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Abstract 

It is attractive to produce true three-dimensional (3D) microstructures both rapidly and 

economically over a large area with negligible defects for a wide range of applications.  

Multi-beam interference lithography is one of the promising techniques that can create 

periodic microstructures in polymers without extensive lithography and etching steps. This 

review discusses the formation of interference patterns, their dependence on beam 

parameters, the lithographic process, and the applications to the formation of photonic 

crystals. Various photoresist systems, including thick films of negative-tone and positive-

tone photoresists, liquid resins, organic-inorganic hybrids, and holographic polymer-

dispersed liquid crystals, are also reviewed.   

 

Key words: multi-beam Interference, lithography, 2D and 3D microstructures, maskless, 

photoresist, negative-tone, positive-tone, organic-inorganic hybrids, and holographic 

polymer-dispersed liquid crystals
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1. Introduction 

Recent enthusiasm in photonics(1), chemical sensors(2), catalytic support(3), data 

storage(4), nano- and microfludic networks(5), and tissue engineering(6-8) has driven the 

development of new materials and tools for the creation of structures with tailored 

functionalities, shapes and sizes.  Although major progress has been made in the 

fabrication of two-dimensional (2D) structures, significant challenges remain for rapid, 

inexpensive, and large area fabrication of true three-dimensional (3D) structured 

materials with submicron periodicity and with negligible defect densities. Existing 

techniques for the large-scale fabrication of microstructures with submicron features 

mainly rely on the use of optical projection lithography developed for silicon IC 

manufacturing.  This method is inherently limited to 2D patterning and requires 

laborious layer-by-layer photolithography and etching processes to generate the 

continuous 3D structures.(9-12)  A set of different chrome masks is required to form 

each of the different layers using conventional projection lithography. (13) The masks for 

the lithographic processes are expensive to fabricate and therefore, mask costs can be a 

significant portion of the total cost for the multi-level fabrication process of 

microstructures.  Furthermore, precise optical systems with vertical and horizontal 

steppers are required for repositioning and registration. The fabrication is thus practical 

only up to a few layers.  

 Self-assembly approaches, such as crystallization of colloidal particles(14,15), 

microphase separation of block copolymers(16) are simple and inexpensive. Recently 

there have been extensive studies using templates and external fields,(17-21) to minimize 

random defects, however, intrinsic problems, such as missing particles, uncontrolled 
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orientation, phase mixing, and dislocations, are inevitable over a large area.  In addition, 

the type of lattice created from colloidal assembly is rather limited, typically exhibiting 

face-centered-cubic (fcc) symmetry.  Other 3D microfabrication techniques, including 

three-axis micropositioner assisted deposition of polymer melts and solutions (e.g. rapid 

prototyping(22,23), pressure assisted microsyringe deposition(24), focused-ion-beam 

etching(25), and direct-write assembly(26,27), etc.), layer-by-layer stacking through soft 

lithography(28), glancing angle deposition (GLAD)(29), and multi-photon absorption at 

near-IR (4,30-35), requires multiple steps to create 3D microstructures of almost arbitrary 

complexity. 

In comparison, multi-beam interference lithography, which is based on the 

optical patterning of photopolymers in a single exposure (a few nanoseconds to seconds), 

holds promise for the rapid production of highly ordered 2D and 3D structures with 

submicron periodicity defect-free over a large area. It allows for precise control of the 

size and shape of the resulting structures, and has the flexibility to access a variety of 

lattice symmetries through proper arrangement of laser beams.  It has been 

demonstrated for various applications, including photonic crystals(36-43), microlens 

arrays(44), information storage(45), and optical communication.(46,47) Furthermore, it is 

compatible with multi-photon lithography technique, which relies on similar 

photochemistry to pattern arbitrary structures in polymers.  The integration of multi-

beam interference lithography and 2-photon lithography will enable fast production of 3D 

structures with controlled, functional elements (e.g. cavity defects and waveguides) in 

situ through sequential exposures to multi-photon and interference beams, or vice versa. 
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A detailed comparison of the fabrication capabilities and resolution limits of different 

techniques are summarized in Table 1.   

