
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

June 2008

Adding Token Counting to Directory-Based Cache Coherence Adding Token Counting to Directory-Based Cache Coherence

Arun Raghavan
University of Pennsylvania, arraghav@cis.upenn.edu

Colin Blundell
University of Pennsylvania, blundell@cis.upenn.edu

Milo M.K. Martin
University of Pennsylvania, milom@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Arun Raghavan, Colin Blundell, and Milo M.K. Martin, "Adding Token Counting to Directory-Based Cache
Coherence", . June 2008.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-08-22.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/882
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F882&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/882
mailto:repository@pobox.upenn.edu

Adding Token Counting to Directory-Based Cache Coherence Adding Token Counting to Directory-Based Cache Coherence

Abstract Abstract
The coherence protocol is a first-order design concern in multicore designs. Directory protocols are
naturally scalable, as they place no restrictions on the interconnect and have minimal bandwidth
requirements; however, this scalability comes at the cost of increased sharing latency due to indirection.
In contrast, broadcast-based systems such as snooping protocols and token coherence reduce latency of
sharing misses by sending requests directly to other processors. Unfortunately, their reliance on totally
ordered interconnects and/or broadcast limits their scalability.

This work introduces PATCH (Predictive/Adaptive Token Counting Hybrid), a coherence protocol that
provides the scalability of directory protocols while opportunistically using available bandwidth to reduce
sharing latency. PATCH extends a standard directory protocol to track tokens and use token counting
rules for enforcing coherence permissions. Token counting allows PATCH to support direct requests on
an unordered interconnect, while a novel mechanism called token tenure uses local processor timeouts
and the directory’s per-block point of ordering at the home node to guarantee forward progress without
relying on broadcast.

PATCH makes three main contributions. First, PATCH uses direct request prioritization to match the
performance of broadcast-based protocols without restricting scalability. Second, PATCH introduces
token tenure, which provides broadcast-free forward progress for token counting protocols. Finally,
PATCH provides greater scalability than directory protocols when using inexact encodings of sharers
because only processors holding tokens need to acknowledge requests. Overall, PATCH is a “one-size-fits-
all” coherence protocol that dynamically adapts to work well for small systems, large systems, and
anywhere in between

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-08-22.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/882

https://repository.upenn.edu/cis_reports/882

Adding Token Counting to Directory-Based Cache Coherence

Arun Raghavan, Colin Blundell, Milo M. K. Martin
University of Pennsylvania

UPenn CIS Technical Report TR-CIS-08-22
June 4, 2008

Abstract
The coherence protocol is a first-order design concern in multicore designs. Directory protocols are naturally

scalable, as they place no restrictions on the interconnect and have minimal bandwidth requirements; however, this
scalability comes at the cost of increased sharing latency due to indirection. In contrast, broadcast-based systems
such as snooping protocols and token coherence reduce latency of sharing misses by sending requests directly to other
processors. Unfortunately, their reliance on totally ordered interconnects and/or broadcast limits their scalability.

This work introduces PATCH (Predictive/Adaptive Token Counting Hybrid), a coherence protocol that provides
the scalability of directory protocols while opportunistically using available bandwidth to reduce sharing latency.
PATCH extends a standard directory protocol to track tokens and use token counting rules for enforcing coherence
permissions. Token counting allows PATCH to support direct requests on an unordered interconnect, while a novel
mechanism called token tenure uses local processor timeouts and the directory’s per-block point of ordering at the
home node to guarantee forward progress without relying on broadcast.

PATCH makes three main contributions. First, PATCH uses direct request prioritization to match the performance
of broadcast-based protocols without restricting scalability. Second, PATCH introduces token tenure, which provides
broadcast-free forward progress for token counting protocols. Finally, PATCH provides greater scalability than direc-
tory protocols when using inexact encodings of sharers because only processors holding tokens need to acknowledge
requests. Overall, PATCH is a “one-size-fits-all” coherence protocol that dynamically adapts to work well for small
systems, large systems, and anywhere in between.

1 Introduction

A multi-core chip’s coherence protocol impacts both its scalability (e.g., by requiring broadcast) and its miss latency

(e.g., by introducing a level of indirection for sharing misses). Traditional coherence protocols present a set of difficult

tradeoffs. Snoopy protocols maintain coherence by having each processor send requests directly to all other processors

(broadcast) to provide low sharing miss latency but do not scale due to excessive traffic. Conversely, directory protocols

introduce a level of indirection to obtain scalability at the cost of increasing sharing miss latency.

Prior proposals have attempted to ease the tension between snoopy protocols and directory protocols. One ap-

proach aims to make snooping protocols more efficient by using destination-set prediction [4, 22] or bandwidth adap-

tivity [25] to send direct requests to fewer than all processors. These protocols suffer from their snooping heritage

by sending all requests over a totally ordered interconnection network, limiting their scalability and complicating

their implementation. An alternative approach adds direct requests to a directory protocol (e.g., [1, 2, 6, 16]). These

protocols use direct requests only in limited contexts and hence fail to capture all of their performance benefits.

In this paper we present PATCH (Predictive Adaptive Token Counting Hybrid), a novel protocol that achieves

performance without sacrificing scalability. PATCH neither relies on broadcast nor an ordered interconnect for cor-

rectness. PATCH allows unconstrained predictive direct requests as performance hints that may be dropped at times

1

of interconnect contention. Finally, PATCH requires only true sharers to acknowledge requests. This property allows

PATCH to be even more scalable than a directory protocol when directory encodings are inexact.

PATCH obtains these attributes by combining token counting and a standard directory protocol. Token counting

[23] directly ensures safety of requests: processors pass tokens around the system and use rules based on the number

of tokens that they currently have for a given block to determine when an access to that block is legal. Whereas the

original token counting proposal focused on token counting as a mechanism of extending broadcast-based protocols

to operate on unordered interconnects, we instead use it as a mechanism to enhance the performance of directory

protocols by using direct requests to avoid adding indirection latency to sharing misses.

Adding token counting allows PATCH to naturally and simply support destination-set prediction and bandwidth

adaptivity without requiring a non-scalable interconnect. PATCH’s use of these mechanisms is enhanced by the fact

that only token holders (i.e., true sharers) have to respond to requests (unlike other proposals for adding direct requests

to directory protocols [1, 2, 6, 16]). This property both allows PATCH to be more profligate in its destination-set pre-

dictions and enables a new form of bandwidth adaptivity called prioritized direct requests. Interconnect switches may

de-prioritize direct requests and propagate them only when there is sufficient bandwidth to do so (discarding them if

they become too stale). By de-prioritizing direct requests PATCH ensures that they never degrade performance relative

to that of a directory protocol. The resulting protocol offers the scalability of directory protocols, the performance of

broadcast-based protocols when bandwidth is plentiful, and the ability to smoothly transition between them as needs

demand.

