
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

February 1998

Updating Complex Value Databeses Updating Complex Value Databeses

H. Liefke
University of Pennsylvania

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
H. Liefke and Susan B. Davidson, "Updating Complex Value Databeses", . February 1998.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-98-06.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/75
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76361105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/75
mailto:repository@pobox.upenn.edu

Updating Complex Value Databeses Updating Complex Value Databeses

Abstract Abstract
Query languages and their optimizations have been a very important issue in the database community.
Languages for updating databases, however, have not been studied to the same extent, although they are
clearly important since databases must change over time. The structure and expressiveness of updates
is largely dependent on the data model. In relational databases, for example, the update language
typically allows the user to specify changes to individual fields of a subset of a relation that meets some
selection criterion. The syntax is terse, specifying only the pieces of the database that are to be altered.
Because of its simplicity, most of the optimizations take place in the internal processing of the update
rather than at the language level. In complex value databases, the need for a terse and optimizable update
language is much greater, due to the deeply nested structures involved.

Starting with a query language for complex value databases called the Collection Programming Language
(CPL), we describe an extension called CPL+ which provides a convenient and intuitive specification of
updates on complex values. CPL is a functional language, with powerful optimizations achieved through
rewrite rules. Additional rewrite rules are derived for CPL+ and a notion of "deltafication" is introduced to
transform complete updates, expressed as conventional CPL expressions, into equivalent update
expressions in CPL+. As a result of applying these transformations, the performance of complex updates
can increase substantially.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-98-06.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/75

https://repository.upenn.edu/cis_reports/75

Updating Complex Value Databases �H. Liefke and S.B. DavidsonDept. of Computer and Information ScienceUniversity of Pennsylvanialiefke@seas.upenn.edu and susan@cis.upenn.eduFebruary 23, 1998AbstractQuery languages and their optimizations have been a very important issue in the database community.Languages for updating databases, however, have not been studied to the same extent, although they areclearly important since databases must change over time. The structure and expressiveness of updates islargely dependent on the data model. In relational databases, for example, the update language typicallyallows the user to specify changes to individual �elds of a subset of a relation that meets some selectioncriterion. The syntax is terse, specifying only the pieces of the database that are to be altered. Becauseof its simplicity, most of the optimizations take place in the internal processing of the update rather thanat the language level. In complex value databases, the need for a terse and optimizable update languageis much greater, due to the deeply nested structures involved.Starting with a query language for complex value databases called the Collection Programming Lan-guage (CPL), we describe an extension called CPL+ which provides a convenient and intuitive speci�ca-tion of updates on complex values. CPL is a functional language, with powerful optimizations achievedthrough rewrite rules. Additional rewrite rules are derived for CPL+ and a notion of \delta�cation" isintroduced to transform complete updates, expressed as conventional CPL expressions, into equivalentupdate expressions in CPL+. As a result of applying these transformations, the performance of complexupdates can increase substantially.1 IntroductionAlthough query languages for complex value databases have been well studied [3, 35, 6, 18], the issue ofupdating such databases has not. For example, a standard for object-oriented query languages is given in[11] (OQL), but there is no mention of updates apart from the notion of a transaction. Update languages{ for any model { are, however, clearly important since databases are not static but change to reect theworld that they model. Such changes can trigger updates at the instance as well as the schema level, andwhile both are important for now we only address changes at the instance level. Schema updates and schemaevolution have been studied thoroughly, for example in [27, 28, 16].What should an update language provide? We believe that users should be able to specify updates bysimply describing the parts of the database instance that have to be changed. Update languages for therelational data model, for example, typically allow the user to specify changes to individual �elds of a subsetof a relation that meets some selection criterion. As an example, suppose our database contains a relation�This research was supported in part by DOE DE-FG02-94-ER-61923 Sub 1, NSF BIR94-02292 PRIME, ARO AASERTDAAH04-93-G0129, and ARPA N00014-94-1-1086. 1

