
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

June 2005

Generalizing Parametricity Using Information Flow (Extended Generalizing Parametricity Using Information Flow (Extended

Version) Version)

Geoffrey Washburn
University of Pennsylvania

Stephanie C. Weirich
University of Pennsylvania, sweirich@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Geoffrey Washburn and Stephanie C. Weirich, "Generalizing Parametricity Using Information Flow
(Extended Version)", . June 2005.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-05-04.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/50
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76361137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/50
mailto:repository@pobox.upenn.edu

Generalizing Parametricity Using Information Flow (Extended Version) Generalizing Parametricity Using Information Flow (Extended Version)

Abstract Abstract
Run-time type analysis allows programmers to easily and concisely define operations based upon type
structure, such as serialization, iterators, and structural equality. However, when types can be inspected at
run time, nothing is secret. A module writer cannot use type abstraction to hide implementation details
from clients: clients can determine the structure of these supposedly "abstract" data types. Furthermore,
access control mechanisms do not help isolate the implementation of abstract datatypes from their
clients. Buggy or malicious authorized modules may leak type information to unauthorized clients, so
module implementors cannot reliably tell which parts of a program rely on their type definitions.

Currently, module implementors rely on parametric polymorphism to provide integrity and confidentiality
guarantees about their abstract datatypes. However, standard parametricity does not hold for languages
with run-time type analysis; this paper shows how to generalize parametricity so that it does. The key is to
augment the type system with annotations about information-flow. Implementors can then easily see
which parts of a program depend on the chosen implementation by tracking the flow of dynamic type
information.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-05-04.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/50

https://repository.upenn.edu/cis_reports/50

Generalizing Parametricity Using Information Flow
(Extended Version)∗

Geoffrey Washburn Stephanie Weirich
{geoffw, sweirich}@cis.upenn.edu

University of Pennsylvania Technical Report MS-CIS-05-04
Department of Computer and Information Science

Levine Hall, University of Pennsylvania
3330 Walnut Street, Philadelphia, Pennsylvania

19104-6389

June , 

Abstract

Run-time type analysis allows programmers to easily and concisely define operations based
upon type structure, such as serialization, iterators, and structural equality. However, when
types can be inspected at run time, nothing is secret. A module writer cannot use type abstrac-
tion to hide implementation details from clients: clients can determine the structure of these
supposedly “abstract” data types. Furthermore, access control mechanisms do not help isolate
the implementation of abstract datatypes from their clients. Buggy or malicious authorized
modules may leak type information to unauthorized clients, so module implementors cannot
reliably tell which parts of a program rely on their type definitions.

Currently, module implementors rely on parametric polymorphism to provide integrity
and confidentiality guarantees about their abstract datatypes. However, standard parametricity
does not hold for languages with run-time type analysis; this paper shows how to generalize
parametricity so that it does. The key is to augment the type system with annotations about
information-flow. Implementors can then easily see which parts of a program depend on the
chosen implementation by tracking the flow of dynamic type information.

∗This is an extended version of the paper that appeared in the Twentieth Annual IEEE Symposium
on Logic in Computer Science [WW05].

1

2 1. INTRODUCTION

1 I
Type analysis is an important programming idiom. Traditional applications for type
analysis include serialization, structural equality, cloning and iteration. Many systems
use type analysis for more sophisticated purposes such as generating user interfaces,
testing code, implementing debuggers andXML support. For this reason, it is important
to support type analysis in modern programming languages.

A canonical example of run-time type analysis is the generic structural equality
function.

fun eq[’a] =
typecase ’a of

bool =>
fn (x:bool, y:bool) =>

if x then y else false
| ’b * ’c =>

fn (x:’b*’c, y:’b*’c) =>
eq [’b] (fst x, fst y) &&
eq [’c] (snd x, snd y)

| ...

The eq function analyzes its type argument ’a and returns an equality function for
that type. More complex examples of type analysis include generic serialization and
type-safe casts [Wei00]. Type-safe casts are especially important in systems with dy-
namic loading, as they are used to verify that reconstituted values have the expected
type [HWC01].

Authors of abstract datatypes can use generic operations to quickly build implemen-
tations for their datatypes. For example, because equality for the following Employee.t
datatype is structural, one may implement it via generic equality.

module Employee = struct
(* name, SSN, address and salary *)
type t = string * int * string * int
(* An equality for this type. *)
fun empEq (x : t) (y : t) =

Generic.eq [t] (x,y)
end :> sig

type t
val empEq : t -> t -> bool

end

3

Although type analysis is very useful, it can also be dangerous. When types are
analyzable, software developers cannot be sure that abstraction boundaries will be
respected and that code will operate in a compositional fashion. As a consequence,
type analysis may destroy properties of integrity and confidentiality that the author of
the Employeemodule expects. Using a type-safe cast, anyone may create a value of
type Employee.t. Although the type will be correct, other invariants not captured by
the type system may be broken. For example, the following malicious code creates an
employee with an invalid (negative) salary

val (forged : Employee.t) =
case (Generic.cast

[string * int * string * int]
[Employee.t]) of

SOME f =>
f ("R U Kidding", 0, "none", -10)

| NONE => error "oops!"

Furthermore, even if the author of the Employeemodule tries to keep aspects of the
employee data type hidden, another module can simply use generic operations to
discover them. For example, if no accessor was provided to the salary component of
an Employee.t, the following malicious code can extract it

val spy (x : Employee.t) : int =
case (Generic.cast [Employee.t]

[string * int * string * int])
of SOME f => let (_, _, _, salary) = f x

in salary end
| NONE -> error "oops!"

One answer to these problems is to simply prohibit run-time type analysis. However, we
believe the benefits of type analysis are too compelling to abandon altogether. Therefore,
we propose a basis for a language that permits type analysis, yet allows module writers
to define integrity and confidentiality policies for abstract datatypes. In particular,
we want authors to know how changing their abstract datatype affects the rest of a
program and how their code depends on other abstract types they use.

In languages without type analysis, these questions are easy to answer. Authors
rely on parametric polymorphism to provide guarantees. The author knows the rest of
the program must treat her abstract datatypes as black boxes that may only be “pushed
around,” not inspected, modified or created. Dually authors are restricted in the same
fashion when using other abstract datatypes. In the presence of type analysis, the
programmer cannot know what code may depend on the definition of an abstract

4 1. INTRODUCTION

datatype. Any part of the program can dynamically discover the underlying type and
introduce dependencies on its definition.

In the past it has been suggested that type analysis could be tamed by distinguishing
between analyzable and unanalyzable types [HM95]. Unfortunately, just controlling
which parts of the program may analyze a type does not allow programmers to answer
our questions. Imagine an extension, not unlike “friends” in C++, where an author can
specify which modules may analyze a type. In the following code, modules A and B
may analyze the type A.t, and modules B and Cmay analyze the type B.u.

module A = struct
type t = int
val x = 3

end :> sig
type t permit A, B
val x : t

end

module B = struct
type u = A.t
val y = A.x

end :> sig
type u permit B, C
val y : u

end

module C = struct
val z = case (cast [B.u] [int]) of

SOME f => "It is an int"
| NONE => "It is not an int"

end :> sig
val z : string

end

Module C is not parametric with respect to A.t, even though module C is not allowed
to analyze A.t: If the implementation of A.t changes, so does the value of C.z. Despite
restricting analysis of A.t to A and B, the implementation of the type has been leaked
to a third-party. Furthermore, because the type B.u is abstract, the author of A cannot
know of the dependency. Access control places undue trust in a client not to provide
others with the capabilities and information it has been granted. Consequently, we
must look beyond access-control for a method of answering the desired questions.

We propose that tracking the flow of type information through a program with
information-flow labels allows a programmer to easily determine how their type defi-
nitions influence the rest of the program. Information-flow extends a standard type
systemwith elements of a lattice that describes the information content for each compu-
tation. For example, we could use a simple lattice containing two pointsL (low-security)
and H (high-security). A type boolH then means the expression it describes could use
“high-security” information to produce the resulting boolean, while an expression of
type boolL only requires “low-security” information to produce its result. The novelty

5

of our approach compared to previous information-flow type systems is that we also
label kinds to track the information content of type constructors.

To regain parametric reasoning about abstract types in the presence of type analysis,
we can label types with an information content that can be tracked. Consequently,
computations depending on those types must also have that label.

module A = struct
type t = int
val x = 3

end :> sig
type tH

val x : tL

end

module B = struct
type u = A.t
val y = A.x

end :> sig
type uH

val y : uL

end

module C = struct
val z = case (cast [B.u] [int]) of

SOME f => "It is an int"
| NONE => "It is not an int"

end :> sig
val z : stringH

end

In the revised example, module A is sealed with a signature that indicates that the
type definition t depends upon high-security information and the value x only on
low-security information. The type B.u and value C.zmust both be labeled as high
security because they depend upon the high-security information in A.t. The presence
of a label H alerts the author of A to a dependency.

Furthermore, only the module A can create values of type A.t that are labeled
with L. Using type analysis to create values of type A.t would taint the result with H.
Therefore, if module A requires its inputs be of type A.tL, then it is impossible to use its
functions with forged values. The author now has a guarantee that module invariants
will be maintained and the integrity of her abstraction will not be violated.

Information flow avoids the problems of access control because labels are prop-
agated even when no analysis occurs. For example, the identity function can be as-
signed both the type A.tL L

−→ A.tL and the type A.tH L
−→ A.tH witnessing

that it propagates the information content of the argument. Here the function type
constructor −→ is itself labeled to indicate the information content of creating the
function—creating the identity function does not require any information.

In the next section, we describe a core calculus for combining information-flow
and run-time type analysis. We then follow with our key contribution: By tracking the

6 2. THE λSECI LANGUAGE

flow of type information, it is possible to generalize the standard parametricity theorem
to handle languages with run-time type analysis. This generalized theorem can be
used in the same manner as parametricity to establish integrity and confidentiality
properties.

2 T λSECi 

λSECi is a core calculus combining information flow and type analysis. We designed
λSECi to be as simple as possible while still retaining the flavor of the problem. It
is derived from the type-analyzing language λML

i developed by Harper and Mor-
risett [HM95] and the information-flow security language λSEC of Zdancewic [Zda02].
We based λSECi on λML

i because it provides a simple yet expressive model of run-time
type analysis. The language λML

i was developed as an intermediate language for effi-
ciently compiling parametric polymorphism. Similarly, λSEC was developed to study
information flow in the context of the simply-typed λ-calculus.

. R-  

The grammar for λSECi appears in Figure 1. It is a predicative, call-by-value polymor-
phic λ-calculus with booleans, functions and recursion. Fix-points are separate from
functions to make nontermination aspect of proofs modular.

As in λML
i , type constructors, τ, which can be analyzed at run-time, are separated

from types, σ, which describe terms. We conjecture our results extend to languages
with impredicative polymorphism, but for clarity and to emphasize the relationship
with λML

i , we do not examine the problem in this paper. Also for simplicity, we do
not allow higher-order polymorphism, but conjecture that our results extend to that
feature as well.

The language of type constructors consists of the simply-typed λ-calculus and
three primitive constructors that correspond to types: bool, τ1 −→ τ2, and τ1 × τ2.

The term form typecase can be used to define operations that depend on run-
time type information. This term takes a constructor to scrutinize, τ, as well as three
branches (ebool, e−→, e×) corresponding to the primitive constructors. During evalua-
tion the constructor argument must be reduced to determine its head form so that a
branch can be chosen.

τ ;∗ bool

typecase [γ.σ] τ ebool e−→ e× ; eint
:-

τ ;∗ τ1 −→ τ2

typecase [γ.σ] τ ebool e−→ e× ; e−→[τ1][τ2]
:-

2.1. RUN-TIME TYPE ANALYSIS 7

kinds
κ ::= ?` types

| κ1
`

−→ κ2 operators

type constructors
τ ::= α | λα:κ.τ | τ1τ2 λ-calculus

| bool booleans
| τ1 −→ τ2 functions
| τ1 × τ2 products
| Typerec τ τbool τ−→ τ× analysis

types
σ ::= (τ)` injection

| σ1
`

−→ σ2 functions
| σ1 ×` σ2 products
| ∀`1α:?`2 .σ con poly

terms
e ::= true | false booleans

| x | λx:σ.e | e1e2 λ-calculus
| 〈e1, e2〉 | fst e | snd e tuples
| Λα:?`.e | e[τ] con poly
| fix x:σ.e fix-point
| if e1 then e2 else e3 conditional
| typecase[γ.σ] τ ebool e−→ e× analysis

values
v ::= true | false | λx:σ.e | 〈v1, v2〉 | Λα:?`.e

term substitutions γ ::= · | γ, [e/x]

type substitutions δ ::= · | δ, [τ/α]

term variable contexts Γ ::= · | Γ, x:σ
type variable contexts ∆ ::= · | ∆, α:κ

Figure 1: The λSECi language

8 2. THE λSECI LANGUAGE

τ ;∗ τ1 × τ2

typecase [γ.σ] τ ebool e−→ e× ; e×[τ1][τ2]
:-

Wewrite e ; e ′ to mean that term e reduces in a single step to e ′ and τ ; τ ′ to mean
that constructor τ makes a weak-head reduction step to τ ′.

λSECi also includes a constructor, Typerec, for analyzing type information. Without
Typerec, it is impossible to assign a type to some useful terms that perform type analy-
sis [HM95]. Typerec implements a paramorphism (a type of fold) over the structure of
the argument constructor. When the head of the argument is one of the three primitive
constructors, Typerec will apply the appropriate branch to the constituent types, as well
as the recursive invocation of Typerec on them.

Typerec (bool) τbool τ−→ τ× ; τbool
:-

Typerec (τ1 −→ τ2) τbool τ−→ τ× ;

τ−→ τ1 τ2 (Typerec τ1 τbool τ−→ τ×)

(Typerec τ2 τbool τ−→ τ×)

:-

Typerec (τ1 × τ2) τbool τ−→ τ× ;

τ× τ1 τ2 (Typerec τ1 τbool τ−→ τ×)

(Typerec τ2 τbool τ−→ τ×)

:-

. T    

Information-flow type systems track the flow of information by annotating types with
labels that specify the information content of the terms they describe. Because our
type constructors have computational content (and influence the evaluation of terms)
in λSECi, we must also label kinds.

Labels, `, are drawn from an unspecified join semi-lattice, with a least element
(⊥), joins (t) for finite subsets of elements in the lattice, and a partial order (v). The
actual lattice used by the type system is determined by the desired confidentiality and
integrity policies of the program. Intuitively, the higher a label is in the lattice, the
more restricted the information content of a constructor or term should be. For most
examples in this paper, we use a simple two point lattice (⊥ for low security, > for
high security) that tracks the dynamic discovery of a single type definition. In practice,
any lattice with the specified structure could be used. An example of a practical lattice
with richer internal structure is the Decentralized Label Model (DLM) of Myers and
Liskov [ML00].

