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Abstract
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chiral rod is inserted longitudinally. A standard commonly used perturbation technique is utilized to analyze
theoretically the effects of a chiral rod's parameters (and in particular its chirality admittance) on propagation
constants of guided modes in such waveguides. A simple expression relating the relative change of propagation
constants to other relevant quantities such as polarization characteristics of unperturbed guided modes,
material parameters of chiral rod, and location of the rod is presented, and the case of a circular metallic chiro-
phase shifter is discussed in some detail. Physical insights into the results are also provided.
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Theoretical Study of Variation of Propagation 
Constant in a Cylindrical Waveguide 

Due to Chirality: Chiro-Phase Shifting 
Mamdouh M. I. Saadoun and Nader Engheta 

Abstract-We discuss a conceptual idea for a reciprocal phase 
shifting using chiral materials. Such phase shifters, which can 
be called chiro-phase shifers, may, in principle, consist of a 
general cylindrical waveguide in which a thin chiral rod is 
inserted longitudinally. A standard commonly used perturbation 
technique is utilized to analyze theoretically the effects of a chiral 
rod's parameters (and in particular its chirality admittance) on 
propagation constants of guided modes in such waveguides. A 
simple expression relating the relative change of propagation 
constants to other relevant quantities such as polarization char- 
acteristics of unperturbed guided modes, material parameters of 
chiral rod, and location of the rod is presented, and the case of 
a circular metallic chiro-phase shifter is discussed in some detail. 
Physical insights into the results are also provided. 

I. INTRODUCTION 
HE similarities between chiral media, which in the optical T regime are also known as media with natural optical 

activity [l], and magnetically biased ferrites have been ad- 
dressed and studied since the early days of the introduction 
of the concept of chirality in electromagnetics and optics. 
However, to date, relatively less has been done to explore the 
possibility of using chiral materials instead of (or combined 
with) magnetically biased ferrites in the design of novel 
devices and components. Here, an idea for a reciprocal phase 
shifter whose principles of operation lie in the properties 
of chiral materials is discussed. Unlike magnetically biased 
ferrite devices, which are generally nonreciprocal [2]-[4], this 
proposed device can conceptually be reciprocal owing to the 
property of reciprocity in isotropic chiral media [51-[7]. This 
may be of interest in certain applications of phase shifters 
where reciprocity is desired. We have proposed elsewhere [8] 
another conceptual idea for a reciprocal phase shifter based on 
a certain class of bianisotropic media, which we introduced 
recently and called the pseudochiral 0-medium. 

An isotropic chiral material is a medium whose microstruc- 
tures lack mirror symmetry leading to the property of handed- 
ness. Such a property is reflected in the constitutive relations of 
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the medium which can take the form D = E,E+ZJ,B and H = 
&E + ( l / p , ) B .  The additional parameter Jc is the chirality 
admittance describing the handedness of the medium, and t, 
and pc are the permittivity and permeability of the medium, 
respectively [9]. The eigenmodes of propagation in chiral 
media are shown to be right-circularly polarized (RCP) and 
left-circularly polarized (LCP) plane waves with two differ- 
ing propagation constants IC* = w k p c t c  + ~;emJ, 
where the plus and minus signs refer to the RCP and L P 
eigenmodes, respectively [5]-[7]. It is also well known that 
in the case of magnetically biased ferrites, the eigenmodes 
of propagation along the direction of the biasing magnetic 
field are, also, RCP and LCP plane waves with two unequal 
propagation constants [ 101, [ 111. It is in this sense that a chiral 
medium is similar to a magnetically biased ferrite material. 
However, it is well known that while the former is a reciprocal 
medium, the latter is not. Furthermore, in isotropic chiral 
media, the two wavenumbers IC* shown above are independent 
of the direction of propagation, whereas magnetically biased 
ferrites are intrinsically anisotropic, and their wavenumbers 
of eigenmodes are indeed direction-dependent. Since mag- 
netically biased ferrites have been extensively utilized in the 
design of a variety of microwave devices and components 
[2]-[4], similarities between such materials and chiral media 
have motivated us to investigate theoretically the possibility of 
utilizing chiral materials in the design of devices which would 
be counterparts to ferrite devices. Phase shifters, in particular, 
are good candidates for this study of chiral-based devices since 
they are not functionally required to always be nonreciprocal. 
As in the case of ferrite phase shifters where a thin ferrite slab 
inserted in a cylindrical waveguide affects the propagation con- 
stant of the guide, here we discuss theoretically similar effects 
when a thin rod of chiral material is to be inserted in a wave- 
guide. Such a device may be called the chiro-phase shifter. 

