
University of Pennsylvania
ScholarlyCommons

Departmental Papers (EES) Department of Earth and Environmental Science

October 2003

Nitrogen availability and forest productivity along a
climosequence on Whiteface Mountain, New York
Amishi B. Joshi
University of Pennsylvania

David R. Vann
University of Pennsylvania, drvann@sas.upenn.edu

Arthur H. Johnson
University of Pennsylvania, ahj@sas.upenn.edu

Eric K. Miller
Dartmouth College

Follow this and additional works at: http://repository.upenn.edu/ees_papers

Copyright NRC Research Press. Published in Canadian Journal of Forest Research, Volume 33, Number 10, October 2003, pages 1880-1891.
Publisher URL: http://pubs.nrc-cnrc.gc.ca

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ees_papers/12
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Joshi, A. B., Vann, D. R., Johnson, A. H., & Miller, E. K. (2003). Nitrogen availability and forest productivity along a climosequence on
Whiteface Mountain, New York. Retrieved from http://repository.upenn.edu/ees_papers/12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76361194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fees_papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ees_papers?utm_source=repository.upenn.edu%2Fees_papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ees?utm_source=repository.upenn.edu%2Fees_papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ees_papers?utm_source=repository.upenn.edu%2Fees_papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ees_papers/12?utm_source=repository.upenn.edu%2Fees_papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ees_papers/12
mailto:libraryrepository@pobox.upenn.edu


Nitrogen availability and forest productivity along a climosequence on
Whiteface Mountain, New York

Abstract
We studied broadleaf and needle-leaf forests along an elevation gradient (600–1200 m) at Whiteface
Mountain, New York, to determine relationships among temperature, mineral N availability, and aboveground
net primary productivity (ANPP) and controls on the latter two variables. We measured net N mineralization
during the growing season, annual litterfall quantity and quality, aboveground woody biomass accumulation,
and soil organic matter quality. Inorganic N deposition from cloudwater markedly increases mineral N
availability above 1000 m in this region. Consequently, mineral N availability across the climosequence
remains relatively constant because N mineralization decreases with increasing elevation. Across this
climosequence, air temperature (as growing season degree-days) exerted the most control on ANPP. Nitrogen
mineralization was most strongly related to soil growing season degree-days and less so to lignin to N ratios in
litter. ANPP was correlated with N mineralization but not with mineral N availability. Combining our data
with those from similar studies in other boreal and cool temperate forests shows that N mineralization and
ANPP are correlated at local, regional, and interbiome scales. Regarding the persistent question concerning
cause and effect in the N mineralization – forest productivity relationship, our data provide evidence that at
least in this case, forest productivity is a control on N mineralization.
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Nitrogen availability and forest productivity
along a climosequence on Whiteface Mountain,
New York

Amishi B. Joshi, David R. Vann, Arthur H. Johnson, and Eric K. Miller

Abstract: We studied broadleaf and needle-leaf forests along an elevation gradient (600–1200 m) at Whiteface Moun-
tain, New York, to determine relationships among temperature, mineral N availability, and aboveground net primary
productivity (ANPP) and controls on the latter two variables. We measured net N mineralization during the growing
season, annual litterfall quantity and quality, aboveground woody biomass accumulation, and soil organic matter quality.
Inorganic N deposition from cloudwater markedly increases mineral N availability above 1000 m in this region. Conse-
quently, mineral N availability across the climosequence remains relatively constant because N mineralization decreases
with increasing elevation. Across this climosequence, air temperature (as growing season degree-days) exerted the most
control on ANPP. Nitrogen mineralization was most strongly related to soil growing season degree-days and less so to
lignin to N ratios in litter. ANPP was correlated with N mineralization but not with mineral N availability. Combining
our data with those from similar studies in other boreal and cool temperate forests shows that N mineralization and
ANPP are correlated at local, regional, and interbiome scales. Regarding the persistent question concerning cause and
effect in the N mineralization – forest productivity relationship, our data provide evidence that at least in this case, for-
est productivity is a control on N mineralization.

Résumé : Nous avons étudié des forêts de feuillus et de résineux le long d’un gradient altitudinal (600–1200 m) à
Whiteface Mountain dans l’État de New York pour déterminer les relations entre la température, la disponibilité en
azote minéral, la productivité primaire nette aérienne (PPNA) et les facteurs contrôlant ces deux dernières variables.
Nous avons mesuré la minéralisation nette de l’azote pendant la saison de croissance, la quantité annuelle de litière et
sa qualité, le cumul de biomasse ligneuse aérienne et la qualité de matière organique du sol. Dans cette région, les dé-
pôts d’azote inorganique provenant de l’eau des nuages augmentent de façon marquée la disponibilité en azote minéral
au-dessus de 1000 m. De cette façon, la disponibilité en azote minéral dans la climoséquence reste relativement cons-
tante parce que la minéralisation de l’azote diminue avec l’altitude. Le long de cette climoséquence, la température de
l’air (exprimée en degrés-jours pendant la saison de croissance) exerce le contrôle le plus important sur la PPNA. La
minéralisation de l’azote est la plus fortement reliée aux degrés-jours dans le sol pendant la saison de croissance et
moins au rapport lignine:azote dans la litière. La PPNA est corrélée avec la minéralisation de l’azote mais pas avec la
disponibilité en azote minéral. La combinaison de nos données avec celles d’autres études semblables effectuées dans
d’autres forêts boréales et tempérées froides montre que la minéralisation de l’azote et la PPNA sont corrélées aux
échelles locales, régionale et entre les biomes. A propos de la question persistante concernant les liens de cause à effet
entre la minéralisation de l’azote et la productivité forestière, nos données fournissent la preuve qu’au moins dans le
cas présent la productivité forestière exerce un contrôle sur la minéralisation de l’azote.

