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Abstract

This report focuses on two different aspects of modular robots, the enumeration of
distinct configurations of a modular robot and the generation of gaits for hybrid robots
with wheels and legs. Given a particular set of modules from which the robot can be
formed, a modular robot made up of these modules can attain a number of different
configurations based on the relative attachment of the modules. The distinct
configurations possible are enumerated for a locomotion system consisting of a base with
multiple ports where wheel or leg modules can be attached.

Given a particular configuration of the modular robot, we would like to generate a
set of inputs that would drive the robot from an initial position to a desired position. The
method used for this must be applicable to different kinds of modules that may be used
for locomotion. The method presented here involves generating a set of constant inputs
that will drive a drift-free system from an initial to a final desired position. Simulation
results are generated for translation and rotation of the robot and motion along a Lie
Bracket direction (sideways motion) for the hybrid mobile robot.



1 Introduction

Modularity in robotics has been widely studied in recent years. Modular robots are robots
made from a set of modules. Modularity in any system implies that any individual part of
the system is one of a set of separate parts which, when combined, form a complete
whole system. Modular robots are usually classified into two categories

1. Manually re-configurable or re-configurable robots – These are robots where new
or additional modular parts can be attached to a fixed or moving base. The new
parts are attached manually, i.e. by an external agent.

2. Self re-configurable robots – These are robots with the ability to reconfigure
using their own power.

1.1 Locomotion of modular robots
Locomotion of modular robots has been widely studied. Most of the work has focused

on developing control or motion algorithms for robots made up of a particular set of
modules. In [1], Yim describes various behavioral modes of locomotion that allow the
Polypod, a multi-dof self re-configurable robot, to carry out different locomotion tasks.
The robot carries out a sequence of motion in which each joint is allowed to run under a
particular control algorithm until a certain trigger condition is met. A master controller
then changes the control or behavioral mode for the joint. Thus, any motion is composed
of a set of triggers and behavioral modes. An example of the behavioral mode is a spring
mode where the joint behaves like a spring.

In [2], Rus, et. al. describe the Inchworm, a robot capable of manipulation and
locomotion tasks. The approach involves defining a series of steps in each of which the
robot carries out a specific manipulation or locomotion task. In [3], Rus, et. al. present the
concept of a robotic molecule many of which can be attached together to form a
aggregate structure capable of locomotion. Chirikjian, et. al.[4] describe a self re-
configurable robot made up of a number of 2D hexagonal modules. Locomotion is
achieved by such robots using a sequence of steps wherein individual modules move
relative to the robot and attach themselves at a new position on the robot. This allows the
whole robot to achieve a net planar motion. Murata, et. al.[5] have developed a 3d re-
configurable robot capable of motion by attaching itself to similar modules. A 2d planar
robot [6] made up of homogenous units moves by alternate repulsive and attractive forces
generated by an electromagnet.

The aim of our research is to develop a general framework for robot locomotion
which can be widely applied. The approach in [1] is very specific to the particular robot
chosen. In [2], the locomotion and manipulation task is broken into a sequence of specific
tasks which are described qualitatively. The exact manner in which a particular task can
be carried out is not specified. Our approach aims to be general enough that it can handle
a variety of problems and yet specific enough to generate a particular solution for each
different problem.



1.2 Scope of report

This report focuses on two different aspects of modular robots, the enumeration of
distinct configurations of a modular robot and the generation of gaits for hybrid robots
with wheels and legs. Given a particular set of modules from which the robot can be
formed, a modular robot made up of these modules can attain a number of different
configurations based on the relative attachment of the modules. An algorithm for
enumerating the number of non-isomorphic or distinct configurations of such a modular
robot was presented by Chen and Burdick in [7] which is discussed in this report. The
method is applied to the specific case of modular robots with different numbers of wheels
and legs.

Given a particular configuration of the modular robot, we would like to generate a
set of inputs that would drive the robot from an initial position to a desired position. The
method used for this must be applicable to different kinds of modules that may be used
for locomotion. The method presented here is used with two types of modules, legs and
wheels to generate control inputs for a hybrid modular robot. The method was developed
for smooth systems in [8] and extended to include the concept of stratified systems
which represent legged robots in [9].

1.3 Outline of report
A method of representing modular robots in terms of graph and matrix

representation is discussed in Section 2. A set of modules used for locomotion is
presented. In Sections 3 and 4, the enumeration algorithm for modular robots is discussed
and its application to locomotion is presented using a few examples. Section 5 presents
the motion planning method for hybrid modular robots. The method used is first
described for smooth systems. Its extension to stratified systems is then presented. Our
approach to the problem using the description of the motion of the system in terms of
shape and body inputs is then described. The method is then applied to two different
robots in Section 6, a four legged robot and a robot with two legs and a pair of wheels
and simulation results are presented for different motions of the two robots. Section 7
presents the conclusions and discusses possible extensions of this method.

2 Graph and matrix representation of modular robots

Modular robots can be made up heterogeneous or homogeneous modules. A
representation scheme for modular robots must accurately represent the heterogeneous or
different kinds of modules and the interconnection between them. Given a representation,
it should be possible to reconstruct the actual physical robot uniquely. Representation
schemes are particularly useful for developing motion planning or reconfiguration
algorithms wherein a description of the initial and target shape may be required. They
also help to store information about modular robots in a compact form. In [7], Chen and
Burdick present a general method of representing modular robots. The method uses a
graph structure and a corresponding matrix representation for representing such robots.



2.1 Modules for locomotion

Two kinds of modules are defined in [7]. They are based on the most general
kinds of modules present in most robots. The modules are broadly classified as link
modules and joint modules. Link modules can come in various shapes and have ports
where joint modules can be attached. Each link module can have a multiple number of
ports. Joint modules attach two link modules to each other and allow relative motion
between the two modules. Examples of link modules are the prism module with 10 ports
and the cubical module with 6 ports shown in Figure 8. The ports of each module are
numbered as shown in the figure. Examples of joint modules include revolute,
cylindrical, prismatic and helical modules. Modules defined for locomotion generally
include a mobile base module with ports to which other modules can be attached. The 4
port prism module shown in figure 1 is one such module. Two other kinds of modules are
also defined for locomotion tasks. They are leg and wheel modules as shown in Figure 2.
Leg modules are made up of a series of links that can be attached at one end to a port on
the base of the robot. A set of attributes or properties can be specified for such modules
that describe the workspace for the leg and its parameters. For a wheel, the main attribute
would be its radius.