Although adding token counting to a directory protocol enables no-indirection sharing misses, the protocol also

inherits the problem that forward progress is no longer guaranteed (Section 3 provides an illustrative example).

Previously-proposed mechanisms to ensure forward progress in token counting-based protocols rely on broadcast,

a requirement that we expressly want to avoid adding to our protocol. We propose a set of rules, the token tenure rules,

that guarantee forward progress in a directory protocol augmented with token counting without introducing a broad-

cast requirement. Under the token tenure rules tokens can move in response to direct requests but must eventually be

given up to the directory if they are not tenured: that is, if the processor does not see a message from the directory

granting permission to retain the tokens within a certain amount of time. The process of tenuring tokens is not on the

processor’s critical path and thus has no effect on performance in the absence of races (the common case). When races

exist, token tenure ensures forward progress because the directory will tenure the tokens of only one of the racing

processors; tokens held at all other processors will timeout and eventually flow to the winning processor, allowing it

to complete its request.

PATCH makes three main contributions:

2

• Scalable direct requests via prioritization. PATCH’s direct requests enable it to match the performance of

broadcast-based protocols when bandwidth is plentiful, while its prioritization mechanism provides scalability

by guaranteeing that PATCH will never underperform directory protocols.

• Scalable forward progress mechanism. PATCH introduces token tenure, which provides broadcast-free for-

ward progress for token counting protocols by using local timeouts to avoid a need for global consensus.

• Increased scalability over directory protocol. PATCH provides greater scalability than directory protocols

when using inexact encodings of sharers because only processors holding tokens need to acknowledge requests.

2 Background on Token Counting

The goal of an invalidation-based cache coherence protocol is to enforce the “single-writer or many-readers” cache

coherence invariant. Token counting enables the direct enforcement of this invariant [23]. Instead of enforcing the

coherence invariant using a distributed algorithm for providing coherence safety in the presence of subtle races, token

counting uses explicit token counting to enforce the coherence invariant using only local rules. This characteristic

simplifies the implementation of many potential performance optimizations by freeing implementers from the burden

of worrying about coherence safety. Token counting also decouples enforcement of coherence from any specific

interconnect ordering properties or ordering point in the system.

Tokens Owner? State
All Dirty M

Some Dirty O
All Clean E

Some Clean “F” [14]
Some Not held S
None Not held I

Figure 1: Mapping of token
counts to MOESI states.

Token counting uses tokens to enforce coherence permissions and encode

MOESI coherence states [30] (see Figure 1). At system initialization, the sys-

tem assigns each block T tokens (where T is at least as large as the number of

caches). One of the tokens is designated as the owner token that can be marked

as either clean or dirty. Tokens are tracked per-block and can be held in proces-

sor caches, memory modules, and coherence messages (in-flight or buffered).

Initially, the block’s home memory module holds all tokens for a block. Tokens

and data are allowed to move between system components as long as the system

maintains the five token counting rules [21] given in Figure 2.

The invariants provided by these token counting rules are sufficient to allow a processor to enforce a memory

consistency model (including sequential consistency) [21]. For example, together these locally enforceable rules are

sufficient to enforce global invariants such as “No cache may have read permissions to a block while another cache

has write permissions to the block” and “at a given time, all caches with read permissions to a block will have the

same value for that block” [5]. These invariants hold no matter what request or writeback races occur. Races may still

3

Rule #1 (Conservation of Tokens): After system initialization, tokens may not be created or destroyed. One token
for each block is the owner token. The owner token can be either clean or dirty, and whenever the memory receives
the owner token, the memory sets the owner token to clean.

Rule #2 (Write Rule): A component can write a block only if it holds all T tokens for that block and has valid data.
After writing the block, the writer sets the owner token to dirty.

Rule #3 (Read Rule): A component can read a block only if it holds at least one token for that block and has valid
data.

Rule #4 (Data Transfer Rule): If a coherence message contains a dirty owner token, it must contain data.

Rule #5 (Valid-Data Bit Rule): A component sets its valid-data bit for a block when a message arrives with data
and at least one token. A component clears the valid-data bit when it no longer holds any tokens. The home memory
sets the valid-data bit whenever it receives a clean owner token (even if the message does not contain data).

Figure 2: Token Counting Rules

introduce protocol forward progress issues; we defer the discussion of forward progress in prior proposals that use

token counting protocols to Section 4.2.

This work is not the first work to use token counting. Several other proposals have explored or exploited token

counting [5, 7, 8, 11, 15, 23, 26, 27, 28, 29], including its use in the context of broadcast-based cache coherence [23],

multi-socket multi-core systems [26], ring-based multiprocessors [27], virtual hierarchical cache coherence [28], fault

tolerant coherence protocols [11, 29], and multicast interconnection networks [15].

3 PATCH Motivation and Overview

PATCH is a standard directory-based cache coherence protocol augmented with token counting. Whereas the original

token coherence protocol used token counting to enable broadcast over an unordered interconnect, PATCH obtains

high performance without sacrificing the scalability of the directory protocol on which it builds. To achieve this

goal, PATCH uses several enabling features: predictive direct requests, avoidance of unnecessary acknowledgements,

bandwidth adaptivity via best-effort direct requests, and a broadcast-free forward progress mechanism called token

tenure.

Predictive direct requests. Token counting provides greater flexibility to transfer coherence permissions without

incurring directory indirection. By adding token counting to a directory protocol, PATCH inherits the same flexibility.

Whereas token coherence used this ability to directly broadcast requests, PATCH uses prediction to send direct requests

to zero, some, or all other processors in the system. If the requester sends a direct request to all the necessary

processors—the owner for read requests, all sharers for write requests—a higher-latency indirect (3-hop) sharing

miss becomes a faster, direct (2-hop) miss. Coherence is easily enforced because the token counting rules govern

coherence permissions.

4

Avoiding unnecessary acknowledgments. In protocols based on token counting, processors determine when

a request has been satisfied by waiting for a certain number of tokens rather than by waiting for a certain number

of acknowledgement messages. This change allows PATCH to elide those acknowledgement messages that would

have contained zero tokens. By avoiding these unnecessary acknowledgements, PATCH enhances the appeal of direct

requests by reducing the amount of traffic that they add to the system, which could otherwise dilute their benefits. In

systems that employ bandwidth-efficient fan-out routing for multi-destination direct (or indirect) request messages,

these unnecessary acknowledgements can cause “acknowledgement implosion”, which can substantially reduce the

effectiveness of direct requests by introducing a significant (non-scalable) amount of additional traffic into the system.

In fact, PATCH also avoids unnecessary acknowledgments for indirect requests. For large systems that employ an

inexact set of sharers at the directory, avoiding these unnecessary acknowledgements grants PATCH better scalability

than even a standard directory protocol (Section 7).