[Traduit par la Rédaction] Joshi et al. 1891

Introduction

Over the last several decades, nutrient cycling studies
have identified N as the nutrient most likely limiting above-
ground net primary productivity (ANPP) in temperate forests
(e.g., Mitchell and Chandler 1939; Vitousek et al. 1982;

Vitousek and Howarth 1991; Melillo et al. 1993; Reich et al.
1997). At a regional scale, several studies have shown a
strong positive relationship between N mineralization and
productivity (Pastor et al. 1984; Nadelhoffer et al. 1985; Zak
et al. 1989; Reich et al. 1997). Other studies have identified
climatic and soil moisture characteristics as good predictors
of both N mineralization and forest productivity (Post and
Curtis 1970; Pastor and Post 1986; Grigal and Homann
1994).

During the past two decades, many authors researching
the relationship between N cycling and forest productivity in
cool temperate forests have emphasized the importance of
mineral N availability in controlling forest productivity. This
represents a departure from the way many forest scientists
viewed controls on site quality previously. Consider the con-
trasting views represented by the results of the following
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two regional-scale studies of cool temperate forests done
across similar gradients of climate and soil characteristics.

Reich et al. (1997) compiled N mineralization and pro-
ductivity data for 50 broadleaf and needle-leaf stands in
Wisconsin and Minnesota. They found a highly significant
correlation between net N mineralization and ANPP. Their N
mineralization based model yielded an R2 value of 0.54, and
they concluded that N mineralization was probably an im-
portant control on ANPP, accounting for more than half of
the variance in their regional-scale data. In their study, N
mineralization was related to total litterfall, mean annual
temperature, and soil texture.

Post and Curtis (1970) examined the relationship between
site index (a height- and age-based measure of productivity)
and soil-based variables and climate variables at 78 northern
hardwood stands growing on a wide variety of soils from
southern to northern Vermont. Their climate-based model re-
lated site index to variables reflecting temperature (latitude,
elevation, and aspect) and soil moisture (soil depth and
drainage class) without significant independent contributions
from soil nutrients (R2 = 0.62).

The correlations among temperature, moisture, commu-
nity types, and N mineralization confound the interpretation
of cause and effect and hinder the determination of proximal
controls on ANPP (Pastor et al. 1984; Reich et al. 1997;
Scott and Binkley 1997). A significant, direct relation be-
tween temperature and N mineralization has been observed
in some, but not all, studies (Powers 1990; Boone 1992;
Kim et al. 1995; Stottlemyer et al. 1995; Sveinbjornsson et
al. 1995; Reich et al. 1997). Other studies have found a sig-
nificant relationship between soil silt plus clay content (a
surrogate for soil moisture holding capacity) and N mineral-
ization (Pastor et al. 1984; Stottlemyer et al. 1995; Reich et
al. 1997). Community types, often controlled by temperature
and soil moisture conditions, contribute to differences in N
mineralization through their influence on lignin to N ratios
of litter (Scott and Binkley 1997).

It is difficult to choose between two interpretations of the
empirical ANPP data collected in cool temperate North
American forests: (i) temperature and (or) moisture avail-
ability could independently control both ANPP and N miner-
alization without N mineralization controlling ANPP or
(ii) temperature and moisture may control N mineralization,
which in turn is the primary control on ANPP. While these
two possibilities are widely acknowledged, the current para-
digms favor mineral N as the proximal control on ANPP.

We initiated this study on Whiteface Mountain, New
York, because prior research at this site led us to expect that
we could separate the effects of temperature and mineral N
availability on productivity. On a global scale, Whiteface
Mt. receives very high levels of anthropogenic mineral N in-
put via the atmosphere (Lovett 1992; Miller et al. 1993;
Friedland and Miller 1999). In the forests of the region, dif-
ferences in mineral N availability are controlled by both N
mineralization and N input from the atmosphere. Previous
research in these forests suggested that a decrease in N min-
eralization with increasing elevation would be mostly offset
by increased N deposition in clouds and rainfall.

We sought to examine potential controls on N mineraliza-
tion, determining the degree to which stand-level ANPP was
related to growing season length and temperature and assess-

ing whether mineral N availability explained a significant
fraction of the variance in ANPP with or without accounting
for the effects of growing season temperatures.

Site description
Whiteface Mountain (summit elevation 1483 m) is located

in Essex County near the town of Wilmington, New York; it
lies in the northeast section of the Adirondack Mountains
within the boundaries of the Adirondack Park and its 2.5
million acre Forest Preserve (Adirondack Park Agency, Ray
Brook, N.Y.). With the exception of the lowest elevation site
(600 m), which burned in 1908, the study area has not been
disturbed by fire or logging in recent history (the past
115 years) (Lindberg et al. 1992). All of the stands that we
sampled are considered mature forest (Battles et al. 1992).