2.2. THE INFORMATION CONTENT OF CONSTRUCTORS 9

α:κ ∈ ∆

∆ ` α : κ
:

∆ ` bool : ?⊥
:

∆ ` τ1 : ?`1 ∆ ` τ2 : ?`2

∆ ` τ1 −→ τ2 : ?`1t`2
:

∆ ` τ1 : ?`1 ∆ ` τ2 : ?`2

∆ ` τ1 × τ2 : ?`1t`2
:

∆, α:κ1 ` τ : κ2

∆ ` λα:κ1.τ : κ1
⊥

−→ κ2

:

∆ ` τ1 : κ1
`

−→ κ2 ∆ ` τ2 : κ1

∆ ` τ1τ2 : κ2 t `
:

∆ ` τ : ?`

` v ` ′ ∆ ` τbool : κ ∆ ` τ−→ : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ

∆ ` τ× : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ where ` ′ = L(κ)

∆ ` Typerec τ τbool τ−→ τ× : κ
:

∆ ` τ : κ1 κ1 ≤ κ2

∆ ` τ : κ2

:

Figure 2: Constructor well-formedness

The labels on kinds describe the information content of type constructors. The
kind of a constructor (and therefore its information content) is described using the
judgement ∆ ` τ : κ, read as “constructor τ is well-formed having kind κ with respect
to the type variable context ∆.” The operator L(κ), defined in Figure 3, extracts the
label of a kind.

Our calculus is conservative: If the label of κ is `, then the information content of a
constructor of kind κ is at most `. The information level of a constructor can be raised
via subsumption. As kinds are labeled, the orderingv on labels induces a sub-kinding
relation, κ1 ≤ κ2. A kind ?`1 is a sub-kind of ?`2 if `1 v `2. Sub-kinding for function
kinds is standard. The relation is reflexive and transitive by definition.

The label of a constructor τ, of kind ?`, also describes the information gained

10 2. THE λSECI LANGUAGE

L(?`), ` L(κ1
`

−→ κ2), `

L((τ)`), ` L(σ1
`

−→ σ2), `

L(σ1 ×` σ2), ` L(∀`1α:?`2 .σ), `1

Figure 3: Kind and type label operators

when the constructor is analyzed. Type variables (such as Employee.t) may be given
a high security level so that their information content may be traced throughout the
program. For example, the kind of a Typerec constructor must be labeled at least as
high as the analyzed constructor τ. This requirement accounts for information gained
by inspecting τ.

∆ ` τ : ?`

` v ` ′ ∆ ` τbool : κ ∆ ` τ−→ : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ

∆ ` τ× : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ where ` ′ = L(κ)

∆ ` Typerec τ τbool τ−→ τ× : κ
:

By default the label on the bool constructor is set to⊥. The label of the kind for function
and product constructors must be at least as high as the join of its two constituent
constructors. This is because the label must reflect the information content of the
entire constructor.

To trace information flows through type applications, the kinds of type functions,
κ1

`
−→ κ2, have a label ` that represents the information propagated by invoking the

function. The information, `, is propagated into the result of application as κ2t `. This
is shorthand for relabeling κ2 with L(κ2) t `.

. T    

The labels on types describe the information content of terms. We use the judgement
∆? | Γ ` e : σ to mean that “term e is well-formed with type σ with respect to the term
context Γ and the type context ∆?.” We use the notation ∆? to denote type variable
contexts restricted to variables of base kind ?` for any label `. As we did for kinds, we
define (in Figure 3) the operatorL(σ) to extract the label of a type. Also, the judgement
∆? ` σ is used to indicate that “type σ is well-formed with respect to type context ∆?.”
Like constructors, the information content specified by labels for terms is conservative.
The lattice ordering induces a subtyping judgement ∆? ` σ1 ≤ σ2, and subsumption
can be used to raise the information level of a term.

2.3. TRACKING INFORMATION FLOW IN TERMS 11

∆? ` Γ

∆? | Γ ` true : (bool)⊥
:

∆? ` Γ

∆? | Γ ` false : (bool)⊥
:

∆? ` Γ x : σ ∈ Γ

∆? | Γ ` x : σ
:

∆? | Γ, x:σ1 ` e : σ2 ∆? ` σ1

∆? | Γ ` λx:σ1.e : σ1
⊥

−→ σ2

:

∆? | Γ ` e1 : σ1
`

−→ σ2 ∆? | Γ ` e2 : σ1

∆? | Γ ` e1e2 : σ2 t `
:

∆?, α:?` | Γ ` e : σ

∆? | Γ ` Λα:?`.e : ∀⊥α:?`.σ
:

∆? | Γ ` e : ∀`α:?` ′ .σ ∆? ` τ : ?` ′

∆? | Γ ` e[τ] : σ[τ/α] t `
:

∆? | Γ ` e1 : σ1 ∆? | Γ ` e2 : σ2

∆? | Γ ` 〈e1, e2〉 : σ1 ×⊥ σ2

:
∆? | Γ ` e : σ1 ×` σ2

∆? | Γ ` fst e : σ1 t `
:

∆? | Γ ` e : σ1 ×` σ2

∆? | Γ ` snd e : σ2 t `
:

∆? | Γ, x:σ ` e : σ ∆? ` σ

∆? | Γ ` fix x:σ.e : σ
:

∆? | Γ ` e1 : (bool)` ∆? | Γ ` e2 : σ ∆? | Γ ` e3 : σ

∆? | Γ ` if e1 then e2 else e3 : σ t `
:

∆? ` τ : ?` ∆?, γ:?` ` σ ` v ` ′ ∆? | Γ ` ebool : σ[bool/γ]

∆? | Γ ` e−→ : ∀` ′α:?`.∀` ′β:?`.σ[α −→ β/γ]

∆? | Γ ` e× : ∀` ′α:?`.∀` ′β:?`.σ[α× β/γ] where ` ′ = L(σ[τ/γ])

∆? | Γ ` typecase [γ.σ] τ ebool e−→ e× : σ[τ/γ]
:

∆? | Γ ` e : σ1 ∆? ` σ1 ≤ σ2

∆? | Γ ` e : σ2

:

Figure 4: Term well-formedness

12 2. THE λSECI LANGUAGE

The types of λSECi include the standard ones for functions σ1
`

−→ σ2, products
σ1 ×` σ2, and quantified types ∀`1α:?`2 .σ, plus those that are computed by type
constructors (τ)`. Note that in the well-formedness rule for types formed from type
constructors, shown below

∆? ` τ : ?`

∆? ` (τ)⊥
:

there is no need for a connection between the label ` on the kind and the label on the
type. That is because ` describes the information content of τ, while the label ` ′ on
(τ)` ′ describes the information content of a term with type (τ)` ′ . It is sound to discard
`, because once a constructor has been coerced to a type it may only be used statically
to describe terms and cannot be analyzed.

Information flow is tracked at the term level analogously to the type level. Term
abstractions, σ1

`
−→ σ2, like type functions propagate some information ` when the

are applied. Similarly, type abstractions, ∀`1α:?`2 .σ, propagate some information `1

when they are applied. The label `2 describes the information content of the constructor
that may be used to instantiate the type abstraction. For products, σ1 ×` σ2, the label
` indicates the information propagated when one of its components is projected.

Like Typerec, typecase examines the structure of the scrutinee and learns the
information it carries, so the label ` ′ on the type of the term must be at least as high in
the lattice as the label ` on the scrutinee.

∆? ` τ : ?` ∆?, γ:?` ` σ ` v ` ′ ∆? | Γ ` ebool : σ[bool/γ]

∆? | Γ ` e−→ : ∀` ′α:?`.∀` ′β:?`.σ[α −→ β/γ]

∆? | Γ ` e× : ∀` ′α:?`.∀` ′β:?`.σ[α× β/γ] where ` ′ = L(σ[τ/γ])

∆? | Γ ` typecase [γ.σ] τ ebool e−→ e× : σ[τ/γ]
:

Because the type of a typecase term can depend upon the scrutinized constructor τ,
an annotation, [γ.σ], is required for type checking.

. S

λSECi has the basic property expected from a typed language, that well-typed programs
will not go wrong.

Theorem 2.1 (Type Safety). If · ` e : σ then e either evaluates to a value or diverges.

Proof. The theorem is proven syntactically as a corollary of the standard progress and
preservation lemmas [WF94]. For details of the proof, see Appendix B.

13

α 7→ R ∈ η v1Rv2

η ` v1 ∼ v2 : α
:

η ` v ∼ v : bool
:

∀(η ` e1 ≈ e2 : σ1).η ` v1e1 ≈ v2e2 : σ2

η ` v1 ∼ v2 : σ1 → σ2

:

η ` fst v1 ≈ fst v2 : σ1 η ` snd v1 ≈ snd v2 : σ2

η ` v1 ∼ v2 : σ1 × σ2

:

∀τ1, τ2.∀(R ∈ τ1 ↔ τ2).η, α 7→ R ` v1[τ1] ≈ v2[τ2] : σ

η ` v1 ∼ v2 : ∀α:?.σ
:

e1 ;∗ v1 e2 ;∗ v2 η ` v1 ∼ v2 : σ

η ` e1 ≈ e2 : σ
:

e1 ↑ e2 ↑
η ` e1 ≈ e2 : σ

:

Figure 5: Logically related terms

3 G P

The parametricity theorem has long been used to reason about programs in languages
with parametric polymorphism [Rey83]. For example, the theorem can be used to show
that different implementations of an abstract datatype do not influence the behavior of
the program or to show that external modules cannot forge values of abstract types.
These are only a few of the corollaries of the parametricity theorem. This sections
starts with an overview of the standard parametricity theorem, and then examine how
it can be generalized for λSECi.

. P

For pedagogical purposes, this section and and the following section only considers
only the core of λSECi without type constructors, security labels, or type analysis. That
is, a simple predicative polymorphic λ-calculus [Rey83]. None of the results presented
in these sections are new. Informally, the parametricity theorem states that well-typed
expressions, after applying related substitutions for their free type and term variables,

14 3. GENERALIZING PARAMETRICITY

∀α:? ∈ ∆?.(η(α) ∈ δ1(α) ↔ δ2(α))

η ` δ1 ≈ δ2 : ∆? :

∀x:σ ∈ Γ.(η ` γ1(x) ≈ γ2(x) : σ)

η ` γ1 ≈ γ2 : Γ
:

Figure 6: Substitutions for parametricity

are related to themselves. The power of the theorem comes from the fact that terms
typed by universally quantified type variables can be related by any relation. Section 3.2
considers some important corollaries of the parametricity theorem for reasoning about
data abstraction in programs.

The logical relation used by the parametricity theorem is defined in Figure 5. Terms
are related with the judgement η ` e1 ≈ e2 : σ, read as “terms e1 and e2 are related at
type σ with respect to the relations in η.” Terms are related if they evaluate to related
values, or both diverge. We write e ↑ to denote divergence.

The judgement η ` v1 ∼ v2 : σ means that “values v1 and v2 are related at type σ

with respect to the relations in η”. The relation between values is defined inductively
over types σ, potentially containing free type variables. To account for these variables,
the relations are parameterized by amap, η, between type variables and binary relations
on values. This map is used when σ is a type variable (see rule :). If σ is bool, the
relation is identity. Typical for logical relations, values of function type are related only
if when applied to related arguments, they produce related results. Likewise, values of
product types are related if the projections of their components are related.

The most important rule defines the relationship between values of type ∀α:?.σ.
Polymorphic values are related if their instantiations with any pair of types are related.
Furthermore, we can use any relation R between values of those types as the relation
on α. We use the notation R ∈ τ1 ↔ τ2 to mean that R is a binary relation on values
of type τ1 and of type τ2. If quantification over types of higher kind were allowed,
R must be a function on relations. This extension is orthogonal to our result, so we
restrict ourselves to polymorphism over kind ?.

To state the parametricity theorem the notion of related substitutions for types and
related terms must be defined. In Figure 6, the rule : states that a relation
mapping η is well-formed with respect to two type substitutions δ1and δ2 for the
variables in the type context ∆?. There are no restrictions on the range of the type
substitutions. On the other hand, : requires that a pair of term substitutions

3.1. PARAMETRICITY 15

for the variables in Γ must map to related terms. Even though λSECi has call-by-value
semantics, term substitutions must map to terms, not values. Otherwise, it would it be
impossible to prove the case for fix-points which requires a term substitution.

With these definitions it is possible to state the parametricity theorem for our
restricted language:

Theorem 3.1 (Parametricity). If ∆? | Γ ` e : σ and
η ` δ1 ≈ δ2 : ∆? and
η ` γ1 ≈ γ2 : Γ then
η ` δ1(γ1(e)) ≈ δ2(γ2(e)) : σ.

Proof. The proof is by induction on the typing judgment with appeals to supporting
lemmas.

The primary complication in this proof arises in the case for type application,
where we would like to show that a term v[σ ′] is related to itself (after appropriate
substitutions) at type σ[σ ′/α]. By induction, we know that v is related to itself at type
∀α:?.σ, so by inversion of the rule : we may conclude that v[σ ′] is related to itself
at type σ, where the type α is mapped to any relation R. However, what we need to
show is that v[σ ′] is related to itself at type σ[σ ′/α]. The trick is to instantiate R with
the relation {(v1, v2) | η ` v1 ≈ v2 : τ} and use the following type substitution lemma.

Lemma 3.2 (Type substitution for parametricity).
If η ` δ1 ≈ δ2 : ∆? then

η ` e1 ≈ e2 : σ[τ/α] iff
η, α 7→ R ` e1 ≈ e2 : σ where
R is the relation {(v1, v2) | η ` v1 ≈ v2 : τ} and δi(α) = δi(τ).

Proof. The proof in both directions of the biconditional is by induction on the structure
of the term relation.

Another significant complication in the proof is circularity in relating fix-points.
To show that fix x:σ.e is related to itself we must show that e is related to itself under
an extended substitution term substitution where γ1(x) = γ1(fix x:σ.e) and γ2(x) =

γ2(fix x:σ.e). However, for these substitutions to be related, we need to know that
the fix-point is related to itself. Which is what were just trying to show! To escape
this problem we apply a syntactic technique from Pitts [Pit00]. We define a restricted
fix-point that can only be unfolded a finite number of times before diverging. The term
fixn+1 x:σ.e unwinds to e[(fixn x:σ.e)/x]. By definition fix0 x:σ.e always diverges. It
is then straightforward to show that for any n, fixn x:σ.e is related to itself. Then the
following continuity lemma can be used to prove that unbounded fix-points are related
to themselves.

16 3. GENERALIZING PARAMETRICITY

Lemma 3.3 (Continuity). If η ` δ1 ≈ δ2 : ∆? and
for all n, η ` fixn x:σ1.e1 ≈ fixn x:σ2.e2 : σ

where δ1(σ) = σ1 and δ2(σ) = σ2 then
η ` fix x:σ1.e1 ≈ fix x:σ2.e2 : σ.

Proof. There are four cases.

• If both fix x:σ1.e1 and fix x:σ2.e2 diverge they are trivially related by :.

• If bothfix x:σ1.e1 andfix x:σ2.e2 converge to a value, theymust do so with some
finite number of unwindings, n, and it is possible to instantiate the assumption,
η ` fixn x:σ1.e1 ≈ fixn x:σ2.e2 : σ, accordingly, to obtain the a derivation
showing that they are related.

• In the last two cases either fix x:σ1.e1 and fix x:σ2.e2 diverge and the other
converges to a value. However, if it does so it does so in a finite number of steps.
Then instantiating η ` fixn x:σ1.e1 ≈ fixn x:σ2.e2 : σ, we have a derivation
that the other could have converged after a finite number of steps as well, leading
to a contradiction.