 

A. Conventional photolithography(48) 

In a conventional photolithographic process, a photoresist that contains photoinitiators, 

photosensitive resin and additives (e.g., radical scavengers, bases or dissolution 

inhibitors) are spin coated on a substrate and baked to remove the solvent.  It is flood-

exposed through a mask under a light source, resulting in 2D patterns. (Scheme 1)  

Depending on the products generated during photoexposure, radicals or cations, the 

photosensitive resin can be either polymerized/crosslinked or decomposed, resulting in 

solubility change from the starting medium in a developing solvent. In a negative-tone 

photoresist, the exposed regions are crosslinked when the intensity of the interference 

pattern exceeds the lithographic threshold of the photoresists. The unexposed regions are 

washed away by a developer (typically an organic solvent), resulting in a porous film. 

The threshold intensity is determined by the sensitivity of the photoresist and post-

exposure processing (e.g., baking time and temperature, choice of developers and 

developing time), as well as the contrast of the interference pattern.  In positive-tone 

photoresists, the exposed regions will be removed by the developer (typically an aqueous 

base), while the unexposed or weakly exposed regions remain. Currently, most of the 

thick photoresists are negative-tone. Positive-tone resists may have higher resolution and 

better contrast since the resists are typically chemically amplified, and have large a 

polarity change in the aqueous base developer before and after the lithography. In 

contrast to the dissolution of unpolymerized oligomers in negative-tone resists, the 
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solubility switch in positive-tone resists is due to the polarity change of the side groups, 

thus, films from positive-tone resists will have much less shrinkage and delamination in 

comparison to that from negative-tone resists.   

The maximum resolution is determined by the efficiency of photochemistry, the 

exposure wavelength, and the resolution of optics.  When feature size continues to 

shrink on integrated chip (IC) devices, it becomes increasingly demanding to materials 

scientists for innovations in photoresist design and fabrication, such as maximizing 

photospeed while maintaining high film transparency at shorter wavelengths. Detailed 

review on conventional lithography can be found elsewhere.(48)  

 

B. Multi-beam interference lithography 

When two or more optical waves are present simultaneously in the same region of 

space, the waves interfere and generate a periodic spatial modulation of light(49). 

Interference among any N (≤4) collimated, coherent laser beams produces an intensity 

grating with (N-1) dimensional periodicity if the difference between the wave vectors is 

non-coplanar. As shown in Fig 1, two interfering beams form a 1D fringe pattern (Fig. 1a) 

and three crossed beams form a 2D hexagonal pattern (Fig. 1b). 

The intensity distribution of the interference field can be described by a Fourier 

superposition as the following:   

N N
2 *

1 1

exp[ {( ) ( )}]ϕ ϕ
=

= + ⋅ − ⋅ −∑ ∑E E E k k r +i i j j i j i
i i> j=

I i  (1) 

where r is the position vector, Ei , ki and iϕ  are the complex amplitude, wave vector, 

and phase of the ith beam, respectively.  The difference between two of the wave vectors, 

(ki −kj), where i, j= 1,2, …, N and i<j, determines the spatial periodicity, or the 
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translational symmetry of the interference pattern.(50-53) The contrast of interference 

pattern is controlled by the real amplitude, polarization and phase of each beam.  The 

combination of these parameters determines the overall symmetry and contrast of the 

resulting lattice.(41,43,54,55)  

Multi-beam interference previously was used to write hologram gratings, to 

create optical traps for laser-cooled atoms(56), and to pattern optical tweezer arrays(57-

59) Recently, it has been integrated with lithography to produce periodic structures with 

sub-micron resolution.(36-40,43) The photochemistry and lithographic processes 

involved in multi-beam interference are similar to those in the conventional lithography 

except that photomasks are not required, and the substrate is transparent since all of the 

beams are not necessarily launched from the same side of the substrate (see Scheme 2).        

Because the multiple beams must be coherent to produce an interference pattern, 

one laser beam from a visible (e.g. Ar-ion, frequency-doubled Nd:YAG, and Nd:YVO4) 

or UV (e.g. frequency-tripled Nd:YAG and He-Cd) laser is typically divided into multiple 

beams using beam-splitters. The split beams are then recombined by mirrors to obtain the 

desired geometry.  The polarization and intensity of the beams are controlled by wave 

plates and polarizers, respectively.  The combined beams are then focused on a 

relatively thick photoresist film (up to100 µm) for a few nanoseconds to seconds, 

depending on the resist sensitivity and laser power from a pulsed or a continuous wave 

(cw) laser.  