Bandwidth adaptivity via best-effort direct requests. PATCH uses a novel form of bandwidth adaptivity to

achieve high performance without sacrificing scalability. Because the directory continues to forward requests to the

owner and/or sharers (as in the baseline protocol) and direct requests need not be acknowledged (as described above),

PATCH can treat direct requests strictly as hints. Hence, PATCH’s direct requests can now be delivered on a best-effort,

lowest-priority basis. Interconnect switches forward direct requests only when they have sufficient bandwidth, simply

dropping them if they become too stale. This property ensures the scalability of PATCH in that low-priority direct

requests never degrade PATCH’s performance relative to the baseline directory protocol even when PATCH is sending

direct requests to many processors.

Broadcast-free forward progress via token tenure. The above attributes provide a framework for a fast, scalable,

and adaptive protocol. However, races may cause starvation (as shown in Figure 3a). To prevent starvation without

impeding scalability, PATCH introduces token tenure, a broadcast-free forward progress mechanism for token counting-

based protocols. In token tenure, a processor that has received tokens for a block is required to discard these tokens

after a bounded amount of time unless the directory has informed it that it is the active requester for the block. The

home funnels all such discarded tokens to the active requester. Once the active requester completes, the directory

activates the next queued request, ensuring that all requests eventually complete (as shown in Figure 3b).

3.1 Relationship to Prior Work

PATCH has several differences from prior protocols that either improve the scalability of broadcast-based protocols

or add direct requests to directory protocols (summarized in Figure 4). There have been several protocols that aim

to make broadcast snooping protocols more efficient by allowing requests to be sent to fewer than all processors

5

Dataact, t=3

GetM GetM

fwd actGetM

fwd act

GetM

2

6

5

4

3

Home1 P1P0
S, t=1

Naive Directory+Tokens

GetM
O, t=2

I, t=0

O, t=2

I, t=0 queue P2

(A)

P2
I, t=0

Ackt=1

GetM

fwd

GetM
Data
t=2

I, t=1

2

6

5

4

3

Home1 P1P0
S, t=1

PATCH

GetM
O, t=2

I, t=0

O, t=2

I, t=0 queue P2

P2
I, t=0

Ackt=1

GetM

Dataact, t=2

I, t=1

7

8

9

timeout

t=1

Bouncet=1

M, t=3

I, t=0

activate P1

activate P2

(B)

10

11

I, t=0

M, t=3
Deactivate

active

Both P1 and P2 complete

Deact.
Both P1 and P2 starve

{P0, P1}{P0, P1}

{P1}

{P2}

Figure 3: Part (A) shows the protocol race that can occur when direct requests and token counting are added
to a directory protocol, and part (B) shows how PATCH’s token tenure resolves this race. All messages are for
a block A. A store miss (“GetM”) is issued by both P2 (solid lines) and P1 (hollow lines). In part (A), initially, P0
has A in owned state with 2 tokens and P1 has A in shared state with 1 token. At time ¶, P2 sends a request for A
in modified state to the directory as well as sending the request directly to P1. P1 sees this message at time · and
responds with its token, which P2 receives at time ¸. Also at time ¸, P1 sends a request for A in modified state to the
directory. The directory sees P1’s request at time ¹ and forwards it to P0 (the only other processor in the directory’s
sharers list). P0 receives the forwarded request at time º; also at this time, the directory receives P2’s delayed request
from time ¶ and queues it behind P1’s request. At time » P1 receives P0’s data and tokens. At this point, both P1 and
P2 are waiting for tokens that will never arrive. Part (B), the operation of PATCH in this scenario, proceeds initially
as in part (A). However, when the directory activates the request of P1 at time ¹, it augments the forward to P0 with
the “activated bit”. At time º P2 times out because it has not been activated and sends its token to the home. P1
receives P0’s acknowledgement, including the activated bit, at time », at which time the directory also receives P2’s
token. The directory forwards the token onto P1, which receives it at time ¼ and sends a deactivation message to the
directory. When the directory receives this deactivation message at time ½ it activates P2, sending a forward to P1
which includes the activation bit. At time ¾ P1 receives this forward and sends data and tokens to P2, which receives
them at time ¿. At this time, P2 sends a deactivation message to the home, which is now ready to process other
requests for A.

6

Scalable Broadcast-free Direct Acks all Bandwidth
Protocol interconnect? forward progress? requests? requests? Prediction? adaptive?
Snooping no no yes no no no
Multicast Snooping [4, 22] no yes yes no yes no
BASH [25] no yes yes no no bimodal
Directory yes yes no yes no no
Acacio et al. [1, 2] yes yes yes yes yes no
Jerger et al. [16] yes yes yes yes yes no
Cheng et al. [6] yes yes yes yes yes no
TokenB [23] yes no yes no no no
PATCH yes yes yes no yes priority

Figure 4: Comparison of PATCH to prior work on direct requests

(e.g., [4, 22, 25]). These protocols suffer from their snooping heritage by sending all requests over a totally ordered

interconnection network, limiting their scalability and complicating their implementation. PATCH places no such

requirements on the interconnect. The original token coherence proposal [23] used token counting to enable broadcast

over an unordered interconnect. PATCH differs from token coherence, in that token coherence’s forward-progress

mechanism is broadcast-based and requires per-processor structures whose size grows linearly with system size,

limiting its scalablity. Finally, prior proposals have added predictive direct requests to a directory protocol (e.g., [1,

2, 6, 16]). In contrast to these prior works, PATCH can perform unconstrained destination-set prediction, has an easy-

to-reason about safety property, and introduces only a few changes to the baseline directory protocol. Furthermore,

PATCH’s direct requests do not require acknowledgement messages, allowing PATCH to make them low-priority and

thus be more profligate with its destination set predictions.

4 Token Tenure

The rules of token counting enforce coherence safety, but they say nothing about ensuring forward progress. This

section introduces analogous local rules for ensuring forward progress in token counting protocols based on a novel

mechanism called token tenure. In token tenure, tokens can be in two states: tenured and untenured. Tenured tokens

are established and allowed to remain at a processor indefinitely or until requested by another processor. In contrast,

untenured tokens must become tenured within a bounded amount of time. If not, the processor is required to discard the

tokens by writing them back to the home memory module for the block. The tenured status is only used in providing

forward progress; untenured tokens can be used to satisfy misses. Thus, the entire token tenure process is off the

critical path for typical misses.

To tenure tokens, the system selects one request at a time on a per-block basis to be the block’s current active

request. Only the home node and active requester need to know which request is active. Once a processor has become

7

Rule #1 (Activation Rule): The home fairly designates one requester as the block’s current active requester. The
home informs a requester when its request has been activated.

Rule #2 (Token Arrival Rule): Tokens that arrive at a processor are by default untenured.

Rule #3 (Promotion Rule): Only the active requester may tenure tokens, and it tenures all tokens it possesses or
receives.

Rule #4 (Probationary Period Rule): A processor may hold untenured tokens only for a bounded duration before
discarding the tokens by sending them to the home.

Rule #5 (Home Forward Rule): The home node forwards any discarded tokens to the active requester.