. A    

The parametricity theorem has been used for many purposes, most famously for
deriving free theorems about functions in the polymorphic λ-calculus, just by looking
at their types [Wad89]. Our purpose is more similar to that of Reynolds: reasoning
about the properties of programs in the presence of type abstraction. While Reynolds
saw the need to separate parametric polymorphism from ad-hoc polymorphism, we
show how to generalize his work to both sorts of polymorphism.

Corollaries of Theorem 3.1 provide important results for reasoning about abstract
types in programs. Many specific properties can be proven as a consequence of para-
metricity, but we believe the following two are representative of what a programmer
desires.

Corollary 3.4 (Confidentiality). If · ` v1 : τ1 and
· ` v2 : τ2 then
α:? | x:α ` e : bool and
e[τ1/α][v1/x] ;∗ v iff e[τ2/α][v2/x] ;∗ v.

Proof. First construct a derivation that · | · ` Λα:?.λx:α.e : ∀α:?.α −→ bool using
the appropriate typing rules and then appeal to Theorem 3.1 to obtain

· ` Λα:?.λx:α.e ∼ Λα:?.λx:α.e : ∀α:?.α −→ bool

3.2. APPLICATIONS OF THE PARAMETRICITY THEOREM 17

Next, by inversion on : and instantiation with the relation

R = {(v1, v2) | (· | · ` v1 : τ1), (· | · ` v2 : τ2)}

we can conclude that

·, α 7→ R ` (Λα:?.λx:α.e)[τ1] ≈ (Λα:?.λx:α.e)[τ2] : α −→ bool

By straightforward application of : we have that

·, α 7→ R ` v1 ∼ v2 : α

so by application of :, inversion on :, and instantiation we know

·, α 7→ R ` (Λα:?.λx:α.e)[τ1]v1 ≈ (Λα:?.λx:α.e)[τ2]v2 : bool

Finally, because the relation is closed under reduction we have : and instantiation
we have

·, α 7→ R ` e[τ1/α][v1/x] ≈ e[τ2/α][v2/x] : bool

from which the desired conclusion can be obtained by simple inversion.

This first corollary says that a programmer is free to change the implementation of
an abstract type without affecting the behavior of a program. It is the essence behind
parametric polymorphism – type information is not allowed to influence program
execution and values of abstract type must be treated parametrically.

Corollary 3.5 (Integrity). If α:? | · ` e : α then e[τ/α] for any τ must diverge.

Proof. First construct a derivation that · | · ` Λα:?.e : ∀α:α using the appropriate
typing rules, then appeal to Theorem 3.1 to obtain

· ` Λα:?.e ∼ Λα:?.e : ∀α:?.α

Now assume an arbitrary τ. By inversion on : and instantiation we can conclude

·, α 7→ ∅ ` (Λα:?.e)[τ] ≈ (Λα:?.e)[τ] : α

Because the relation is closed under reduction we have that

·, α 7→ ∅ ` e[τ/α] ≈ e[τ/α] : α

Furthermore, by inversion either e[τ/α] ;∗ v or e[τ/α] ↑. However in the former
case that would mean that

·, α 7→ ∅ ` v ∼ v : α

which by inversion on : is impossible because there is no v such that v∅v. There-
fore e[τ/α] ↑.

This second corollary states that there is no way for a program to invent values of
an abstract type, violating the integrity of the abstraction.

18 3. GENERALIZING PARAMETRICITY

. P   

Consider the following λSECi term (eliding labels)

typecase [γ.bool] α true(Λα:?.Λβ:?.false)(Λα:?.Λβ:?.false)

This term violates Corollary 3.4, because we can substitute bool and bool× bool for α

and it will produce different values: true versus false.
Still, we would like to state properties similar to Corollaries 3.4 and 3.5 for λSECi.

It is not possible to directly extend the inductive proof for typecase. The proof would
require that the two terms would produce related results, even when they may analyze
different constructors. Furthermore, λSECi presents another complication: The weak-
head normal forms of types include (for example) Typerec with its scrutinee a variable.
Therefore, the logical relation must be extended to be inductively defined upon these
sorts of types.

To solve the problem with typecase, we require that the constructors used to
instantiate polymorphic types be related to each other, as defined in the next subsection.
Labeling kinds is the key to making this change practical, because it means the relation
need not be the identity relation when types are used parametrically. Now consider a
labeled version of the earlier example

typecase [γ.(int)>] α 1 (Λα:?>.Λβ:?>.2) (Λα:?>.Λβ:?>.3)

Ifα has kind ?> then the entire expression will have type (int)> whichmeans that to an
observer at level⊥ the result will appear identical regardless of whether we substitute
int or int× int for α.

We solve the problem of making the logical relation inductively defined upon
weak-head normal types with unusual shapes by generalizing the trick of quantifying
over all relations between values of given types, to quantifying over families of relations
on values of the correct types.

. R 

The first step towards a generalized parametricity theorem is formalizing what it means
for type constructors to be related. We write τ1 ≈` τ2 : κ to mean closed constructors
τ1 and τ2 are related at kind κ with respect to an observer at level ` in the label lattice.
Similarly, the judgement ν1 ∼` ν2 : κ is used to indicate that closed weak-head normal
constructors ν1 and ν2 are related at kind κ with respect to an observer at level `. The
grammar of weak-head normal constructors and relations on constructors is defined
in Figures 8 and 7, respectively.

3.4. RELATED CONSTRUCTORS 19

`1 6v `0

ν1 ∼`0
ν2 : ?`1

:-
`1 v `0

bool ∼`0
bool : ?`1

:-

`1 t `2 v `3

`3 v `0 τ1 ≈`0
τ3 : ?`1 τ2 ≈`0

τ4 : ?`2

τ1 −→ τ2 ∼`0
τ3 −→ τ4 : ?`3

:-

`1 t `2 v `3 `3 v `0 τ1 ≈`0
τ3 : ?`1 τ2 ≈`0

τ4 : ?`2

τ1 × τ2 ∼`0
τ3 × τ4 : ?`3

:-

∀(τ1 ≈`0
τ2 : κ1).ν1τ1 ≈`0

ν2τ2 : κ2 t `1

ν1 ∼`0
ν2 : κ1

`1−→ κ2

:

τ1 ;∗ ν1 τ2 ;∗ ν2 ν1 ∼`0
ν2 : κ

τ1 ≈`0
τ2 : κ

:

Figure 7: Logically related constructors

The rule for type functions, :, is standard for logical relations. There
are four rules for kind ?. The first, :-, codifies that if the label of the
constructors is higher than the observer they are indistinguishable. The remaining
three state that if the label of a primitive constructor is less than the observer, their
components must appear related to the observer. Constructors that are not in normal
form are related by : if and only if their weak-head normal forms are related.

As suggested by :-, if two constructors carry information more
restrictive than the level of the observer, the observer shouldn’t be able to tell them
apart. For example, bool : ?> and bool × bool : ?> which carry “high-security”
information >, will be indistinguishable to an observer at a “low-security” level ⊥.
This is formalized in the following lemma.

Lemma 3.6 (Obliviousness for constructors). If · ` τ1, τ2 : κ and L(κ) 6v `0 then
τ1 ≈`0

τ2 : κ.

Proof. For the details of the proof, see Appendix D.

Another important property of the relation is that is closed under subsumption.

20 3. GENERALIZING PARAMETRICITY

constructor contexts
ρ ::= • | Typerec ρ τbool τ−→ τ× | ρ τ

weak-head normal-form constructors
ν ::= bool | τ1 −→ τ2 | τ1 × τ2 | λα:κ.τ

weak-head normal-form types
ζ ::= (bool)` | (ρ{α})` | σ1

`
−→ σ2 | σ1 ×` σ2 | ∀`1α:?`2 .σ

Figure 8: Additional syntactic forms

Lemma 3.7 (Constructor relation consistent).

If κ1 ≤ κ2 and τ1 ≈`0
τ2 : κ1 then τ1 ≈`0

τ2 : κ2

Proof. For the details of the proof, see Appendix D.

Finally, we can state a substitution theorem for constructors that is a simpler version
of parametricity:

Lemma 3.8 (Substitution for constructors). If ∆ ` τ : κ and δ1 ≈`0
δ2 : ∆ then

δ1(τ) ≈`0
δ2(τ) : κ.

Proof. For the details of the proof, see Appendix D.

where related type substitutions map type variables to related constructors, as
defined in the following rule

∀α:κ ∈ ∆.(δ1(α) ≈`0
δ2(α) : κ)

δ1 ≈`0
δ2 : ∆

:

. R 

As with constructors, we parameterize the logical relation on terms by an observer `.
We write η ` e1 ≈` e2 : σ to indicate that terms e1 and e2 are related to an observer
at level ` at type σ, with the relation mapping η. As with constructors we distinguish
between related terms and normal forms, writing the judgement η ` v1 ∼` v2 : ζ to
indicate that values v1 and v2 are related to an observer at level ` at the weak-head
normal type ζ, with the relationmapping η. These relations, as defined in Figure 10, are
similar to the ones in Figure 5. One difference is that we only relate values at weak-head
normal types ζ, defined in Figure 8.

3.5. RELATED TERMS 21

τ ; τ ′

(τ)` ; (τ ′)`
:-

(τ1 −→ τ2)
` ; (τ1)

` `
−→ (τ2)

`
:-

(τ1 × τ2)
` ; (τ1)

` ×` (τ2)
`
:-

Figure 9: Type reduction

Restricting the value relation to weak-head normal types makes the logical relation
much easier to state and understand. For example, the term 〈true, false〉 is well typed
with the equivalent types (bool×bool)` and (bool)`×` (bool)`. However, restricting to
weak-head normal types means that only the case for (bool)`×` (bool)` be considered.

Like constructors, the relation over terms is defined so that terms typed at a level
greater than the observer will be indistinguishable. This is enforced by the precondi-
tion `1 v `0 found in : and :. The antecedent relations in :,
:, and : have their types joined with `1; this accounts for information
gained by destructing the value. The following lemma verifies our intuition about
indistinguishability:

Lemma 3.9 (Obliviousness for terms). If ∆? | · ` e1, e2 : σ and
δ1 ≈`0

δ2 : ∆? and
L(σ) 6v `0 then
η ` δ1(e1) ≈`0

δ2(e2) : σ.

Proof. For the details of the proof, see Appendix D.

There are two other significant differences between Figures 5 and 10: additional
preconditions in :, and generalizing : to :. The rule :
solves the problem with Typerec appearing in the weak-head normal form of types. It
generalizes : to terms related at a constructor that cannot be normalized further
because of an undetermined type variable. We characterize these constructors with
constructor contexts, ρ, defined in Figure 8. Contexts are holes •, Typerecs of a context,
or a context applied to an arbitrary constructor. We write ρ{τ} for filling a context’s
hole with τ.

Previously, values were related at a type variable only if they were in the relation
mapped to that variable by η. Here η maps to families of relations. We write R`

ρ for the
application of R to a label ` and a context ρ, yielding a relation. Therefore, when we

22 3. GENERALIZING PARAMETRICITY

α 7→ R ∈ η `1 v `0 =⇒ v1R
`1
ρ v2

η ` v1 ∼`0
v2 : (ρ{α})`1

:

`1 v `0 =⇒ v1 = v2

η ` v1 ∼`0
v2 : (bool)`1

:

∀(η ` e1 ≈`0
e2 : σ1).η ` v1e1 ≈`0

v2e2 : σ2 t `1

η ` v1 ∼`0
v2 : σ1

`1−→ σ2

:

η ` fst v1 ≈`0
fst v2 : σ1 t `1 η ` snd v1 ≈`0

snd v2 : σ2 t `1

η ` v1 ∼`0
v2 : σ1 ×`1 σ2

:

∀(τ1 ≈`0
τ2 : ?`2).∀(R`2

ρ ∈ δ1((ρ{τ1})
`2) ↔ δ2((ρ{τ2})

`2)).

η, α 7→ R ` v1[τ1] ≈`0
v2[τ2] : σ t `1 R consistent

η ` v1 ∼`0
v2 : ∀`1α:?`2 .σ

:

e1 ;∗ v1 e2 ;∗ v2 σ ;∗ ζ η ` v1 ∼`0
v2 : ζ

η ` e1 ≈`0
e2 : σ

:

(e1 ↑) ∨ (e2 ↑)

η ` e1 ≈`0
e2 : σ

:

Figure 10: Logically related terms

write R`
ρ ∈ δ1((ρ{τ1})

`) ↔ δ2((ρ{τ2})
`) we mean that R is a dependent function of `

and ρ yielding a relation on values of type δ1((ρ{τ1})
`) and δ2((ρ{τ2})

`).

Quantification over R is required to be consistent. In this context, that means
if v1R

`1
ρ v2 and `1 v `2 then v1R

`2
ρ v2. This is adequate for call-by-value because

quantification is over families of value relations. Therefore requiring that R yield
relations that are strict or preserve least-upper bounds is unnecessary, as values are
always terminating. It is important that the logical relation itself is consistent, that is,
closed under subsumption.

3.6. GENERALIZED PARAMETRICITY 23

Lemma 3.10 (Term relation consistent). If δ1 ≈`0
δ2 : ∆? and

η ` ∆? and
∆? ` σ1 ≤ σ2 and
η ` e1 ≈`0

e2 : σ1 then
η ` e1 ≈`0

e2 : σ2.

Proof. For the details of the proof, see Appendix D.

We write η ` ∆? to mean that the mapping η is well-formed with respect to a pair
of type substitutions, δ1 and δ2, as defined in the rule:

∀α:?`1 ∈ ∆?.(η(α)`1
ρ ∈ δ1((ρ{α})`1) ↔ δ2((ρ{α})`1))

η(α) consistent
η ` ∆? :

The last significant difference in Figure 5 is in :. Terms are related if
either diverges, as opposed to our earlier definition where divergent terms were only
related to other divergent terms. At first, this change might seem like a significant
weakening of the relation. In particular, the logical relation is no longer transitive.
However, this definition is standard for information-flow logical relations proofs with
recursion [ABHR99, Zda02]. We will discuss in more detail in Section 3.6 how this
requirement is merely an artifact of call-by-value information-flow.

. G 

Before stating the generalized parametricity theorem, the notation of related term
substitutions must be defined. Given related type substitutions, δ1 ≈`0

δ2 : ∆?, and a
well-formed mapping, η ` ∆?, term substitutions are related if they map variables to
related terms.

∀x:σ ∈ Γ.(η ` γ1(x) ≈`0
γ2(x) : σ)

η ` γ1 ≈`0
γ2 : Γ

:

The only change from : is the additional of a label `0 for the observer.

Theorem 3.11 (Generalized parametricity). If ∆? | Γ ` e : σ and
δ1 ≈`0

δ2 : ∆? and
η ` ∆? and
η ` γ1 ≈`0

γ2 : Γ then
η ` δ1(γ1(e)) ≈`0

δ2(γ2(e)) : σ.

24 3. GENERALIZING PARAMETRICITY

Proof. As with standard parametricity, the proof is by induction over∆? | Γ ` e : σ. In
addition to the lemmasmentioned in Sections 3.4 and 3.5, Lemma 3.3must be extended
in the straightforward manner. For more details of the proof, see Appendix D.

