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Abstract

We study occluding contour artifacts in area-based stereo
matching: they are false responses of the matching opera-
tor to the occlusion boundary and cause the objects extend
beyond their true boundaries in disparity maps. Most of the
matching methods suffer from these artifacts; the effect is so
strong that it cannot be ignored. We show what gives rise to
the artifacts and design a matching criterion that accommo-
dates the presence of occlusions as opposed to methods that
identify and remove the artifacts. This approach leads to the
problem of measurement contamination studied in statistics.
We show that such a problem ishardgiven finite computa-
tional resources, unless more independent measurements
directly related to occluding contours is available. What
can be achieved is a substantial reduction of the artifacts,
especially for large matching templates. Reduced artifacts
allow for easier hierarchical matching and for easy fusion
of reconstructions from different viewpoints into a coherent
whole.

1. Introduction

Consider a binocularly viewed depth discontinuity, see the
top row of Fig. 1. The corresponding disparity map recov-
ered by area-based matching is shown far right. Both the
surface textures are i.i.d. Gaussian noise of the same mean
and variance and the pixels in correspondence are of the
same value, so matching operator works quite well, exactly
as expected in this ‘textbook’ example.

What happens when the average brightness of, say, the
background texture changes? Interestingly, the computed
disparity map is no longer accurate:one surface extends
beyond its true boundary,see the bottom row of Fig. 1
(the white line marks the expected boundary in the disparity
map, the matching window is outlined black). We used Sum
of Squared Differences as the similarity measure. A more
sophisticated criterion like Normalized Cross-Correlation
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Figure 1. Two random-texture stereograms.

(NCC) gives (almost) exactly the same results! The artifact
is still there and its correlation value is as high as the value
of any of the internal surface points!

In this paper we are going to investigate what causes the
failure of the matching operator near the boundary and if
it can be avoided, then how. We go beyond the standard
problem of suppressingoccluded-areaartifacts.

1.1. Related work

A seemingly simple solution to the correct boundary re-
construction is to detect the boundary and then, in apost-
processing step,rectify the false output of the matching pro-
cess. The various methods may differ in how the boundary
is detected (hypothesized).

The first group of methods use the intensity edge infor-
mation in the input images. Cochran and Medioni [4] filter
the disparity map by anisotropic diffusion that is stopped at



intensity edges. They assume that the ‘occlusion overhangs’
will be smoothed out this way. Little and Gillett [12] locate
discontinuities using information internal to the stereo mod-
ule and then process this and additional information about
boundaries in a post-processing step.

The second group of methods use no more information
than is present in the recovered disparity map. Hoff and
Ahuja [9] combine matching with surface interpolation and
detect discontinuities and occluding contours as discontinu-
ities in interpolated surfaces. Wildes [18] detects disconti-
nuities in needle maps recovered from binocular disparity.

A different approach is to incorporate an occlusion pro-
cess into the matching procedure. Belhumeur shows how to
pose the problem as an optimization procedure [1]. Related
approaches are reported, e.g., in [5, 13]. These methods try
to modify thedecision procedurerather than the similarity
criterion which is used to compute the correlation values.

Bhat and Nayar [2] tried to modify thesimilarity crite-
rion. They argue that robust matching method can generally
improve the matching results by accommodating various
unwanted transformations between the two images. They
propose two modifications of Gideon and Hollister robust
rank correlation coefficient as the matching operator.

Satoh and Ohta [17] increased the number of primary
measurements: they used a3�3 matrix of color cameras.
They substantially reduce the proportion of ‘unseen’ re-
gions. To obtain sharp boundaries, single color pixels are
matched. The cameras are decomposed to eight subsets and
the disparity is retained from that one giving the best match.

Okutomi and Kanade proposed a method that adaptively
adjusts the matching window size based on image con-
tents [15].

Various phenomena related to occluding contour are also
studied in [3] and [14].

Once it is known where the boundary is, matching can
be applied to both its ‘sides’ and the result with higher
confidence retained. The difficulty is how to detect the
boundary reliably. Even if it is done so, a curved boundary
may still pose a problem, since it is displaced from its ‘true’
position due to the smoothing effect of the edge operator.
To make the problem tractable, one has todecidewhere the
boundary is andlater reason about the matches. We want to
merge these two stages by making no early decisions.