Employees(Id, Name, Salary) and we wish to increase the salary of any employee named \Joe" by $5,000. InSQL-92 this could be written asUPDATE Employees ESET S.Salary= S.Salary+5000WHERE S.Name= `Joe`The syntax is terse, specifying only the pieces of the database that are to be altered. In complex valuedatabases, the need for a terse speci�cation of updates is even greater than in relational databases due tothe deeply nested structures involved.The update language should also be optimizable. In relational databases, this is usually interpreted asdetermining the best way of implementing a selection criterion. Interestingly however, it may be possiblefor users to write expressions that appear to update a larger subvalue than actually necessary. Suppose thatthe user wrote the update expressionUPDATE Employees ESET S.Id= S.Id, S.Name=`Joe`, S.Salary= S.Salary+5000WHERE S.Name= `Joe`Clearly this is equivalent to the previous SQL-92 update expression. Although it is unlikely that the secondexpression will take much of a performance hit with a relational instance since the attribute values arebase types (integer, string, boolean, etc), it could be extremely ine�cient if attributes are allowed to havecomplex types such as sets. Thus while there are not many optimizations possible for relational updatelanguages - largely due to the simple data model { this is not true anymore for complex value updatelanguages. Updates (and necessary queries within the update) may involve large nested complex objects,and optimization techniques should reduce the number of values in the database that are read or updated.Starting with a query language for complex value databases called the Collection Programming Language(CPL), we describe in this paper an extension for updates called CPL+ that provides a terse, optimizablespeci�cation for complex updates. Since CPL is a functional language and updates cause side-e�ects, updatescannot be embedded in CPL expressions. We therefore extend CPL at the top level with constructs forupdates. Powerful rewrite rules are derived for CPL+ and a notion of \delta�cation" is introduced togenerate more e�cient CPL+ updates from complete updates. Complete updates completely replace avalue in the database by the result value of a query, whereas CPL+ updates replace the parts of a valuethat actually change. As a result of these transformations, many complex updates can be simpli�ed andperformed more e�ciently on the database.The rest of this paper is organized as follows: Section 2 gives an overview of the complex data model, theCPL language, and the internal representation which is used for rewriting and optimizing queries. Thenew update language CPL+ is introduced in section 3. Section 4 describes the applicable optimizations ofCPL+. Rewriting rules for update expressions are de�ned and the principle of delta�cation are explained.We conclude in section 5 with a discussion of related issues on updates and an indication of future research.2 CPL: A Query Language for Complex TypesThe Collection Programming Language (CPL) is based on a complex type system that allows arbitrarynesting of the collection types { set, bag and list { together with record and variant types [10, 35]. Forthe purposes of this paper we will restrict our attention to sets as the only collection type; we also do notconsider issues of object identity, although extensions to CPL can be made along these lines [14]. The set ofCPL types T are therefore given by the syntax: 2

� ::= bool j int j real j string j ::: j [a1 : �1; :::; an : �n] j < b1 : �1; :::; bn : �n > j f�gThe types bool, int, real, string, etc. are built-in base types and are denoted as b. [a1 : �1; : : : ; an : �n]constructs record types from the types �1; : : : ; �n; <b1 : �1; : : : ; bn : �n> constructs variant types from thetypes �1; : : : ; �n; and f�g constructs set types from the type � .For example, the following CPL type Person could be used to represent a person in a company:[Name:string, Age:int, Salary:real,Info:<Empl :[Projects:{string}],Manager:[Secr:string, Project:string],Secr :[Manager:string]>]Each person has a name, an age, and a salary, and is either an employee, a manager or a secretary. Anemployee is a�liated with a set of projects. A manager has a secretary and is a�liated with one singleproject. A secretary works for a manager.Values in CPL are explicitly constructed as follows: [a1 : e1; : : : ; an : en] for records, giving values of theappropriate type for each of the attributes; <a : e> for variants, giving a value of the appropriate type forone of the labels; and fe1 : : : eng for sets. For example, a value conforming to the Person type is:[Name:"Tom",Age:43,Salary:34000,Info:<Empl:{"Proj1","Proj3"}>]We consider the database schema to consist of a type, and an instance of the database to be a value of thattype. Note that we are ignoring issues of integrity constraints, and assume nothing about the \correctness"of instances.Continuing with the previous example, the schema of a database for the company could be the followingtype Company:[Persons:{[Name:string, Age:int, Salary:real,Info:<Empl:[Projects:{string}],Manager:[Secr:string, Project:string],Secr:[Manager:string]>]},Projs:{[Name:string,Descr:string]}]Here, in addition to sets of people, information about projects is maintained. A valid instance of this databasecould be the following value:[Persons:{[Name:"Tom" ,Age:43,Salary:34000,Info:<Empl:{"Proj1","Proj3"}>],[Name:"Julie",Age:28,Salary:23000,Info:<Empl:{"Proj1"}>],[Name:"Ellen",Age:32,Salary:56000,Info:<Secr:[Manager:"Peter"]>],[Name:"Peter",Age:54,Salary:78000,Info:<Manager:[Secr:"Ellen",Project:"Proj3"]>]},Projs:{[Name:"Proj1",Descr:"Database"],[Name:"Proj3",Descr:"Investment"]}]2.1 Queries in CPLThe syntax of CPL resembles, very roughly, that of relational calculus. However there are important di�er-ences that make it possible to deal with the richer variety of types we have mentioned.3