In the following section, we will review the variation of 
propagation constant due to the insertion of a thin chiral 
rod in a generic waveguide (metallic or open waveguide) 
with arbitrary cross section. In Section 111, as an illustrative 
example, we will analyze a special device configuration for a 
chiro-phase shifter. 

11. VARIATION OF THE GUIDE WAVENUMBERDUE 
TO INSERTION OF A THIN CHIRAL ROD 

Fig. 1 presents the geometry of the present problem where 
a cylindrical waveguide with arbitrary cross-sectional shape 
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is loaded with a longitudinal thin rod of chiral material. The 
waveguide can have a perfectly conducting boundary or it 
can be an open waveguide such as a dielectric waveguide 
supporting a guided surface wave. The waveguide, before 
insertion of the chiral rod, is filled with a material with 
permeability p and permittivity t. The lossless chiral rod, 
with material parameters tc, p c ,  and &, is assumed to have 
small transverse dimensions compared with the waveguide 
dimensions and the free-space wavelength of the propagating 
guided electromagnetic wave. The exact shape of the rod’s 
cross section is not important, but it is assumed to be smooth 
and not to have sharp comers or edges. In general, the 
rod can be placed anywhere in the waveguide with its axis 
parallel to the waveguide axis.’ Since the exact solutions for 
guided modes in this loaded waveguide are obtainable only 
for a few special geometries, here for the general geometry 
of the waveguides and chiral rods, the standard perturbation 
technique must be used to study the effects of the thin 
chiral rod on the guide propagation constant. This perturbation 
technique has been previously used for cavity resonators 
wherein a small bianisotropic or biisotropic sample has been 
inserted. For an excellent description of this technique, the 
reader is referred to [12], [13]. For the perturbation theory for 
waveguides, the reader is referred to the work of Waldron [ 101 
and Viitanen and Lindell [14]. In [14], Viitanen and Lindell 
have done an excellent analysis for perturbation theory in a 
corrugated waveguide with an inserted biisotropic rod. Here, 
to explore the role of chiral material (instead of magnetically 
biased ferrite) in the possible design of a phase shifter, this 
commonly used perturbation technique [ 101 for a waveguide 
is used for a general cylindrical waveguide (metallic or open 
waveguide) within which a thin chiral rod is inserted. It 
must be noted that this perturbation technique [lo], [ 121-[ 141, 
which can be applicable to many problems of this sort, is 
used where insertion of the rod does not alter appreciably 
the field distributions in the waveguide. Let the unperturbed 
electric field of the guided mode before insertion of the rod 
be denoted by E and be given by E = E(’)(z,  y) eiPz e-iwt, 
and the perturbed electric field of the guided mode after the 
rod is inserted be shown by E’ = [E(O)(z, y) + E(’)(z ,  y)] . 
,i(p+6P)z ,-iwt . Following a procedure similar to the one 
described in [lo], [12], [13], one can get the following 
expression for the relative perturbation of the propagation 
constant, Le., SP/p in ( l ) ,  shown at the bottom of the 
pa e, where the asterisk denotes complex conjugation, E(’), 
I l k ) ,  A(’), and B(O) are the unperturbed fields, and 

E(’), and E(1)  are their incremental perturbations, 
respectively. For a derivation of an expression similar to ( l ) ,  

As will be shown later, clearly it would not be prefemed to locate the rod 
in regions of vanishing unperturbed fields. 