2.2 Graph and Matrix representation of modular robots

Kinematic chains of links and joint are often represented as graphs. By replacing
the joints in a chain by edges and the links by vertices, a kinematic graph representation
can be created. A graph essentially consists of a set of vertices and edges. Each edge links
two different vertices. In a labeled graph, the vertices and edges are assigned labels. If the

Figure 1: Prism(L) and Cubic(B) modules with 10
and 6 ports respectively and a four port prism

module

Figure 2: Leg and wheel modules attached to a
base



vertices and edges are of different kinds, e.g. in a heterogeneous modular robot, a
specialized graph structure can be defined. Consider a labeled graph with a set of vertices
V = {v1 , v2 … }and edges E = {e1 , e2 …}.  If V and E are the set of types of vertices and
edges, then  an injection mapping  fv: V→V and fe: E→ E  assigns a particular vertex and
edge type to each of the vertices and edges of the graph respectively. In case of the
representation scheme for modular robots, the types of vertices and edges are the types of
link and joint modules respectively.

The graph representation is often converted into a matrix representation for
convenience. The type of matrix representation used here is known as a vertex-edge
incidence matrix. The element mij of this matrix has value 1 if edge ej is incident on
vertex vi, otherwise it has value 0. Thus, each row of a matrix representation contains
information about one vertex of the graph while each column contains information about
a edge of the graph. To represent specialized graphs an additional row or column is added
to the matrix to indicate the type of the vertex and edge respectively. The resulting matrix
representation for a specialized graph is known as an extended incidence matrix. In
representing modular robots, the non-zero elements of this matrix are replaced by the port
numbers of the links where the corresponding joints are attached thus giving an assembly
incidence matrix. Figure 3 shows an example of a hybrid modular robot and extended
incidence and assembly incidence matrices for the same. This representation scheme is
general enough to be used with different kinds of modules.
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3 Enumerating distinct robot configurations - Pattern Enumeration

The problem of enumerating all possible distinct arrangements of modular
systems given a set of modules is important. In [7], a method for such an enumeration is
presented. The method is based on testing for two conditions given a pair of modular
robots –the equivalence of individual link assembly patterns and the isomorphism of the
underlying graph structure. These methods are now described in more detail in sections 3
and 4 respectively after the introduction of a few concepts used in them.

3.1 Symmetric rotations

A symmetric rotation for a link is a rotation about a body axis after which the original
and rotated links cannot be distinguished. Symmetric rotations of a module can be
identified with certain features of the module. Here, the port numbers on a link are used
to identify a symmetric rotation as a permutation on the set of port numbers. For example
consider a prism link rotated through 90o about the z axis. As can be seen from figure 4,
port 1 now occupies the position where port 3 originally was while port 3 occupies the
space where port 5 originally was and so on. Thus, the symmetric rotation can be
represented as

Each link has a set of possible symmetric rotations associated with it which are
represented as permutations on the set of port numbers for the link. Let PORT =
{1,2,3,4,5,6,7,8,9,10} denote the set of port numbers for the prism link. Let π denote a
permutation on PORT where π∈S. S is the set of permutations corresponding to
symmetric rotations of the prism link. Table 1 lists all the symmetric rotations and
corresponding permutations for a four port rectangular base shown in figure 8.

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

10921876543

10987654321
π

Figure 4: An example of a symmetric
rotation for a prism link



Permutations on Port→ 1 2 3 4 Type
Rotation
Identity 1 2 3 4 {4,0,0,0}
About x (1800) 4 3 2 1 {0,2,0,0}
About y (1800) 2 1 4 3 {0,2,0,0}
About z (1800) 3 4 1 2 {0,2,0,0}

3.2 Assembly patterns for a single link

An assembly pattern f for a single link is a unique assignment of joints from a set
(denoted by ATT) of possible joints to each port of the link. Thus, f: PORT→ATT.  For
example, ATT = {R,P,H,C,0} denoting a rotary, prismatic, helical and cylindrical joint
respectively. The set of possible joints includes a null joint indicating that no joint has
been attached to that particular port of the link. Let m = |ATT| and n = |PORT|. Then the
number of assembly patterns possible is mn. Let F denote the set  of all possible assembly
patterns. Two assembly patterns fi and fj : PORT→ATT  are equivalent iff ∃ π∈S  such
that

fi = fj o π

Since the cubic and prism links are symmetric, two assembly patterns may look alike
after a symmetric rotation of the link. Consider the assembly patterns fa and fb shown in
Figure 5. If  π is a rotation of the prism about the z axis by 90o,

fa(1) = fb o π(1) = fb(3) = H
fa(2) = fb o π(2) = fb(4) = R
fa(9) = fb o π(9) = fb(9) = C

      fa(i) = fb o π(i) =  0 for all other i

 Thus, both the assembly patterns will perform identically in a modular robot.  

Table 1: The symmetric rotation group
for a four port prism link



3.3 Enumeration of equivalence classes using Polya’s theorem

The set of symmetric rotations divides the set of assembly patterns F into disjoint subsets
called equivalence classes. The assembly patterns belonging to a particular equivalence
class are all related by a symmetric rotation. Thus, the problem of finding the number of
distinct assembly patterns is converted into one of finding the number of such
equivalence classes. Polya’s theorem is used to find this number. To use Polya’s theorem,
we first need to establish some notation.

A permutation π operating on PORT splits the index set into cycles. Length of a cycle =
m if πm(s) = s ∈ PORT and s, π (s),…., πm-1(s)  ∈ PORT .The type of a permutation,
type(π) = {b1,b2,b3,b4,…..,bn} where bi=no. of cycles of length i. For example, rotation

through 90o  splits PORT into four cycles {1,3,5,7}, {2,4,6,8}, {9}, {10} and hence type
(π) = {2,0,0,2,0,0,0,0,0,0}.We now define the cycle index of a permutation group S to be
a polynomial in dummy variables x1,x2,….xn given as:

where type(π) = {b1,b2,b3,b4,…..,bn}.

Now, consider J  = set of joints{J1,J2…Jm}, e.g.{R,P,0}. Assign a dummy variable yi to
Ji, i=,1,2,3…..,m=|J|. In the cycle index polynomial substitute

Then the coefficient of
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gives the number of distinct patterns or equivalence classes for a single link with d1 joints
of type  J1 , …., dm joints of type Jm . Having found the number of distinct equivalence
classes, an algorithm is now required for enumerating the distinct classes. The algorithm
for this purpose is essentially a brute force algorithm and is presented below.

Algorithm PatternEnumerate
Input to Algorithm

Set of Assembly patterns  (F )
Symmetric rotation group (S )

Algorithm
Step 1 : Queue = F ;
Step 2 : v = First(Queue); Queue = Rest(F ); Dpattern = {};
Step 3 : Vpattern = { v o π , π∈ S }
Step 4 :  ∀ fi  ∈ Queue, if fi ∈ Vpattern then Queue = Queue - {fi }
Step 5 : Dpattern = Dpattern + {v}
Step 6 : If Queue = {k}, Dpattern = Dpattern + {k}
 Step 7 : Repeat from Step 2.

Output of Algorithm
The set {Dpattern} of distinct assembly patterns under S.

END
The set Vpattern is the set of all patterns found by applying a symmetric rotation

to the assembly pattern v. The rest of the patterns are then tested against this set and if
any of them is found to belong to the set, it is discarded from the queue. Thus, the
algorithm gives a set of equivalence classes or distinct assembly patterns.