Rule #6 (Processor Response Rule): (a) The active requester hoards tokens by ignoring incoming requests until its
request completes. (b) All other processors with tokens respond to forwarded requests. (c) Processors with untenured
tokens ignore direct requests.

Rule #7 (Deactivation Rule): Once the active requester has collected sufficient tenured tokens, it gives up its active
status by informing the home.

Figure 5: Token Tenure Rules

the active requester, any tokens that it holds become tenured, as well as any further tokens that it receives while its

request is active. We formalize these rules in Figure 5.

4.1 On the Correctness of Token Tenure

In addition to the token tenure rules in Figure 5, the system places a two-part requirement on the home: first, as part

of activating a request, the home must send forwarded requests to at least those processors holding tenured tokens and

second, this is the only time that the home may send forwarded requests. Together, this requirement and the above

rules guarantee that all requests eventually complete.

Consider many racing requests to the same block. The home activates one of these requests (rule #1). The home

forwards any tokens that it receives to the active requester (rule #5), thus any tokens that arrive at the home will

eventually arrive at the active requester.

Tokens that are not at the home or tenured at the active requester may be either in-flight, untenured, or tenured at a

non-active processor. Any in-flight tokens that arrive at a non-active processor become untenured (rule #2). Untenured

tokens may not move via direct requests (rule #6c). As such, they either (i) timeout and are sent to the active requester

via the home (rules #4 and #5) or (ii) move in response to a forwarded request (rule #6b). The forwarded request will

likely send the tokens to the active requester, but could be a lingering (stale) forwarded request from a prior activation.

However, the number of such lingering requests is bounded, so untenured tokens may move due to such requests only

a finite number of times, after which they will move to the active requester either directly via a forwarded request or

indirectly via a timeout. Finally, all tenured tokens either move to the active requester via a direct or forwarded request

or move to another (non-active) processor, in which case they become untenured and the above reasoning applies.

8

bounce

timeout

stale (finite) racing/
stale

Tenured

Untenured

Home

Active
requester

direct/fwd

fwd

Token flow

Figure 6: Illustration of the
flow of tokens to the active
requester.

Until the active requester has received its notification of activation, it acts like

any other non-active requester, and may inadvertently send tokens to the home or

another processor; any such tokens will eventually be returned to the active requester

as described above. Once the active requester learns that it has been activated, it

will tenure (rule #3) and hoard (rule #6a) tokens, and thus it will eventually collect

sufficient tokens. By rule #7, once the active requester has been satisfied, it will then

deactivate by informing the home to fairly select another requester to activate, thus

ensuring that all pending requests eventually become the active requester (and thus

eventually complete).

The above discussion assumes that the request desires all tokens (i.e., it is a write

request). For read requests, which require only data and one token, the same reasoning

can be applied to just the owner token.

Although the correctness reasoning for token tenure is subtle, token tenure is simple to implement on top of

a directory protocol. Token tenure requires three mechanisms, the first two of which are already provided by a

directory protocol: (1) forwarding request to processors with tenured tokens, (2) fairly selecting and notifying the

active requester, and (3) timing out untenured tokens using a timer per outstanding request at the processor. In the next

section, we describe the specifics of PATCH’s implementation of the token tenure rules. First, however, we compare

token tenure to prior proposals for guaranteeing forward progress in token counting-based protocols.

4.2 Prior Forward Progress Mechanisms for Token Counting Protocols

Other protocols that use token counting for various purposes also have tackled similar forward progress issues [23,

26, 27]. Figure 7 highlights their different attributes. The philosophy of token tenure is different from these prior

proposals in that: (1) the directory protocol foundation provides a scalable way to activate a single request for a block

and (2) token tenure’s timeouts provide forward progress without global consensus (i.e., broadcast) or interconnect

constraints.

Token coherence uses persistent requests [23, 26] to ensure forward progress. A processor invokes a persistent

request after its transient requests have repeatedly failed to collect sufficient tokens during a timeout interval. Persistent

requests are broadcast to all processors, and the system uses centralized [23] or distributed arbitration [26] to achieve

a global consensus of the identity of the highest priority requester. All processors then forward data and tokens to that

highest priority requester. The persistent request mechanism differs from token tenure in that all processors must agree

on—and remember—which request is highest priority, necessitating both broadcast and a persistent request table at

9

Mechanism Broadcast-free? Interconnect Reissues? State at home State at processor
Persistent/priority
requests [7, 23, 26]

no any yes tokens & P.R. table tokens

RingOrder [27] no ring no tokens 1 bit
Token tenure yes any no tokens tokens & sharers set

Figure 7: Comparison of forward progress mechanisms proposed for token counting protocols.

each processor. In contrast, in token tenure only the home and the active requester need to know which request is

active; all the other requesters infer that they are not the active requester by timing out and releasing their tokens to

the home. Because of this property, token tenure does not require either broadcast or persistent request tables, both of

which scale poorly as the number of cores grows. Priority requests [7] are similar to persistent requests in that they

are broadcast-based and uses per-processor tables.

Ring-Order [27] uses token counting on a unidirectional ring interconnect to ensure initial requests always suc-

ceed (without reissue or invoking persistent requests). Ring-Order introduces a priority token to prioritize different

requesters as the priority token moves around the ring. In contrast to Ring-Order, token tenure requires neither broad-

cast nor a ring interconnect.

5 Implementation and Operation

This section describes the operation of one specific implementation of PATCH. Although the conceptual framework

of PATCH could likely be applied to any directory protocol, for concreteness we first describe a specific baseline

directory protocol on which our implementation of PATCH is built. We then describe the modifications PATCH adds to

this baseline protocol to support direct requests via token counting and token tenure.

5.1 Baseline Directory Protocol

Our baseline protocol is based on the directory protocol distributed as part of GEMS [24]. This protocol resolves races

without negative acknowledgement messages (nacks) by using a busy/active state at the directory for every request.

Although this approach is different from DASH [19] and SGI Origin 2000 [18], it is reflective of more recent protocols

such as Sun’s WildFire [13], the Alpha 21364/GS1280 [9], and AMD’s Opteron/Hypertransport protocol [17]. In this

approach, the arrival order at the directory unambiguously determines the order in which racing requests are serviced.

The baseline protocol uses three-phase writebacks (writeback request to directory, ack from directory, writeback to

directory). The protocol does not depend upon any ordering properties of the interconnect.

When a request arrives at the directory, it sets the block’s state to active. All subsequent requests for that block

are queued (at the directory or in the interconnect) until the active request is deactivated. If the request is a write

request, the directory sends invalidation messages to all sharers, which respond with invalidation acknowledgments

10

directly to the requester. To make these invalidation messages more bandwidth-efficient, the interconnect supports

sending them as a single fan-out multicast. For both read and write requests, if the directory is the owner, the directory

responds with data, otherwise the directory forwards the request to the processor that owns the block. The owner’s

data response message includes a field informing the requester how many acknowledgements to expect (the directory

forwards this information to the owner in the case where the block is not owned by the directory itself). Once the

original requester has received all the expected acknowledgements, it sends a deactivation message to the home node

to update the directory based on the requester’s new coherence state and deactivate the request. This deactivation

unblocks the directory for that block, allowing the next queued request for that block (if any) to proceed.