the reader is referred to [lo], [12], [13].* It must be noted 
that, like in [14], here in (1) the quantity of particular interest 
is SP/P, whereas in the perturbation analysis given in [12], 
[13], the relative shift in resonance frequency, Le., Sw/w, 
is of importance. As in [lo], [12]-[14], the integration in 
the denominator of (1) is carried out over the whole cross 
section SO of the waveguide, while that in the numerator is 
performed over the cross section of the perturbing rod S1 only. 
This means that it is assumed that the fields are perturbed 
mainly within the perturbing rod itself. To evaluate SP/P, 
first we need to know the unperturbed fields of the guided 
modes, which are usually given, and then we must estimate the 
fields’ incremental perturbations, 
To that end, a first-order Bom-type approximation is used, 
and the thin chiral rod is treated as a small-size “scatterer.” 
Furthermore, to use such an approximation, it is also assumed 
that variation of material parameters (before and after insertion 
of the chiral rod) is small in magnitude, i.e., lpc - pl << p ,  
I E ~ - - E I  << ~ , a n d J ,  << fi[10],[15].Inthisapproximation, 
the incident fields, which are actually the unperturbed guided 
mode’s fields, are assumed to remain unchanged (in lowest 
order approximation) within the chiral rod and induce electric 
polarization density P and magnetization M within the chiral 
rod. Thus, the rod can be replaced by these induced P and M. 
It is worth noting that in order to find the fields inside the rod, 
one could also use other techniques, such as the quasi-static 
analysis when the chiral rod has a symmetric shape such as 
a circular cylindrical shape. In that case, one would need to 
use the polarizability dyadics. For small bianisotropic spheres, 
the polarizability dyadics have been studied extensively by 
Lakhtakia [16] and for biisotropic elliposoids by Sihvola [17], 
and they have been used in the perturbation analysis for the 
cavity resonators [ 121, [ 131. Here, however, since the cross- 
sectional shape of the chiral rod has been assumed to be 
arbitrary in this section, the Bom-type approximation is being 
used, although we realize that this approximation will provide 
an approximate (not exact) expression for the fields inside the 
rod. Since polarization and magnetization sources contribute 
to the displacement vector D and magnetic intensity vectors 
A, respectively, it seems to be reasonable to consider that, 
in this approximation, the electric field intensity E and the 
magnetic induction B remain unchanged within the chiral 
rod, while the displacement vector D and magnetic intensity 
vectors A are ~er turbed.~ Therefore, we have E(1) 0 and 

Id1), dl), and 

*It must be noted that unlike (l), here, the analogous expression in [lo] 
does not contain any complex conjugation. The use of complex conjugates in 
expression (1) here is advantageous because it allows the direct substitution 
of waveguide field expressions in the equation without any modification. This 
is not the case, however, for the similar expression given in [lo] where an 
additional “rule of thumb,” suggested by the author of [lo], has to be applied 
prior to substitution. 

3As a matter of fact, one could have assumed any pair of fields (E, H ) ,  
(E, B) ,  ( D ,  H ) ,  or ( D ,  B )  to remain unperturbed within the chiral rod 
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E 0. From the above equation and the constitutive 
relations in chiral media, the following relations for the fields' 
incremental perturbations are dl) S (E, - €)E(') + i&B(') 
and Z (( l/pc) - ( l/p))B(') +&E('). Having obtained 
the unperturbed and incremental perturbations of the field, one 
can find SP/P from (1) as given below: 

(2) 