 

C. Formation of Two-Dimensional (2D) Microstructures 

2D interference patterns can be obtained using different interference techniques, 
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including interference by three focused beams(60), multiple diffraction grating 

masks(38,61,62), and double exposures of a two-beam interference.(63,64)  

In the first case, the configuration of focused three beams determines the 

translational symmetry of the 2D pattern. Here we briefly introduce the practical setup for 

several 2D lattices. As shown in Fig. 2a and 2b, three beams are set to have the same 

polar angles to the z-axis of an arbitrary xyz-coordinate space, and described as 

2 / (cos sin ,sin sin ,cos )i i iπ λ φ θ φ θ θ=k , for i=1,2,3, ,where θ  and φi  are the polar and 

azimuthal angles.  The difference between two wave vectors lies within the xy-plane, 

producing a 2D interference pattern with basis vectors of ( )1 1 2= −b k k  and 

( )2 2 3= −b k k  in the reciprocal lattice (Fig. 2d). Subsequently, the lattice constants and 

the angle between basis vectors in real space can be expressed as 

1 2sin (cos cos )
λ

θ φ φ
=

−
a1 ,

2 1 22 sin sin sin(( ) / 2)
λ

θ φ φ φ
=

+
a2 , and 1 2( ) / 2γ φ φ= + , where λ  

is the wavelength of the laser (Fig. 2c). The experimental conditions for 2D square and 

tetragonal lattices are shown in Table 2.(42)  Meanwhile, considering linearly polarized 

beams and no interference between beam 1 and 3 (i.e., ⋅E E1 3 =0), the square lattice can 

be described by 

[ ] [ ]
3

2

1
cos 2 / a cos 2 / aπ π

=

= + ⋅ + ⋅∑ E E E E Ei 1 2 2 3
i

I x y     (2) 

from Eq. (1).  The symmetry of the “atoms” in the “basis” is dependent on the 

polarization of the beams as shown in Fig. 3 by changing the ratios of ( 1 2⋅E E )/( 2 3⋅E E ). 

When a grating mask is used to pattern a photoresist, the incident beam is 

diffracted by three or four diffraction gratings aligned at an angle to each other.(62,65) 

The first-order diffracted beams interfere and produce the pattern.  Compared to the 
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three-beam setup, this method is more stable due to the use of a single monolithic 

diffracting object. Since the interference pattern depends on the period of the gratings and 

the angle between gratings, different grating masks are required to vary the size of the 

pattern. 

In addition to the two techniques mentioned above, which are based on a single 

exposure of three beams, 2D patterns can also be obtained through multiple exposures of 

two-beam interference.(63,66,67) In practice, it is much more convenient to arrange two 

beams with different geometries to access a wide range of lattices with variable unit sizes 

and large contrast.  For example, both square and tetragonal 2D lattices can be attained 

by simply rotating the sample stage with a precise control of the in-plane rotation of the 

substrate.   

 

D. Formation of Three-Dimensional (3D) Microstructures 

The ability to rapidly produce periodic microstructures by multi-beam interference 

lithography defect-free over a large area is particularly attractive for the fabrication of 3D 

photonic crystals (PCs) in the visible or near-IR telecommunication wavelength (λ of 

1.33 and 1.55 µm).  A photonic crystal is a regularly structured material with a periodic 

modulation in refractive index, or dielectric constant, on a length scale comparable to the 

wavelength of the incident light.(68),(69)  Interference of the light waves scattered from 

the dielectric lattice (i.e. Bragg scattering) leads to stop bands or complete photonic band 

gaps (PBG), which are analogous to the electronic energy bandgaps in a semiconductor.  

They can be fabricated using four-beam interference(36,39,40), diffraction 

grating masks(37), multiple exposure techniques(43,70), and phase masks on a controlled 

stage.(71) 3D lattices that possess large photonic band gaps, including simple cubic, face-
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centered cubic (f.c.c), diamond, body-centered cubic (b.c.c), and gyroid lattices have 

been demonstrated both theoretically and experimentally.(41,43,72-74) In this review, we 

will focus on the fabrication of 3D photonic structures.  

It has been predicted that the translational symmetries associated with all 14 

Bravais lattices can be accessible through multi-beam interference lithography(53), 

however, little attention has been paid to the effect of the beam polarization on the overall 

symmetry until recently.  As shown in the formation of 2D patterns, the symmetry of the 

“atoms” in the “basis” will be affected by the beam polarization vectors (Fig. 3).  When 

the polarizations are taken into account, the overall symmetry of the interference pattern 

may not respect all the required site symmetries of the particular Bravais lattice, or 

correspond to any one of the space groups of the originally specified Bravais lattice. 