This baseline protocol supports the MOESI states [30] plus a migratory sharing optimization. To reduce accesses

to DRAM, this protocol uses the dirty-owner (O) state and a clean-owner state (F) [14]. To increase the frequency

with which some cache is the owner, ownership of the block transfers to the most recent requester on both read and

write misses. The protocol uses the exclusive-clean (E) state to avoid upgrade misses to non-shared data (but it does

not support silent eviction of blocks in the E state).

5.2 PATCH Implementation

As discussed in Section 3, PATCH adds token counting to the baseline directory protocol to enable direct requests and

avoid unnecessary acknowledgement messages. PATCH makes four changes to the baseline directory protocol: (1)

adding token state, (2) enforcing coherence via token counting, (3) supporting direct requests, and (4) providing a

token timeout mechanism to support token tenure. We discuss each of these changes below.

Adding token state. PATCH adds an additional token count field to directory entries, cache tags, data response

messages and data-less acknowledgement response messages. When responding to requests, processors use this token

count field to send their tokens to the requester. The token count is encoded using logN bits for N cores plus a few bits

for identifying the owner token and its clean/dirty status. Ten bits would comfortably hold the token state for a 256-

core system. For 64-byte cache blocks, this adds only about 2% overhead to caches and data response messages. To

ensure conservation of tokens, processors may not silently evict clean blocks, so they instead send a data-less message

with a token count back to the directory.

Enforcing coherence via token counting. PATCH uses token counting for completing requests (Section 2). Data

responses always contain the owner token plus zero or more additional tokens, and a single token is sufficient for

completing a read miss. Instead of waiting for a specific number of invalidation acknowledgements to arrive to

complete a write miss, the requester counts tokens and completes the miss when all tokens have arrived. Because

11

token counting (and not ack counting) is used to complete misses, the protocol does not send acknowledgement

messages that would have a zero token count.

Supporting direct requests. In addition to its regular request sent to the directory, a requester may also send

request messages directly to one or more other processors. Processors that have a miss outstanding to the block always

ignore these direct requests. Otherwise, the processors respond to direct requests exactly as they would respond

to forwarded requests. When activating a request, the directory responds and/or forwards the request to the owner

and/or sharers exactly as in the baseline directory protocol (independent of whatever direct messages were sent for the

request). Processors always respond to requests forwarded from the directory, even if they have an outstanding miss

to the block.

Token tenure mechanism. As discussed in the previous section, token tenure requires three system mechanisms:

(1) a mechanism for fairly activating requests one-at-a-time on a per-block basis (and informing a requester that it has

been activated), (2) the ability to send a forwarded message to (at least) the set of processors holding tenured tokens

on activating a block, and (3) a mechanism for processors to determine when to give up untenured tokens to the home.

To support the first two mechanisms PATCH leverages existing properties of the baseline protocol. To support the third

mechanism PATCH adds a timer per outstanding request at the processors.

To activate requests one-at-a-time, PATCH leverages the directory’s property of processing requests serially on a

per-block basis. PATCH informs a requester that it has been activated by reusing the “acks to expect” field (which

is not necessary in PATCH) to inform the requester has been activated. Becoming activated is typically not on the

critical path of misses because the processor can access a requested block as soon as it has enough tokens to

do so. Once the requester is both active and has sufficient tokens, it sends a deactivation message to the directory (as

would the baseline directory protocol).

PATCH uses the directory to track which caches have tenured tokens, ensuring that it can forward requests to all

processors with tenured tokens when activating a request. When the directory receives a deactivation message, it uses

the included coherence state of the processor to update the block’s directory entry. Because only active processors

tenure tokens, the sharers set is a (possibly non-strict) superset of the set of caches holding tenured tokens at any given

point in time.

Finally, each processor adds a timer per outstanding request to implement token tenure’s timeout mechanism.

To reduce the performance impact of racing requests, PATCH does two things. First, it sets the value of the bounce

timeout to twice the average round trip latency; if the processor has not seen an activation request after this amount of

time, then it is likely that another processor has been activated for the block. Second, PATCH reuses the timer when

a processor sends its deactivation message. During this “use timeout” interval, processors continue to ignore direct

12

requests. This second interval is strictly a performance optimization, but during times of extreme contention, it gives

the directory the ability to direct the movement without interference from direct requests.

6 Prediction and Bandwidth Adaptation in PATCH

This section describes PATCH’s predictive and adaptive use of direct requests. PATCH uses previously proposed

destination-set predictors for selecting the recipients of direct requests. PATCH, however, enhances the utility of

destination-set prediction by sending all direct requests as low-priority, best-effort messages to achieve a natural

bandwidth adaptivity. This optimization prevents direct request messages from ever harming performance, enabling

PATCH to be more profligate in its prediction.

The goal of destination-set prediction [4, 22] is to send direct requests only to those processors that need to see the

request (in PATCH’s case, all token holders for a write and the owner token holder for a read). Processors determine

what predictions to make by tracking the past behavior of blocks (recording which processors have sent incoming

requests or responses). Predictors can make different bandwidth/latency tradeoffs ranging from predicting a single

additional destination (i.e., the owner) to all processors that have requested the block in the recent past. Our goal in

this work is not to devise new predictors. In fact, PATCH uses predictors taken directly from prior work [22]

One challenge with destination-set prediction, however, is that the predictor that obtains the optimal bandwidth/la-

tency tradeoff varies based on the specific system configuration and workload characteristics [25]. BASH [25] pro-

posed using all-or-nothing throttling to disable the broadcasting of direct requests when a local estimate of the global

interconnect utilization indicates the interconnect is highly utilized. BASH was shown to be effective in adapting

to system configuration and workload in the context of a multicast snooping protocol on a totally ordered crossbar

interconnect, but the interconnect congestion caused by direct requests can reduce performance to less than that of a

directory protocol [25].

Instead of deciding between all or nothing at the time a processor issues a request, PATCH uses a form of bandwidth

adaptivity that operates via low-priority best-effort messages. The interconnect gives direct requests strictly lower

priority than all other messages. If a direct message has been queued at a switch for a long time, the interconnect

eventually drops the stale message. This best-effort approach to bandwidth adaptivity is enabled by the property that

PATCH’s direct requests are simply performance hints that are not necessary for correctness; the indirect request sent

through the directory ensures forward progress independent of any additional direct requests.

De-prioritizing direct requests allows the system to benefit from whatever bandwidth is available for delivering

them without slowing down other messages, including indirect requests. Thus, to the first order, PATCH with best-

13

effort delivery will perform no worse than the baseline directory protocol (a “do no harm” guarantee not provided by

prior bandwidth adaptivity proposals).