Regional transport of pollutants to Whiteface Mountain is
predominantly from the west and south (Husain and
Dutkiewicz 1990). Atmospheric N deposition at Whiteface
Mountain varies with elevation, ranging from 15 to
30 kg·ha–1·year–1, depending largely on rainfall and cloud-
water interception rates (Friedland et al. 1991; Lovett 1992;
Miller et al. 1993). Nitrogen deposited from the atmosphere
between 1986 and 1995 exceeded N accumulated in biomass
by sixfold, and midelevation forests on Whiteface Mountain
monitored since 1986 leak mineral N at rates up to
6.2 kg·ha–1·year–1 (Friedland and Miller 1999). Estimates of
N mineralization in Whiteface Mountain forests range from
40 to >100 kg·ha–1·year–1 (Sasser and Binkley 1989; Fried-
land et al. 1991). Accordingly, we did not expect mineral N
availability to limit ANPP.

Average annual precipitation at the mountain base is
98 cm, increasing at higher elevations to >130 cm, at least
30% of which falls as snow. Mean annual temperature
ranges from 5 °C at the base to <2 °C at the summit; persis-
tent cloud cover above 1000 m adds significantly to the
moisture and mineral N supply (Witty 1968; Friedland et al.
1991; Friedland and Miller 1999). Mean summer tempera-
ture ranges from approximately 16 °C at the base to 12 °C at
the summit (E.K. Miller, unpublished data). Airflow at the
study area is dominated by westerly and northwesterly up-
slope winds (Lindberg et al. 1992). The growing season
spans May through early September (Miller et al. 1993).

The bedrock of the study area is primarily Precambrian
anorthosite (the northeastern portion of the Adirondack An-
orthosite Massif; Bird 1963). Soils are differentiated by tem-
perature and organic matter content as Typic Cryohumods,
Typic Cryorthods, or Typic Haplorthods (Table 1; Witty
1968). The average depth to bedrock varies from >1 m in ar-
eas of well-developed spodosols to places where organic
mats with little or no mineral soil development overlie anor-
thosite boulders (Witty 1968; Lindberg et al. 1992). Deeper
soils are normally found at lower elevations. Soils are fine
textured and soil organic matter is abundant. Given the low
evapotranspiration demand and abundant rainfall, moisture is
unlikely to be limiting in most years.

Methods
From May 1998 to May 1999, across this climosequence

(with elevation providing the change in climate), we mea-
sured net N mineralization during the growing season, an-
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nual litterfall quantity, litter and soil organic matter quality
(C, N, and lignin), ambient air temperature, soil temperature,
soil moisture, and bole diameter increment.

The study area is located on a north–south transect along
the flank of Esther Mountain (at 44°23′N, 73°54′W; summit
elevation 1292 m), the northeastern peak of the Whiteface
massif. In June 1997, five study sites were established at
four elevations (see Table 1) along this transect. Two sites
were used at the highest elevation to better represent the
range of environments at the upper elevations caused by an
increase in exposure. One site was a sheltered stand with a
closed canopy; the other site was judged to be exposure lim-
ited (EL), where exposure to winter wind was expected to be
the main force controlling growth form and productivity
through needle loss (Sprugel and Bormann 1981). At each
study site, four 100-m2 square plots were constructed, and
all sampling took place within or immediately adjacent to
these 20 plots. Northern hardwood forest dominates the
600-m site. The 800- and 1000-m sites are characterized by
hardwood–fir–spruce transition forests; two of the four plots
at the 1000-m site were established within broadleaf-
dominated vegetation, and the other two plots were estab-
lished within conifer-dominated vegetation. At one of the
1200-m sites, fir–spruce vegetation dominated. The 1200-m
EL site consisted of small balsam fir (Abies balsamea (L.))
trees with wind-pruned branches on the windward side
(these characters are summarized in Table 1).

At each plot, plant species and soil characteristics were
determined in the summer of 1997 (see Joshi 2001). All
plants were identified; diameter at breast height (1.4 m) was
measured for all live and dead-standing individuals >1.4 m
in height. Height was measured for the five to seven tallest
and (or) largest diameter trees in the plot. Soil bulk density
(grams per cubic centimetre) was calculated using a square
corer to remove soil from two quantitative 10 cm × 10 cm ×
10 cm soil pits located adjacent to opposite corners of each
plot. Depth of the quantitative soil pit was measured in five
different locations so as to increase the accuracy of the sam-
ple volume determination. The soil was air-dried to constant
mass, passed through a 2-mm mesh sieve, weighed, and bulk
density calculated.

Environmental variables
At each of the five sites, two electronic data loggers re-

corded soil temperature hourly and soil moisture at noon and
midnight; these were measured at 5 cm depth. Above-
canopy air temperatures were derived from sampling towers
at elevations of 720, 1150, 1250, and 1350 m. Air tempera-
tures were recorded hourly.

To examine the effects of climate on productivity and N
mineralization, mean daily air temperature and growing sea-
son length were combined at each site into one index value,
growing season degree-days (GSDD), calculated as the mean
daily temperature multiplied by the number of days with a
mean temperature >0 °C (O’Neill and DeAngelis 1981). Due
to the high specific heat of wet versus dry soil, differences in
soil moisture content and drainage class may result in situa-
tions where air and soil temperatures are not well correlated.
Consequently, we calculated soil GSDD as a potentially
better predictor of soil-based processes, particularly N min-
eralization.