1.2. Our goal

We will not be locating occluded areas and boundaries; we
want a procedure thataccommodates the factthat they may
occur in the observed world andgives us correct answers
in their presence. (That also includes ‘no answers’ in the
occluded areas.) This is close to the concept of outliers
accommodation coined in robust statistics [8]. In this paper,
we are going to explore this analogy.

In the next section we answer the question of why the oc-
clusion boundariesartifacts occur and in Section 3 we briefly
describe methods that are suitable to solving the problem.
Section 4 reports the results of their error evaluation. We
summarize and give conclusions in Section 5. More details
are given in the accompanying paper [16].

2. How do the artifacts develop?

Consider the portion of a real scene shown in Fig. 2. The
scene consists of a corner of a randomly textured planar sur-
face in front of a wooden background. Let the left-image
matching window be at the position shown left in Fig. 2a
(outlined) and let the right-image window be at the posi-
tion marked by the solid outline shown right. It is easy
to see that both windows are centered on the same point
on the target. To evaluate the correlation between the win-
dows, all the left-window pixel values are compared with
the right-window values; the structure of their dependence
is shown in the scatter plot in Fig. 3a. Every window con-
tents comes from two different populations: the foreground
and the background textures. The clusters correspond to
foreground pixels plotted against the foreground pixels (F-
F) and to background pixels plotted against the pixels in the
occluded area (B-O). But only one of the clusters is relevant
to the evaluation of the correlation value at the central pixel
of the window! Generally, it is not known in advance which
one should it be, since we do not know whether we observe
an occlusion boundary, a texture boundary, or both.

Let now both the windows moveat the fixed dispar-
ity, see Fig. 2b for a later stage (solid-outline windows).
Some new clusters emerge (foreground–occluded area F-O,
background–background B-B, see Fig. 3b), the fraction of
the various pixels varies in the clusters, and so does the
overall correlation value, see the solid curve in Fig. 4a. The
correlation value should drop when the windows move away
from the boundary but that does not happen in NCC. The
correlation value stays high until the high-correlationcluster
F-F disappears (see Fig. 2b).

The process should be symmetric if we tried to match the
background (we are now comparing the contents of the win-
dow in the left image with the dashed-outline window in the
right image in Fig. 2;note that both the windows are centered
on the samebackgroundpoint in Fig. 2b). The correlation
value should be low in early stages and it should rise later,
when the fraction of correctly matched background pixels
exceeds 50%. That does not happen until the uncorrelated
F-O cluster disappears, see Fig. 3c, 3d and Fig. 4a, dashed
curve. Matching background in Fig. 2b is complementary
to matching foreground in Fig. 2abut the clusters in Fig. 3c
and 3d are not symmetric relative to those in Fig. 3b and 3a.
The asymmetry—not the correlation absolute value—is re-
sponsible for the occlusion artifacts.The profiles are sym-
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Figure 2. Matching near occlusion boundary.
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Figure 3. Correlation structure.
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Figure 4. Correlation profile. The occlusion
boundary is detected correctly if the two
curves intersect at the relative position 0.

metric when the textures are the same, which explains why
we got correct results in our first example from Fig. 1.

Note that the operator need not necessarily be robust in
the sense that the correlation profile should drop/rise steeply
near the boundary. Example of an operator that does not
show this kind of robustness and still gives much better
results than NCC is shown in Fig. 4b.

Besides the cluster determining the correlation, there are
alien clusters whose influence must be eliminated. But since
the various clusters are inseparable, their proper identifica-
tion is not guaranteed.We will consider a matching operator
robust if it is able to accommodate the contamination,i.e.,
give unbiased answers in its presence. The next section
presents three of them and Section 4 compares their match-
ing results.

3. Robust matching operators

Here we briefly review three correlation methods: one of
them based on covariance matrix estimation and two of them
based on rank correlations. Other methods are not analyzed
in this paper although we experimented with them. They
were the Minimum Volume Ellipsoid of Rousseeuw, the Hu-
ber’s coefficient based on a robust variance estimator [10, p.
203], and the non-robust rank correlation methods (Spear-
man’s� and Kendall’s� ). All of them were clearly inferior
to the methods presented here, based on the relative visual
differences in the recovered disparity maps and on prelimi-
nary measurements of the accuracy on occlusion boundary.
Complete evaluation was only performed for the selected
methods.