Best-effort delivery may also simplify the interconnect. Guaranteed multicast (or broadcast) delivery requires

additional virtual channels and sophisticated buffer management to prevent routing deadlocks [10, 15]. In contrast,

best-effort multicast avoids many of these issues, because deadlock can be avoided by simply dropping best-effort

messages. Furthermore, whereas general multicast is necessary for destination-set prediction to be most effective, our

experimental results indicate that broadcasting best-effort direct requests is highly effective (see Section 8.4). This

implies that the interconnect design may eschew support for generalized multicast in favor of just the simpler case of

efficient broadcast.

7 More Scalable Directory Protocol

PATCH is more tolerant of inexact directory state than the baseline directory protocol because PATCH avoids unneces-

sary acknowledgments. A full-map bit vector (one bit per core) becomes too much state per directory entry as the num-

ber of core grows. For this reason, inexact encodings of sharer information (i.e., conservative over-approximations)

have been proposed [12, 18]. Inexact encodings result in additional traffic due to an increased number of forwarded

requests and acknowledgment messages.

Employing fan-out multicast (as our baseline protocol does) reduces the traffic incurred by extra forwarded re-

quests. Unfortunately, this optimization has no impact on unnecessary acknowledgments. On an N-processor D-

dimensional torus interconnect supporting fan-out multicast, for example, the worst-case traffic cost of unnecessary

acknowledgments in our baseline directory protocol is N× D
√

N while that of unnecessary forwarded requests is only

N.

In PATCH only token holders (i.e., true sharers) send acknowledgment messages on receiving a forwarded request

from the directory. Thus, PATCH avoids the unnecessary acknowledgments created by inexact directory encodings. As

a result, PATCH’s worst-case unnecessary forward+invalidation traffic scales more gracefully than that of the baseline

directory protocol (N rather than N × D
√

N in the above example). We experimentally confirm the impact of this

property in Section 8.6.

8 Experiments

This section experimentally shows that PATCH’s use of prediction and best-effort direct requests coupled with its

elimination of unnecessary acknowledgement messages allows it to (1) obtain higher performance than a directory

protocol without sacrificing scalability and (2) out-scale directory protocols for inexact directory encodings.

14

8.1 Methods

We use the Simics full-system multiprocessor simulator [20] and GEMS [24]. GEMS/Ruby builds on Simics’ full-

system simulation to model simple single-issue cores with a detailed cache coherent memory system timing model.

Each core’s instruction and data caches are 64KB, and each core has a 12-cycle private 1MB second-level cache. All

caches have 64-byte blocks and are 4-way set associative. Off-chip memory access latency is the 80-cycle DRAM

lookup latency plus multiple interconnection link traversals to reach the block’s home memory controller. We assume

an on-chip directory with a lookup latency of 16 cycles. The interconnect is a 2D-torus with adaptive routing, efficient

multicast routing, and a total link latency of 15 cycles. If not otherwise specified, the throughput of each link bandwidth

is 16 bytes per cycle.

We use two scientific workloads from the SPLASH2 suite [31] (barnes and ocean) and three commercial workloads

from the Wisconsin Commercial Workload Suite [3] (oltp, apache, and jbb). We simulate these workloads on a 64-core

SPARC system by running four 16-core copies of the same workload concurrently. We perform multiple runs with

small random perturbations and different random seeds to plot 95% confidence intervals [3]. To evaluate scalability

up to 512 cores, we use a simple microbenchmark wherein each core updates a random entry in a shared, fixed-size

table (16k locations) 30% of the time and reads a random entry 70% of the time.

8.2 Comparison of PATCH to DIRECTORY and TokenB

The first two bars of each group in Figure 8 show that PATCH configured not to send any direct requests (PATCH-NONE)

and DIRECTORY perform similarly, which shows that there is no common-case performance penalty introduced by

PATCH’s token counting and token tenure mechanism. The interconnect link traffic (the first two bars in each group

of Figure 9) shows that PATCH’s data and request traffic are the same as DIRECTORY. PATCH’s overall traffic is

somewhat higher (only 2.2% on average) because of its non-silent writebacks of clean shared blocks and its few

home-to-requester messages for activation on owner upgrade misses.

The final two bars in each group of Figure 8 show that PATCH configured to sends direct requests to all other cores

on each miss (PATCH-ALL) generally performs the same as token coherence’s broadcast-based TokenB [23]. Overall

traffic (Figure 9) is also similar because of two largely offsetting effects: TokenB’s reissued requests increase its traffic

and PATCH’s indirect requests, forwarded requests, and activations increase its traffic.

8.3 Impact of Direct Requests and Destination-Set Prediction

Comparing PATCH-NONE and PATCH-ALL (in Figure 8 and Figure 9) highlights the impact and cost of direct requests:

direct requests improve runtime (22% for oltp, 19% for apache, and by 14% on average), at the cost of increasing traffic

15

0.6

0.7

0.8

0.9

1.0

1.1

no
rm

al
iz

ed
 r

un
tim

e

Dire
cto

ry

PATCH-N
on

e

PATCH-O
wne

r

Bro
ad

ca
st-

If-
Sha

red

PATCH-A
ll

Tok
en

 C
oh

ere
nc

e

jbb

Dire
cto

ry

PATCH-N
on

e

PATCH-O
wne

r

Bro
ad

ca
st-

If-
Sha

red

PATCH-A
ll

Tok
en

 C
oh

ere
nc

e

oltp

Dire
cto

ry

PATCH-N
on

e

PATCH-O
wne

r

Bro
ad

ca
st-

If-
Sha

red

PATCH-A
ll

Tok
en

 C
oh

ere
nc

e

apache

Dire
cto

ry

PATCH-N
on

e

PATCH-O
wne

r

Bro
ad

ca
st-

If-
Sha

red

PATCH-A
ll

Tok
en

 C
oh

ere
nc

e

barnes

Dire
cto

ry

PATCH-N
on

e

PATCH-O
wne

r

Bro
ad

ca
st-

If-
Sha

red

PATCH-A
ll

Tok
en

 C
oh

ere
nc

e

ocean

Figure 8: PATCH runtime

0.0

0.5

1.0

1.5

2.0

2.5

3.0

by
te

s
/ m

is
s

(n
or

m
al

iz
ed

 to
 d

ir
ec

to
ry

)

Activation
Reissue
Forward
Ind. Req.
Dir. Req.
Ack
Data

Dire
cto

ry

PATCH-N
on

e

PATCH-O
wne

r

Bro
ad

ca
st-

If-
Sha

red

PATCH-A
ll

Tok
en

 C
oh

ere
nc

e

jbb

Dire
cto

ry

PATCH-N
on

e

PATCH-O
wne

r

Bro
ad

ca
st-

If-
Sha

red

PATCH-A
ll

Tok
en

 C
oh

ere
nc

e

oltp

Dire
cto

ry

PATCH-N
on

e

PATCH-O
wne

r

Bro
ad

ca
st-

If-
Sha

red

PATCH-A
ll

Tok
en

 C
oh

ere
nc

e

apache

Dire
cto

ry

PATCH-N
on

e

PATCH-O
wne

r

Bro
ad

ca
st-

If-
Sha

red

PATCH-A
ll

Tok
en

 C
oh

ere
nc

e

barnes

Dire
cto

ry

PATCH-N
on

e

PATCH-O
wne

r

Bro
ad

ca
st-

If-
Sha

red

PATCH-A
ll

Tok
en

 C
oh

ere
nc

e

ocean

Figure 9: PATCH traffic

by 145% on average. For our bandwidth-rich baseline system configuration, PATCH-ALL’s additional traffic results in

little actual queuing in the interconnect. Thus, direct requests provide a significant performance improvement.