Clearly, there is a need to establish a better understanding of the relationship between the 

resulting symmetries and the beam parameters.  

A level-set approach has been proposed to equate terms of the intensity equation 

to a representative level surface of the desired space group.(55)  This technique was 

previously used to describe minimal surfaces in microphase-separated morphologies such 

as those typically found in the block copolymer systems.(75)  In this approach the 

complete symmetry of the 3D lattice is defined by its structure factors.  The level 

surfaces are functions that are of the form F: R3→R of points {x, y, z} ∈ R3 that satisfy 

the equation F(x, y, z) = t, where t is a constant. When F(x,y,z)=0, it defines a boundary 

between positive F and negative F.  Specifically, a candidate structure can be modeled 

using a 3D surface given by F(x,y,z)-t=0.  By varying the value of the constant t, which 

can be achieved experimentally by adjusting the threshold value of the photoresist(39,76), 
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we can access a family of surfaces with different volume fractions to tune the photonic 

band structure.  When equating terms of the intensity equation to a level surface, we can 

calculate the beam parameters (wave vectors, polarizations, intensity, etc.) to construct a 

desired 3D lattice. For example, the three-termed simple-cubic, diamond-like (fcc 

translational symmetry) and gyroid-like (bcc translational symmetry) structures have 

been calculated using the level-set approach (see Table 3).(43)  The equations describing 

these structures are given by  

F(x, y, z) = sin(x) + sin(y) + sin(z) + t    (3) 

for a simple cubic surface,  

F(x, y, z) = sin(-x+y+z) + sin(x-y+z) + sin(x+y-z) + t   (4) 

for a diamond-like structure, and  

F(x, y, z) = sin(y+z) + sin(y-z) + sin(-x+z) + t   (5) 

for a gyroid structure, respectively. The plots of the corresponding isointensity surfaces 

are shown in Fig. 4. 

 

 

II. PHOTOSENSITIVE MATERIALS AND THEIR APPLICATIONS 

A. Negative-tone Photoresists 

To fabricate 3D photonic crystal structures, a thick photoresist film is usually 

required for a multi-layer unit cell.  Negative-tone photoresists, such as SU-8, are 

commonly used for thick films (thickness up to 2 mm with an aspect ratio approaching 

20).  SU-8 has high solubility in many organic solvents, which enables the preparation 

of thick films and it is highly transparent in the near-UV and visible region. 

Commercially available SU-8 photoresists (Microchem Inc.) consist of EPON SU-8 
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(from Shell Chemicals), a derivative of bisphenol-A-novolac resin with an average of 

eight epoxy groups, triaryl sulphonium salts as photoacid generators (PAG)(77) (see 

Scheme 3), and γ-butyrolactone (GBL) or cyclopentanone (CP) as a solvent.  The 

solution is spun onto a cover glass and baked on a hotplate at 95°C to evaporate the 

solvent. During UV exposure, the triaryal sulfonium salts release photoacids in localized 

regions. The subsequent post-exposure bake at 95°C accelerates acid diffusion and 

induces cationic polymerization of the epoxy groups in SU-8.(78-80) The unexposed film 

was removed by propylene glycol methyl ether acetate (PGMEA), followed by 

supercritical CO2 drying to prevent pattern collapse.  The low surface tension of 

supercritical CO2 is especially advantageous in removing solvents from films with high 

porosity and high aspect ratio features.  The resulting SU-8 film is highly crosslinked 

and exhibits excellent thermal (Tg > 200°C) and mechanical strength (Young’s modulus, 

E > 4.0 GPa).  

The relatively high glass transition temperature of SU-8 photoresists, 50°C, plays 

an important role in minimizing acid diffusion before the post-exposure bake. A high 

glass transition temperature has been one of the key resist design criteria to achieve 

submicron resolution in deep UV lithography of chemically amplified photoresists.  It is 

equally important in interference lithography since polymerization during exposure is not 

desired: this would disturb the original interference pattern due to the change of refractive 

index of the crosslinked film. When the film is exposed at room temperature and then 

baked at 95°C, the exposure and crosslinking stages are separated.  

Although SU-8 resin is quite transparent in the near-UV region, it is more 

appealing to perform interference lithography using visible light.  Not only is the visible 
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continue wave (cw) laser more readily accessible in the lab than the UV pulsed laser, but 

a longer wavelength affords a larger lattice period.  Further, the transmission of the SU-

8 photoresists increases significantly in the visible region, therefore interference of 

visible light is more flexible and applicable to a wide range of photosensitive materials.  