3.1. Robust normalized cross correlation

The robust version of the NCC matching operator is based on
robust covariance matrix estimation, for all details see [16].

For the initial robust location estimatet0, we use the
LMedS estimator which has a breakdown point of 50%.

Given a family of p-dimensional elliptic distributions
with probability densityf(x; t;V) = j detVj f (kV(x� t)k) ; (1)

one wants to estimate the vectort and the pseudo-covariance
matrixS = VTV givenn observations ofx and the initial
estimates oft0 andS0. The estimates are the solutions to
the following set of equations:nXi=1 w(kyik)yi = 0; (2)nXi=1 �u(kyik)yi yTikyik2 � v(kyik)E� = 0; (3)
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whereyi = V(xi � t); u, v, w are some scalar weighting
functions, andE is a unitp� p matrix. We have chosenw(r) = 8<: 1 if r � s;2 sr � 1 if s < r � 2 s;0 otherwise.u(r) = r2 w2(r); (4)v(r) = 12 u(r):
wherer = kyik. In our case,p = 2. The parameters has
to be chosen for a given class of images.

For the solution existence and uniqueness conditions, the
reader is referred to [10, 8]. Unfortunately, redescending
functions do not satisfy all of them.

The solution to (2)–(4) has to be found iteratively,see [10]
for an algorithm.

3.2. Robust rank correlation

The componentsxi andyi of thenmeasurement vectors can
be converted to their respective ranksr(xi) andr(yi). Ranks
and rank correlations are invariant under any monotonic
transformation of the measurements—a desirable property
for image matching. For a very insightful overview of the
standard methods see [11].

Gideon and Hollister [6] proposed a robust rank cor-
relation coefficient, which we briefly describe here. It is
assumed that there are no two equal values1 amongxi andyi. Let the vectors of ranks be simultaneously permuted so
that�(r(xi)) = i. LetI(x) = 1 if x is true and 0 otherwise.
Then, fori = 1; : : : ; n� 1, one definesdi = iXj=1 I(i < �(r(xj2))); (5)d�i = iXj=1 I(i < n+ 1� �(r(xj2))): (6)

The Gideon and Hollister robust correlation coefficient is�g = maxi d�i �maxi dibn2 c 2 [�1;+1]; n > 1 (7)

and it can assume2bn2 c + 1 different values. The value of�g can be computed inO(n logn) time [2]. Bhat and Nayar
proposed a modification�b = 1� 2maxi dibn2 c ; (8)

which does not satisfy some desirable properties, for in-
stance�b(X;Y ) 6= ��b(�X;Y ), but is computationally
less expensive.1There are several methods how to treat these ties, see [7].

Rank correlations require ranking prior to computing the
correlation. But the ranks can be substantially altered by
the presence of contaminants in the data. Our experiments
have shown that�g seems to be robust against permutations
of ranks. To our knowledge, the breakdown point of�g has
not been studied theoretically.

4. Experimental evaluation

The following errors were evaluated:
False positivesare false disparity hypotheses in occluded

areas where no disparity can be found. They are related to
occluding contour and occluded area artifacts.

Total disparity error is the number of integer disparity
map pixels that differ more that one level from ground-truth
and have a positive correlation value. The total disparity
error included mostly occluding contour artifacts.

Negativesare pixels where no disparity was found al-
though the input data contained enough information to gen-
erate such hypothesis. The less the number of negatives the
more efficient and unambiguous is the matching operator.

Note that the total disparity error is not the sum of the
other two errors.

4.1. Experimental setup

The test target is a staircase-like structure of known geom-
etry, see Fig. 5. The target was designed so that it was
easy to create a precise ground-truth disparity map semi-
automatically (see [16]) and that all secondary phenomena
affecting matching were eliminated (like projective distor-
tions at excessively sloped surfaces; repetitive, low-contrast
or missing texture; highlights; curved surfaces and bound-
aries; and shadowed areas).