where f ( w )  -4(wS1/P)(dp/dw)[Ss,{E(0).D(')* +El(')*. 
I?(')} dS01-l and the symbol p --f rod's center means that the 
expressions in curly brackets are evaluated at the center of 
the rod." The function f ( w )  is independent of the material 
parameters of the perturbing rod, and depends only on the 
waveguide geometry, the unperturbed waveguide fields, and 
the cross-sectional area of the rod. The degree of accuracy 
of this perturbation method depends on the relative difference 
of material parameters of the chiral rod and the waveguide 
material. As mentioned earlier, such relative differences are to 
be small, i.e., Ipc - P I  << P, IE, - € 1  << 6, and & << m. 
It must be noted, however, that as an alternative, numerical 
techniques such as the finite-element method can be used to 
obtain the propagation constants in chiral loaded waveguides 
[l8]. Equation (2) shows that the chirality of the rod has a 
direct effect (to the first order) on propagation constant when 
the imaginary part of the scalar product (E(') . do)*) of the 
unperturbed fields has a nonvanishing value. This can happen 
when B(') has a component along E(') with some nonzero 
phase difference. For example, if E(') and B(') are elliptically 
polarized fields, hn (E(') do)*) may be nonzero depending 
on the orientation of the polarization ellipses of these two 
fields. If E(') and do) are in phase and linearly polarized, 
Im (E(') . do)*) will be zero. Clearly, the perturbation of the 
propagation constant due to chirality is strongest for circularly 
polarized fields. For the case of linearly polarized fields in 
waveguides, and for the case of perturbation of modes of 
corrugated waveguides due to the biisotropic rod, the reader 
is referred to [8] and [14], res ectively. The importance of 

frequency in cavity resonators was discussed in [13]. 
From a microscopic point of view, one can visualize the 

chiral medium as a collection of small helices of certain 
handedness. The incident (unperturbed) electric field polarizes 
the stem of the helix. Since the field is time varying, a current 
flows in the stem, and consequently in the loop portion of the 

in this approximation, and then obtained incremental perturbations to the 
other remaining fields. It can be shown that the results, however, would have 
remained the same to within the first order in the perturbation parameter 

4Strictly speaking, the expressions in the curly brackets should be evaluated 
at all points on the rod's cross section in order to obtain the value of the 
integral in the numerator of (1). However, since the rod is taken to be thin, it 
can be assumed that the integrand of this integral does not vary appreciably 
over the rod's cross section, and therefore its value can be obtained at one 
point, namely, the center of the rod p + rod's center. This value should then 
be multiplied by the cross-sectional area of the rod to get the integral. This 
area is lumped into the function f(w). 

>i p+rod's center 

+ C Im (E(0) . B(o)*) 
2 

the imaginary part of (E(') B P 'I*) in the shift of resonance 

( ~ c  - P), (e, - e), and k.  

Thin Chiral Rod 
with Arbitrary . 

(E, P) 

Fig. 1. A cylindrical waveguide with arbitrary cross section loaded longi- 
tudinally with a thin rod of lossless chiral material with parameters e=, p C ,  
and &. The cross-sectional shape of the thin rod can also be arbitrary. Aside 
from the chiral rod, the waveguide is filled with a lossless material whose 
permittivity and permeability are E and p, respectively. 

helix. This current, which has a 90' phase difference with the 
inducing electric field, provides a magnetic dipole moment. 
This magnetic moment, which is in phase with the induced 
current, is therefore 90" out of phase with the inducing electric 
field, and is mainly parallel to the stem of the helix. Hence, 
the incident electric field induces a magnetization parallel 
to the electric field and 90' out of phase with it. If the 
incident unperturbed wave has a magnetic field component 
parallel to the inducing electric field with a nonzero phase 
difference with it, there will be some interaction between the 
electrically induced magnetization and the incident magnetic 
field. A similar argument can be addressed for the interaction 
between the magnetically induced electric dipole moments 
and the incident electric field. The above discussion provides 
some intuitive insight into (2). Here, it is reviewed that 
the chirality of the thin rod can, in principle, affect the 
propagation constant p, and consequently the phase p of a 
signal propagating through the guide. Therefore, phase shifting 
can be achieved in such a device. This phase shifter may 
be called the chiro-phase shifter. It is worth noting that in 
order to use chirality as a mechanism for achieving variable 
shift on the phase of propagating signals in a waveguide, 
one should find ways by which the chirality can be varied 
in real time through the variation of other quantities such 
as biasing fields. Such variation and control of chirality, 
particularly in optically active materials and in chiral liquid 
crystals, is presently under study. Combining the effect of 
chirality and Faraday rotation was also theoretically studied 
to explore possible ways to control chirality [19]. Moreover, 
a change of the chiral rod's loction may also lead to a change 
in propagation constant p, and hence in phase p. Thus, this 
idea can be a basis for a device in sensing displacement 
and flow speed. In the following section, as an example, we 
apply the results of the perturbation technique to a specific 
case of a circular metallic chiro-phase shifter where a circular 
cylindrical metallic waveguide is loaded with a thin chiral rod 
located at an arbitrary position. 