4 Distinct modular robot configurations

4.1 Graph isomorphism
Having found the distinct assembly patterns for a single link, the problem now is

to find distinct modular robot assemblies. The concept of graph isomorphisms is useful in
solving this problem. Two graphs G1 and G2 are said to be isomorphic to each other if
their incidence matrices M1 and M2 are related to each other by row or column
permutations. If γ12 is the isomorphism between the two graphs then
������������������������ )()( 2112

GMGM =γ

A graph may be isomorphic to itself in which case
������������������������ )()( 21 GMGM =γ

When testing for pattern equivalence on specialized graphs it is important to take into
account the type of edge or vertex.

4.2 Equivalence of two modular robot configurations

4.2.1 Topological equivalence

The problem of enumerating distinct modular robot configurations can now be addressed.
Given two modular robot assembly configurations, their graph representations G1 and G2



and their assembly incidence matrices (AIMs) A(G1) and A(G2), the first step is to test for
the topological equivalence of  the two robot configurations.

Two robot configurations and their AIMs, A(G1) and A(G2), are topologically equivalent
iff G1 and G2 are isomorphic.

Physically, an isomorphism represents a re-labeling of the links and edges of a modular
robot and does not affect the actual physical structure of the robot. For specialized graphs
that represent hybrid robots, the test for topological equivalence is the same except that
the type of link must be taken into account when carrying out the test for isomorphism.

4.2.2 Pattern equivalence

If  A(G1) and A(G2) are topologically equivalent, let γ12 denote the isomorphism from G1

to G2. Let wi
1
 = {ai1

1 
,ai2

1 
….} and wi

2
 ={ai1

2 ,ai2
2 ….} be i th row vectors of Aγ12(G1) and

A(G2). wi
1
  and wi

2
  will have non-zero elements in the same position in the row. wi

1
  and

wi
2
are pattern equivalent iff  ∃ π : PORT →PORT such that ∀ aij

1
  ∈ PORT,  π (aij

1
  )=

aij
2
  , ie iff they are related by a symmetric rotation.

When checking for pattern equivalence, it is important to take into account
automorphisms of the graph to itself. It is necessary to compare all automorphisms as
well when checking for pattern equivalence of these two rows.  For specialized graphs
which represent hybrid robots the test for pattern equivalence is the same except that the
symmetric rotation group for each different type of link will be different.

4.3 The enumeration algorithm

The enumeration algorithm to enumerate and list out distinct modular robot
configurations follows.

 Step 1: Generate non-isomorphic trees {Gi} and corresponding incidence matrices for a
given number of vertices. Several computer algorithms are present which can be used to
carry out this step.
Step 2: Find the automorphism groups for each of the trees.
Step 3: The algorithm PatternEnumerate is used to find distinct assignments from Link
(the set of all types of links) and Joint (the set of all types of joints)  to vertices and edges
of Gi. This problem is similar to the problem of finding distinct assembly patterns for a
link except that the set PORT is now replaced by the set VERTEX or EDGE and the set
ATT is now replaced by JOINT or LINK. Construct non-isomorphic specialized graphs
Gi and corresponding extended incidence matrices for each of these assignments.
Step 4: Find the automorphism groups for each non-isomorphic specialized graph Gi.
Step 5: For every Gi, generate distinct assembly patterns for every link. This is done by
using algorithm, PatternEnumerate, since the number of joints on each link is known
from the rows of the incidence matrix. All the labeled joints are treated as different since



they will be attached to different links. Combine all pattern inequivalent row vectors for
every link to construct inequivalent AIMs.
Step 6: Use automorphism groups to eliminate equivalent AIMs.
Step 7: Repeat Step 5 for every Gi .

4.4 An example

Consider as an example a modular robot consisting of 3 links-a prism link with four ports
as shown in Figure 10 and two cubic links and 2 rotary joints. In the first step, we can
generate the non-isomorphic graphs for the modular robots. There is only one such
graphs possible, a serially connected graph as shown in Figure 12.  In Step 3, two non-
isomorphic specialized graphs are constructed as shown in Figure 12. G2 is symmetric
and hence has an automorphism which makes the graph isomorphic to itself.

For graph G1 , the cubic link with one joint attached to it has only one distinct assembly
pattern. The cubic link with two joints attached to it has two distinct assembly patterns
possible. The prism link with four ports and one joint attached to it has one distinct
assembly pattern. This can be confirmed using Polya’s theorem. For the prism link with
four ports, the set of symmetric rotations S has 4 elements from Table 2. The set of Joints
J ={C,C,0}. The cycle index polynomial will be

The set of Joints J ={C,C,0}. Assign y1 to the first cylindrical joint, y2 to the second
cylindrical joint and y3 to the null joint. Then, substitute in the cycle index,

to get the polynomial

           P               C                    B                   C                 B
G1

B               C                    P                   C          B
G2

Figure 6: Two non-isomorphic specialized graphs. B-cubic link,
P –Prism link with four ports and C cylindrical joint
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The number of distinct assembly patterns with a single joint is then given by the
coefficient of y1 y3

3 which is 1 as expected. Thus there are a total of two distinct robot
configurations based on the graph G1.
For graph G2 , the two cubic links each have one joint attached to them and thus have one
distinct assembly pattern. The prism link will have 3 distinct assembly patterns ( 3 is the
coefficient of y1 y2 y3

2 in SP ) . Thus there are a total of 3 distinct modular robot

configurations based on the graph G2.  The total number of modular robot configurations
is thus 3 + 2=5. They are shown in Figure 7.

Figure 7: Five distinct modular robot configurations. The bigger rectangle
is the four port base, the small squares represent the cubic modules and the

smaller rectangles represent the cylindrical joints.

4.5 Example - Application to locomotion

Consider a second example of a mobile robot with a 6 port base and 3 legs and 3 wheels.
In the case of a mobile robot of this form, only one module can be attached to each port
of the base link, either a wheel or a leg module. The 6 port base and its set of symmetric
rotations is shown in Figure 8. This problem can be solved by the application of Polya’s
theorem.

Figure 8: 6 port
prism link



Permutations on
Port→

1 2 3 4 5 6 Type

Rotation
Identity 1 2 3 4 5 6 {6,0,0,0,0,0}
About x (1800) 4 5 6 1 2 3 {0,3,0,0,0,0}
About y (1800) 3 2 1 6 5 4 {2,2,0,0,0,0}
About z (1800) 6 5 4 3 2 1 {0,3,0,0,0,0}

The set of joints is now the set of modules ={Leg, Wheel, Null}. The cycle index
polynomial is now
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The number of distinct configurations for a robot with 3 legs and 3 wheels is given by the
coefficient of 3

2
3
1 yy  in the above polynomial which is 6. These 6 configurations are shown

in Figure 9.

