per direction per
dimension, to cover a maximum spatiotemporal bandwidth of

rads/s and mm . The upper limit of the
temporal bandwidth is controlled by while the maximum
spatial frequency is limited by the spatial sampling rate of the
silicon retina in (15), shown at the bottom of the previous page.

V. HARDWARE IMPLEMENTATION

A. Overview

A general-purpose analog neural computer and a silicon
retina are used to realize the two 1-D visual-motion detection
pixel. The silicon retina performs 40 40 edge detection and
thresholding at the focal plane in parallel and continuous time.
It is implemented in a 2-m n-well CMOS process with a pixel
pitch of 100- m in both and . The retina is scanned at

1 MHz and outputs 25 K binary frames/s in a row parallel
manner. A demultiplexer board is used to present a 15
15 subimage to the neural computer virtually in parallel and
continuous time due the high frame rate and 1-ms response
time of the silicon retina. The 15 15 subimage is smoothed,
in the appropriate direction, to create two 1-D images of 71
and 1 7 pixels. Two 1-D motion detection neural networks
are realized using the 1-D images.

B. General Purpose Analog Neural Computer

The neural computer is intended for fast prototyping of
neural-network-based applications. It offers the flexibility of
programmability, combined with the real-time performance of
a custom parallel hardware system [18]. It is modeled after
the biological nervous system, i.e., the cerebral cortex, and
consists of electronic analogs of neurons, synapses, synaptic

time constants and axon/dendrites. The hardware modules
capture the functional and computational aspects of their
biological counterparts. The main features of the system
are: configurable interconnection architecture, programmable
neural elements, modular and expandable architecture, and
spatiotemporal processing. These features make the network
ideal to implement a wide range of network architectures and
applications.

The system, shown in part in Fig. 12, is constructed from
three types of modules (chips): 1) neurons; 2) synapses; and
3) synaptic time constants and axon/dendrites. The neurons
have a piecewise linear rate coded transfer function with pro-
grammable (8 bit) threshold and minimum output at threshold.
The synapses are implemented as a programmable resistance
whose values are variable (8 bit) over a logarithmic range
between 5 k and 10 M . The time constant, realized with
a load-compensated transconductance amplifier, is selectable
between 0.5 ms and 1 s with a 5-bit resolution (a bypass mode
is also available). The axon/dendrites are implemented with an
analog cross-point switch matrix. The neural computer has a
total of 1024 neurons, distributed over 64 neuron modules,
with 96 synaptic inputs per neuron, a total of 98 304 synapses,
8192 time constants and 589 824 cross point switches. Up
to 3072 parallel buffered analog inputs/outputs and a neuron
output analog multiplexer are available. A graphical user
interface software, which runs on the host computer, allows the
user to symbolically and physically configure the network and
display its behavior [19]. Once a particular network has been
loaded, the neural network runs independently of the digital
host and operates in a fully analog, parallel, and continuous-
time fashion.

C. Neural Implementation of Spatiotemporal Filters

The output of the silicon retina is presented to the neural
computer to implement the oriented spatiotemporal filters. The
first layer of processing, realized with converging synaptic
connections, compresses one 2-D image into two 1-D images
through the Gaussian spatial prefiltering. The first and second
derivatives of Gaussian functions are chosen to implement the
odd and even spatial filters, respectively. Synaptic weights are
used for the kernels’ coefficients. Three parallel channels with
varying spatial scales are implemented for each dimension.
Within each channel, the spatial filters are subsequently fed to
three sets of parallel temporal filters, which also have varying
temporal tuning. Hence, six nonoriented pairs of spatiotem-
poral filters are realized for each scale. Six quadrature pairs
of oriented filters are realized by summing and differencing
the nonoriented pairs. The quadrature pairs are rectified and
combined to produce the velocity-tuned spatiotemporal filters.
Lastly, the responses of the filters tuned to opposite motion are
sharpened with cross inhibition. This step is used to further re-
duce the response of the null direction filter, resulting in lower
aliasing effects. Without this cross inhibition, the null direction
responds slightly, but simultaneously, to opposite motion due
to the discrete nature of the spatial filters. This is evident in
the Fig. 11, where spectral energy in the opposite quadrants
of the preferred motion is visible. Notice, however, that the
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Fig. 12. The block diagram of the neural-network computer.

contour lines are sparser in the null quadrants, implying small
responses at low speed. This is also observed in the measured
data as shown by Fig. 17. Fig. 13 shows a schematic of the
neural circuitry used to implement the velocity-tuned filters.