Since most photoacid generators do not have absorption in visible wavelength, 

the resists are formulated based on visible laser-sensitized cationic polymerization of 

epoxides.(81,82) This initiating system typically includes a photosensitizer, which 

absorbs the visible light and electron transfers to an onium salt via the formation of a 

charge transfer complex to generate the acids (see Scheme 4). Typically diaryliodionium 

salts are chosen as photoacid generators instead of triarylsulfonium salts due to the low 

reduction potential of iodionium salts for energy transfer. The photoacids initiate ring-

opening reactions of the epoxy groups and the acids are regenerated in the subsequent 

steps.(83,84)  The polymerization is thus chemically amplified, resulting in a highly 

crosslinked film. Several visible photosensitizer/PAG systems for SU-8 photoresists have 

been developed, including xanthene dyes, 2,4,5,7-tetraiodo-6-hydroxy-3-fluorone (H-Nu 

535 from Spectra Group Ltd.) and diaryliodionium hexafluoroantimonate (SR1012 from 

Sartomer)(39); 5, 7-diiodo-3-butoxy-6-fluorone (H-Nu 470 from Spectra Group Ltd.) and 

octoxyphenylphenyl-iodonium hexafluoroantimonate (Uvacure 1600 from UCB) (60,76), 

and H-Nu 470 and phenyl-p-octyloxyphenyl-iodoniumhexafluoroantimonate (OPPI from 

Spectra Group Ltd.)(71). A single photoinitiation system, (η6-naphthalene)(η5-

cyclopentadienyl)-iron(II) hexafluorophosphate (Irgacure 261 from Ciba Specialty 

Chemicals), which has absorption in visible light and generates Lewis acids upon 

exposure, is also demonstrated.(40,44)  
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To produce a clearly defined, completely open porous 3D pattern, a high pattern 

contrast is necessary.  In multi-beam interference, the partially non-parallel polarization 

of three or four non-coplanar laser beams produces a non-zero background intensity (I0 > 

0) and, therefore, a non-zero background of generated acids (C0 > 0) (Figure 5). This 

results in the formation of shallow patterns without fully opened holes throughout the 

films (Figure 6a).  Although the non-zero background of the interference intensity could 

be minimized by fine-tuning of beam polarization, it may alter the overall symmetry of 

the final lattice.  Thus, a chemical approach that controls the acid generation will be 

preferred.   

In conventional photolithography, control of acid diffusion plays a pivotal role for 

a longer shelf life, high resolution and sharper contrast of the photoresits.(85)  Base 

additives have been used as acid scavengers to (i) extend shelf life for low activation 

systems such as ketal and acetal protected poly(hydroxystyrene), (ii) improve 

contamination resistance for high activation resist systems, such as t-BOC and t-butyl 

ester resins, and (iii) reduce line width slimming and post-exposure bake sensitivity. 

More importantly, the base additives will limit acid diffusion and enhance chemical 

contrast during the exposure and bake processes, hence improving the resolution. With 

the addition of an appropriate amount of triethyl amine (TEA), which partially neutralizes 

the local photoacids generated by I0 during exposure, we have successfully eliminated the 

homogeneous crosslinked background, resulting in a completely open structure 

throughout the film thickness (see Fig 6b and 6c).  

An alternative approach is to optimize the loading of the photosensitizers.(76)  

Fig. 7 shows the sensitivity curve of the SU-8 photoresist as a function of 2-beam 
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interference exposure dose.  Here, the sensitivity represents the normalized pattern 

contrast defined as the feature size (d) scaled by the feature distance (p). The contrast of a 

negative-photoresist pattern is related to the rates of both crosslinking and dissolution by 

the developer solution.  A steeper change in crosslinking with dose energy creates a 

higher contrast pattern. Therefore, the slopes of the sensitivity curves in Fig. 7 suggest 

that the highest contrast pattern is obtained from the film loaded with 0.5 wt% 

photosensitizer, H-Nu 470.(76) 

Due to the large porosity and long soaking time in the developer, the film 

delamination is nearly inevitable in 3D porous structures after development. To improve 

the adhesion between the porous film and the glass substrate, however, a blank resist film 

can be spun on glass first, flood exposed and post-exposure baked, followed by spin 

coating of another layer of resist film for 3D patterning.   