Thus, the algorithm can be successfully applied to determine the distinct configurations
for a mobile robot. We have only presented the enumeration of distinct configurations for
a robot with three legs and three wheels. The distinct configurations possible for a robot

Table 2: The symmetric rotation group
for a six-port prism link

Figure 9: Distinct configurations for a robot with three legs
and three wheels, the triangle represents the legs and the

circles represent the wheels.



with all 6 ports filled, i.e. there is either a leg or a wheel module on each of the ports, is
given in Table 3. Using the above polynomial, the number of distinct configuration with
different number of ports filled can e easily found. Given the distinct configuration, we
now address the problem of locomotion for the robot, in particular the generation of a set
of inputs that will take the robot from an initial position to a final desired position.

No. of wheels 0 1 2 3 4 5 6
No. of legs 6 5 4 3 2 1 0
No. of distinct
configurations

1 2 6 6 6 2 1

Table 3: Number of distinct configurations for a 6 port base with different numbers
of legs and wheels



5 Steering for hybrid robots

In implementing motion planning for hybrid robots, the task is to determine a set
of inputs that will steer the robot from an initial state to a final state. In this section, a
method for motion planning for kinematic, drift-free hybrid robots is presented. The
method can be applied to any robot with legs and wheels. The method is independent of
the number of legs and wheels.

5.1 The basic method

The dynamics of a hybrid robot can in general be described as
.,  ,)()( mn uxuxgxfx ℜ∈ℜ∈+=� (1)                 

Thus, the robot has m inputs and n states. If the term )(xf  = 0, the system is known as a
drift-free system. Henceforth, we will only consider drift-free systems. A method for
finding control inputs for drift-free, smooth systems was first presented by Lafferriere
and Sussmann in [2]. Smooth systems are systems where the equations of motion remain
the same throughout the motion of the robot. An example of such a system is a wheeled
mobile robot. The wheels of the robot are always in contact with the ground. Such a
mobile robot has a set of allowed directions in which it can move. The robot can
nevertheless move in other forbidden directions by a combination of motions along the
allowed directions.

The approach involves the calculation of a set of vector fields that span the
configuration space of the robot with corresponding inputs along which the robot can
move. An extended system is formed using this set of vector fields and corresponding
inputs. Some of these inputs may not correspond to real inputs for the robot and hence
these inputs are known as fictitious inputs. The motion of the robot corresponding to
these fictitious inputs can be achieved by a sequence of real inputs. This has the net effect
of a motion along a direction for which there is no real input. The method generates a
sequence of constant control inputs that drive the robot to its desired state.

5.2 Inputs to a mobile robot
To represent the dynamics of a mobile robot, it is often useful to formulate the

equations of motion in terms of a set of general inputs. This approach would be
particularly useful in representing locomotion modular robots as it would be easy
represent the effect of addition of new modular components. There can be two kinds of
general inputs for a robot. Shape inputs represent local changes in the shape of the robot,
i.e. changes in joint angles, position of the end effector, etc. Body inputs specify the
overall motion of the body in terms of its position or relative orientation with respect to a
coordinate reference frame.

The configuration space for a robot usually includes the position of its center of
mass, its orientation and the position of the shape variables for the robot which could
include the joint angles, etc. If x represents the configuration space of a robot, its motion
can be represented as



.)( uxCx =�
which can be further split up as

.)()( ruxBxAx += ξ�

Here u is the set of inputs to the system. ξ  is the set of body or non-shape inputs while
ru is the set of shape inputs to the system. For stratified systems which represent legged

robots, the set of shape inputs may change for different strata. The concept of stratified
systems is present later in this report.

The set of body inputs can be further represented in terms of allowable body
motions. In particular for robots with wheels, there is a set of allowable directions in
which the robot is allowed to move. This can also be represented as a set of constraints on
the motion of the robot. The body inputs can then often be represented in terms of a set of
allowable inputs. For a pair of wheels, this set of inputs can be thought of as a drive
velocity along a direction perpendicular to the axis of the wheels and the steering angle
which is the angle the drive velocity makes with respect to a body fixed coordinate
system. Thus

.)( wuxf=ξ
where wu is the set of allowable velocities for the robot. For a wheeled robot (Figure), we
have
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where bx�  and by�  are body velocities. For a legged robot, this would just be
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Given a hybrid robot , the formulation above makes it easy to write down the equations
of motion for the combined system as will be shown for a robot with legs and wheels in
section 6.2.1.

5.3 Stratified configuration spaces
The approach is extended to legged robots in [9] where Goodwine and Burdick

present the concept of stratified sets. The legs of a legged robot continuously make and
break contact with the surface over which the robot is moving. Thus, for legged systems
the equations of motion are not always the same. The equations of motion of a legged
robot change continuously with the contact of different feet and depend on the type and
number of legs in contact.

The configuration space for a legged robot can be considered made up of a
number of strata. Each stratum describes the space over which the states of the system
evolve with one or more legs in contact. Consider a kinematic quadruped robot. The
configuration space for the robot could include the position and orientation of the robot
and the position and the joint angles for each of its legs. With three legs in contact with
the ground, the robot is subject to a set of constraints that restrict its motion. Thus, the



motion of each of the legs on the ground would be related to the body velocity and
rotation of the robot.  The free leg in the air would not be subject to the same constraints
and can thus be moved around freely off the ground. With all four legs in contact, all the
legs will be constrained.

With one foot in contact, the system would evolve on a submanifold of dimension
less than that of the configuration space. Each additional foot in contact would further
reduce the dimension of the submanifold over which the system evolves. Each of these
submanifolds over which the system evolves when one or more of the feet are in contact
is thus a stratum. The equations of motion for the robot are smooth on a particular
stratum. Discontinuities arise only when the robot moves from one stratum to another.
Chen and Burdick represent this concept of stratified sets as shown in the Figure above
for a biped (two legged robot).

Let M denote the entire robot’s configuration space. Let Sijkl..p denote the
submanifold over which the system evolves with the ith,  jth, kth,lth …, pth legs in contact
with the ground. The submanifold with more legs in contact is said to be lower than the
submanifold with lower number of legs in contact. The bottom stratum is the submanifold
with all the legs in contact with the ground.

The method of [8] can be applied to legged robots only if the system evolves on a
single manifold. This is achieved by allowing the system to evolve on a set of vector
fields from all the different strata. Each of these vector fields is assumed to hold on the
bottom stratum and the method of [8] can then be applied on the bottom stratum. The
resulting set of input is then implemented on the appropriate stratum. The next section
discusses this method in greater detail.