© 2003 NRC Canada
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Productivity
To determine plot age and estimate wood production, the

five to seven tallest and (or) largest diameter trees in each
plot were sampled through the center with a 4.5-mm incre-
ment borer. Plot age was estimated based on the ring count
from these cores. Smaller cores (approximately 3 cm long)
were collected from a minimum of 10 and a maximum of all
small canopy and (or) subcanopy trees. Using all cores, the
widths of the youngest 10 rings were measured and used
with allometric equations (Whittaker et al. 1974; Tritton and
Hornbeck 1982) to estimate annual woody biomass incre-
ment. To estimate litterfall, four 1385-cm2 litter traps were
randomly located in each plot. Traps were emptied monthly
during the summer and fall (June–November 1998) and once
at the end of winter (May 1999); these samples were com-
bined into one litterfall sample per plot per collection period
and oven-dried at 80 °C to constant mass. ANPP was esti-
mated as the biomass represented by 1 year’s wood and litter
production.

Mineral N availability
Mineral N availability at Whiteface Mountain consists of

atmospheric inorganic N input and net N mineralization. At-
mospheric N input to the area of our midelevation plots
(1000 m) was measured and modeled by Friedland et al.
(1991) and Lovett (1992), and atmospheric N input along the
elevational gradient that encompassed the plots was modeled
by Miller et al. (1993). We estimated atmospheric N input
for this study using the average of the results published by
these authors. These results are shown in Table 2; the high-
est elevation experiences about four times more N input than
the lowest.

Net N mineralization was monitored just before and dur-
ing the length of the 1998 growing season as determined by
bud-break and the onset of autumn senescence (May–
September). Net N mineralization in the top 10 cm of soil
(this typically included the O horizon and a portion of the A
horizon) at each site was estimated using the in situ resin
core method (after DiStefano and Gholz 1986). Atmospheric
N input to the cores was minimized from June through Sep-
tember by covering the cores with ion-exchange resin bags
to trap incoming NH4 and NO3 in the precipitation, prevent-
ing the ions from entering the incubating soils. Ion-exchange
resin bags were also placed at the bottom of all of the cores
to retain leached NH4 and NO3.

Ion-exchange resin bags were prepared by sealing approx-
imately 14 mL of strongly acidic cation-exchange or
strongly basic anion-exchange resins (Dowex 50WX and
Dowex 1X, respectively) between two small (36 cm2) square
pieces of polyester fusible interfacing fabric that had been
rinsed multiple times with deionized water. The edges of the
square were then trimmed to create a circular ion-exchange
resin bag 5 cm in diameter. The anion-exchange (with about
18 mmol ion charge (mmolc) per bag) and cation-exchange
(28 mmolc per bag) resin bags were stacked together at the
top and bottom of the cores.

Several techniques have been used to measure net N min-
eralization in the field. Each method has its own limitations
and there is no consensus on a “best” method (Powers 1990;
Binkley et al. 1992; Zou et al. 1992; Subler et al. 1995;
Jensen et al. 1996). In light of the inherent difficulty in mea-
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suring absolute net N mineralization, it should be kept in
mind that present methods used to assess N mineralization
yield only indices (Binkley and Hart 1989).

At the beginning of each incubation period, in each plot,
six pairs of ABS plastic tubes (10 cm long, 5 cm in diame-
ter) were installed at random locations, avoiding only large
roots, tree trunks, and rocks. Loose surface forest floor ma-
terial was set aside and tubes were inserted into the soil. One
core from each pair was removed from the ground and the
soil retained. These samples were kept refrigerated until be-
ing processed (within 48 h) and then analyzed to determine
initial inorganic N levels. The second core was gently re-
moved, ion-exchange resin bags were placed at the bottom
of the core, and then the unit was replaced into the hole. Ion-
exchange resin bags and loose litter were placed on top of
the core.

Each incubation period was approximately 4 weeks; there
were a total of four incubation periods. At the end of each
period, we removed all cores from the ground and collected
the incubated soil as well as the bottom ion-exchange resin
bags. The upper bags were either reused once after regenera-
tion or replaced with fresh bags. Collected soil and bottom
ion-exchange bags were immediately refrigerated until they
were processed in a laboratory at the Department of Earth
and Environmental Science, University of Pennsylvania, 2–
4 days after collection.

Soil and resin bag analysis
Each soil sample was passed through a 2-mm mesh sieve

to remove rocks and coarse organic matter and to homoge-
nize the soil. An 8- to 12-g (fresh mass) subsample was re-
moved from the seived material; the remainder was air-dried
and weighed to determine soil water content. Each sub-
sample was extracted with 50 mL of 2 N KCl and filtered.
Storage and handling of the cation- and anion-exchange
resin bags were similar to that used for the soils. Each bot-
tom resin bag was extracted individually with 30 mL of 2 N
KCl; resin extracts were centrifuged (to remove escaped
resin and residue soil) and refrigerated until analysis. This
extraction procedure has been shown to recover essentially
all of the NH4 and NO3 from soils, and at least 80%–85% of
the ions from the resin bags, as determined by recovery of
standard additions to resins by Binkley et al. (1994) and
confirmed in our laboratory. All extracts were preserved
with the addition of 3 mL of chloroform and refrigerated un-
til analysis. The NH4 and NO3 concentrations of all extracts
were determined colorimetrically on a Technicon Auto Ana-
lyzer II (Technicon Industrial Systems, Tarrytown, N.Y.) at
the University of Pennsylvania using standard procedures
(Technicon Industrial Systems manual) with slight modifica-
tions.