111. AN EXAMPLE: A CIRCULAR CHIRO-PHASE SHIFTER 

Consider a device geometry in which a circular cylindrical 
waveguide with metallic walls is loaded longitudinally with a 
thin rod of chiral material located at some arbitrary position. 
Apart from the chiral rod, the waveguide is assumed to be 
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filled with a homogeneous isotropic dielectric of permittivity 
E and permeability p. The material parameters of the rod 
are ec, pc, tC. As mentioned earlier, it is also assumed that 
IpC - << p, - € 1  < E ,  and tc << m. The radius of 
the rod d is assumed to be much smaller than the radius of 
the waveguide R. These assumptions are required to justify 
the use of perturbation techniques in analyzing this problem. 
The exact solutions for guided electromagnetic waves in 
such loaded waveguides in general (with arbitrary location of 
the chiral rod) appear to be untractable in closed form. For 
special cases, such as the case where the chiral rod is circular 
and located at the center of the circular waveguide, the closed 
form solutions are obtainable. This problem has been studied 
by Monte and Uslenghi [20]. Here, however, we consider the 
general case where the rod is located longitudinally at some 
arbitrary location other than the waveguide's axis, and as a 
result, we need to use the perturbation technique described 
in the previous section. It is well known that the field 
components of the dominant TEll mode of this unperturbed 
waveguide (with E:') = 0) can be written as [ 111 

(3c) 

where Z T E ~ ~  (= w p / P )  is the transverse waveguide 
impedance for the TEll mode, p (= , /w2pe - ( I C ~ J R ) ~ )  
is the unperturbed guide propagation constant, xi1 is the 
first root of the derivative of the first-order Bessel function 
of the first kind, i.e., the first root of dJl(z)/dx = 0, 
( p ,  cp, z )  are used as cylindrical coordinate systems for 
the circular waveguide, and C1 and C2 are two arbitrary 
complex constants. By properly choosing the two constants 
C1 and C2, one can obtain a desired polarization for the 
transverse fields at the center (or any other given location) 
of the guide's cross section. For instance, C1 and C, can be 
chosen to be C1 = C and C2 = i p C  where C is an arbitrary 
constant and p is a real constant. Thus, one can write 

HLo) = C J1 ( % p )  [cos 4 + i p  sin 41 eiPz e-iwt (4a) 

eipz - i w t  . e . ( 4 ~ )  

The electric field can be obtained in a similar way. From (4), 
we can clearly see that the transverse electric and magnetic 
fields at the center of the waveguide are, in general, elliptically 
polarized. In fact, the transverse magnetic field is given by 
H?)~,,=O = ( C / 2 ) ( i p R / 1 ~ ~ ~ ) [ e ,  + ipe,] ezPz e-zwt. Here, e, 
and e, are unit vectors along the IC and y axes of a Cartesian 
coordinate system, and the parameter p describes the axial 
ratio of the ellipse of polarization of the field at the center of 
the waveguide. For positive (negative) values of p ,  the field is 
right (left) elliptically polarized. For p being zero or infinity, 
the field is linearly polarized. For p being +1 (- l), the field is 
right-circularly polarized RCP (left-circularly polarized LCP). 
When the location of the chiral rod is given in terms of po and 
PO, the unperturbed field quantities can be obtained from (3) 
and (4), and the n the value of SP/P can be evaluated from 
(2). As can be seen from (2) ,  the relative change in P is due 
to three terms: the first and second terms are the effects of 
variation of the permittivity and permeability due to insertion 
of the chiral rod, while the third term describes the effect of the 
chirality of the rod. Assuming Z T E ~ ~  to be real (which requires 
the unperturbed waveguide to be lossless and the unperturbed 
mode to be propagating), this third term can be explicitly 
written at the location of the chiral rod, i.e., po and 90, as 