5.4 Steering for drift-free system

Consider a drift free system given as
. ,,......2
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S1 (left foot in contact) S2 (right foot in contact)

S12(both feet in contact)

Stratified configuration space for a biped



In general m<n, i.e. the system does not have enough inputs to directly drive each of the
states to the desired values. Therefore, an additional set of vector fields is added to the
above system to span the entire configuration space. An extended system based on the
system given above is defined as
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where
).(   dim})......,,,....,,{span   (  dim 121 Mbbbbb smm =+ (4)

The ib ’s are chosen from the Phillip Hall basis (Appendix 1) which is a basis for the Lie

algebra defined by the set of vector fields { ig (x)}. Here m  to1, == igb ii and the

sm bb ,....,1+ correspond to higher order Lie brackets (A description of Lie brackets is given

in Appendix 1) chosen from the Philip Hall basis. The iv ’s are called fictitious inputs to

the system since they may not correspond to the real inputs to the system.
Let ix and dx denote the initial and desired states of the system respectively. Define a

curve )(  tγ going from ix  to dx . The curve could be a straight line although any other

curve would also work.   The iv ’s can be solved by solving a set of simultaneous

equations formed from equation (1). The solution involves taking a pseudo inverse when
s < n. The actual inputs can be determined from the fictitious inputs in the following
manner:
Determine the ib ’s which span the configuration space M from the Phillip Hall basis for

the Lie algebra generated by mggg ....,, ,21 . Then all the flows of equation (1) can be

represented as
......(t) 112211 )()()()( bthbthbthbth eeeeS ssss −−= (5)

The ih ’s are called the (backward) Philip Hall coordinates. Differentiating the above

equation we get
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 This simplifies to
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where the adjoint mapping is defined as  iiii
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Further, we can represent
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where )(, hp kj is a polynomial in the ih ’s.

S(t) also satisfies another differential equation given by
  1)0();....)(((t) 11 =++= SvbvbtSS ss
� (9)

Using equations (7),(8) and (9) and equating the coefficients of the ib ’s , we get a set of

differential equations for the ih ’s,

.00,)( == )  h(vhAh� (10)



These equations specify the evolution of the Philip Hall basis in response to the evolution
of the fictitious inputs. The determination of the actual inputs is easier to do given the
forward Philip Hall coordinates which can be determined from the backward Philip Hall
coordinates by a simple algebraic transformation. However, this transformation can be
avoided by assuming that the system is nilpotent of order 2 or can be approximated as a
system of nilpotent order 2. This is a reasonable assumption in most cases. A higher order
approximation will lead to smaller error. However, usually a higher order Lie bracket
direction is harder to achieve physically.  Thus, backward Philip Hall coordinates are
used henceforth. The conversion to the real inputs is illustrated with a simple example.

5.4.1 Example

Suppose the required backward Philip Hall coordinates have been found and the resultant
flow looks like 1122213 ],[ ghghggh eee . The flow ii ghe can be achieved by setting the input

iu = ih for a time of 1 second. Let ia denote the required input to achieve the flow ige .

Then, the flow ],[ 213 gghe is achieved by a sequence of inputs

23132313 ### ahahahah −−  where the # indicates a concatenation.

The flow  1122213 ],[ ghghggh eee  thus corresponds to a sequence of inputs given as

s 6  to5for t  
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s 1  to0for t 
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Using, the Campbell-Baker-Hausdorff formula it can be proved that the sequence of

inputs 23132313 ### ahahahah −−  actually gives rise to ]],[,[]],[,[],[ 212211213 ggggggggh eee αα

where 2

3

32

1
h=α . However, since the system has been assumed to be nilpotent of order 2,

the third order bracket term is actually zero. In some cases, this term has to be taken into
account since it actually represents a flow along a vector field belonging to

smm bbbbb ......,,,....,, 121 + . Thus, a higher order approximation may sometimes yield better

results as is shown in the solution for a wheel- legged robot presented later.

5.5 Extension to Stratified Configurations spaces

When extended to stratified spaces, the method remains essentially the same except in the
manner in which the ib ’s are chosen. For stratified systems, the equations of motion

differ for different strata. Consider two strata S1 and S2 with the equations of motion on
each strata defined as
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The number of inputs on the strata may differ since there could be additional constraints,
other than the ones on M, which reduce the number of inputs to the system on that
particular stratum. The ib ’s are now chosen so that they span the tangent space of the

bottom stratum. Recall that for a legged robot the bottom stratum corresponds to all the
legs being in contact with the ground. The method for smooth systems can be applied to
stratified systems only if the system is allowed to evolve on a common manifold. The
bottom stratum is chosen as this manifold and the vector fields from the higher strata are
assumed to be defined on the bottom stratum. An extended system is thus formed by
using vector fields from all the strata. The extended system, however, does not represent
the equations of motion on the bottom stratum since the vector fields from higher strata
may not necessarily be part of the equations of motion for the system on the bottom
stratum.

5.5.1 Condition for projecting vector fields onto the bottom stratum

The vector fields from the higher strata cannot always be directly used to describe the
extended system on the bottom stratum. They need to satisfy certain conditions. Consider
an example of a four-legged robot again. Let S123 and S1234 denote the stratum
corresponding to feet 1,2,3 in contact and all feet in contact respectively. Consider a flow
sequence of the form.

12341231231231234

   

         on      

                       4,1,1234,

SSSSS
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ggg

→→

−αβα

This sequence of flows can be visualized as a flow along 4,lg  which lifts up one leg, a

flow along 1,123Sg  and a flow along - 4,lg which should bring the leg back into contact with

the ground. If at the end of this flow, leg 4 is back in contact with the ground then the
resultant flow can be described as a flow in 1234S . The above flow will not, however, bring

the leg back into contact with the ground all the time. Let the flow along 4,lg  be a motion

that changes only the height of the leg 4 above the ground and brings it into and out of

contact with the ground. Then the flow 4,  lgeα will change the height of leg 4 from zero to
say z1. If the flow along 1,123Sg changes the height of the leg above the ground as well, then

the flow 4,  lge α− will not bring the leg back into contact with the ground. This can be
avoided if the flow along any other strata is tangent to the bottom stratum. This condition
can be represented more formally.



The bottom stratum is defined by a set of constraints constant),....,,( 21 =Φ nxxx . A vector

field g defined on a higher stratum can be projected down into the bottom stratum if
0. =Φ gd

This is equivalent to ⊥Ω∈g  where },.....,,{ 21 kdddspan ΦΦΦ=Ω  and k is the number of

constraints defined for the bottom stratum.
If a vector field that needs to be projected down is not tangent to the bottom stratum a
suitable transformation can be used to make it tangent to the bottom stratum. Let g1 and
g2 be two vector fields such that 0)(. 11 ≠=Φ xfgd and 0. 22 ≠=Φ fgd . Then the vector
field
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is tangent to the bottom stratum and can be used to define the extended system on the
bottom stratum. We assume that the vector fields on the higher strata are tangent to the
bottom strata or can be made tangent to the lower strata as above. The method for
calculating the real inputs is the same now as for smooth systems. It differs only in the
choice of vector fields which are now chosen from all the strata.

5.6 Gaits

The result of the method above is a sequence of inputs which may involve flows
in different strata. Since different strata correspond to different feet in contact, frequent
switching between strata may need to be carried out. The set of allowable switches
between strata can be represented by a graph where the nodes represent the strata and the
links indicate the ability to switch from one stratum to another. This switching is carried
out by a set of independent inputs which raise or lower each of the legs. It is assumed that
these inputs do not affect the rest of the equations of motion for the robot.