The pixel is composed of 1 7 and 7 1 1-D detectors
with 15 7 and 7 15 receptive fields, respectively. Since
the outputs of the spatial and temporal filters can be negative,
and the neurons do not output negative values, they are offset
to rest at half of full scale. The total number of neurons used
to implement this pixel (nine oriented filters per direction per
dimension) is 360, the number of synapses (including offsets)
is 2900 and the number of time-constants is 144. The time-
constants range from 0.75 to 200 ms. Once the networks have
been programmed into the VLSI chips of the neural computer,
the system operates in full parallel and continuous-time analog
mode. This system realizes a silicon model for biological
visual-motion measurement, starting from the retina to the
visual cortex.

VI. EXPERIMENTAL RESULTS

Since the networks for the two dimensions are identical
(except for expected variations among the circuits and chips),
detailed results will be presented for only one of the dimension.
The outputs of the neurons can be sampled at 1 MHz by an
on-chip analog multiplexer and a high speed A/D card. The
neuron chips have provisions that allow only selected chips to
be sampled. Hence, the sampling period of each neuron ranges
from 16 s (only one chip is selected) to 1024s (all chips
are selected).

The responses of the three quadrature pairs of spatial filters
as a point (white spot on a black background) moves with a
constant on-retina -velocity of 1 cm/s (100 pixels/s) across
their receptive fields are shown in Fig. 14. The silicon retina
also contains photodiodes at the borders of the imaging array

Fig. 13. Neural networks for velocity tuning are realized using synaptic
weights as the coefficients of the spatial filters and synaptic time-constants for
the temporal filters. The neurons have half-wave rectified transfer functions.

that are used to measure the focal-plane speed of the stimulus.
The -axis represents time; however, it can also represent
space for the point moving at constant speed. As expected, the
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Fig. 14. The top traces show the responses of the three even spatial filters for a point moving at 1 cm/s (100 pixels/s). The bottom traces show the
responses of odd filters. The spatial scale decreases from left to right.

Fig. 15. The outputs of the odd nonorientation selective filters (top)ge(x)go(t) and (bottom)go(x)ge(t) are shown. The temporal scale increases from
let to right. Constructive and destructive interference produce directional selectivity.

filters with wider spatial support are broader than their higher
frequency counterparts. Since all three filters are implemented
on the same image patch and are centered at the same location,
all filters respond simultaneously.

Fig. 15 shows the output of pairs of nonoriented spatiotem-
poral filters for the same point. The traces are sampled at
the output of the temporal filters. The top row shows the
outputs of the highest frequency even spatial filters through
the three odd temporal filters, i.e., resulting in odd
nonoriented spatiotemporal filters. The bottom row shows the
outputs of the highest frequency odd spatial filters through the
three even temporal filters, i.e., also resulting in
odd nonoriented spatiotemporal filters. The temporal frequency
tuning of these filters decrease from left to right. The sum and
difference of the nonoriented filters create the velocity-tuned
filters.

Fig. 15 also provides interesting insight into how the motion
detection procedure is obtained with these filters. Notice that
for a particular quadrature pair of temporal filters, the outputs
are similar, but 180out of phase. Hence, summing the signals

will result in destructive interference, while differencing them
will result in constructive interference. Therefore, the right
motion signal will vanish, while the left signal will survive.
If the point was moving in the opposite direction, the even
spatial filters will produce the same output, but the sign
of the odd spatial filters will be inverted. Hence, the top
traces of Fig. 15 will be unchanged, while the bottom traces
will be inverted. Consequently, the sum of the signals, i.e.,
right motion, will now survive, while the difference, i.e., left
motion, will vanish. In this way, the direction selectivity of
the filters is obtained. The speed selectivity is governed by the
spatiotemporal frequency tuning of the filters.

Fig. 16 shows the outputs of the left and right motion
detectors for the moving point. The figure shows the rectified
outputs of the velocity selective spatiotemporal filters. Because
the point is moving to the left at 1 cm/s (100 pixels/s), all
the right motion detectors are relatively silent. In contrast,
the left motion detectors are active. A filter’s response to the
motion is given by the windowed average of its signal. The
host computer calculates the average of the outputs of the
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Fig. 16. The responses of 18X-velocity selective filters are shown for a point moving at 1 cm/s (100 pixels/s) to the left.

(a) (b) (c)

Fig. 17. Plots show the tuning curves forX-velocity selective filters as a function on on-chip speed (1 mm/s= 10 pixels/s). (a) 7-pixel detectors.
(b) 5-pixel detectors. (c) 3-pixel detectors.

motion neurons after each data collection cycle. The average
is computed using all the samples above a threshold (typically
10 mV). The length of the cycle is set by the user, and is
bounded by the time required to read all the motion detectors
once and the time to fill the memory of the host. Hence,
the implicit representation of the velocity (the distribution
of detector outputs) is available in continuous time, while
the explicit report (time average and centroid determination)
depends on the data collection cycle time. Typically, 2 s of
data is collected before the explicit computation is done.