We call it generalized parametricity because Theorem 3.1 can be recovered by a
series of restrictions:

• Restrict the label lattice to two elements,⊥ and> where⊥ v >.

• For every kind κ in ∆?, Γ , e, and σ require L(κ) = >.

• For every type σ ′ in Γ , e, and σ require L(σ ′) = ⊥.

• Require that the observer be⊥.

Even with these restrictions, because of the difference in :, Theorem 3.11
makes aweaker claim about the termination behavior of related terms thanTheorem3.1.
This is merely an artifact of call-by-value information-flow, but it does impact our
results. Consider the generalized version of Corollary 3.4.

Corollary 3.12 (Confidentiality). If α:?> | x:(α)⊥ ` e : (bool)⊥ then for any · ` v1 :

τ1 and ` v2 : τ2 if e[τ1/α][v2/x] and e[τ2/α][v2/x] both terminate, they will produce
the same value.

Proof. For the details of the proof, see Appendix D.

This corollary states that what we substitute for α and x will not affect the value
computed by e. However, it is possible that our choice of α and x could cause e to
diverge. What is happening?

Unlike standard parametricity, Theorem 3.11 has an explicit observer. Standard
parametricity has an implicit observer that can observe all computation. What makes
information-flow techniques work is that some computations are opaque to the ob-
server. Furthermore, the results of these computations are also inaccessible to the
observer, making them effectively dead code. However, because the operational se-
mantics is call-by-value, dead code must be executed even though the result is never
used. Therefore, we conjecture that using a call-by-need operational semantics an
exact correspondence could be recovered; the only part of the proof that would need
to change is the proof of obliviousness for terms, Lemma 3.9.

. A   

A typical corollary of Theorem3.11 is normally called noninterference; that it is possible
to substitute values indistinguishable to the present observer and get indistinguishable
results.

25

Corollary 3.13 (Noninterference). If ·, x:σ1 ` e : σ2 where L(σ1) 6v L(σ2) then for
any ` v1 : σ1 and ` v2 : σ1 it is the case that if both e[v1/x] and e[v2/x] terminate,
they will both produce the same value

Proof. For the details of the proof, see Appendix D.

More importantly, it is also possible to restate the corollaries of standard para-
metricity. The previous subsection stated the revised corollary for confidentiality. The
same can be done for integrity:

Corollary 3.14 (Integrity). If α:?> | · ` e : (α)⊥ then e[τ/α] for any τ must diverge.

Proof. For the details of the proof, see Appendix D.

Furthermore, it is also possible to make much richer and refined claims because
the label lattice expands upon the implicit two level lattice used by parametricity.

4 R

λSECi draws heavily upon previous work on type analysis, parametricity, and informa-
tion flow.

Most information flow systems use a lattice model originating from work by Bell
and LaPadula [BL75] and Denning [Den76]. Volpano et al. [VSI96] showed that
Denning’s work could be formulated as type system and proved its soundness with
respect to noninterference. Heintze and Riecke’s formalized information-flow and
integrity in a typed λ-calculus with references, the SLam calculus [HR98], and proved a
number of soundness and noninterference results. Pottier and Simonet have developed
an extension to ML, called FlowCaml, and have shown noninterference using an
alternative syntactic technique [PS02].

Prior to our research, FlowCaml was the only language with polymorphism and a
noninterference proof. FlowCaml does not consider run-time type analysis and can
rely on standard parametricity for types. The noninterference result for λSECi directly
builds upon the methods of Zdancewic [Zda02] and Pitts [Pit00].

Other researchers have noticed the connection between parametricity and non-
interference. The work of Tse and Zdancewic [TZ04] compliments our research by
showing how parametricity can be used to prove noninterference. Tse and Zdancewic
do so by encoding Abadi, et al.’s [ABHR99] dependency core calculus into System F.

The fact that run-time type analysis (and other forms of ad-hoc polymorphism)
breaks parametricity has been long understood, but little has been done to reconcile
the two. Leifer et al. [LPSW03] design a system that preserves type abstraction in the
presence of (un)marshalling. This is a weaker result because marshalling is merely

26 5. CONCLUSION

a single instance of an operation using run-time type analysis. Rossberg [Ros03]
and Vytiniotis et al. [VWW05] use generative types to hide type information in the
presence of run-time analysis, relying on colored-brackets [GMZ00] to provide easy
access. However, none of this work has formalized the abstraction properties that their
systems provide.

5 C

With λSECi, we address the conflict between run-time type analysis and enforceable
data abstractions. By labeling their type abstractions, software developers can easily
observe dependencies.

However, this refinement comes at with the penalty of having to write many an-
notations for a program to type check. We have not investigated how pervasive the
necessary annotations will prove in practice. Existing large scale languages, such as
Jif [MCN+] and FlowCaml [PS02], implement some form of information-flow infer-
ence, but they can be difficult to use. Languages based on λSECi have the advantage
that if the only goal is to secure type abstractions and no type analysis is performed,
then no information-flow annotations are necessary. Regardless, it will be imperative
to study the cost of maintaining the necessary annotations in practical languages based
upon λSECi.

A
This paper benefitted greatly from conversations with Steve Zdancewic and Stephen
Tse. We also appreciate the insightful comments by anonymous reviewers on earlier
revisions of this work. This work was supported by NSF grant 0347289, C:
Type-Directed Programming in Object-Oriented Languages.

C
This document prepared using the LATEX typesetting system created by Leslie Lamport
with the memoir class. The document was processed using pdfTEX’s microtypography
extensions implemented by Hàn Thế Thành. The body text is set at 11pt. The serif
typefaces are from the Minion Pro Opticals family, designed by Robert Slimbach of
Adobe Systems. The sans-serif typefaces are from the Cronos Pro Opticals family,
also designed by Robert Slimbach. The monospace typeface is Adobe Letter Gothic
designed by Roger Roberson. The serif mathematics typeface is AMS Euler, designed
by Hermann Zapf.

27

B

[ABHR99] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core
calculus of dependency. In Proc. 26th ACM Symp. on Principles of Pro-
gramming Languages, pages 147–160, San Antonio, TX, January .

[BL75] D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition
and Multics interpretation. Technical Report ESD-TR-75-306, MITRE
Corp. MTR-2997, Bedford, MA, .

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Commu-
nications of the ACM, 19(5):236–243, May .

[GMZ00] Dan Grossman, Greg Morrisett, and Steve Zdancewic. Syntactic type
abstraction. Transactions on Programming Languages and Systems,
22(6):1037–1080, November .

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using in-
tensional type analysis. In 22nd ACM Symp. on Principles of Programming
Languages, pages 130–141, San Francisco, January .

[HR98] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming
with secrecy and integrity. In Proc. 25th ACM Symp. on Principles of
Programming Languages, San Diego, CA, .

[HWC01] Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flexible dy-
namic linking of native code. In R. Harper, editor, Types in Compilation:
Third International Workshop, TIC 2000; Montreal, Canada, September 21,
2000; Revised Selected Papers, volume 2071 of Lecture Notes in Computer
Science, pages 147–176. Springer, .

[LPSW03] James J. Leifer, Gilles Peskine, Peter Sewell, and KeithWansbrough. Global
abstraction-safe marshalling with hash types. In Proc. 8th ICFP, pages
87–98, Uppsala, Sweden, .

[MCN+] Andrew C. Myers, Stephen Chong, Nathaniel Nystrom, Lantian Zheng,
and Steve Zdancewic. Jif: Java information flow. Software release. Located
at http://www.cs.cornell.edu/jif/.

[ML00] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decen-
tralized label model. Transactions on Software Engineering and Methodol-
ogy, 9(4):410–442, .

http://www.cs.cornell.edu/jif/

28 BIBLIOGRAPHY

[Mor95] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon Uni-
versity, School of Computer Science, Pittsburgh, Pennsylvania, December
.

[Pit00] Andrew M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10:1–39, .

[PS02] François Pottier and Vincent Simonet. Information flow inference for
ML. In Proc. 29th ACM Symp. on Principles of Programming Languages,
Portland, OR, January .

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymorphism. In
R. E. A. Mason, editor, Information Processing 83, pages 513–523, Amster-
dam, . Elsevier Science Publishers B. V.

[Ros03] Andreas Rossberg. Generativity and dynamic opacity for abstract types.
In Proc. of the 5th International ACM Conference on Principles and
Practice of Declarative Programming, Uppsala, Sweden, August .
Extended version available from http://www.ps.uni-sb.de/Papers/
generativity-extended.html.

[TZ04] Stephen Tse and Steve Zdancewic. Translating dependency into para-
metricity. In Proc. of the 9th ACM International Conference on Functional
Programming, Snowbird, Utah, September .

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system
for secure flow analysis. Journal of Computer Security, 4(3):167–187, .

[VWW05] Dimitrios Vytiniotis, GeoffreyWashburn, and StephanieWeirich. An open
and shut typecase. In Proc. of the 2nd ACMWorkshop on Types in Language
Design and Implementation, Longbeach, California, January .

[Wad89] Philip Wadler. Theorems for free! In FPCA89: Conference on Functional
Programming Languages and Computer Architecture, London, September
.

[Wei00] Stephanie Weirich. Type-safe cast: Functional pearl. In Proceedings of
theFifth International Conference on Functional Programming (ICFP), pages
58–67, Montreal, September .

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115:38–94, .

http://www.ps.uni-sb.de/Papers/generativity-extended.html
http://www.ps.uni-sb.de/Papers/generativity-extended.html

29

[WW05] Geoffrey Washburn and Stephanie Weirich. Generalizing parametricity
using information flow. In The 20th Annual IEEE Symposium on Logic in
Computer Science (LICS 2005), Chicago, IL, June .

[Zda02] Stephan Zdancewic. Programming Languages for Information Security.
PhD thesis, Cornell University, .

30 APPENDIX A. THE λSECI LANGUAGE

A A T λSECi 

Definition A.1 (Type Grammar).

kinds
κ ::= ?` types

| κ1
`

−→ κ2 operators

type constructors
τ ::= α | λα:κ.τ | τ1τ2 λ-calculus

| bool booleans
| τ1 −→ τ2 functions
| τ1 × τ2 products
| Typerec τ τbool τ−→ τ× analysis

weak-head normal-form constructors
ν ::= bool | τ1

`
−→ τ2 | τ1 ×` τ2 | λα:κ.τ

constructor contexts
ρ ::= • | Typerec ρ τbool τ−→ τ× | ρ τ

types
σ ::= (τ)` injection

| σ1
`

−→ σ2 functions
| σ1 ×` σ2 products
| ∀`1α:?`2 .σ con poly

weak-head normal-form types
ζ ::= (bool)` | (ρ{α})` | σ1

`
−→ σ2 | σ1 ×` σ2 | ∀`1α:?`2 .σ

type substitutions δ ::= · | δ, [τ/α]

type variable contexts ∆ ::= · | ∆, α:κ

A.1. STATIC SEMANTICS 31

Definition A.2 (Term Grammar).

terms
e ::= true | false booleans

| x | λx:σ.e | e1e2 λ-calculus
| 〈e1, e2〉 | fst e | snd e tuples
| Λα:?`.e | e[τ] con poly
| fix x:σ.e fix-point
| if e1 then e2 else e3 conditional
| typecase[γ.σ] τ ebool e−→ e× analysis

values
v ::= true | false | λx:σ.e | 〈v1, v2〉 | Λα:?`.e

term substitutions γ ::= · | γ, [e/x]

term variable contexts Γ ::= · | Γ, x:σ

A. S 

Definition A.3 (Sub-kinding).

κ ≤ κ
:

κ1 ≤ κ2 κ2 ≤ κ3

κ1 ≤ κ3

:
`1 v `2

?`1 ≤ ?`2
:

κ3 ≤ κ1 κ2 ≤ κ4 `1 v `2

κ1
`1−→ κ2 ≤ κ3

`2−→ κ4

:

Definition A.4 (Constructor well-formedness).

α:κ ∈ ∆

∆ ` α : κ
:

∆ ` bool : ?⊥
:

∆ ` τ1 : ?`1 ∆ ` τ2 : ?`2

∆ ` τ1 −→ τ2 : ?`1t`2
:

∆ ` τ1 : ?`1 ∆ ` τ2 : ?`2

∆ ` τ1 × τ2 : ?`1t`2
:

∆, α:κ1 ` τ : κ2

∆ ` λα:κ1.τ : κ1
⊥

−→ κ2

:

32 APPENDIX A. THE λSECI LANGUAGE

∆ ` τ1 : κ1
`

−→ κ2 ∆ ` τ2 : κ1

∆ ` τ1τ2 : κ2 t `
:

∆ ` τ : ?`

` v ` ′ ∆ ` τbool : κ ∆ ` τ−→ : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ

∆ ` τ× : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ where ` ′ = L(κ)

∆ ` Typerec τ τbool τ−→ τ× : κ
:

∆ ` τ : κ1 κ1 ≤ κ2

∆ ` τ : κ2

:

Definition A.5 (Constructor equivalence).

∆ ` τ : κ

∆ ` τ = τ : κ
:

∆ ` τ1 = τ2 : κ ∆ ` τ2 = τ3 : κ

∆ ` τ1 = τ3 : κ
:

∆ ` τ2 = τ1 : κ

∆ ` τ1 = τ2 : κ
:

∆ ` τ3 = τ1 : ?`1 ∆ ` τ2 = τ4 : ?`2

∆ ` τ1 −→ τ2 = τ3 −→ τ4 : ?`1t`2
:

∆ ` τ3 = τ1 : ?`1 ∆ ` τ2 = τ4 : ?`2

∆ ` τ1 × τ2 = τ3 × τ4 : ?`1t`2
:

∆, α:κ1 ` τ1 = τ2 : κ2

∆ ` λα:κ1.τ1 = λα:κ1.τ2 : κ1
⊥

−→ κ2

:-

∆ ` (λα:κ1.τ1)τ2 : κ2

∆ ` (λα:κ1.τ1)τ2 = τ1[τ2/α] : κ2

:-

∆ ` τ1 = τ3 : κ1
`

−→ κ2 ∆ ` τ2 = τ3 : κ1

∆ ` τ1τ2 = τ3τ4 : κ2 t `
:

∆ ` τ1 = τ2 : ?` ∆ ` τbool = τ ′bool : κ

∆ ` τ−→ = τ ′−→ : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ

∆ ` τ× = τ ′× : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ

` v ` ′ where ` ′ = L(κ)

∆ ` Typerec τ1

τbool τ−→ τ×

= Typerec τ2

τ ′bool τ
′
−→ τ ′×

: κ
:-

A.1. STATIC SEMANTICS 33

∆ ` Typerec bool τbool τ−→ τ× : κ

∆ ` Typerec bool τbool τ−→ τ× = τbool : κ
:-

∆ ` Typerec (τ1 −→ τ2) τbool τ−→ τ× : κ

∆ ` Typerec
(τ1 −→ τ2)

τbool τ−→ τ×

= τ−→τ1τ2

(Typerec τ1

τbool τ−→ τ×)

(Typerec τ2

τbool τ−→ τ×)

: κ
:-

∆ ` Typerec (τ1 × τ2) τbool τ−→ τ× : κ

∆ ` Typerec
(τ1 × τ2)

τbool τ−→ τ×

= τ×τ1τ2

(Typerec τ1

τbool τ−→ τ×)

(Typerec τ2

τbool τ−→ τ×)

: κ
:-

∆ ` τ1 = τ2 : κ1 κ1 ≤ κ2

∆ ` τ1 = τ2 : κ2

:

Definition A.6 (Type variable context restriction). We will write ∆? for those type
variable contexts ∆ where ∀α:κ ∈ ∆, κ = ?` for some `.