 

B. Positive-tone Photoresists 

Although various types of 3D photonic structures have been fabricated by multi-

beam interference lithography, none of them shows complete PBG properties due to the 

low refractive index of polymers (e. g. SU-8, n= 1.59).  To increase the refractive index 

contrast, polymeric photonic crystals can be used as sacrificial templates for infiltration 

of a higher refractive index material, followed by the removal of polymers, resulting in 

inversed 3D photonic crystals. Currently most 3D polymer microstructures are created in 

negative-tone photoresists, which form highly crosslinked 3D networks that are difficult 

to remove by solvent and heat below 400oC. It will be advantageous to pattern 3D 

structures in positive-tone resists that can be easily dissolved in an organic solvent after 
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infiltration. A commercially available positive-tone resist, AZ5214 (Clariant International 

Ltd.), have been tested as a proof of concept.  AZ5214 is a two-component resist system, 

a novolac resin as matrix and a diazonaphthoquinone as photoactive component or 

sensitizer.  Upon exposure, the base-insoluble diazonaphthoquinone undergoes 

photolysis and Wolff rearrangement to form a ketene.(see Scheme 5).(48)  In the 

presence of trace water, the ketene forms a base-soluble indenecarboxylic acid and 

generates a positive-tone feature.  The unexposed regions can be removed by acetone.  

As seen in Fig. 8, a 2D hexagonal pattern was generated from three-beam interference 

lithography using the same optics setup reported in the literature for the fabrication of 

biomimetic microlens arrays in the negative-tone resist, SU-8.(44)  It seems that 

positive-tone resists give better contrast and sharper corners than the negative-tone resists.  

 

C. Photopolymerizable liquid resins 

In addition to the solid-films of photoresists, photopolymerizable liquid resins from 

urethane acyrlate monomers or oligomers, and photoinitiators, have been studied for 

multi-beam interference lithography.(70,86)  The resin becomes solidified during 

radical-induced photopolymerization, and the unexposed regions are washed away by 

alcohol. Since the liquid resin is contained in a glass cell, the thickness of the resin can be 

easily adjusted by cell height. 3D structures with the thickness up to 200 µm have been 

demonstrated using the urethane acrylate resin and a He-Cd laser (λ=442 nm).  

Compared to the removal of solid films, dissolution of the liquid monomers/oligomers is 

much faster, therefore, the developing step presumably has less effect on the integrity of 

the final structures. However, large shrinkage of the film after the dissolution is expected.  
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In addition, inhomogeneity of radical formation, the lack of control over radical diffusion, 

and possibility of polymerization during exposure in the liquid resins might blur the 

boundary of pattern, limiting the ultimate resolution of the feature size.  

 

D. Organic-Inorganic Hybrids 

As discussed above, a 3D polymer structure can be infiltrated with a higher 

refractive index material into the pores to obtain an inverse 3D photonic crystal.  For 

example, an anatase titania replica can be obtained from fcc-like SU-8 pattern as shown 

in Fig. 9.  The titania was deposited in a batch reactor under atmospheric pressure and at 

room temperature using titanium tetrachloride (TiCl4, Aldrich) as the precursor.  The 

sacrificial SU-8 template was removed by calcination at 500˚C. 

Back-filling and calcination processes often suffer from volume shrinkage that 

causes fracture and loss of long-range order, as well as in-complete filling.  An 

alternative approach is to directly pattern from an organic-inorganic hybrid photoresist.  

For example, organosilicates can be obtained from the sol-gel reaction of 3-

methacryloxypropyl trimethoxysilane with water and an acid catalyst.(87) The addition of 

transition metal alkoxide precursors, such as zirconium propoxide and titanium propoxide, 

to methacrylic acid (MA) produces photocrosslinkable organic-inorganic composites.  