To explore different latency/bandwidth trade-offs, the middle bar of these figures show the effects of using PATCH

with two previously-published destination-set predictors [22]. In the first (PATCH-OWNER), PATCH sends a direct

request to a single core (i.e., the predicted owner) in addition to the indirect request to the directory; in the second

(PATCH-BROADCASTIFSHARED), PATCH sends direct requests to all cores for recently shared blocks.

PATCH-OWNER achieves speedups over PATCH-NONE that are about half those of PATCH-ALL (7% on average),

while its additional direct requests cause only a 20% increase in traffic on average (versus PATCH-ALL’s 145%).

16

PATCH-BROADCASTIFSHARED uses 22% less traffic on average than PATCH-ALL while achieving a runtime within

4% of PATCH-ALL. These results show that destination-set prediction can be valuable in cases of constrained band-

width or where the extra power consumed by direct requests is a concern.

8.4 Bandwidth Adaptivity Under Constrained Bandwidth

300 600 900 2000 4000 8000

bandwidth available (bytes/1000 cycles)

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz

ed
 r

un
tim

e

Directory
PATCH-All-NA
PATCH-All

Figure 10: ocean

300 600 900 2000 4000 8000

bandwidth available (bytes/1000 cycles)

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz

ed
 r

un
tim

e

Directory
PATCH-All-NA
PATCH-All

Figure 11: jbb

4 8 16 32 64 128 256 512

number of processors

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz

ed
 r

un
tim

e

Directory
PATCH-All-NA
PATCH-All

Figure 12: microbenchmark scalability

We next study the impact of bandwidth adaptivity via best-

effort requests in PATCH. Figure 10 and Figure 11 show the

impact of limiting the available interconnect bandwidth by

varying the link bandwidth for two representative benchmarks

(the other three are qualitatively similar). The three lines show

the runtime normalized to DIRECTORY for three configura-

tions: DIRECTORY, PATCH-ALL, and a variant of PATCH-ALL

that uses guaranteed delivery for all messages (PATCH-ALL-

NONADAPTIVE). When bandwidth is plentiful, PATCH-ALL-

NONADAPTIVE and PATCH-ALL identically outperform DI-

RECTORY. When bandwidth is scarce, however, PATCH-ALL-

NONADAPTIVE’s runtime quickly increases to be worse than

that of DIRECTORY. PATCH-ALL’s runtime, in contrast, al-

ways stays at or better than DIRECTORY. Furthermore, in the

middle of the graph, where there is enough bandwidth for some

but not many direct requests, PATCH-ALL is actually faster

than the other configurations (by as much as 6.3% for ocean

and 5.2% for jbb).

8.5 PATCH’s Scalability

We next show that PATCH’s best-effort requests enable it

to match the scalability of DIRECTORY. Figure 12 show

the microbenchmark’s runtime of DIRECTORY, PATCH-ALL,

and PATCH-ALL-NONADAPTIVE (as defined above) with a

link bandwidth of two bytes per cycle on four cores to 512

cores. PATCH-ALL-NONADAPTIVE performs significantly

better than DIRECTORY up to 64 cores but sharply worse from

17

0.6

1.0

1.4

1.8
no

rm
al

iz
ed

 r
un

tim
e

2 bytes/cycle
unbounded

1 4 16 64
Dir-64p

1 4 16 64
Patch-64p

1 4 16 64
Dir-128p

1 4 16 64
Patch-128p

1 4 16 64 256
Dir-256p

1 4 16 64 256
Patch-256p

2.422.05

Figure 13: Scalability of PATCH vs DIRECTORY: runtime

0.0

0.5

1.0

1.5

2.0

2.5

3.0

no
rm

al
iz

ed
 tr

af
fi

c/
m

is
s

Ack
Forward
Ind. Req.
Data

1 4 16 64
Dir-64p

1 4 16 64
Patch-64p

1 4 16 64
Dir-128p

1 4 16 64
Patch-128p

1 4 16 64 256
Dir-256p

1 4 16 64 256
Patch-256p

4.193.45

Figure 14: Scalability of PATCH vs DIRECTORY: traffic

128 cores onward (our simulation of PATCH-ALL-NONADAPTIVE on 512 cores did not complete). PATCH-ALL, by

contrast, matches both the performance of PATCH-ALL on low numbers of cores and the scalability of DIRECTORY

on a large number of cores. PATCH-ALL outperforms directory up to 256 cores, which shows that even for reasonably

large systems, direct requests provide some benefit (without sacrificing scalability).

8.6 Scalability with Inexact Directory Encodings

The above experiments show that PATCH scales as well as DIRECTORY when using a full-map encoding of directory

state. We now experimentally show that PATCH can scale better than DIRECTORY, when the directory encoding is

inexact (as discussed earlier in Section 7).

To isolate this effect, we compare PATCH-NONE and DIRECTORY on the microbenchmark using varying degrees

of inexactness of directory encoding. In the simulated inexact encoding, the owner is always recorded precisely (using

log n bits), making all read requests exact. Encoding of additional sharers uses a coarse bit vector that maps 1-bit to K-

cores, and the experiment varies K from 1 (which is a full map) to N (which is a single bit for all the cores). Figure 13

show the runtime for varying levels of coarseness normalized to a full-map bit vector for 64, 128, and 256 cores. With

unbounded link bandwidth (the lower portion of each bar) the runtimes are all similar. When link bandwidth is bound

to 2 bytes per cycle (the total bar height), the runtime of DIRECTORY for 128 and 256 cores show substantial increases

18

(up to 142%); in contrast, PATCH’s runtime increases by only 3.6% in the most extreme configuration of a single bit

to encode the sharers for 256 cores. Figure 14 shows the traffic of DIRECTORY is dominated by acknowledgements

message under extreme coarseness (319% more traffic than full-map directory on 256 cores). PATCH’s elimination

of unnecessary acknowledgements prevents them from dominating the overall traffic (a maximum of only 32% more

traffic than the full-map baseline).