A graphical representation for a four legged robot stratification is shown in Figure
9. As expected, the transition between a stratum with 3 legs in contact and another with 3
legs in contact can only be achieved by going through the bottom stratum. This diagram
does not represent the complete stratification for the four-legged robot since it does not
include strata where less than 3 feet are in contact. These strata however correspond to
unstable configurations for the robot since a four-legged kinematic robot standing on two
legs would almost certainly fall down.

S1234

S123

S124
S134

S234

Figure 9: Stratified
configuration space for a four-

legged robot



The resultant flow along strata can sometimes be composed into a smaller sequence of
flows.  This is a consequence of the fact that if the Lie bracket of two vector fields is
zero, then the flows corresponding to the two vector fields commute according to the
Campbell-Baker-Hausdorff formula. Consider the following sequence of flows 

If 0],[ 4,1,123
=lS gg  then 1,1231,1234,4,4,1,1234,

          SSlllSl
ggggggg eeeeeee

ββαααβα == −−
. The other flows

can also be rearranged to get a resultant flow 1,1241,1231,1241,123
    SSSS gggg

eeee
ββββ −−

in S1234  that is
equivalent to a flow along the Lie bracket direction of two vector fields defining the
equations of motion in two different strata S123 and S124.

6 Examples

Two systems are now considered for which the equations of motion are formulated and
inputs derived for a few desired motions. The two systems are a four-legged robot and a
hybrid robot with two wheels and two legs. The approach here differs from [9] in that the
allowable body velocities are used as the inputs to the system. The two systems are now
discussed in greater detail.

6.1 A four-legged robot (quadruped)

The robot considered here is a four-legged kinematic robot. A few assumptions
about the motion of the robot are made to simplify the equations of motion.

1. It is assumed that the center of mass of the robot stays at a constant height above
the ground. This means that there is no motion of the center of mass in the z
direction.

2. The only rotation allowed for the robot is about the z axis. Thus, the robot is not
allowed to roll or pitch.

3. When the robot has only three feet in contact, the equations of motion are
assumed to remain the same on that stratum regardless of the height of the free leg
in the air. Thus, the only discontinuities in the equations of motion occur due to
the transition between strata. The equations of motion are smooth on the same
stratum.
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6.1.1 Equations of motion
The equations of motion for the robot are formulated in terms of the contact

points of the legs on the ground. A schematic representation for the robot is shown in
Figure 10. The coordinates of the contact points for the legs (xi, yi), i = 1,2,3,4,are
represented in the body frame B. The position of the center of mass of the robot (x,y) and
the orientation (θ ) of the robot are represented in the inertial coordinate frame E.

The two body velocities, viz., the velocity of the robot along xb and the velocity of
the robot along yb , and the angular rotation of the bodyθ�  are chosen as the inputs to the
system. On the bottom stratum there are 4 more inputs which allow the legs to come into
and out of contact with the ground. These are independent inputs which do not influence
the equations of motion and hence are not included in them. Since the velocity of the
point of contact of the leg with the ground in the frame E is zero, the relative velocity of
the point of contact with respect to the body fixed frame can be found in terms of the
body velocities and angular velocity.

Let bv1 represent the velocity of point of contact (P) of leg 1 in the body fixed
frame. If leg 1 is on the ground, then the velocity of point P in the frame E is given by

) (11 p
bb

c
e rRRvRvv ×++= θ�

Here,
R is the 3x3 rotation matrix relating E and B,

b
cv  = ][

b

b

y

x

�

�
velocity of center of mass of robot in B ( the body velocity),

bv1  = relative velocity of point of contact in B,

pr  = position of point of contact of leg 1 in B,

θ

xb

X

Y yb

E

(x2, y2)

(x3, y3)

(x4, y4)

(x,y)

(x1, y1)

B

Figure 10: Notation for a four legged robot
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b
c
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which gives the equations of motion for the points of contact of the legs in terms of the
body velocities and the angular velocity of the robot. Using these equations for each leg
and putting all the terms together, the equation 11 gives the equations of motion on the
bottom stratum. Here 1u  and 2u  are the body velocities along xb and yb respectively while

3u  is the angular velocity of the robot (θ�  ).
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On a stratum with leg 1 not in contact, the equations of motion are given as
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where 4u  and 5u  are two independent inputs on S234 which control the position of the free

leg in the air. Each stratum with one of the legs not in contact can be described by a
similar set of equations.



6.1.2 Choice of basis
For the basis which spans the tangent space of the bottom stratum, 9 vector fields

are needed. These can be chosen from the vector fields in the equations of motion for all
the strata. The vector fields chosen here include the first three from the equations of
motion on the bottom stratum and the last two from the equations of motion for each of
the strata.
Thus, the set of vector fields used to form the extended system are
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The extended system can be formed as 11
11

2
2

1
1 ...... vbvbvbx +++=�  where ii gb = .

So, the extended system on the bottom stratum is given as

Given an initial and desired position for the system, the set of inputs required to steer the
system can now be found. The complete method is illustrated for one example and
simulation results for other examples are presented.

6.1.3 Translation
Suppose the robot has to move from )1,1.1,1,1.1,1,1,1,1,0,0,0( −−−−=ix to

)1,1.1,1,1.1,1,1,1,1,0,1.0,1.0( −−−−=dx , i.e. it has to move along a diagonal path. We define

a path that goes from ix  to dx  as )1,1,1,1,1,1,1,1,0,1.0,1.0()  (  −−−−= tttγ . The fictitious

inputs can now be solved for by solving the set of simultaneous equations given by
9

9
1

1  ))(  (...... ))( ((t) vtbvtb γγγ ++=�

The set of fictitious inputs are then given as

0

11,...,4,2,1,1.0

3 =

==

v

jv j
(14)

The next step is to determine the manner in which the Philip Hall coordinates evolve. The
differential equations which describe this evolution need to be formulated. Now

(t) (t) 3333 22112211 hbAdAdhbAd bhbhbhbh eeee
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−−−− =
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       (15)
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However since we assume the system is nilpotent of order 2, the last term in equation
(15) which is a third order bracket drops out. Therefore,
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On calculating the Lie brackets,
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The other expressions can be similarly computed to get, for j = 4,6,8,10
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Thus, by equating the coefficients of jb  to jv we have a set of differential equations for

the Philip hall co-ordinates
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Since 3v =0, equation (16) can be easily solved by a set of successive integrations to give

0)1(
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This corresponds to a flow 1241011 1.01.01.01.01.0 ..... bbbbb eeeee . An example explains the method
of converting this flow to a sequence of real inputs. Consider a flow, e.g. 111.0 be ,along the
vector field 11b . This flow can be executed by setting the input corresponding to the

vector 11b  equal to 0.1 for a period of 1s when the robot is on the stratum for which 11b
lies in the equations of motion of the robot. In terms of movement on different strata and
the resultant gait, this flow can be interpreted as the following sequence of events

1. Pick up leg 4 and move it ahead in the xb and yb directions by 0.1.This motion
occurs on stratum S234.

2. Replace leg 4 on the ground,
3. Pick up legs 3, 2 and 1 and carry out steps 1 and 2 for each of them in turn,
4. Move the body forward by 0.1 in the x and y direction with all feet in contact with

the ground.
It should be noted that the order in which the legs are to be picked up and replaced is not
fixed. This is because the flows along the corresponding vector fields commute and hence
can be executed in any order. Implicit in the sequence given above is the switching that
needs to be done to move from one stratum to another. As mentioned earlier, this is
achieved by a set of independent inputs which pick up and replace the legs in contact
with the ground as required.