High contrast vertical and horizontal white lines on black
background, moving at various speeds, are used to measure
the tuning curves of the two 1-D filter sets. The silicon retina,
however, can produce a binary image for edge contrasts as
low as 10% [6]. The set of tuning curves for the-velocity
detectors is shown in Fig. 17. Similar curves are obtained
for -velocity detectors. In the figure, the responses have
been normalized. The variations in the responses are due to
variations in the analog components of the neural computer.
Some aliasing is noticeable in the tuning curves when there
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Fig. 18. A comparison of the theoretical and measured tuning speeds shows
that the dynamics of the silicon retina (dotted line) must be considered in
order to improve agreement for large speeds.

is a minor peak in the opposite direction. This results from
the discrete properties of the spatial filters, as can also be
observed in the theoretical plot in Fig. 11. The additional
fact that the minor peaks in the null direction occur at low
speeds is also consistent with theory. Cross inhibition among
oppositely tuned detectors keeps these aliasing effects small
compared to the responses in the preferred direction. One
could employ shunting inhibition to completely suppress these
effects, however, this was not done here. Similar curves are
obtained for the filters tuned to motion.

The theoretical tuning velocities, as indicated by (15) and
Fig. 11, are compared to the measured values for both dimen-
sions in Fig. 18. The filters tuned to low speed have good
agreement with the theoretical value, however, as the tuning
speed increases, so does the discrepancies. The measured
values are consistently lower than the theoretical values. This
can be explained by the observation that the theoretical tuning
speed is obtained by the ratio of the temporal and spatial
tunings of the motion filters ( ). The temporal tuning
is set by the poles of (14). The silicon retina has a response
time which is comparable to the smallest time constant in
the filters, i.e., ms and ms (the time
constant is due to the slow tuning off response time of
a photoreceptor when a dark image arrives and is a very
weak function of the previous pixel brightness. The turning
on response time is at least an order of magnitude smaller and
decreases as intensity increases). Hence, an additional pole
at 1 krad/s is required in the spatiotemporal filters. This has
the effect of reducing the temporal tuning of the higher speed
filters, as approaches while not affecting the slower
speed filters. In Fig. 18, the dotted line, labeled ,
shows the corrected theoretical speed tuning if the dynamics
of the silicon retina is taken into account. Better agreement
is obtained. Other variations can be explained by mismatches
in the circuit components. All subsequent measured explicit
velocity computations use the measured tuning velocity of
each oriented spatiotemporal filter.

The explicit velocity of the stimulus is given by the centroid
of the distribution of the responses of the two 1-D detectors.

Fig. 19. The centroid of the detector outputs gives the explicit velocity of
the point. Correct motion isvx = 8:66 mm/s (86.6 pixels/s) andvy = 5

mm/s (50 pixels/s).

Fig. 20. The comparison of the measured and actual velocity shows that
the distribution provides a good estimate at small speeds, but saturates and
decreases toward zero for large speeds.

Because we do not havea priori knowledge of the direction of
motion in real situations, the centroid of all the responses are
considered. Fig. 19 shows the distribution of activities for both

and motion filters for a stimulus consisting of a bright
spot on a dark background moving at 1 cm/s at 30to the hor-
izontal. Applying (5) yields mm/s (81 pixels/s) and

mm/s (50 pixels/s), compared to mm/s
(86.6 pixels/s) and mm/s (50 pixels/s). With more
filters, the accuracy can be further improved. The effects of
having too few filters can be seen in Fig. 20. At low speeds,
all 18 filters contribute toward the computation of the explicit
velocity. Hence, the measured value is fairly accurate. As the
number of responsive filters decrease with increasing speed,
the accuracy of the measured velocity also decreases. The
measured response saturates and eventually drops to zero as
the speed is increased further. At first glance, one would
expect the speed at which the measurement saturates to be
the tuning velocity of the fastest filter. Since our filters are
realized with real circuit components, mismatches and the
discrete properties of the spatial filters allow a small response
to persist, especially in the null direction where aliasing is
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Fig. 21. The measured velocity components for a point moving at constant
speed of 7.5 mm/s (75 pixels/s) at various angles highlights the increasing
errors of the explicit motion detection method for larger speeds.

already present. Consequently, the computed centroid is lower
than expected. Using the plot as a calibrating curve, higher
speeds can still be estimated, provided that the stimulus is
limited to the monotonic part of the curve.