9 Conclusion

In this paper we have introduced PATCH (Predictive Adaptive Token Coherence Hybrid), a protocol that obtains per-

formance without sacrificing scalability by augmenting a standard directory protocol with token counting and a novel

broadcast-free forward progress mechanism called token tenure. The combination of token counting and token tenure

allows PATCH to easily support direct requests over an unordered interconnect without relying on broadcast messages

for any part of correctness. When bandwidth is plentiful, PATCH displays the performance characteristics of high-

performance broadcast-based protocols such as TokenB. When bandwidth is scarce, PATCH displays the scalability of

a directory protocol. In fact, PATCH out-scales a directory protocol when using inexact directory encodings. PATCH

employs a novel form of bandwidth adaptation, best-effort requests, wherein the interconnect deprioritizes direct re-

quests during times of contention. The combination of best-effort requests and destination-set prediction allows PATCH

to transition smoothly between the extremes of broadcast and directory protocols for different system configurations.

These properties result in a protocol that is both high-performance and highly scalable.

References
[1] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato. Owner Prediction for Accelerating Cache-to-Cache Transfers in a

cc-NUMA Architecture. In Proceedings of SC2002, Nov. 2002.

[2] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato. The Use of Prediction for Accelerating Upgrade Misses in cc-NUMA
Multiprocessors. In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques, pages
155–164, Sept. 2002.

[3] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu, D. J. Sorin, M. D. Hill, and D. A. Wood. Simulating
a $2M Commercial Server on a $2K PC. IEEE Computer, 36(2):50–57, Feb. 2003.

[4] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D. Hill, and D. A. Wood. Multicast Snooping: A New Coherence
Method Using a Multicast Address Network. In Proceedings of the 26th Annual International Symposium on Computer
Architecture, pages 294–304, May 1999.

[5] S. Burckhardt, R. Alur, and M. M. K. Martin. Verifying Safety of a Token Coherence Implementation by Parametric Com-
positional Refinement. In Proceedings of the Sixth International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI), Jan. 2005.

[6] L. Cheng, J. B. Carter, and D. Dai. An Adaptive Cache Coherence Protocol Optimized for Producer-Consumer Sharing. In
Proceedings of the 13th Symposium on High-Performance Computer Architecture, pages 328–339, Feb. 2007.

[7] B. Cuesta, A. Robles, and J. Duato. An Effective Starvation Avoidance Mechanism to Enhance the Token Coherence Protocol.
In Proceedings of the 15th EUROMICRO International Conference on Parallel, Distributed, and Network-Based Processing
(PDP’07), 2007.

[8] B. Cuesta, A. Robles, and J. Duato. Improving Token Coherence by Multicast Coherence Messages. In Proceedings of the
16th EUROMICRO International Conference on Parallel, Distributed, and Network-Based Processing (PDP’08), 2008.

19

[9] Z. Cvetanovic. Performance analysis of the Alpha 21364-based HP GS1280 multiprocessor. In Proceedings of the 30th
Annual International Symposium on Computer Architecture, pages 218–229, June 2003.

[10] W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004.

[11] R. Fernandez-Pascual, J. M. Garcia, M. E. Acacio, and J. Duato. A Low Overhead Fault Tolerant Coherence Protocol for
CMP Architectures. In Proceedings of the 13th Symposium on High-Performance Computer Architecture, Feb. 2007.

[12] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic Requirements for Scalable Directory-Based Cache
Coherence Schemes. In International Conference on Parallel Processing (ICPP), volume I, pages 312–321, 1990.

[13] E. Hagersten and M. Koster. WildFire: A Scalable Path for SMPs. In Proceedings of the Fifth Symposium on High-
Performance Computer Architecture, pages 172–181, Jan. 1999.

[14] H. H. J. Hum and J. R. Goodman. Forward State for use in Cache Coherency in a Multiprocessor System, July 2005. U.S.
Patent 6,922,756.

[15] N. E. Jerger, L.-S. Peh, and M. Lipasti. Virtual Circuit Tree Multicasting: A Case for On-Chip Hardware Multicast Support.
In Proceedings of the 35th Annual International Symposium on Computer Architecture, June 2008.

[16] N. E. Jerger, L.-S. Peh, and M. H. Lipasti. Circuit-Switched Coherence. In Proceedings of the IEEE International Symposium
on Networks-on-Chip, Apr. 2008.

[17] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The AMD Opteron Processor for Multiprocessor Servers. IEEE
Micro, 23(2):66–76, March-April 2003.

[18] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages 241–251, June 1997.

[19] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz, and M. Lam. The Stanford
DASH Multiprocessor. IEEE Computer, 25(3):63–79, Mar. 1992.

[20] P. S. Magnusson et al. Simics: A Full System Simulation Platform. IEEE Computer, 35(2):50–58, Feb. 2002.

[21] M. M. K. Martin. Token Coherence. PhD thesis, University of Wisconsin, 2003.

[22] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A. Wood. Using Destination-Set Prediction to Improve the
Latency/Bandwidth Tradeoff in Shared Memory Multiprocessors. In Proceedings of the 30th Annual International Symposium
on Computer Architecture, pages 206–217, June 2003.

[23] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: Decoupling Performance and Correctness. In Proceedings
of the 30th Annual International Symposium on Computer Architecture, pages 182–193, June 2003.

[24] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s General Execution-driven Multiprocessor Simulator (GEMS) Toolset. Computer Architecture News, 2005.

[25] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Bandwidth Adaptive Snooping. In Proceedings of the Eighth
Symposium on High-Performance Computer Architecture, pages 251–262, Feb. 2002.

[26] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K. Martin, and D. A. Wood. Improving Multiple-CMP Systems
Using Token Coherence. In Proceedings of the 11th Symposium on High-Performance Computer Architecture, Feb. 2005.

[27] M. R. Marty and M. D. Hill. Coherence Ordering for Ring-based Chip Multiprocessors. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, Dec. 2006.

[28] M. R. Marty and M. D. Hill. Virtual Hierarchies to Support Server Consolidation. In Proceedings of the 34th Annual
International Symposium on Computer Architecture, June 2007.

[29] A. Meixner and D. J. Sorin. Error Detection via Online Checking of Cache Coherence with Token Coherence Signatures. In
Proceedings of the 13th Symposium on High-Performance Computer Architecture, Feb. 2007.

[30] P. Sweazey and A. J. Smith. A Class of Compatible Cache Consistency Protocols and their Support by the IEEE Futurebus.
In Proceedings of the 13th Annual International Symposium on Computer Architecture, pages 414–423, June 1986.

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual International Symposium on Computer Architecture, pages 24–37, June
1995.

20

	Adding Token Counting to Directory-Based Cache Coherence
	Recommended Citation

	Adding Token Counting to Directory-Based Cache Coherence
	Abstract
	Comments

	tmp.1212784515.pdf.T4Nbw