Definition A.7 (Subtyping).

∆? ` σ

∆? ` σ ≤ σ
:

∆? ` σ1 ≤ σ2 ∆? ` σ2 ≤ σ3

∆? ` σ1 ≤ σ3

:

∆? ` τ1 = τ2 : ?`1

∆? ` (τ1)
`2 ≤ (τ2)

`2
:

∆? ` τ1 −→ τ2 : ?`1

∆? ` (τ1 −→ τ2)
`2 ≤ (τ1)

`2
`2−→ (τ2)

`2

:-

∆? ` τ1 −→ τ2 : ?`1

∆? ` (τ1)
`2

`2−→ (τ2)
`2 ≤ (τ1 −→ τ2)

`2

:-

∆? ` τ1 × τ2 : ?`1

∆? ` (τ1 × τ2)
`2 ≤ (τ1)

`2 ×`2 (τ2)
`2

:-

∆? ` τ1 × τ2 : ?`1

∆? ` (τ1)
`2 ×`2 (τ2)

`2 ≤ (τ1 × τ2)
`2

:-

34 APPENDIX A. THE λSECI LANGUAGE

∆? ` σ3 ≤ σ1 ∆? ` σ2 ≤ σ4 `1 v `2

∆? ` σ1
`1−→ σ2 ≤ σ3

`2−→ σ4

:

∆? ` σ1 ≤ σ3 ∆? ` σ2 ≤ σ4 `1 v `2

∆? ` σ1 ×`1 σ2 ≤ σ3 ×`2 σ4

:

∆?, α:?`4 ` σ1 ≤ σ2 `4 v `2 `1 v `3

∆? ` ∀`1α:?`2 .σ1 ≤ ∀`3α:?`4 .σ2

:

Definition A.8 (Type well-formedness).

∆? ` τ : ?`

∆? ` (τ)⊥
:

∆? ` σ1 ∆? ` σ2

∆? ` σ1
⊥

−→ σ2

:

∆? ` σ1 ∆? ` σ2

∆? ` σ1 ×⊥ σ2

:
∆?, α:?` ` σ

∆? ` ∀⊥α:?`.σ
:

∆? ` σ1 ∆? ` σ1 ≤ σ2

∆? ` σ2

:

Definition A.9 (Type equivalence). We define ∆? ` σ1 = σ2 to mean that ∆? ` σ1 ≤
σ2 and ∆? ` σ2 ≤ σ1.

Definition A.10 (Term variable context well-formedness).

∆? ` ·
:

∆? ` Γ ∆? ` σ

∆? ` Γ, x:σ
:

Definition A.11 (Term well-formedness).

∆? ` Γ

∆? | Γ ` true : (bool)⊥
:

∆? ` Γ

∆? | Γ ` false : (bool)⊥
:

∆? ` Γ x : σ ∈ Γ

∆? | Γ ` x : σ
:

∆? | Γ, x:σ1 ` e : σ2 ∆? ` σ1

∆? | Γ ` λx:σ1.e : σ1
⊥

−→ σ2

:

∆? | Γ ` e1 : σ1
`

−→ σ2 ∆? | Γ ` e2 : σ1

∆? | Γ ` e1e2 : σ2 t `
:

∆?, α:?` | Γ ` e : σ

∆? | Γ ` Λα:?`.e : ∀⊥α:?`.σ
:

A.2. DYNAMIC SEMANTICS 35

∆? | Γ ` e : ∀`α:?` ′ .σ ∆? ` τ : ?` ′

∆? | Γ ` e[τ] : σ[τ/α] t `
:

∆? | Γ ` e1 : σ1 ∆? | Γ ` e2 : σ2

∆? | Γ ` 〈e1, e2〉 : σ1 ×⊥ σ2

:
∆? | Γ ` e : σ1 ×` σ2

∆? | Γ ` fst e : σ1 t `
:

∆? | Γ ` e : σ1 ×` σ2

∆? | Γ ` snd e : σ2 t `
:

∆? | Γ, x:σ ` e : σ ∆? ` σ

∆? | Γ ` fix x:σ.e : σ
:

∆? | Γ ` e1 : (bool)` ∆? | Γ ` e2 : σ ∆? | Γ ` e3 : σ

∆? | Γ ` if e1 then e2 else e3 : σ t `
:

∆? ` τ : ?` ∆?, γ:?` ` σ ` v ` ′ ∆? | Γ ` ebool : σ[bool/γ]

∆? | Γ ` e−→ : ∀` ′α:?`.∀` ′β:?`.σ[α −→ β/γ]

∆? | Γ ` e× : ∀` ′α:?`.∀` ′β:?`.σ[α× β/γ] where ` ′ = L(σ[τ/γ])

∆? | Γ ` typecase [γ.σ] τ ebool e−→ e× : σ[τ/γ]
:

∆? | Γ ` e : σ1 ∆? ` σ1 ≤ σ2

∆? | Γ ` e : σ2

:

A. D 

Definition A.12 (Constructor reduction).

τ1 ; τ ′1

τ1τ2 ; τ ′1τ2

:-
(λα:κ.τ1)τ2 ; τ1[τ2/α]

:

τ ; τ ′

Typerec τ τbool τ−→ τ× ; Typerec τ ′ τbool τ−→ τ×
:-

Typerec (bool) τbool τ−→ τ× ; τbool
:-

Typerec (τ1 −→ τ2) τbool τ−→ τ× ;

τ−→ τ1 τ2 (Typerec τ1 τbool τ−→ τ×)

(Typerec τ2 τbool τ−→ τ×)

:-

Typerec (τ1 × τ2) τbool τ−→ τ× ;

τ× τ1 τ2 (Typerec τ1 τbool τ−→ τ×)

(Typerec τ2 τbool τ−→ τ×)

:-

36 APPENDIX A. THE λSECI LANGUAGE

Definition A.13 (Term computation rules).

(λx:σ.e)v ; e[v/x]
:

(Λα:κ.e)[τ] ; e[τ/α]
:

fst 〈v1, v2〉 ; v1

:
snd 〈v1, v2〉 ; v2

:

fix x:σ.e ; e[fix x:σ.e/x]
:

if true then e1 else e2 ; e1

:

if false then e1 else e2 ; e2

:

τ ;∗ bool

typecase [γ.σ] τ ebool e−→ e× ; eint
:-

τ ;∗ τ1 −→ τ2

typecase [γ.σ] τ ebool e−→ e× ; e−→[τ1][τ2]
:-

τ ;∗ τ1 × τ2

typecase [γ.σ] τ ebool e−→ e× ; e×[τ1][τ2]
:-

Definition A.14 (Term congruence rules).

e1 ; e ′1

e1e2 ; e ′1e2

:
e2 ; e ′2

v1e2 ; v1e
′
2

:
e1 ; e ′1

〈e1, e2〉 ; 〈e ′1, e2〉
:

e2 ; e ′2

〈v1, e2〉 ; 〈v1, e
′
2〉

:
e ; e ′

fst e ; fst e ′
:-

e ; e ′

snd e ; snd e ′
:-

e1 ; e ′1

if e1 then e2 else e3 ; if e ′1 then e2 else e3

:-

e ; e ′

e[τ] ; e ′[τ]
:-

37

Definition A.15 (Nontermination). If · | · ` e : σ and there does not exist a derivation
e ;∗ v then e ↑.
A B λSECi 

Lemma B.1 (Inversion on sub-kinding).

1. If ?` ≤ κ then κ = ?` ′ where ` v ` ′.

2. If κ1
`

−→ κ2 ≤ κ then κ = κ3
` ′

−→ κ4 where κ3 ≤ κ1 and κ2 ≤ κ4 and ` v ` ′.

Proof. Straightforward induction over the structure of the sub-kinding derivation.

Lemma B.2 (Inversion for constructor well-formedness).

1. If ∆ ` τ1 −→ τ2 : ?` then ∆ ` τ1 : ?`1 and ∆ ` τ2 : ?`2 and `1 t `2 v `.

2. If ∆ ` τ1 × τ2 : ?` then ∆ ` τ1 : ?`1 and ∆ ` τ2 : ?`2 and `1 t `2 v `.

3. If ∆ ` τ1τ2 : κ then ∆ ` τ1 : κ1
`

−→ κ2 and ∆ ` τ2 : κ1 and κ2 t ` ≤ κ.

4. If ∆ ` λα:κ.τ : κ1
`

−→ κ2 then ∆, α:κ ` τ : κ3 and κ1 ≤ κ and κ3 ≤ κ2.

5. If ∆ ` Typerec τ τbool τ−→ τ× : κ then ∆ ` τ : ?` and ∆ ` τbool : κ ′ and
∆ ` τ−→ : ?` ` ′

−→ ?` ` ′
−→ κ ′

` ′
−→ κ ′

` ′
−→ κ ′ and ∆ ` τ× : ?` ` ′

−→ ?` ` ′
−→

κ ′
` ′

−→ κ ′
` ′

−→ κ ′ where ` ′ = L(κ ′) and κ ′ ≤ κ.

Proof. By induction over the structure of the well-formedness derivation, making use
of Lemma B.1.

Lemma B.3 (Weak-head reduction equivalence).

1. If ∆ ` τ : κ and τ ; τ ′ then ∆ ` τ = τ ′ : κ.

2. If ∆ ` τ : κ and τ ;∗ τ ′ then ∆ ` τ = τ ′ : κ.

3. If ∆? ` σ and σ ; σ ′ then ∆? ` σ = σ ′.

4. If ∆? ` σ and σ ;∗ σ ′ then ∆? ` σ = σ ′.

38 APPENDIX B. λSECI SOUNDNESS

Proof. Part 1 follows from straightforward induction over the structure of τ ; τ ′

and use of Lemma B.2. Part 2 follows from Part 1 and induction on the number of
reduction steps. Part 3 follows from straightforward induction over the structure of
σ ; σ ′ using Part 1. Finally, Part 4 follows from Part 3 and induction on the number
of reduction steps.

Lemma B.4 (Inversion for type well-formedness).

If ∆? ` (τ)` then ∆? ` τ : ?` ′ .

Proof. Proof by induction over the structure of ∆? ` (τ)`.

Lemma B.5 (Inversion for subtyping).

1. If ∆? ` σ1
`1−→ σ2 ≤ σ then ∆? ` σ ≤ σ3

`2−→ σ4 and ∆? ` σ3 ≤ σ1 and
∆? ` σ2 ≤ σ4 and `1 v `2.

2. If ∆? ` σ1 ×`1 σ2 ≤ σ then ∆? ` σ ≤ σ3 ×`2 σ4 and ∆? ` σ1 ≤ σ3 and
∆? ` σ2 ≤ σ4 and `1 v `2.

3. If ∆? ` ∀`1α:?`2 .σ1 ≤ σ2 then ∆? ` σ2 ≤ ∀`3α:?`4 .σ3 and ∆?, α:?`4 ` σ3 ≤
σ1 and `1 v `3 and `4 v `2.

Proof. By straightforward induction over the structure of the subtyping derivation.

Lemma B.6 (Inversion for typing).

1. If ∆? | Γ ` λx:σ1.e : σ then ∆? ` σ ≤ σ2
`

−→ σ3 and ∆? | Γ, x:σ1 ` e : σ4

where ∆? ` σ2 ≤ σ1 and ∆? ` σ4 ≤ σ3.

2. If ∆? | Γ ` Λα:?`.e : σ then ∆? ` σ ≤ ∀`1α:?`2 .σ1 and ∆?, α:?` | Γ ` e : σ2

where ∆?, α:?`2 ` σ2 ≤ σ1 and `2 v `.

3. If ∆? | Γ ` fix x:σ1.e : σ2 then ∆? | Γ, x:σ1 ` e : σ1 where ∆? ` σ1 ≤ σ2.

4. If ∆? | Γ ` 〈e1, e2〉 : σ then ∆? ` σ ≤ σ1 ×` σ2 and ∆? | Γ ` e1 : σ3 and
∆? | Γ ` e2 : σ4 where ∆? ` σ3 ≤ σ1 and ∆? ` σ4 ≤ σ2.

5. If ∆? | Γ ` fst e : σ then ∆? | Γ ` e : σ1 ×` σ2 where ∆? ` σ1 t ` ≤ σ.

6. If ∆? | Γ ` snd e : σ then ∆? | Γ ` e : σ1 ×` σ2 where ∆? ` σ2 t ` ≤ σ.

7. If ∆? | Γ ` e1e2 : σ1 then ∆? | Γ ` e1 : σ2
`

−→ σ3 and ∆? | Γ ` e2 : σ2 and
∆? ` σ3 t ` ≤ σ1.

39

8. If ∆? | Γ ` e[τ] : σ then ∆? | Γ ` e : ∀`1α:?`2 .σ ′ and ∆? ` τ : ?`2 and
∆? ` σ ′[τ/α] t `1 ≤ σ.

9. If ∆? | Γ ` if e1 then e2 else e3 : σ then ∆? | Γ ` e1 : (bool)` and ∆? | Γ ` e2 :

σ ′ and ∆? | Γ ` e3 : σ ′ where ∆? ` σ ′ t ` ≤ σ.

10. If ∆? | Γ ` typecase [γ.σ] τ ebool e−→ e× : σ ′ then
∆? ` τ : ?` and
∆?, γ:?` ` σ and
∆? | Γ ` ebool : σ[bool/γ] and
∆? | Γ ` e−→ : ∀` ′α:?`.∀` ′β:?`.σ[α −→ β/γ] and
∆? | Γ ` e× : ∀` ′α:?`.∀` ′β:?`.σ[α× β/γ] where
` ′ = L(σ[τ/γ]) and
` v ` ′ and
∆? ` σ[τ/γ] ≤ σ ′.

Proof. By straightforward induction on the structure of the typing derivation with uses
of Lemma B.5.

Lemma B.7 (Substitution for constructors). If ∆, α:κ1 ` τ1 : κ2 and ∆ ` τ2 : κ1 then
∆ ` τ1[τ2/α] : κ2.

Proof. By straightforward induction over the structure of ∆, α:κ1 ` τ1 : κ2.

Lemma B.8 (Substitution for equivalence). If ∆, α:κ1 ` τ1 = τ2 : κ2 and ∆ ` τ : κ1

then ∆ ` τ1[τ/α] = τ2[τ/α] : κ2.

Proof. By straightforward induction over the structure of ∆, α:κ1 ` τ1 = τ2 : κ2,
making use of Lemma B.7.

Lemma B.9 (Substitution for types).

1. If ∆?, α:?` ` σ1 ≤ σ2 and ∆? ` τ : ?` then ∆? ` σ1[τ/α] ≤ σ2[τ/α].

2. If ∆?, α:?` ` σ and ∆? ` τ : ?` then ∆? ` σ[τ/α].

Proof. By mutual induction over the structure of ∆, α:?` ` σ1 ≤ σ2 and ∆, α:?` ` σ,
using Lemmas B.7 and B.8.