Soil core results are reported in kilograms per hectare of
surface to 10 cm depth soil for both initial extractable and
net production values for NH4 and NO3; resin bag results are
reported as kilograms of NH4 or NO3 leached per hectare of
surface to 10 cm depth soil. Net N mineralization was calcu-
lated on a plot by plot basis as the average postincubation
quantity of NH4 and NO3 in both the soil and resin bags mi-
nus the initial quantity of NH4 and NO3 in the preincubation
soils. A negative difference between postincubation and pre-
incubation N concentrations indicates net N immobilization.

Annual net N mineralization was estimated as the sum of the
amounts of N mineralized in each incubation period during
the growing season. Much prior research has shown winter
N mineralization to be negligible (usually <10% of annual
net N mineralized) (e.g., Pastor et al. 1984; Strader et al.
1989; Stump and Binkley 1993; Pérez et al. 1998; Schaffers
2000).

Litterfall and soil organic matter quality
Oven-dried litterfall samples were ground in a Wiley mill

to pass a 1-mm mesh and analyzed for C, N, and lignin con-
tent. The six soil cores sampled to determine initial pre-
incubation inorganic N levels were air-dried and subsampled
(an equal percentage of soil was subsampled from each core
in a plot) and combined into one sample so as to form one
soil sample per plot per incubation period. These soils were
air-dried, finely ground using a mortar and pestle, and ana-
lyzed for C and N content. Soils from the beginning, middle,
and end of the growing season were analyzed for lignin con-
tent. An elemental analyzer (Carlo-Erba NA 1500 C/N ana-
lyzer; Fisons Instruments, Beverly, Mass.) was used to
determine C and N content for soil and litter samples. Acid
(H2SO4) detergent fiber analysis and further H2SO4 digestion
at the University of Maine (B. Hoskins, University of Maine,
personal communication) were used to determine lignin con-
tent for both soil and litter samples.

Statistical techniques
Pearson product moment correlation analysis was used to

explore correlations among variables. Regression analysis
was used to test hypotheses concerning driving variables and
their effect on productivity and N mineralization. Stepwise
multiple linear regression was used to examine the relative
importance of GSDD and net N mineralization on ANPP
and its components. ANOVA and Tukey’s test were used to
determine differences in major variables among different el-
evations.

Analyses were performed on a plot by plot (n = 20) basis
to assess small-scale effects at each sampling location.
Large-scale effects (e.g., climate) were assessed on a site by
site basis (n = 5). Some variables were log10 transformed
when needed to satisfy normality requirements for regres-
sion analyses; when transformation was necessary, this is
specified in the results.

Results

Litterfall quantity and quality
Monthly litterfall quantities are shown in Fig. 1A. Sum-

mer litterfall patterns were essentially identical at all forests;
however, winter litterfall patterns were, not surprisingly, dif-
ferent between the broadleaf and needle-leaf forests. Maxi-
mum litter was shed in the broadleaf forests during autumn,
from September through November, while maximum litter
was shed during winter in the needle-leaf forests.

Litter lignin:N over 1 year is shown in Fig. 1B. All sites
except the 800-m site showed roughly similar patterns in
changing lignin:N over the year, although patterns of change
were expressed most strongly at 1200 and 600 m. Lignin:N
fell early in the summer, rose steadily through the summer
reaching a maximum in the fall (September–November), and
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then fell again in winter. The litter lignin:N at the 800-m site
showed the same early summer drop but then did not change
appreciably throughout the summer and rose in winter. Litter
lignin:N values at the 1000- and 1200-m EL sites were simi-
lar and were significantly lower in the late summer and fall
than those at 1200 m. All sites above 600 m contained
A. balsamea as a major component of the canopy, which in-
creased the lignin content of the litter.

All sites dominated by needle-leaf trees (1000, 1200, and
1200 m EL) showed essentially the same litter lignin:C
(ANOVA and Tukey’s test on log10-transformed data: p >
0.1, n = 20) (Fig. 1C). The broadleaf sites showed lower
lignin:C, but the difference was only significant at the 600-m
site (ANOVA and Tukey’s test on log10-transformed data:
p < 0.01, n = 20). The 600-m site followed a seasonal pat-
tern of change in litter lignin:C that was similar to the
pattern seen in the upper-elevation sites; the 800-m site fol-
lowed a somewhat different seasonal pattern compared with

the upper-elevation sites, with lignin:C declining over the
summer and peaking with autumn leaf fall.

Soil variables
Results for the measured soil parameters are shown in Ta-

ble 3. No seasonal patterns were observed in the soil quality
variables (data not shown), so the values shown are the mean
of the three measurements made over the season. Water con-
tent was similar across all plots; variations during the season
were small and showed no pattern. A trend toward increases
in lignin, C, and N with elevation is apparent, but the 800-m
site was anomalous in this regard, so the trend was not sig-
nificant.