Interesting note
The motion along the x and y directions for the free leg can be combined into a single
flow. This is possible because the vector fields corresponding to these two flows
commute, i.e. their Lie bracket is zero and the two vector fields are on the same stratum.
Also, note that the motion of the body in the x and y directions can be executed
simultaneously as well in which case the robot moves directly towards the desired
position in a straight line instead of executing two separate motions in the x and y
directions.

The simulation results for this example are presented in Figure 11 below. Figure 15c is a
plot of the path of the center of mass of the robot and Figure 15b is a plot of the position
coordinates of one of the contact points vs. time. Since, the position coordinates of the
other legs vary in a similar fashion their plots are not presented here. Also included is a
plot of the x position coordinates for all the legs vs. time in Figure 15a. This gives an idea
about the relative phasing of the motion of the legs.
 For the robot to execute a larger step, say from )1,1.1,1,1.1,1,1,1,1,0,0,0( −−−−=ix to

)1,1.1,1,1.1,1,1,1,1,0,1,1( −−−−=dx , the motion is carried out in 10 incremental steps. There

are two reasons to carry out the motion in smaller steps.
1. Smaller steps lead to a more stable robot. Further, it may be physically impossible

for an actual robot to achieve a motion of 1 unit along any direction in a single
step.

2. Because of the approximation that the system is nilpotent of order 2, the errors are
much larger for a bigger step than for a smaller step.

Figure 11a : Variation of x coordinates of 
contact point of  all legs
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Figure 11: Pure translation of the
robot.



Figure 11c : Path of center of mass of robot
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6.1.4 Pure Rotation

A pure rotation of the robot is carried out for the second simulation. Here, the objective is
to move from )1,1.1,1,1.1,1,1,1,1,0,0,0( −−−−=ix to )1,1.1,1,1.1,1,1,1,1,1.0,0,0( −−−−=dx .

We define a path that goes from ix  to dx  as )1,1,1,1,1,1,1,1,1.0,0,0()  (  −−−−= ttγ .

The differential equations describing the evolution of the Phillip Hall coordinates remain
the same although the fictitious inputs now differ. The new fictitious inputs are
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Using these and an approximation that )11( 2
3 ≈+ h  which simplifies the differential

equations, the Philip Hall coordinates are found to be
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This corresponds to a flow 3310101111 ..... bhbhbh eee . The simulation results for this flow are
shown in Figure 12. Figure 12a plots the variation of the orientation of the robot with
time while the other figures are plots of the positions of all the legs. Again if the robot
needs to move from )1,1,1,1,1,1,1,1,0,0,0( −−−−=ix to )1,1,1,1,1,1,1,1,1,0,0( −−−−=dx , the

motion is carried out in steps of c1.0 each time.

Figure 11: Pure translation of the
robot.



Figure 12a  : Variation of theta
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Figure 12 b  : Variation of x and y coordinates 
of contact point of leg 1
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Figure 12c : Variation of x and y coordinates of 
contact point of leg 2
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Figure 12d : Variation of x and y 
coordinates of contact point of leg 3
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Figure 12e  : Variation of x and y 
coordinates of contact point of leg 4
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6.1.5 Rotation and translation

The problem of simultaneous rotation and translation can also be solved using this
approach. The results for going from )1,1,1,1,1,1,1,1,0,0,0( −−−−=ix to

)1,1,1,1,1,1,1,1,1.0,1.0,1.0( −−−−=dx  are shown in Figure 13. Figures 13a and 13b show

the path of the center of mass of the robot and the orientation of the robot respectively
while Figures 13c to 13f plot the motion of the legs. There is an error of about 5% in the

Figure 12: Pure Rotation of
the robot



x and y coordinates of the robot’s final position. This error is caused because in solving
for the fictitious inputs, the value of θ is assumed to remain constant for the incremental
motion while it actually changes through the motion. The small error can be reduced by a
second iteration of the algorithm from the new position to the original desired position.
Another approach to solving this problem would be to decompose it into two separate
problems, i.e., a translation and then a rotation from the new position that is reached after
the translation. The advantage in using this approach is that the value of θ used for
calculating the fictitious inputs during translation would be the same as the actual value
of θ during translation. The two flows could be rearranged to get a resultant flow which
would reach the final desired position in a single step. In this case, the sequence of inputs
required is just a concatenation of the two sequences of inputs derived for the translation
and rotation respectively. The method can then be iterated from the new position to
generate a new sequence of inputs which moves it to the new desired position. Since the
value of θ has now changed the new inputs would be different for each iteration.

Figure 13a  : Variation of x and y 
coordinates of center of mass 
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Figure 13b  : Variation of theta with time
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Figure 13: Rotation and translation
of the robot



Figure 13c : Variation of x and y coordinates of 
contact point of leg 1
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Figure13d  : Variation of x and y 
coordinates of contact point of leg 2
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Figure 13e : Variation of x and y 
coordinates of contact point of leg 3
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Figure 13f : Variation of x and y coordinates 
of contact point of leg 4
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6.2 Wheel-Legged Hybrid Robot

Consider a robot with two wheels and two legs. The robot is shown in Figure 14. The two
wheels are placed on the same axle. The axle can be turned though a steering angle φ .
The robot now has a set of allowable velocities and hence the body velocities cannot be
used as inputs. The allowable velocities arise from the constraint that the velocity of the
center of the axle must always be perpendicular to the axle. The three inputs chosen for
the robot are the speed (V )of the center of the axle called the drive speed, rate of change
of the steering angle (φ� ) and the angular velocity of the robot (ω ). There are now 3
strata corresponding to one or both of the feet remaining in contact. Both the feet are not
allowed to be off the ground at the same time. The configuration space for the robot
includes the position of the center of mass, the orientation of the robot, the positions of
the contact points of each of the feet and the steering angle.

Figure 13: Rotation and translation
of the robot



6.2.1 Equations of motion

To write the equations of motion for this robot, the concepts presented in section 5.2 are
used.
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From equations (17) and (18),
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Also, we have the equations for the shape inputs for the contact point of a leg in contact
with the ground in terms of the body velocities as
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Using equation (17) and a transformation to express the velocities in the body fixed frame
of reference we get,
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For the wheels, the shape input is the steering angle which is an independent input.
Putting together equations (19) and (20) and the steering input,t he equations of motion
for the robot in the bottom stratum are
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where the notation for the legs is the same as that for the four-legged robot case. Here, l is
the distance from point P to point Q and is taken as 1 and θω �= .