Lemma B.10 (Substitution commutes with equivalence).

1. If ∆ ` τ1 = τ2 : κ1 and ∆, α:κ1 ` τ : κ2 then ∆ ` τ[τ1/α] = τ[τ2/α] : κ2.

40 APPENDIX B. λSECI SOUNDNESS

2. If ∆ ` τ1 = τ2 : ?` and ∆, α:?` ` σ then ∆ ` σ[τ1/α] ≤ σ[τ2/α] and
∆ ` σ[τ2/α] ≤ σ[τ1/α].

Proof. Part 1 follows from induction over the structure of ∆, α:κ1 ` τ : κ2. Part 2
follows from induction over the structure of ∆, α:?` ` σ making use of Part 1.

Lemma B.11 (Substitution for terms).

1. If ∆?, α:?` | Γ ` e : σ and ∆? ` τ : ?` then ∆? | Γ ` e[τ/α] : σ[τ/α].

2. If ∆? | Γ, x:σ1 ` e : σ2 and ∆? | Γ ` e ′ : σ1 then ∆? | Γ ` e[e ′/x] : σ2.

Proof. By straightforward induction over the typing derivations, using Lemmas B.7
and B.9.

Lemma B.12 (Subject reduction).

1. If ∆ ` τ : κ and τ ; τ ′ then ∆ ` τ ′ : κ.

2. If ∆ ` τ : κ and τ ;∗ τ ′ then ∆ ` τ ′ : κ.

3. If ∆? ` σ and σ ; σ ′ then ∆? ` σ ′.

4. If ∆? ` σ and σ ;∗ σ ′ then ∆? ` σ ′.

5. If ∆? | Γ ` e : σ and e ; e ′ then ∆? | Γ ` e ′ : σ.

Proof. Part 1 follows by induction over the structure of τ ; τ ′ making use of Lem-
mas B.2 and B.7. Part 2 is a direct corollary of Part 1. Part 3 follows by induction
over the structure of σ ; σ ′ making use of Lemma B.4 and Part 1. Part 4 is a direct
corollary of Part 3. Part 5 follows by induction over the structure of e ; e ′ making
use of Lemmas B.6, B.2, B.3, and B.10.

Lemma B.13 (Weak head reduction terminates).

1. If · ` τ : κ then τ ;∗ ν.

2. If ∆? ` σ then σ ;∗ ζ.

Proof. Follows from a standard logical relations proof that we omit here. SeeMorrisett’s
thesis [Mor95].

Lemma B.14 (Canonical forms for constructors). If · ` ν : κ

41

1. κ = ?` then ν = bool or ν = τ1 −→ τ2 or ν = τ1 × τ2.

2. κ = κ1
`

−→ κ2 then ν = λα:κ3.τ where κ1 ≤ κ3.

Proof. By straightforward induction over the structure of ∆ ` ν : κ.

Lemma B.15 (Canonical forms for terms). If · | · ` v : σ

1. σ = bool then v = true or v = false.

2. σ = σ1
` ′

−→ σ2 then v = λx:σ3.e where ∆? ` σ1 ≤ σ3.

3. σ = ∀`1α:?`2 .σ ′ then v = Λα:?`3 .e where `1 v `3.

4. σ = σ1 ×` σ2 then v = 〈v1, v2〉.

Proof. By straightforward induction over the structure of · | · ` v : σ.

Lemma B.16 (Progress). If · | · ` e : σ then e is a value or there exists a derivation
e ; e ′.

Proof. By straightforward induction over the structure of · | · ` e : σ, using Lem-
mas B.15, B.13, and B.14.

Theorem B.17 (Type safety). If · | · ` e : σ then there exists a derivation that e ;∗ v

or e ↑.
Proof. Proof by contradiction using Lemmas B.12 and B.16.

A C λSECi   

Definition C.1 (Extension for finite unwindings).

terms
e ::= ...

| fixn x:σ.e finite fix-point

Definition C.2 (Term well-formedness).

∆? | Γ, x:σ ` e : σ ∆? ` σ

∆? | Γ ` fixn x:σ.e : σ
:

42 APPENDIX D. λSECI NONINTERFERENCE

Definition C.3 (Computation rules).

fix0 x:σ.e ; fix0 x:σ.e
:

fixn+1 x:σ.e ; e[fixn x:σ.e/x]
:

Lemma C.4 (fix0 always diverges). fix0 x:σ.e ↑.
Proof. Proof by contradiction, assuming there exists a derivation fix0 x:σ.e ;∗ v.

Lemma C.5 (Unwinding type equivalences).

∆? | Γ ` fix x:σ.e : σ iff ∆? | Γ ` fixn x:σ.e : σ

Proof. Trivial inversion upon the typing derivation in both directions.

Lemma C.6 (Unwinding evaluation equivalence).

fix x:σ.e ′ ;∗ v iff exists n such that fixn x:σ.e ′ ;∗ v

Proof. Both directions follow by straightforward induction over number or reduction
steps.

Lemma C.7 (Bound can be increased). If fixn x:σ.e ′ ;∗ v then fixm x:σ.e ′ ;∗ v for
m ≥ n.

Proof. Straightforward induction over the number of reduction steps in the derivation
fixn x:σ.e ′ ;∗ v.

A D λSECi 

Definition D.1 (Relations between values). We define σ1 ↔ σ2 to be the set of all
binary relations between values of type σ1 and values of type σ2.

Definition D.2 (Parameterized relation). A parameterized relation R is a function that
when given a label ` and a type context ρ yields a binary relation between values of two
types. For conciseness, we use the notation R`

ρ for the application of a label and a type
context to a parameterized relation.

We will sometimes abuse notation and write R`
ρ ∈ δ1(ρ{τ1}) ↔ δ2(ρ{τ1}). This

can be roughly understood with dependent types as R : Π`.Πρ.δ1(ρ{τ1}) ↔ δ2(ρ{τ1}).

Definition D.3 (Parameterized relation consistency). We say that a parameterized
relation R`

ρ ∈ σ1 ↔ σ2 is consistent if v1R
`1
ρ v2 and `1 v `2 then v2R

`2
ρ v2.

43

Definition D.4 (Security logical relation for constructors).

`1 6v `0

ν1 ∼`0
ν2 : ?`1

:-
`1 v `0

bool ∼`0
bool : ?`1

:-

`1 t `2 v `3

`3 v `0 τ1 ≈`0
τ3 : ?`1 τ2 ≈`0

τ4 : ?`2

τ1 −→ τ2 ∼`0
τ3 −→ τ4 : ?`3

:-

`1 t `2 v `3 `3 v `0 τ1 ≈`0
τ3 : ?`1 τ2 ≈`0

τ4 : ?`2

τ1 × τ2 ∼`0
τ3 × τ4 : ?`3

:-

∀(τ1 ≈`0
τ2 : κ1).ν1τ1 ≈`0

ν2τ2 : κ2 t `1

ν1 ∼`0
ν2 : κ1

`1−→ κ2

:

τ1 ;∗ ν1 τ2 ;∗ ν2 ν1 ∼`0
ν2 : κ

τ1 ≈`0
τ2 : κ

:

We implicitly require for ν1 ∼` ν2 : κ and τ1 ≈` τ2 : κ that · ` ν1, ν2 : κ and
· ` τ1, τ2 : κ respectively.

Definition D.5 (Type reduction).

τ ; τ ′

(τ)` ; (τ ′)`
:-

(τ1 −→ τ2)
` ; (τ1)

` `
−→ (τ2)

`
:-

(τ1 × τ2)
` ; (τ1)

` ×` (τ2)
`
:-

Definition D.6 (Security logical relation for terms).

α 7→ R ∈ η `1 v `0 =⇒ v1R
`1
ρ v2

η ` v1 ∼`0
v2 : (ρ{α})`1

:

`1 v `0 =⇒ v1 = v2

η ` v1 ∼`0
v2 : (bool)`1

:

∀(η ` e1 ≈`0
e2 : σ1).η ` v1e1 ≈`0

v2e2 : σ2 t `1

η ` v1 ∼`0
v2 : σ1

`1−→ σ2

:

44 APPENDIX D. λSECI NONINTERFERENCE

η ` fst v1 ≈`0
fst v2 : σ1 t `1 η ` snd v1 ≈`0

snd v2 : σ2 t `1

η ` v1 ∼`0
v2 : σ1 ×`1 σ2

:

∀(τ1 ≈`0
τ2 : ?`2).∀(R`2

ρ ∈ δ1((ρ{τ1})
`2) ↔ δ2((ρ{τ2})

`2)).

η, α 7→ R ` v1[τ1] ≈`0
v2[τ2] : σ t `1 R consistent

η ` v1 ∼`0
v2 : ∀`1α:?`2 .σ

:

e1 ;∗ v1 e2 ;∗ v2 σ ;∗ ζ η ` v1 ∼`0
v2 : ζ

η ` e1 ≈`0
e2 : σ

:

(e1 ↑) ∨ (e2 ↑)

η ` e1 ≈`0
e2 : σ

:

We implicitly require for η ` v1 ∼`0
v2 : ζ and η ` e1 ≈`0

e2 : σ that · | · ` v1 : δ1(ζ),
· | · ` v2 : δ2(ζ) and · | · ` e1 : δ1(σ), · | · ` e2 : δ2(σ) respectively where
δ1 ≈`0

δ2 : ∆? and η ` ∆?.

Definition D.7 (Related constructor substitutions).

∀α:κ ∈ ∆.(δ1(α) ≈`0
δ2(α) : κ)

δ1 ≈`0
δ2 : ∆

:

Definition D.8 (Relation mapping regularity). If δ1 ≈`0
δ2 : ∆? then

∀α:?`1 ∈ ∆?.(η(α)`1
ρ ∈ δ1((ρ{α})`1) ↔ δ2((ρ{α})`1))

η(α) consistent
η ` ∆? :

Definition D.9 (Related term substitutions). If δ1 ≈`0
δ2 : ∆? and η ` ∆? then

∀x:σ ∈ Γ.(η ` γ1(x) ≈`0
γ2(x) : σ)

η ` γ1 ≈`0
γ2 : Γ

:

Lemma D.10 (Logical relations closed under reduction).

1. τ1 ≈`0
τ2 : κ iff τ1 ;∗ τ ′1 and τ2 ;∗ τ ′2 and τ ′1 ≈`0

τ ′2 : κ.

2. η ` e1 ≈`0
e2 : σ iff e1 ;∗ e ′1 and e2 ;∗ e ′2 and σ ;∗ σ ′ and η ` e ′1 ≈`0

e ′2 : σ ′.

45

Proof. Follows from straightforward inversion upon the logical relations and from the
properties of reduction.

Lemma D.11 (Inversion for subtyping on normal types).

1. If ∆? ` (ρ{α})`1 ≤ ζ then ζ = (ρ{α})`2 where `1 v `2.

2. If ∆? ` (bool)`1 ≤ ζ then ζ = (bool)`2 where `1 v `2.

Proof. By straightforward induction over the structure of the subtyping derivations.

Lemma D.12 (Logical relations closed under subsumption).

1. If κ1 ≤ κ2 and

• ν1 ∼`0
ν2 : κ1 then τ1 ∼`0

τ2 : κ2.

• τ1 ≈`0
τ2 : κ1 then τ1 ≈`0

τ2 : κ2

2. If η ` ∆? and

• ∆? ` ζ1 ≤ ζ2 and η ` v1 ∼`0
v2 : ζ1 then η ` v1 ∼`0

v2 : ζ2.

• ∆? ` σ1 ≤ σ2 and η ` e1 ≈`0
e2 : σ1 then η ` e1 ≈`0

e2 : σ2

Proof. Part 1 follows from straightforward mutual induction over κ1. Part 2 follows
from straightforward mutual induction over σ1 and ζ1, with uses of Part 1, Defini-
tion D.3, and Lemmas B.5 and D.11.

Corollary D.13 (Term and value relation is consistent). The relations {(v1, v2) | η `
v1 ∼`0

v2 : ζ} and {(e1, e2) | η ` e1 ≈`0
e2 : ζ} are consistent.

Proof. A direct consequence of Definition D.3 and Lemma D.12 Part 2.

Lemma D.14 (Obliviousness).

1. If · ` τ1, τ2 : κ and L(κ) 6v `0 then τ1 ≈`0
τ2 : κ.

2. If η ` ∆? and δ1 ≈`0
δ2 : ∆? and L(ζ) 6v `0 and

• ∆? | · ` v1, v2 : ζ then η ` δ1(v1) ∼`0
δ2(v2) : ζ.

• ∆? | · ` e1, e2 : σ then η ` δ1(e1) ≈`0
δ2(e2) : σ.

46 APPENDIX D. λSECI NONINTERFERENCE

Proof. Part 1 follows from the use of Lemma B.13 and straightforward induction upon
κ. Part 2 follows from Theorem B.17 and induction upon ζ.

Lemma D.15 (Constructor substitution for term relations). If η ` ∆? and R`
ρ =

{(v1, v2) | η ` v1 ∼`0
v2 : ζ2} and δi(α) = δi(τ) then

1. η, α 7→ R ` v1 ∼`0
v2 : ζ1 and (ρ{τ})` ;∗ ζ2 iff η ` v1 ∼`0

v2 : ζ3 where
ζ[τ/α] ;∗ ζ3.

2. η, α 7→ R ` e1 ≈`0
e2 : σ and (ρ{τ})` ;∗ ζ iff η ` e1 ≈`0

e2 : σ[τ/α].

Proof. Follows from mutual induction over the logical relations, making use of
Lemma D.14 Part 2 and Corollary D.13.

Lemma D.16 (Constructor relation closed under Typerec). If τ ≈`0
τ ′ : ?` and

• τbool ≈`0
τ ′bool : κ and

• τ−→ ≈`0
τ ′−→ : ?` ` ′

−→ ?` ` ′
−→ κ

` ′
−→ κ

` ′
−→ κ and

• τ× ≈`0
τ ′× : ?` ` ′

−→ ?` ` ′
−→ κ

` ′
−→ κ

` ′
−→ κ.

where ` ′ = L(κ) then Typerec τ τbool τ−→ τ× ≈`0
Typerec τ ′ τ ′bool τ

′
−→ τ ′× : κ.

Proof. Straightforward induction over the structure of τ ≈`1
τ ′ : ?` making use of

Lemma D.14 Part 1.

LemmaD.17 (Fixpoint continuity). If for all n, η ` fixn x:σ1.e1 ≈`0
fixn x:σ2.e2 : σ

then η ` fix x:σ1.e1 ≈`0
fix x:σ2.e2 : σ where δi(σ) = σi.

Proof. By substitution we know that · | · ` fix x:σi.ei : σi. Using Theorem B.17 we
know that either fix x:σi.ei ;∗ vi or fix x:σi.ei ↑.
Case For both i = 1 and i = 2, fix x:σi.ei ;∗ vi

• From Lemma C.6 we know that fixn x:σ1.e1 ;∗ v1 and fixm x:σ2.e2 ;∗

v2.

• There exists some p > m and p > n. By Lemma C.7 we can conclude
fixp x:σi.ei ;∗ vi.