Nitrogen mineralization
For the growing season (May–September) at the five

study sites on Whiteface Mountain, net N mineralization
(ammonification plus nitrification) and net nitrification are
listed in Table 2. In general, net N mineralization decreased
as elevation increased. The 600-m site showed significantly
more N mineralization than did the 1000-m site (p < 0.05),
the 1200-m site (p < 0.1), and the 1200-m EL site (p <
0.01). Although the average amount of N mineralized at the
1200-m EL site was always less than at the other sites, the
difference was only significant for comparisons between the
1200-m EL plot and either the 600- or the 800-m plot (t
tests: p < 0.005). Seasonal patterns in inorganic N concentra-
tions are shown in Fig. 2. All five sites showed similar
trends, with N mineralization steadily increasing from early
spring through summer, reaching a maximum during July
and August, and subsequently decreasing. When separated
by vegetation type, broadleaf forests mineralized and nitri-
fied more N than did needle-leaf forests (t test: p < 0.001).

Considerable nitrification (>20% of total N mineraliza-
tion) was observed at all sites except 1200 m (Fig. 3); more
nitrification occurred at lower elevations. Seasonal and
elevational patterns in nitrification paralleled those in net N
mineralization. If atmospherically derived inorganic N is in-
cluded, mineral N availability (sum of N mineralization and
atmospheric N deposition) did not differ significantly across
the five forest sites (p > 0.1); however, the 1200-m site had
significantly more available mineral N than the 1000- and
800-m sites (ANOVA with Tukey’s test: p < 0.05 and p <
0.1, respectively, n = 20). Maximum mineral N availability,
approximately 53 kg·ha–1·year–1, is at 1200 m and minimum
mineral N availability, approximately 38 kg·ha–1·year–1, is at
1000 m (Fig. 3).

Coefficients of determination and probability values from
linear regressions between N mineralization rates, nitrifica-
tion rates, soil and litter quality parameters, and measured
environmental variables, including soil and air GSDD, are
shown in Table 4. Soil GSDD explained more of the varia-
tion in N mineralization (R2 = 0.469, p < 0.001) and nitrifi-
cation (R2 = 0.754, p < 0.001) than did any other variable.
Air GSDD could account for some of the variation in net N
mineralization (R2 = 0.323, p < 0.01) and nitrification (R2 =
0.656, p < 0.001). Substrate quality variables did not explain
as much variance in net N mineralization as they did for net
nitrification. In a linear regression, litter lignin:N indicated a
small but significant effect on net N mineralization (R2 =
0.293, p < 0.05); soil C:N did not explain any of the vari-
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Fig. 1. Patterns in (A) litterfall quantity, (B) litter lignin:N, and
(C) lignin:C over 1 year at five forests along an elevational gra-
dient on Whiteface Mountain, N.Y. Standard error bars are
shown.



ance in net N mineralization. However, litter lignin:N pro-
duced a better regression with net nitrification (R2 = 0.512,
p < 0.001); soil C:N also produced a significant correlation
with nitrification (R2 = 0.209, p < 0.05). Litter N content and

soil lignin content did not account for any variation in either
process (p > 0.1). Foliar production and ANPP explained
29% (p < 0.01) and 23% (p < 0.05) of the variation in N
mineralization, respectively. No additional variance in net N
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Elevation
(m)

Lignin content
(mg·g–1)

C content
(mg·g–1)

N content
(mg·g–1)

Water content
(g·g–1)

Bulk density
(g·cm–3)

600 183.2±13.1 229.7±12.5 11.5±0.5 2.45 (2.59/2.29) 0.28 (0.70/0.13)
800 303.4±1.9 361.7±9.9 16.1±0.3 2.39 (2.61/2.21) 0.17 (0.27/0.13)

1000 213.5±10.3 309.0±15.9 13.8±0.6 2.34 (2.52/2.24) 0.14 (0.25/0.07)
1200 235.0±16.2 302.5±14.2 13.2±0.7 2.59 (2.68/2.53) 0.11 (0.15/0.08)
1200 EL 219.6±21.5 313.6±13.5 15.2±0.5 2.21 (2.31/2.13) 0.14 (0.30/0.07)

Note: All values shown are on a soil dry mass basis and are presented as are mean ± SE or mean
(max./min.).

Table 3. Soil properties along an elevational gradient at Whiteface Mountain.

Fig. 2. Change in inorganic N (NO3 and NH4) concentrations over the growing season on Whiteface Mountain as measured by the in
situ resin core method of estimating N mineralization. Preincubation concentrations represent the inorganic N in the soil prior to in-
stalling incubations; postincubation concentrations represent the amount of inorganic N accumulated and leached from the incubation
after approximately 1 month. Standard error bars are shown. The difference between pre- and post-incubation concentrations represents
the amount of N mineralized during that period.



mineralization was explained by any variable in multiple lin-
ear regressions with productivity variables.

Productivity
ANPP, represented by litterfall quantity and wood produc-

tion, is reported for each site in Table 2. ANPP generally de-
creased with increasing elevation, although there was little
difference between 600 and 800 m and between 1000 and
1200 m. The least productivity occurred at the 1200-m EL
site. Litterfall accounted for 66%–84% of ANPP. As ex-
pected, air GSDD explained the most variance in ANPP
(R2 = 0.671, p < 0.001) (Fig. 4A); soil GSDD produced a
significant regression as well (R2 = 0.356, p < 0.01). Air
GSDD was the best predictor of litterfall (R2 = 0.784). Mul-
tiple regressions using soil variables in combination with air
GSDD did not improve the R2 values.