Depending on the transition metal content, the refractive index of the hybrid can be 

increased to 2.0.  Other titanium-containing photoresists have been synthesized from the 

mixture of titanium ethoxide (TE), methacrylic acid and ethylene glycol dimethacrylate 

(EGDMA).(62) The TE and MA produce the titania-acrylate composites while EGDMA 

acts as a crosslinker.  
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E. Holographic polymer-dispersed liquid crystals (H-PDLC) 

 Following the realization of 3D photonic structures, it will be interesting to 

incorporate active materials that will respond to the physical and chemical stimuli for 

tunable electro-optical devices.  Moreover, the confinement of liquid crystals in 2D and 

3D structures provide uniform, size- and spacing-controlled liquid crystal domains and 

induce orientational ordering that will lower driving voltage for reorientation of liquid 

crystals.  One approach is to embed liquid crystals into the interstitial space of close-

packed colloidal crystals.(88-90)  Liquid crystals are attractive candidates because they 

exhibit large optical anisotropy, and their refractive index can be tuned by electrical fields 

or temperatures to shift the stop-bands.  However, sedimentation of colloidal particles is 

slow (hours to days), and require multiple steps, including water evaporation, thermal 

annealing and back filling with liquid crystals.  It could be simplified and hastened 

using holographic polymer-dispersed liquid crystals (H-PDLCs) based on 

polymerization-induced phase separation during holographic patterning.  The beauty of 

this approach is that the liquid crystals naturally segregate to the regions of minimum 

intensity to phase separate from the polymers, and multi-beam interference offer a wide 

variety of crystal symmetries with size control in the sub-100 nm range.  Similar to the 

conventional PDLCs(91), a photosensitive syrup consists of multi-functional 

photocrosslinkable monomers, such as tri-, penta- and hexa-functional urethane or 

acrylate oligomers, nematic liquid crystals, a visible photosensitizer, and radical 

initiators/co-monomers. Upon exposure to the interference of a visible light, liquid 

crystals are trapped in nanometer- to micron-sized droplets within a polymer matrix due 
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to the rapid polymerization, resulting in a periodic pattern of polymer-rich and liquid 

crystal-rich regions. Generally, in the absence of an electric field, the orientation of LCs 

induced the index mismatch between polymer matrix and liquid crystals. As the applied 

voltage increases, the LC directors reorient and yield the minimum index contrast, 

therefore, lowering the diffraction efficiency.(91,92)  

1D patterns of H-PDLC have been fabricated by two-beam interference 

lithography as an anisotropic reflection grating(93) and a polarization grating.(94)  2D 

and 3D tunable H-PDLCs, such as transverse square (Fig. 10a-c)(95), fcc (Fig. 10d-f)(96), 

diamond-like fcc(97), and orthorhombic P lattices(Fig. 10g-i)(98) have been 

demonstrated using three beams, four beams, and six beams as shown in Fig. 10b, e, and 

h, respectively.   

 

III. SUMMARY 

Multi-beam interference lithography reviewed here offers a fast and versatile 

method to pattern periodic one-, two-, and three-dimensional polymer structures on the 

sub-micron length scale.  The symmetry and shape of the “unit cell” can be 

conveniently controlled by varying the intensity, geometry, polarization and phase of the 

beams.  This technique has been applied to various photoresist platforms, including UV 

and visible sensitive resists, negative-tone and positive-tone resists, liquid resins, organic-

inorganic hybrids, and holographic polymer-dispersed liquid crystals.  As a robust 

technique to engineer 3D porous materials, multi-beam interference may potentially 

impact a wide range of applications, including photonics, data storage, chemical sensors, 

nano- and microfludic networks and tissue engineering. 
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Table and Figure Captions: 

Table 1. A comparison of different types of 3D microfabrication techniques. 

Table 2. Experimental conditions for 2D square and tetragonal lattices and the resulting 

lattice constants of the interference patterns. Reprinted with permission from (42). 

Copyright 2004 The International Society of Optical Engineering. 

Table 3. Beam parameters for four-beam interference of the three-termed simple cubic, 

diamond-like and gyroid-like surfaces, and the resulting lattice constants. Reprinted with 

permission from (43). Copyright 2004 American Institute of Physics. 

Scheme 1. Illustration of conventional photolithography process.  

Scheme 2. Illustration of multi-beam interference lithography process.  

Scheme 3. Chemical structures of photoresist, SU-8, and photoacid generator, triaryl 

sulfonium salt.  

Scheme 4. General scheme of photosensitized cationic polymerization. Reprinted with 

permission from (39). Copyright 2002 American Chemical Society. 

Scheme 5. Schematic illustration of the photochemistry of a diazonaphthoquinone-

novolac resist system. Adapted from ref.((48)) 

Figure 1. Optical images of (a) two- and (b) three-beam (Reprinted with permission from 

(54)) interference patterns. Copyright 2003 American Physical Society. 