• Instantiating for all n,η ` fixn x:σ1.e1 ≈`0
fixn x:σ2.e2 : σ with p we

have that η ` fixp x:σ1.e1 ≈`0
fixp x:σ2.e2 : σ.

47

• By inversion upon η ` fixp x:σ1.e1 ≈`0
fixp x:σ2.e2 : σ. we know

that either fixp x:σi.ei ;∗ v ′i or fixp x:σi.ei ↑ v ′i. However, we already
have that fixp x:σi.ei ;∗ vi. Therefore, we also know by inversion that
η ` v1 ∼`0

v2 : ζ for σ ;∗ ζ.

• Given that fix x:σi.ei ;∗ vi by : we can conclude that η `
fix x:σ1.e1 ≈`0

fix x:σ2.e2 : σ.

Case For i = 1 or i = 2, fix x:σi.ei ↑
• Follows directly from :.

Theorem D.18 (Substitution).

1. If ∆ ` τ : κ and δ1 ≈`0
δ2 : ∆ then δ1(τ) ≈`0

δ2(τ) : κ.

2. If ∆? | Γ ` e : σ and δ1 ≈`0
δ2 : ∆? and η ` ∆? and η ` γ1 ≈`0

γ2 : Γ then
η ` δ1(γ1(e)) ≈`0

δ2(γ2(e)) : σ.

Proof. Part 1 follows by induction over the structure of ∆ ` τ : κ.

Case
α:κ ∈ ∆

∆ ` α : κ
:

• Immediate by inversion upon δ1 ≈`0
δ2 : ∆.

Case

∆ ` bool : ?⊥
:

• By the definition of substitution δi(bool) = bool, and bool ;∗ bool by
:, therefore δi(bool) ;∗ δi(bool).

• ⊥ v `0 for any `0 so it follows trivially from :- that bool ∼`0

bool : ?⊥.

• By : on bool ∼`0
bool : ?⊥ and δi(bool) ;∗ δi(bool) we can

conclude that bool ≈`0
bool : ?⊥.

Case
∆ ` τ1 : ?`1 ∆ ` τ2 : ?`2

∆ ` τ1 −→ τ2 : ?`1t`2
:

48 APPENDIX D. λSECI NONINTERFERENCE

• By the definition of substitution δi(τ1 −→ τ2) = δi(τ1) −→ δi(τ2), and
δi(τ1) −→ δi(τ2) ;∗ δi(τ1) −→ δi(τ2) by :, therefore
δi(τ1 −→ τ2) ;∗ δi(τ1 −→ τ2).

• Lattice joins and order are decidable, so either `1t`2 v `0 or `1t`2 6v `0.

Sub-Case `1 t `2 v `0.
– Appeal to the induction hypothesis on ∆ ` τ1 : ?`1 and ∆ ` τ2 :

?`2 with δ1 ≈`0
δ2 : ∆ yielding δ1(τ1) ≈`0

δ2(τ1) : ?`1 and
δ1(τ2) ≈`0

δ2(τ2) : ?`2 .
– Using :- on these along with `1 t `2 v `1 t `2 (by

reflexivity) and `1 t `2 v `0 yields

δ1(τ1) −→ δ1(τ2) ∼`0
δ2(τ1) −→ δ2(τ2) : ?`1t`2

Sub-Case `1 t `2 6v `0

– It follows trivially from :- that

δ1(τ1) −→ δ1(τ2) ∼`0
δ2(τ1) −→ δ2(τ2) : ?`1t`2

• Using : on δi(τ1) −→ δi(τ2) ;∗ δi(τ1) −→ δi(τ2) and

δ1(τ1) −→ δ1(τ2) ∼`0
δ2(τ1) −→ δ2(τ2) : ?`1t`2

gives us

δ1(τ1) −→ δ1(τ2) ≈`0
δ2(τ1) −→ δ2(τ2) : ?`1t`2

which by the equality described above, is the same as

δ1(τ1 −→ τ2) ≈`0
δ2(τ1 −→ τ2) : ?`1t`2

Case The case for: is symmetric to the case for:.

Case
∆, α:κ1 ` τ : κ2

∆ ` λα:κ1.τ : κ1
⊥

−→ κ2

:

• By the definition of substitutionδi(λα:κ1.τ) = λα:κ1.δi(τ) and by :
weknowλα:κ1.δi(τ) ;∗ λα:κ1.δi(τ), thereforeδi(λα:κ1.τ) ;∗ δi(λα:κ1.τ).

• Assume τ1 ≈`0
τ2 : κ1. Therefore, δ1, [τ1/α] ≈`0

δ2, [τ2/α] : ∆, α:κ1 by
Definition D.7 and inversion upon δ1 ≈`0

δ2 : ∆ .

49

• Appealing to the induction hypothesis on ∆, α:κ1 ` τ : κ2 with
δ1, [τ1/α] ≈`0

δ2, [τ2/α] : ∆, α:κ1 we have that

(δ1, [τ1/α])(τ) ≈`0
(δ2, [τ2/α])(τ) : κ2

• By Lemma D.10 we know that this is the same as

(λα:κ1.δ1(τ))τ1 ≈`0
(λα:κ1.δ2(τ))τ2 : κ2

Furthermore by Lemma D.12 Part 1 on κ2 v κ2 t ⊥ and

(λα:κ1.δ1(τ))τ1 ≈`0
(λα:κ1.δ2(τ))τ2 : κ2

we know that

(λα:κ1.δ1(τ))τ1 ≈`0
(λα:κ1.δ2(τ))τ2 : κ2 t ⊥

• Consequently, discharging our assumption we have that

λα:κ1.δ1(τ) ∼`0
λα:κ1.δ2(τ) : κ1

⊥
−→ κ2

Use of : on this and λα:κ1.δi(τ) ;∗ λα:κ1.δi(τ) yields

λα:κ1.δ1(τ) ≈`0
λα:κ1.δ2(τ) : κ1

⊥
−→ κ2

By the above identity, this is the same as

δ1(λα:κ1.τ) ≈`0
δ2(λα:κ1.τ) : κ1

⊥
−→ κ2

Case
∆ ` τ1 : κ1

`
−→ κ2 ∆ ` τ2 : κ1

∆ ` τ1τ2 : κ2 t `
:

• Appealing to the induction hypothesis on ∆ ` τ1 : κ1
`

−→ κ2 and
∆ ` τ2 : κ1 with δ1 ≈`0

δ2 : ∆ gives us δ1(τ1) ≈`0
δ2(τ1) : κ1

`
−→ κ2

and δ1(τ2) ≈`0
δ2(τ2) : κ1.

• By inversion upon δ1(τ1) ≈`0
δ2(τ1) : κ1

`
−→ κ2 we have that δi(τ1) ;∗

νi and ν1 ∼`0
ν2 : κ1

`
−→ κ2. By further inversion upon ν1 ∼`0

ν2 :

κ1
`

−→ κ2 we know that

∀(τ ′1 ≈`0
τ ′2 : κ1).ν1τ

′
1 ≈`0

ν2τ
′
2 : κ2 t `

50 APPENDIX D. λSECI NONINTERFERENCE

• Instantiating this with δ1(τ2) ≈`0
δ2(τ2) : κ1 gives us

ν1(δ1(τ2)) ≈`0
ν2(δ2(τ2)) : κ2 t `

By inversion on this we get that νi(δi(τ2)) ;∗ ν ′i and ν ′1 ∼`0
ν ′2 : κ2t `2.

• Given δi(τ1) ;∗ νi andνi(δi(τ2)) ;∗ ν ′i weknow thatδi(τ1)δi(τ2) ;∗

ν ′i. As δi(τ1)δi(τ2) = δi(τ1τ2), this is the same as δi(τ1τ2) ;∗ ν ′i.
• We have what we need and can conclude δ1(τ1τ2) ≈`0

δ2(τ1τ2) : κ2 t `

by :.

Case

∆ ` τ : ?`

` v ` ′ ∆ ` τbool : κ ∆ ` τ−→ : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ

∆ ` τ× : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ where ` ′ = L(κ)

∆ ` Typerec τ τbool τ−→ τ× : κ
:

• By appealing to the induction hypothesis on δ1 ≈`0
δ2 : ∆ and

– ∆ ` τ : ?` and
– ∆ ` τbool : κ and

– ∆ ` τ−→ : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ and

– ∆ ` τ× : ?` ` ′
−→ ?` ` ′

−→ κ
` ′

−→ κ
` ′

−→ κ

yields
– δ1(τ) ≈`0

δ2(τ) : ?` and
– δ1(τbool) ≈`0

δ2(τbool) : κ and

– δ1(τ−→) ≈`0
δ2(τ−→) : ?` ` ′

−→ ?` ` ′
−→ κ

` ′
−→ κ

` ′
−→ κ and

– δ1(τ×) ≈`0
δ2(τ×) : ?` ` ′

−→ ?` ` ′
−→ κ

` ′
−→ κ

` ′
−→ κ

• Using Lemma D.16 on these facts gives us that

Typerec δ1(τ) δ1(τbool) δ1(τ−→) δ1(τ×) ≈`0
Typerec δ2(τ) δ2(τbool) δ2(τ−→) δ2(τ×) : κ

By the definition of substitution this is identical to

δ1(Typerec τ τbool τ−→ τ×) ≈`0
δ2(Typerec τ τbool τ−→ τ×) : κ

Case
∆ ` τ : κ1 κ1 ≤ κ2

∆ ` τ : κ2

:

51

• First, appeal to the induction hypothesis on ∆ ` τ : κ1 with δ1 ≈`0
δ2 : ∆

to conclude δ1(τ) ≈`0
δ2(τ) : κ1.

• Using Lemma D.12 Part 1. on this with κ1 v κ2 we can conclude the
desired result, δ1(τ) ≈`0

δ2(τ) : κ2.

Part 2 follows by induction over the structure/heights of typing derivations.

Cases The cases for: and: are analogous to that for:.

Case
∆? ` Γ x : σ ∈ Γ

∆? | Γ ` x : σ
:

• Follows immediately by inversion upon η ` γ1 ≈`0
γ2 : Γ .

Cases The cases for: and: are analogous to those for: and
:.

Case
∆?, α:?` | Γ ` e : σ

∆? | Γ ` Λα:?`.e : ∀⊥α:?`.σ
:

• By the definition of substitution, we know that
δi(γi(Λα:?`.e)) = Λα:?`.δi(γi(e)). Furthermore, by : we know
that Λα:?`.δi(γi(e)) ;∗ Λα:?`.δi(γi(e)). Therefore, we have that
(δi(γi(Λα:?`.e)) ;∗ (δi(γi(Λα:?`.e)).

• Assume δ1(τ1) ≈`0
δ2(τ2) : ?` and a consistent R such that

R`2
ρ ∈ δ1((ρ{τ1})

`2) ↔ δ2((ρ{τ2})
`2)

• Therefore, by Definition D.7 and : we know that η, α 7→ R `
∆?, α:?` and δ1, [δ1(τ1)/α] ≈`0

δ2, [δ2(τ2)/α] : ∆?, α:?`.
• Appealing to the induction hypothesis on ∆?, α:?` | Γ ` e : σ with the

above gives us that

η, α 7→ R ` (δ1, [δ1(τ1)/α])(γ1(e)) ≈`0
(δ2, [δ2(τ2)/α])(γ2(e)) : σ

• Using Lemma D.10 we can conclude that

η, α 7→ R ` δ1(γ1((Λα:?`.e)[τ1])) ≈`0
δ2(γ2((Λα:?`.e)[τ2])) : σ

Furthermore, by Lemma D.12 and ∆? ` σ ≤ σ t ⊥ we know that

η, α 7→ R ` δ1(γ1((Λα:?`.e)[τ1])) ≈`0
δ2(γ2((Λα:?`.e)[τ2])) : σ t ⊥

52 APPENDIX D. λSECI NONINTERFERENCE

• Discharging our assumptions, we have that

η ` δ1(γ1(Λα:?`.e)) ∼`0
δ2(γ2(Λα:?`.e)) : ∀⊥α:?`.σ

Using this along with (δi(γi(Λα:?`.e)) ;∗ (δi(γi(Λα:?`.e)) and
: we can conclude that

η ` δ1(γ1(Λα:?`.e)) ≈`0
δ2(γ2(Λα:?`.e)) : ∀⊥α:?`.σ

Case
∆? | Γ ` e : ∀`α:?` ′ .σ ∆? ` τ : ?` ′

∆? | Γ ` e[τ] : σ[τ/α] t `
:

• Appealing to the induction hypothesis on ∆? | Γ ` e : ∀`α:?` ′ .σ, we get
that η ` δ1(γ1(e)) ≈`1

δ2(γ2(e)) : ∀`α:?` ′ .σ.
• By inversion on η ` δ1(γ1(e)) ≈`0

δ2(γ2(e)) : ∀`α:?` ′ .σ we know that
either δi(γi(e)) ;∗ vi or δi(γi(e)) ↑.
Sub-Case δi(γi(e)) ;∗ vi.

– Also inversion we know that, ∀`α:?` ′ .σ ′ ;∗ ζ and η ` v1 ∼`0

v2 : ζ. By inversion on the weak-head reduction we know that
ζ = ∀`α:?` ′ .σ. Inverting η ` v1 ∼`1

v2 : ∀`α:?` ′ .σwe know that

∀(δ1(τ
′
1) ≈`0

δ2(τ
′
2) : ?` ′).

∀(R` ′
ρ ∈ δ1((ρ{τ ′1})

` ′) ↔ δ2((ρ{τ ′2})
` ′).

η, α 7→ R ` v1[τ1] ≈`1
v2[τ2] : σ t `

– Using Part 1 on ∆? ` τ : ?` ′ we have that δ1(τ) ≈`0
δ2(τ) : ?` ′ .

– Choose R` ′
ρ to be {(v1, v2) | η ` v1 ∼`0

v2 : ζ, (ρ{τ})` ′ ;∗ ζ}.
– Applying δ1(τ) ≈`0

δ2(τ) : ?` ′ and R gives us that

η, α 7→ R ` v1[δ1(τ)] ≈`1
v2[δ2(τ)] : σ t `

Using Lemma D.15 on this we can conclude

η ` v1[δ1(τ)] ≈`1
v2[δ2(τ)] : σ[τ/α] t `

– Given that δi(γi(e)) ;∗ vi we know that δi(γi(e))[δi(τ)] ;∗

vi[δi(τ)]. Using Lemma D.10 we can conclude that

η ` δ1(γ1(e))[δ1(τ)] ≈`1
δ1(γ2(e))[δ2(τ)] : σ[τ/α] t `

which by the definition of substitution is identical to the desired
result

η ` δ1(γ1(e[τ])) ≈`1
δ1(γ2(e[τ])) : σ[τ/α] t `

53

Sub-Case δi(γi(e)) ↑.
– Then we know that δi(γi(e[τ])) ↑ as well. Using : we

can conclude η ` δ1(γ1(e[τ])) ≈`0
δ2(γ2(e[τ])) : σ[τ/α] t `.

Case
∆? | Γ ` e1 : σ1 ∆? | Γ ` e2 : σ2

∆? | Γ ` 〈e1, e2〉 : σ1 ×⊥ σ2

:
.