Total annual litterfall was correlated with net N mineral-
ization (Pearson R = 0.57, p < 0.01) and net nitrification
(R = 0.67, p < 0.001), but mineral N availability (the sum of
net N mineralization and atmospheric N deposition) was not
correlated with ANPP or any of its components (p > 0.1).
Residuals from a regression between air GSDD and ANPP
did not correlate with either net N mineralization or mineral
N availability (Figs. 4B and 4C).

Discussion

Measurements of net N mineralization
Our estimates of net N mineralization along an elevational

gradient on Whiteface Mountain are similar to the
40 kg ha year⋅ ⋅− −1 1 estimate reported using the buried-bag
method by Friedland et al. (1991) at nearby sites on White-
face Mountain and lower than the values estimated by Sasser
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Fig. 3. Inorganic N availability at five forest sites on Whiteface Mountain. Bars show estimated annual net ammonification and nitrifi-
cation (net N mineralization is the sum of these). Points represent total mineral N available at forest sites; total mineral N available is
the sum of mineralized N plus atmospherically deposited mineral N.

Dependent axis

Independent axis
Total N
mineralized Nitrification

Litter N
content

Litter
lignin:N

% soil
moisture

Soil
GSDD

Air
GSDD Soil C:N

Nitrification 0.418** x x x x x x x
% litter N 0.019 0.003 x x x x x x
Litter lignin:N 0.293* 0.512*** na x x x x x
% soil moisture 0.17 0.439** 0.13 0.185* x x x x
Soil GSDD 0.469*** 0.754*** 0.009 0.597 0.387**a x x x
Air GSDD 0.323**a 0.656*** 0.045 0.388** 0.478*** 0.702*** x x
Soil C:N 0.07 0.209* 0.001 0.155 0.322** 0.147* 0.042 x
% SOM lignin 0.005 0.003 0.164 0.008 0.384** 0 0 0.313**

Note: GSDD, growing season degree-days. “na” means that the regression would be meaningless, as the variables being
tested were autocorrelated. *, p < 0.05; **, p < 0.01; ***, p < 0.001; x, no test; SOM, soil organic matter.

aData failed normality test, even after various transformations.

Table 4. Coefficients of determination and probability values from linear regressions between N mineraliza-
tion and possible driving variables (n = 20).



and Binkley (1989) who measured 33–54 kg N·ha–1 in bal-
sam fir dominated forests over a 2-month period. The net N
mineralization estimates are generally comparable with the
N mineralization estimates using buried bags and measuring
over a 28-day period (6.4 kg·ha–1 in a spruce–fir forest in
Maine and approximately 16–18 kg·ha–1 in the northern
hardwood forests in New Hampshire of Federer (1983)). Ni-
trification in these earlier studies (Federer 1983; Friedland et
al. 1991) was essentially zero, whereas we measured approx-
imately 5 kg·ha–1·year–1 in the conifer forests and approxi-
mately 13.5 kg·ha–1·year–1 in the broadleaf forests (Table 2).
McNulty et al. (1996) did find the nitrification potential at
the higher elevations on Whiteface Mountain to be about
22% of mineralization, very similar to the findings of this
study.

Influences on net N mineralization
Soil temperature (soil GSDD) explained about half of the

variance in net N mineralization. Increasing N mineraliza-
tion rates correlating with increasing soil temperatures is
consistent with the findings of several studies (e.g., Matson
and Boone 1984; Powers 1990; Boone 1992; Kim et al.
1995; Stottlemyer et al. 1995; Sveinbjornsson et al. 1995).
The effect of temperature on community species composi-
tion and the resultant changes in litter quality and decompo-
sition rates are routes whereby temperature can influence N
mineralization rates (Matson and Boone 1984; Nadelhoffer
et al. 1991; Bale and Charley 1994; Fan et al. 1998). In this
study, substrate quality and N mineralization were correlated
with each other, and with temperature, so the impact of tem-
perature on N mineralization may be both direct and indi-
rect. Both foliar and total productivity explained variance in
N mineralization, and these variables were correlated with
air and soil temperatures. In sum, N mineralization along
this climosequence was related to the expected suite of fac-
tors: temperature, litter quality, and litter production. Soil
moisture did not explain a significant amount of the variance
in N mineralization; we speculate that this is because micro-
organisms in these cool, moist soils are seldom water limited
(Table 3).

Influences on net nitrification
Linear regressions showed that soil GSDD explained vari-

ance in net nitrification rates better than that in net N miner-
alization rates (R2 = 0.76 compared with R2 = 0.47). Soil
C:N had no significant effect on net N mineralization but did
on net nitrification (R2 = 0.21). These results agree with
those of Powers (1990) who examined relations between
substrate quality, soil temperature, N mineralization, and ni-
trification along an altitudinal gradient. In addition to find-
ing more nitrification in warmer soils, Powers (1990) also
found no influence of soil C:N on net N mineralization but
did find an influence on net nitrification.