Figure 2. 2D lattices formed from three-beam interference: (a) beam geometry in 

perspective, (b) beam geometry within the XY-plane showing reciprocal wave vectors, 

(c) resulting lattice, and (d) associated reciprocal lattice. Reprinted with permission from 

(42). Copyright 2004 The International Society of Optical Engineering. 

Figure 3. The effect of beam polarization on a square interference pattern. The ratio of 
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1 2E E⋅  and 2 3E E⋅  is (a) 2, (b) 1, and (c) 0.5, respectively.  

Figure 4. The isointensity surfaces of three-termed simple cubic, diamond-like, and 

gyroid-like structures. Reprinted with permission from (43). Copyright 2004 American 

Institute of Physics. 

Figure 5.  Non-zero backgrounds (   ) of the light intensity and the resulting acid 

concentration generated in the interference pattern of non-orthogonally polarized beams. 

Reprinted with permission from (39). Copyright 2002 American Chemical Society. 

 

Figure 6. Scanning electron micrographs (SEM) of micropatterned 3D polymer films. (a-

c) Top view of the fcc-like structures formed in the absence (a) and in the presence (b) of 

TEA. (c) Cross-section of the fractured, continuously porous film shown in (b).  The top 

surface is a (111) plane and the fractured surface is (100) plane. The scale bar is 2 µm. 

Reprinted with permission from (39). Copyright 2002 American Chemical Society. 

 

Figure 7. Sensitivity curve of visible SU-8 photoresists with different loadings of 

photosensitizers. Reprinted with permission from (76). Copyright 2005 Elsevier Science. 

Figure 8. SEM image of micropatterned AZ 5214 polymer films from three-beam 

interference lithography.  

Figure 9. A fcc-like SU-8 photoresist pattern (inset) and its anatase titania replica. Scale 

bar, 5 µm. 

Figure 10. Different types of 2D and 3D lattices from H-PDLCs. (a) Calculated 

isointensity surface, (b) arrangement of beams, and (c) SEM image of XZ-face of 

cylindrical cavities. Reprinted with permission from (95). Copyright 2003 American 

Institute of Physics. (d) Calculated isointensity surface, (e) ideal propagation vectors 
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within the film (θ≈63o), and (f) SEM image of polymer morphology of the fcc lattice in 

H-PDLC. Reprinted with permission from (96). Copyright 2003 Optical Society of 

America. (g) Calculated isointensity surface of YZ-plane, (h) laser beam geometry, and 

(i) SEM image of (100) plane after removal of the liquid crystals in orthorhombic P 

lattice. Scale bar, 250 nm. Reprinted with permission from (98). Copyright 2002 John 

Wiley & Sons, Inc.
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Table 2.  
Lattice The angle against z-axis, iφ  Lattice constant 

Square 1 / 4φ π= , 2 3 / 4φ π= , 3 3 / 4φ π= − 1 2 a 0.707 / sinλ θ= = =a a  

Tetragonal 1 0φ = , 2 2 / 3φ π= , 3 2 / 3φ π= −  1 2 a 0.667 / sinλ θ= = =a a  
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Table 3.  
Lattice Wave vectors Polarization Vectors Lattice 

constant 

Simple cubic 0k / a[111]π=  

1k / a[111]π=  

2k / a[111]π=  

3k / a[11 1]π=  

00E 1.00[0.0, 0.707, 0.707]= −  

01E 0.632[ 0.5,0.309, 0.809]= − −  

02E 0.874[ 0.5,0.309, 0.898]= − −  

03E 2.288[ 0.309,0.809,0.5]= −  

3 / 2λ  

Diamond-like 0k / a[333]π=  

1k / a[511]π=  

2k / a[151]π=  

3k / a[115]π=  

00E 4.897[0.612, 0.774, 0.161]= −  

01E 4.000[0.25, 0.905, 0.346]= − −  

02E 5.789[0.346, 0.25,0.905]= −  

03E 12.94[0.905,0.346, 0.25]= −  

3 3 / 2λ  

Gyroid-like 0k / a[333]π=  

1k / a[511]π=  

2k / a[151]π=  

3k / a[115]π=  

00E 5.657[0.707, 0.707, 0]= −  

01E 6.164[0.162,0.162, 0.973]= −  

02E 6.164[0.162,0.162, 0.973]= −  

03E 12.693[0.680,0.680, 0.272]= −  

3 3 / 2λ  
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Figure 1.  
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Figure 7.  
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Figure 9.  
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Figure 10.  
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