• By appealing to the induction hypothesis on ∆? | Γ ` e1 : σ1 and ∆? | Γ `
e2 : σ2 with δ1 ≈`0

δ2 : ∆? and η ` ∆? and η ` γ1 ≈`0
γ2 : Γ we have

that
η ` δ1(γ1(e1)) ≈`0

δ2(γ2(e1)) : σ1

and
η ` δ1(γ1(e1)) ≈`0

δ2(γ2(e1)) : σ2

• By inversion on η ` δ1(γ1(e1)) ≈`0
δ2(γ2(e1)) : σ1

either δi(γi(e1)) ;∗ v1i or δi(γi(e1)) ↑.
Sub-Case δi(γi(e1)) ;∗ v1i.

– By inversion upon η ` δ1(γ1(e2)) ≈`0
δ2(γ2(e2)) : σ2 either

δi(γi(e2)) ;∗ v2i or δi(γi(e2)) ↑.
Sub-Sub-Case δi(γi(e2)) ;∗ v2i.
∗ Because δi(γi(e1)) ;∗ v1i and δi(γi(e2)) ;∗ v2i we can

conclude that 〈δi(γi(e1)), δi(γi(e2))〉 ;∗ 〈v1i, v2i〉which
by the definition of substitution is identical to
δi(γi(〈e1, e2〉)) ;∗ 〈v1i, v2i〉.

∗ Therefore, fst δi(γi(〈e1, e2〉)) ;∗ v1i and
snd δi(γi(〈e1, e2〉)) ;∗ v2i respectively. Also by the above
inversions upon

η ` δ1(γ1(e1)) ≈`0
δ2(γ2(e1)) : σ1

and
η ` δ1(γ1(e2)) ≈`0

δ2(γ2(e2)) : σ2

we know that η ` v11 ∼`0
v12 : ζ1 and η ` v21 ∼`0

v22 : ζ2

for σ1 ;∗ ζ1 and σ2 ;∗ ζ2.
∗ Using Lemma D.12 on these along with ∆? ` ζi ≤ ζi t ⊥

and∆? ` σi ≤ σit⊥we have that η ` v11 ∼`0
v12 : ζ1t⊥

and η ` v21 ∼`0
v22 : ζ2 t ⊥ for σ1 t ⊥ ;∗ ζ1 t ⊥ and

σ2 t ⊥ ;∗ ζ2 t ⊥.

54 APPENDIX D. λSECI NONINTERFERENCE

∗ Consequently, by : we have that

η ` fst δ1(γ1(〈e1, e2〉)) ≈`0
fst δ2(γ2(〈e1, e2〉)) : σ1 t ⊥

and

η ` snd δ1(γ1(〈e1, e2〉)) ≈`0
snd δ2(γ2(〈e1, e2〉)) : σ2t⊥

∗ Finally, by : we can conclude

η ` δ1(γ1(〈e1, e2〉)) ∼`0
δ2(γ2(〈e1, e2〉)) : σ1 ×⊥ σ2

Using this alongwith 〈δi(γi(e1)), δi(γi(e2))〉 ;∗ 〈v1i, v2i〉
gives us the desired result

η ` δ1(γ1(〈e1, e2〉)) ≈`0
δ2(γ2(〈e1, e2〉)) : σ1 ×⊥ σ2

Sub-Sub-Case δi(γi(e2)) ↑.
∗ Then we know that δi(γi(〈e1, e2〉)) ↑ and we can use

: to conclude that

η ` δ1(γ1(〈e1, e2〉)) ≈`0
δ2(γ2(〈e1, e2〉)) : σ1 ×⊥ σ2

Sub-Case δi(γi(e1)) ↑.
– Then we know that δi(γi(〈e1, e2〉)) ↑ and we can use :

to conclude that

η ` δ1(γ1(〈e1, e2〉)) ≈`0
δ2(γ2(〈e1, e2〉)) : σ1 ×⊥ σ2

Case
∆? | Γ ` e : σ1 ×` σ2

∆? | Γ ` fst e : σ1 t `
:

• Appealing to the induction hypothesis on ∆? | Γ ` e : σ1 ×` σ2 we know
that η ` δ1(γ1(e)) ≈`0

δ2(γ2(e)) : σ1 ×` σ2.
• By inversion upon η ` δ1(γ1(e)) ≈`0

δ2(γ2(e)) : σ1×` σ2 we know that
either δi(γi(e)) ;∗ vi or δi(γi(e)) ↑.
Sub-Case δi(γi(e)) ;∗ vi,

– Also by inversion upon

η ` δ1(γ1(e)) ≈`0
δ2(γ2(e)) : σ1 ×` σ2

we have that σ1 ×` σ2 ;∗ σ ′ η ` v1 ∼`0
v2 : σ ′.

55

– By inversion upon σ1 ×` σ2 ;∗ σ ′ we know that σ ′ = σ1×` σ2.
– By inversion upon η ` v1 ∼`0

v2 : σ1 ×` σ2 we know that
η ` fst v1 ≈`0

fst v2 : σ1t ` and η ` snd v1 ≈`0
snd v2 : σ2t `.

– Given that δi(γi(e)) ;∗ vi we know that fst δi(γi(e)) ;∗ fst vi

which by the definition of substitution is the same as
δi(γi(fst e)) ;∗ fst vi. Therefore by Lemma D.10 we can con-
clude that

η ` δ1(γ1(fst e)) ≈`0
δ2(γ2(fst e)) : σ1 t `

Sub-Case δi(γi(e)) ↑
– Therefore, we can conclude that fst δi(γi(e)) ↑, which by the

definition of substitution is the same as δi(γi(fst e)) ↑. Therefore,
regardless of whether i = 1 or i = 2 by : we have that
η ` δ1(γ1(fst e)) ≈`0

δ2(γ2(fst e)) : σ1 t `.

Case The case for: is symmetric to the case for:.

Case

∆? | Γ ` e1 : (bool)` ∆? | Γ ` e2 : σ ∆? | Γ ` e3 : σ

∆? | Γ ` if e1 then e2 else e3 : σ t `
:

Sub-Case ` 6v `0.

• Then by Lemma D.14 Part 2 we know that

η ` δ1(g1(if e1 then e2 else e3)) ≈`0
δ2(g2(if e1 then e2 else e3)) : σt`

Sub-Case ` v `0.

• By appealing to the induction hypothesis on ∆? | Γ ` e1 : (bool)` we
know that η ` δ1(γ1(e1)) ≈`0

δ2(γ2(e1)) : (bool)`. By inversion
on this we know that either δi(γi(e1)) ;∗ vi or δi(γi(e1)) ↑.
Sub-Sub-Case δi(γi(e1)) ;∗ vi.

– Also by inversion we know that η ` v1 ∼`0
v2 : ζ where

(bool)` ;∗ ζ. And by inversion on the weak-head reduction
we know that ζ = (bool)`.

– Therefore, by inversion upon η ` v1 ∼`0
v2 : (bool)` we can

conclude ` v `0 ⇒ v1 = v2. We assumed that ` v `0, so
v1 = v2.

– By Lemma B.15 we know that vi = true or vi = false.

56 APPENDIX D. λSECI NONINTERFERENCE

Sub-Sub-Sub-Case vi = true. By appealing to the induction
hypothesis on ∆? | Γ ` e1 : (bool)` we know that

η ` δ1(γ1(e2)) ≈`0
δ2(γ2(e2)) : σ

By Lemma D.12 we can conclude

η ` δ1(γ1(e2)) ≈`0
δ2(γ2(e2)) : σ t `

We know that δi(γi(if e1 then e2 else e3)) ;∗ δi(γi(e2)),
therefore by Lemma D.10 we can conclude the desired result

η ` δ1(g1(if e1 then e2 else e3)) ≈`0
δ2(g2(if e1 then e2 else e3)) : σt`

Sub-Sub-Sub-Case The case for vi = false is symmetric.
Sub-Sub-Case δi(γi(e1)) ↑.

– Then we know that δi(gi(if e1 then e2 else e3)) ↑ and can use
: to conclude that

η ` δ1(g1(if e1 then e2 else e3)) ≈`0
δ2(g2(if e1 then e2 else e3)) : σt`

Case
∆? | Γ, x:σ ` e : σ ∆? ` σ

∆? | Γ ` fixn x:σ.e : σ
:

• By the definition of substitution, we know that δi(γi(fixn x:σ.e)) =

fixn x:σ.δi(γi(e)).

• The case follows from induction upon n.

Sub-Case n = 0.
– By Lemma C.4 we know that fix0 x:σ.δi(γi(e)) ↑. Therefore, by

: we can conclude that

η ` fix0 x:σ.δ1(γ1(e)) ≈`0
fix0 x:σ.δ2(γ2(e)) : σ

– By the above identity, this means that we have

η ` δ1(γ1(fix0 x:σ.e)) ≈`0
δ2(γ2(fix0 x:σ.e)) : σ

Sub-Case n = m + 1.
– By appealing to the local induction hypothesis on m gives us that

η ` δ1(γ1(fixm x:σ.e)) ≈`0
δ2(γ2(fixm x:σ.e)) : σ.

57

– By Definition D.9 and inversion upon η ` γ1 ≈`0
γ2 : Γ we can

conclude that

η ` γ1, [γ1(fixm x:σ.e)/x] ≈`0
γ2, [γ2(fixm x:σ.e)/x] : Γ, x:σ

– Appealing to the global induction hypothesis on
∆? | Γ, x:σ ` e : σ with

η ` γ1, [γ1(fixm x:σ.e)/x] ≈`0
γ2, [γ2(fixm x:σ.e)/x] : Γ, x:σ

gives us that

η ` δ1((γ1, [γ1(fixm x:σ.e)/x])(e)) ≈`0
δ2((γ2, [γ2(fixm x:σ.e)/x])(e)) : σ

– Trivially, n − 1 = m, so using Lemmas D.10 on

η ` δ1((γ1, [γ1(fixm x:σ.e)/x])(e)) ≈`0
δ2((γ2, [γ2(fixm x:σ.e)/x])(e)) : σ

we can conclude

η ` δ1(γ1(fixn x:σ.e)) ≈`0
δ2(γ2(fixn x:σ.e)) : σ

Case
∆? | Γ, x:σ ` e : σ ∆? ` σ

∆? | Γ ` fix x:σ.e : σ
:

• Using Lemma C.5 we know that for alln, ∆? | Γ ` fixn x:σ.e : σ.

• Therefore, assume an arbitrary m. Appealing to the induction hypothesis
on ∆? | Γ ` fixm x:σ.e : σ with η ` γ1 ≈`0

γ2 : Γ gives us that
η ` δ1(γ1(fixm x:σ.e)) ≈`0

δ2(γ2(fixm x:σ.e)) : σ.

• By the definition of substitutionδi(γi(fixm x:σ.e)) = fixm x:δi(σ).δi(γi(e)).
Therefore, we have that

η ` fixm x:δ1(σ).δ1(γ1(e)) ≈`0
fixm x:δ2(σ).δ2(γ2(e)) : σ

• Discharging our assumption we have that for all n,

η ` fixn x:δ1(σ).δ1(γ1(e)) ≈`0
fixn x:δ2(σ).δ2(γ2(e)) : σ

Using Lemma 3.3 we can conclude

η ` fix x:δ1(σ).δ1(γ1(e)) ≈`0
fix x:δ2(σ).δ2(γ2(e)) : σ

58 APPENDIX D. λSECI NONINTERFERENCE

• Again by the definition of substitution, δi(γi(fix x:σ.e)) = fix x:δi(σ).δi(γi(e)).
Therefore, we have the desired result

η ` δ1(γ1(fix x:σ.e)) ≈`0
δ2(γ2(fix x:σ.e)) : σ

Case The case for: is analogous to: and:.

Case The case for: is analogous to that for:.

Corollary D.19 (Confidentiality). If α:?> | x:(α)⊥ ` e : (bool)⊥ then for any · ` v1 :

τ1 and ` v2 : τ2 if e[τ1/α][v2/x] and e[τ2/α][v2/x] both terminate, they will produce
the same value.

Proof. Then construct a derivation that · | · ` Λα:?>.λx:(α)⊥.e : ∀α:?>.(α)⊥
⊥

−→
(bool)⊥ using the appropriate typing rules and then appeal to Theorem D.18 Part 2 to
obtain

· ` Λα:?>.λx:(α)⊥.e ∼⊥ Λα:?>.λx:(α)⊥.e : ∀α:?>.(α)⊥
⊥

−→ (bool)⊥

By Lemma D.14 Part 1 we can have that τ1 ≈⊥ τ2 : ?>. Next, by inversion on :
and instantiation with the constructor relation, τ1 ≈⊥ τ2 : ?>, and the relation

R`
ρ = {(v1, v2) | (· | · ` v1 : (ρ{τ1})

`), (· | · ` v2 : (ρ{τ2})
`)}

we can conclude that

·, α 7→ R ` (Λα:?>.λx:(α)⊥.e)[τ1] ≈⊥ (Λα:?>.λx:(α)⊥.e)[τ2] : (α)⊥
⊥

−→ (bool)⊥

By straightforward application of : we have that

·, α 7→ R ` v1 ∼⊥ v2 : (α)⊥

so by application of :, inversion on :, and instantiation we know

·, α 7→ R ` (Λα:?>.λx:(α)⊥.e)[τ1]v1 ≈⊥ (Λα:?>.λx:(α)⊥.e)[τ2]v2 : (bool)⊥

Finally, because the relation is closed under reductionwehave : and instantiation
we have

·, α 7→ R ` e[τ1/α][v1/x] ≈⊥ e[τ2/α][v2/x] : (bool)⊥

from which the desired conclusion can be obtained by simple inversion.

59

Corollary D.20 (Noninterference). If ·, x:σ1 ` e : σ2 where L(σ1) 6v L(σ2) then for
any ` v1 : σ1 and ` v2 : σ1 it is the case that if both e[v1/x] and e[v2/x] terminate,
they will both produce the same value

Proof. Proceeds in a similar fashion to Corollary D.19.

Corollary D.21 (Integrity). If α:?> | · ` e : (α)⊥ then e[τ/α] for any τ must diverge.

Proof. First construct a derivation that · | · ` Λα:?>.e : ∀α>:(α)⊥ using the appro-
priate typing rules, then appeal to Theorem D.18 Part 2 to obtain to obtain

· ` Λα:?>.e ∼⊥ Λα:?>.e : ∀α:?>.(α)⊥

Now assume an arbitrary τ. It is straightforward to show that τ ≈⊥ τ : ?>. By
inversion on : and instantiation we can conclude

·, α 7→ ∅ ` (Λα:?>.e)[τ] ≈⊥ (Λα:?>.e)[τ] : (α)⊥

Because the relation is closed under reduction we have that

·, α 7→ ∅ ` e[τ/α] ≈⊥ e[τ/α] : (α)⊥

Furthermore, by inversion either e[τ/α] ;∗ v or e[τ/α] ↑. However in the former
case that would mean that

·, α 7→ ∅ ` v ∼⊥ v : (α)⊥

which by inversion on : is impossible because there is no v such that v∅v.
Therefore e[τ/α] ↑.

$Id: seckinds.tex 238 2005-06-24 19:42:35Z geoffw $

	Generalizing Parametricity Using Information Flow (Extended Version)
	Recommended Citation

	Generalizing Parametricity Using Information Flow (Extended Version)
	Abstract
	Comments

	tmp.1161806864.pdf.Jxz8g