The fifteen faces of the test target differ in the intra-face
contrast of the random binary pattern. They are arranged
so that all combinations of the relative inter-face contrasts
are exhausted. We affixed the same texture pattern to a
single planar surface and used it as a control target to verify
the extend to which the matching operator is disturbed by
the non-uniqueness of the artificial texture and by various
texture boundaries in the absence of occlusions.

4.2. Error evaluation

The progressionof occlusion artifacts with increasing size of
a square matching window is shown in Fig. 6. The disparities
were searched over the interval of(�20; 15) in 256� 256
images and all weak matches were eliminated using the
disparity gradient limit and the ordering constraint.

The NCC-based matching was used as a control exper-
iment. The artifacts develop rapidly with the increasing
window size. There were no artifacts in the control target,
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Figure 5. The test and the control targets.

only in the small-size matching windows a few matches
were eliminated because of low correlation value.

In RNCC2, the artifacts develop too, but much slower.
In small matching windows, the estimator is not efficient
enough, so multiple matches and increased number of neg-
atives (weak matches) in both the staircase and the control
targets emerge. This is the reason why spurious local min-
ima appeared in the plots.

Both robust rank matching operators perform slightly
worse than RNCC. Of the two, GHRRC produces less arti-
facts and negatives.

The right column of Fig. 6 shows the detailed structure
of the occlusion artifacts (black) for various matching oper-
ators and25� 25 matching window. The target structure is
superimposed to show which artifacts are related to occlu-
sion boundaries. A large matching window (not shown) was
chosen to show how severe the problem could be. Notice
that there are almost no artifacts at zero inter-face contrast,
like in the� �  � ' transitions.

The fraction of false positives was2:8� smaller in RNCC
and1:4� smaller in the rank-based operators than in NCC.
The overall disparity error was2:2� smaller in RNCC and
about1:2� smaller in the rank-based operators. Overall,
RNCC was the best. The number of matching errors in the
control plane was not significant.2We useds = 1:4 and 3 iterations of the M-estimator.
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More error evaluation for different targets is described
in [16]. Overall, the RNCC did 32% better than NCC and
13% better than the robust rank correlations in the simultane-
ous presence of smooth occlusions, specularities, shadows,
and repetitive texture.

5. Summary and conclusions

The artifacts studied here have very high correlation value
and are geometrically consistent with the surface they are ad-
jacent to. They extend relatively far beyond the true bound-
ary: up to a half of the matching window size. Once they
are present in the disparity map, it is extremely hard to de-
tect and remove them. The effect cannot be ignored, since
3-D reconstructions from multiple views based on wrongly
recovered disparity maps become mutually inconsistent.

Since the occluding contour is viewed from two different
viewpoints, the background in both images is different which
introduces up to 50% of contaminant measurements in the
data subset used for decision on correspondence. We found
that the robust statistical methods we had tested were not able
to cope with this sort of contamination and were therefore
not suitable to solving the problem.

It is not just occluding contour artifacts but also other
phenomena like the presence of surface specularities that
lead to the contamination problem. By treating the problem
as a general one, we hoped to reach robustness of the match-
ing processregardlessof the physical cause and without its
explicit detection.

In the experiments, the various robust methods worked
much better than the non-robust method. The price was
high: the 280% increase in performance (for RNCC; in
terms of false positives) is outweighed by the almost100-
fold increase in computational time!

Overall, the best results were obtained with RNCC. This
method was least disturbed by the ambiguity caused by data
distribution multi-modality falsely introduced by measure-
ment contaminants.

We conclude that, although the occluding contour arti-
facts problem has been attacked at its root, we could not
overcome the lack of information needed to resolve it. With
finite computational resources one can only reduce theex-
pectancyof the errors. What cannot be done without ad-
ditional unambiguous information is to guarantee the non-
existence of failure modes, even with infinite computational
resources available. We want to put end to further research
unless this additional information becomes at hand. The
information could be of two kinds:

1. Additional independent measurementscould be taken
to help detect the correct position of the occluding contour.

2. Additional constraintscould be employed to restrict
the locations of candidate matches and to reduce the match-
ing window size.

It would be very interesting to learn to what extent is the
human visual system affected by the studied phenomenon.
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