SC Im (E(') . B(o)*) 
2 

If the chiral rod is attached to the wall, po = R, and thus 
Sp/p due to chirality is nil since J{(xil) = 0. If the chiral 
rod is placed at the center of the waveguide, Le., P O  = 0, and 
since the rod is assumed to be very small, (5) can be evaluated 
at po = 0, resulting in (tC/2)1m (E(') . ~(O)*)l,,o = 
p [ c Z ~ ~ l l p I C 1 2  . (P2/4((&/R)>')). Finally, we have 
the contribution of chirality to the relative change of the 
propagation constant due to insertion of the chiral rod, 
which can be expressed as 

This relation reveals several important interesting effects of 
the chiral rod on the propagation constant. First, it shows that 
the relative change in /? is proportional to the local helicity 
of the unperturbed fields p and the chirality admittance of 
the chiral rod &. If the handedness of the chiral medium 
(Le., the sign of tC) is reversed, the relative change in ,Ll is 
reversed. Likewise, if the helicity of the unperturbed field is 
reversed, a similar effect occurs. When the fields are linearly 
polarized (p = 0 or GO), the relative change due to chirality 
is nil. However, for RCP or LCP unperturbed fields where 
p = +1 or -1, SP/P receives the maximum contribution 
from chirality. This suggests that a chiro-phase shifter would 
operate most effectively when there exists a right- (or left-) 
circularly polarized field at the rod's location in an otherwise 
unperturbed waveguide. This result was intuitively anticipated 
since the eigenmodes of propagation in chiral media are RCP 
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and LCP waves, and chiral media interact with circularly 
polarized waves most effectively. It can also be observed from 
( 5 )  [or (6)] that, if the direction of propagation is reversed (i.e., 
p + -@), Z T E ~ ~  will change its sign. Thus, in order to have 
the same Sp//?, the sign of p should change, which means that 
the helicity of the wave is reverse d. But since the direction 
of propagation is also changed, the handedness of the wave 
is unaltered. More explicitly, for example, unperturbed RCP 
fields would give rise to the same Sp/p regardless of the 
direction of propagation. This is not the case, however, for 
the magnetically biased ferrite [lo]-[ll]. This feature can, in 
principle, be used in the design of a reciprocal phase shifter 
using chiral materials. As shown above, the relative value of 
SP/p depends on the helicity of the local unperturbed fields. 
For RCP and LCP fields, maximum interaction occurs between 
the chiral rod and the fields, while for linearly polarized fields, 
the chirality of the rod has no effect (to first order) on the value 
of the propagation constant. In the example given above, it was 
shown that unperturbed transverse fields can be chosen to be 
circularly polarized at the center of the guide. However, on the 
walls, these transverse fields will always be linearly polarized 
since at p = a, HF’ = 0 and E$)) = 0. Therefore, if the 
chiral rod is on the walls, chirality will not contribute to the 
relative change in p.5 This suggests that Sp/p is also affected 
by the location of the rod: when the rod is at the center of the 
guide, the effect of chirality on Sp/p is maximum (if the local 
fields are not linearly polarized), and as the rod moves towards 
the guide’s walls, this effect is reduced. This feature can 
conceptually be used as a mechanical technique for achieving 
variable phase shifts. This can offer potential applications 
in the design of novel devices as displacement and pressure 
sensors for measuring mechanical displacement and pressure. 

Iv. SUMMARY 

Using a standard perturbation technique, we have discussed 
the effect of a thin chiral rod inserted longitudinally in a 
cylindrical metallic waveguide with arbitrary cross section on 
the propagation constant of guided modes. It has been found 
that in order to have a first-order effect due to the rod’s 
chirality, the unperturbed fields E(’) and I?(’) at the rod’s 
location must provide a nonzero value for Im (E(’) . B(O)*). 
A simple relation among the relative change in propagation 
constant and material parameters was obtained and given. This 
study has led us to suggest an idea for a novel phase shifter 
using chiral materials. This study has also shown that the phase 
shift can depend on the location of the chiral rod. This feature 
can potentially be used in the design of novel displacement 
sensors and for measuring chirality admittance. 
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