The equations of motion with leg 1 in the air are

A similar set of equations can be written for the stratum where leg 2 is not in contact with
the ground. The first 7 vector fields required to span the tangent space of the bottom
stratum are
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The eighth vector field is chosen as ],[ 31 gg . Thus, ,
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The complete extended system on the bottom stratum is

ii gbvbvbvbx =+++= ,...... 8
8

2
2

1
1� . The system differs from the previous system in that a

Lie bracket direction is required to span the tangent space for the bottom stratum.

6.2.2 Translation along y-axis
For a robot starting from )0,1,1,1,1,0,0,0( −=ix and moving to )0,1,1,1,1,0,1.0,0( −=dx , the

direction in which it needs to move is a Lie-Bracket direction which does not correspond
to any of the given inputs. We define a path that goes from ix to dx as

)0,1,1,1,1,0,1.0,0()  (  −= ttγ .The calculation of the required inputs is now illustrated for
such a motion. Using the extended system the fictitious inputs are
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The corresponding differential equations for the Philip Hall coordinates are
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Putting in the fictitious coordinates and solving for the Philip Hall coordinates,

1.0)1(,1.0)1(,0)1(,1.0)1(
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The system needs to move in the direction of the vector field ],[],[ 13318 bbbbb =−=− ,

which is a Lie bracket direction, with a magnitude of 0.1. This corresponds to a sequence
of inputs



s 4  to3for t 1.0

s 3  to2for t 1.0

s 2  to1for t 1.0

s 1  to0for t 1.0
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Using the Campbell-Baker-Hausdorff formula for flows it can be proved that this
sequence of inputs actually gives rise to a flow

  1133133133131133133  ],[]],[,[ ],[]],[,[ ]],[,[ ],[ ggghggggghggggggggh eeeeeee αααα −==

where 2

3

32

1
h=α

Thus an additional input of s 5  to4for t0.1) (
2

1 2

3

1 ==u is required to give the required

total flow ],[ 133 gghe . This input can be added to the previous input since they represent
motion along the same vector field to get a single input of

s 4  to3for t0.1) (
2

1
1.0 2

3

1 =+−=u .

In addition, two more flows are required along 5b  and 7b to give the total flow for the

motion 557788 bhbhbh eee . The simulation results for the system are shown in Figure 15.
Figure 15a shows the path of the robot. Figure 15b and 15c plots the motion of the legs.
Figure 15d plots the variation of the steering angle φ . It can be seen that the steering
angle changes to allow the robot to move in the Lie bracket direction. Figure 15e plots
the drive input V which moves the robot in a direction at an angle of φ to the x axis. This
results in the desired motion in the y direction but also leads to a motion in the x
direction. The steering angle then changes back to zero and the robot moves backward to
correct for the change in the x-coordinate. This type of motion is similar to the parallel
parking of a car.
In terms of a gait representation, the sequence of flow can be visualized as follows

1. Change the steering angle to φ = 
c

1.0  – this motion occurs on bottom stratum
2. Move along vector field 1g  which corresponds to moving in a direction that is at

an angle φ with respect to the x-axis of the inertial frame.
3. Change the steering angle back to zero
4. Move in negative x direction
5. Pick up and reset leg 2 to its initial position and then replace it on the ground
6. Repeat step 5 for leg1.
The order in which steps 5 and 6 are executed can be interchanged since the flows
corresponding to these two motions commute.



Figure 15a  : Variation of x and y 
coordinates of center of mass of robot
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Figure 15b  : Variation of x and y 
coordinates of contact point of leg 1
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Figure 15c : Variation of x and y 
coordinates of contact point of leg 

2

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 time

x

y

Figure 15d : Variation of steering angle 
with time
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Figure 15e  : The drive input v -0.4
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6.2.3 Pure rotation

For the robot to move from )0,1,1,1,1,0,0,0( −=ix to )0,1,1,1,1,1.0,0,0( −=dx , the required

fictitious inputs are

Figure 15: Translation of
a hybrid robot along the y-

axis
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and the Philip Hall coordinates after solving the appropriate differential equations are
given as
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The resultant flow is of the form 1122334455667788 bhbhbhbhbhbhbhbh eeeeeeee . The simulation results
for the system are shown in Figure 16. The flow involves a motion along the Lie bracket
direction and this must be executed by a sequence of inputs similar to the ones given
above. In terms of a gait representation, the sequence of flow can be visualized as follows

1. Move along vector field 1g  which corresponds to moving in a direction that is at
an angle φ with respect to the x-axis of the inertial frame.

2. Change the steering angle to φ = 
c

1.0  – this motion occurs on bottom stratum
3. Move in negative x direction
4. Change the steering angle back to zero
5. Pick up and reset leg 2 to its initial position and then replace it on the ground
6. Repeat step 5 for leg1
7. Rotate the body through the required angle
8. Move along positive x direction

The order in which steps 5 and 6 are executed can be interchanged since the flows
corresponding to these two motions commute. The resultant error in carry out this motion
is less than 2 % in the x and y directions.
To execute a larger turn, the same series of turns can be executed each time. The
fictitious inputs need to be recalculated each time since the orientation of the robot keeps
on changing.



Figure 16a  : Variation of x and y coordinates 
of center of mass of robot
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Figure 16b  : Theta vs. time
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Figure 16c : Variation of x and y coordinates 
of contact point of leg 1
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Figure 16d : Variation of x and y coordinates 
of contact point of leg 2
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Figure 16e : Variation of steering 
angle vs. time
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Figure 16f : Drive input V
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Figure 16g  : Angular velocity of the 
robot
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Figure 16h : Rate of change of steering 
angle (Input 3) vs. time
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Figure 16: Rotation of
a hybrid robot



7 Conclusion
In this report, a basic framework for studying locomotion of modular robots has

been laid down. A method for enumerating distinct modular robot configurations has
been presented and applied to locomotion. Once the distinct configurations are known,
the equations of motion can be written down easily by combining the equation for
different modules appropriately. A motion-planning algorithm for drift free systems can
then be used to generate a set of inputs which steer the system to a desired state. The
method can be applied to a combination of modules as well as was illustrated by its
application to a wheel-legged hybrid robot. The accuracy of the method is limited when a
nilpotent approximation is made. The accuracy of the algorithm can be improved by
successive iteration to converge to the desired position. The algorithm can also be applied
to follow a trajectory. The trajectory is broken up into a set of small motions and the
appropriate inputs for each of these motions are generated.

The algorithm does not give rise to statically stable gaits automatically. The
choice of a particular gait can be based on its stability which the algorithm does not
guarantee. Further, the method cannot as yet be applied to systems with drift. The method
needs to be extended to apply to dynamic systems as well.
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