The decreasing soil temperatures and increasing lignin:N
associated with increasing elevation explain measurements
showing decreasing nitrification with elevation as well as the
different rates of nitrification at the two 1200-m sites.
Higher soil temperatures explain the higher rate of NO3 pro-
duction at the 1200-m EL site compared with the closed-
canopy site (R2 = 0.644, p < 0.01, n = 8); the addition of lit-
ter lignin:N explains an additional approximately 10% of the
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Fig. 4. (A) Relationship between annual ANPP and growing sea-
son heat-sum (air GSDD) across an elevational gradient on
Whiteface Mountain. The line represents the linear regression
(R2 = 0.671, p < 0.001). Regressions between the residuals from
this regression and other variables failed to explain any addi-
tional variance (R2 < 0.02, not significant). Residuals versus two
variables representing N availability are shown: (B) net N miner-
alization and (C) mineral N availability, the sum of extractable
NH4 and NO3.



variance (multiple R2 = 0.738, p < 0.05), despite the nega-
tive correlation between litter lignin:N and soil temperature
(Pearson’s R = –0.775, p < 0.001). The 1200-m EL site had
warmer soils than the 1200-m site, presumably because there
is less canopy cover at the EL site.

ANPP
Climate variables explained the most variance in produc-

tivity: as air GSDD increased, ANPP increased. Total min-
eral N availability, which includes atmospheric deposition of
inorganic N, was not related to ANPP or any of its compo-
nents. This finding suggests that ANPP along this climo-
sequence was not limited by mineral N availability. This was
expected given the large amounts of mineral N that have
been measured in N mineralization studies and in lysimeters
at the bottom of the root zone (Friedland and Miller 1999).

Figure 5 shows that N mineralization and productivity are
correlated at the Whiteface sites, as has been found in other
studies. Assessing cause and effect given the correlation be-
tween N mineralization and productivity across the White-
face climosequence is facilitated by the fact that temperature
and mineral N availability are not correlated. The increase in
mineral N contributed by atmospheric deposition (7–
28 kg·ha–1·year–1) has not increased ANPP by the 1–
3 Mg·ha–1·year–1 implied by Fig. 5. A similar observation
was made by Friedland and Miller (1999). Clearly, produc-
tivity is not controlled by mineral N availability in the
Whiteface forests (Fig. 4). Although N mineralization can be
a good predictor of ANPP across many forest types, it was
not an important control on ANPP in this study. Rather, the

reverse is supported by the data in Fig. 5: productivity exerts
some control on N mineralization. Logically, decreasing lit-
ter production with increasing elevation across the climo-
sequence influences the amount of mineralizable N available
for soil microbes as well as influencing their environment
through effects on soil conditions such as moisture holding
and cation-exchange capacity.

In Fig. 6, we plot the Whiteface data in the context of
other studies of N mineralization and forest productivity
conducted in northern coniferous and broadleaf forests using
similar methods (Pastor et al. 1984; van Cleve et al. 1993;
Reich et al. 1997). Nitrogen mineralization over the range of
5–90 kg N·ha–1·year–1 has a remarkably good correlation
with ANPP (Pearson’s R = 0.97, p << 0.001). The results of
many years of forest fertilization experiments have shown
that moderate rates of growth increase (15%–20%) typically
require application rates in excess of 100 kg N·ha–1, substan-
tially in excess of the total amount used by the trees and the
rates of mineralization seen in natural ecosystems. Studies of
the fate of atmospheric N deposition in forests suggest that
substantial quantities of the added N leach from many for-
ests (see Fig. 7 and the review by Johnson and Lindberg
1992); substantial proportions of mineral N leached from the
active soil in this study as well (Table 2). These observations
indicate that addition of mineral N at rates on the order of
30 kg N·ha–1·year–1 will not lead to the 3 Mg·ha–1 increase
in ANPP implied by Fig. 6. The data from this study suggest
that across even modest gradients in climate, a correlation
between N mineralization and ANPP should not be consid-
ered strong evidence that mineral N availability controls
ANPP.

Compared with this study, atmospheric deposition of N
was less substantial in most of the previous studies that
found a correlation between ANPP and N mineralization. In
those studies, the variance in mineral N availability was
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Fig. 5. Relationship between productivity and mineralized N. To-
tal annual litterfall compared with mineralization is shown with
black circles; standard error bars are shown. The solid line repre-
sents the regression equation for litter versus N mineralized
(R2 = 0.47, p < 0.05). Open squares denote the calculated value
for ANPP, the sum of annual litterfall total and an estimate of
the annual wood increment. The dotted line is the estimated re-
gression for the latter data (R2 = 0.49, p < 0.05).

Fig. 6. ANPP compared with N mineralization rates for cool
temperate forests across a wide range of productivity. Values are
derived from four studies as noted on the figure.



dominated by the variance in N mineralization, the principal
source of mineral N. Those authors concluded that the corre-
lation between ANPP and mineral N availability indicated
that ANPP is controlled by N availability mediated by N
mineralization. In the present study, we have separated min-
eral N availability from N mineralization. At Whiteface
Mountain, significant variation in atmospheric deposition
creates a situation where mineral N availability and N min-
eralization are uncorrelated (apparently independent). Under
these conditions, we do not find evidence that ANPP de-
pends on mineral N availability. Instead, the correlation be-
tween N mineralization and ANPP in the present study
seems more reasonably interpreted as evidence that ANPP
(specifically foliage production) influences the N mineral-
ization rate through its determination of the supply of fresh,
readily digestible substrate for soil microbes and the effect
of litter on soil moisture and cation-exchange capacity. The
observed correlations between N mineralization and temper-
ature variables reflect both the well-understood constraints
of temperature on microbial metabolism and the dependence
of substrate supply (ANPP) on temperature.
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