To investigate the behavior of the pixel for 2-D motion,
a bright point moving at 7.5 mm/s (75 pixels/s) at various
angles is presented to the system. This point is representative
of a variety of stimuli since the silicon retina creates a binary
image of edges for the neural computer. Hence, all images seen
by the motion detection filters are either binary points, lines or
bars. The explicit velocity reported by the pixel is plotted in
Fig. 21. The actual velocity of the point is plotted as the solid
line. The speed of 7.5 mm/s is chosen to show the deviation
of the measured motion from the ideal as the speed increases.
The plot shows that the measured motion is more accurate for
smaller velocity components produced by motion of45 to
the horizontal. At the 90 and 0 , the measurement diverges
more noticeable from the ideal. The measured dynamic range
of the pixel for 2-D motion of a point is then given by Figs. 20
and 21.

Last, the effect of the aperture problem on the pixel is
investigated. To simplify matters, a long bright line on a
dark background, oriented at various angles to the horizontal,
moving a constant velocity of 5 mm/s in the -direction
is presented to the pixel. The correct 2-D motion for this
stimulus is (5 mm/s, 0). With the aperture problem
taken into account, a 2-D normal vector is obtained, which
varies with the orientation of the line. The components of this
vector are plotted in Fig. 22. As expected, the-component
is maximum at 90 and vanishes at 0. The -component
peaks at 45 but is zero at both 90 and 0 . If a two
1-D detector is used, the -velocity is correct until the
orientation of the line approaches the 0at which point
the -velocity vanishes according to the aperture problem.
The -component, however, displays a rapid increase as the
orientation of the line approaches 90. This error is due
to the point sampling property of the 1-D motion detec-
tor orthogonal to the direction of motion, as explained in
Section III-B. To demonstrate that this effect is measurable, the

(a)

(b)

Fig. 22. The plot shows the effects of the aperture and two 1-D motion
detection problems for a long line oriented at various angles, moving at
vx = 5 mm/s (50 pixels/s). Spatial presmoothing helps to measure the
more accurate, but aperture-limited 2-D velocity. (a) Motion estimation for a
long-oriented line. (b) Motion estimation for a long-oriented line.

smoothing prefilters are removed from the pixel. The recorded
motion is plotted in Fig. 22. As expected, the-component
is correct and aperture limited at small angles, while the

-component increases with orientation angle. As the line
approaches vertical, the detector starts to saturate and return
to zero. When the prefilters are used, the large-component
error is virtually eliminated. At small angles (30 ), the -
component approaches zero because of the aperture problem
and the tapered smoothing filter that reduces edge effects.
Edge effects exist because the finite size smoothing window
causes a moving edge to be seen in the 1-D image when
the line enters or leaves the receptive field of the receptor.
The small filter coefficients at the edges reduce this effect.
Edge effects produce the only measurable-motion for a
line with small orientation angle. Above 20the 1-D -
motion detector receives a strong signal and produces the
correct measurement. -motion detection for small angles
is also influenced by aperture and edge effects to produce
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a small velocity measurement. Motion due to edge effects
depends on the tangent of the orientation angle; the mea-
sured -motion increases slightly with angle. Above 25the
smoothing prefilter begins to suppress all features in the-
direction, causing the measured motion to drop to zero. As a
result, the escalating error, observed with the two 1-D motion
detector with no prefilter, is not present. Figs. 21 and 22 show
that the two 1-D motion detectors with orthogonal spatial
presmoothing produces much better results than the strict two
1-D detectors, has a reduced aperture effect and produces
reasonable 2-D motion estimates in some cases. For vertical
and horizontal lines, only the aperture-limited measurement is
obtained.

VII. CONCLUSION

A two 1-D image motion-estimation pixel based on spa-
tiotemporal feature extraction has been implemented in VLSI
hardware using a general-purpose analog-neural computer
and a silicon retina. The neural circuits capitalize on the
temporal processing capabilities of the neural computer. The
spatiotemporal feature-extraction approach is based on the
1-D cortical motion-detection model proposed by Adelson and
Bergen, which was extended to 2-D by Heeger. To reduce
the complexity of the model and to allow realization with
simple sum-and-threshold neurons, we further modify the 2-D
model by working with a binary edge image, by placing filters
only in the - and - planes, and by replacing the
required quadratic nonlinearity with full-wave rectification.
These modifications do not affect the performance of the
1-D model, and approximate the 2-D model in some cases.
Measured results agree with theoretical expectations. While
this technique of image motion detection requires too much
hardware for focal plane implementation, our results show that
it is realizable when a silicon “brain,” with large numbers of
neurons and synaptic time constant, is available. This is very
reminiscent of the biological master.
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