The important syntactic unit of CPL is the comprehension, which can be used with a variety of collectiontypes. As an example of a set comprehension, the following extracts the name and salary of all people whoare older than 40 from our database of type Company:{[Name:p.Name,Sal:p.Salary] | \p <- Persons, p.Age>40 }The variable p is successively bound (indicated by the backslash, \\p") to each element of Persons; \<-" isa set-generator. For each p, if p.Age>40 the value [Name:p.Name,Sal:p.Salary] is constructed; all suchvalues are then combined in a set to form the �nal result. Note we use the literal Persons as an entry point tothe database. It represents the attribute Persons of the database with record type Company. This exampleshows the use of comprehension, projection, and conditions.Another important concept of CPL is pattern matching. Instead of binding an element of a collection toa variable name using the expression \p, it is possible to specify complex variable bindings and conditionsusing patterns. The following example, which returns the age and project description of each manager named\Tom", illustrates the use of patterns:{[ManagerAge:a,ProjDescr:p.Descr] |[Name:"Tom",Age:\a,Info:<Manager:[Project:\proj,...]>,...] <- Persons,\p<-Projs, p.Name=proj}Each expression in CPL has a type that can be automatically inferred. The type of the result of the lastquery, for instance, would be {[ManagerAge:int, ProjDescr:string]}. The query also illustrates how toform the join of two sets by using two set-generators.These examples illustrate only a small part of the expressive power of CPL. A more detailed description ofthe language, including nesting, attening and function de�nition, is given in [10]. An important propertyof comprehension syntax is that it is derived from a more powerful programming paradigm on collectiontypes, that of structural recursion [9, 8]. This more general form of computation on collections allows theexpression of aggregate functions such as summation, as well as functions such as transitive closure, thatcannot be expressed through comprehensions alone. The advantage of using comprehensions is that they havea well-understood set of transformation rules [35, 33, 32] that generalize many of the known optimizationsof relational query languages to work for this richer type system.In addition to the existing language primitives in CPL, many di�erent operators and functions are alsoavailable to increase the functionality of CPL. Arithmetic operations, such as + and *, logical operations likeequality tests as well as set operations are an integral part of the system. For the purposes of this paper,we consider only the fragment of CPL without functions or operations on lists and bags. The scope of thislanguage will become clearer in the next subsection.2.2 The Monad Algebra NRC+Similar to the use of the relational algebra as a mathematical framework for implementing and optimizingSQL, CPL is based on an algebra called NRC+. Since the optimizations we will present, in particular thenotion of delta�cation, are based onNRC+, we will make a brief discursion to describe this more manipulableinternal form of CPL.Expressions of the monadic algebra NRC+ have the following form:e ::= c j v j true j false j e1 ^ e2 j e1 _ e2 j if e1 then e2 else e3 j [a1 : e1; :::; an : en] j �a(e) j< b : e > j case e of b1(v1)) e1 ; :::; bn(vn)) en j fg j feg j e1 [e2 j Sfe1 j v 2 e2g4

The expression c denotes literals like \Tom", 34.5, etc. true, and false denote the literals for the booleantype. The expression v represents the value of the variable. if e1 then e2 else e3 evaluates to e2 or e3,depending on the evaluation of condition e1. < b : e > is used to construct a variant value that has branchb and branch value e. case e of b1(v1)) e1 ; :::; bn(vn)) en deconstructs the variant value e: If e hasbranch bi for some 1 � i � n, then its branch value is bound to variable v1 and e1 is evaluated. Emptysets and singleton sets can be constructed using fg and feg, respectively. The construct e1 [e2 denotes theunion of sets.The construct that di�ers most from CPL is Sfe1 j v 2 e2g: It is the union of the sets e1[v ne01], ..., e1[v ne0n]with e2 = fe01; :::; e0ng, and captures the implementation of comprehensions in CPL.The semantics of NRC+ is described in �gure 1 and the typing rules are shown in �gure 2.N [[c]]� � cN [[v]]� � �(v)N [[true]]� � trueN [[false]]� � falseN [[e1 ^ e2]]� � N [[e1]]� ^ N [[e2]]�N [[e1 _ e2]]� � N [[e1]]� _ N [[e2]]�N [[if e1 then e2 else e3]]� � � N [[e1]]� = true) N [[e2]]�N [[e1]]� = false) N [[e3]]�N [[[a1 : e1; :::; an : en]]]� � fai 7! N [[ei]]� j 1 � i � ngN [[�a (e)]]� � (N [[e]]�)(a)N [[< b : e >]]� � (b;N [[e]]�)N [[case e of b1(v1)) e1 ; :::; bn(vn)) en]]� � 8<: N [[e]]� = (b1; u)) N [[e1]]�::: :::N [[e]]� = (bn; u)) N [[en]]�N [[fg]]� � fgN [[feg]]� � fN [[e]]�gN [[e1 [e2]]� � N [[e1]]� [N [[e2]]�N [[Sfe1 j v 2 e2g]]� � Sx2N [[e2]]�N [[e1]]�[v 7! x]Figure 1: Denotational Semantics for NRC+Let us briey illustrate the algebra by the following query, which returns the name and salary of people whoare older than 40 in our database of type Company.[f(if �Age(p) > 40 then f[Name : �Name(p); Salary : �Salary (p)]g else fg) j p 2 PersonsgIn this query, the variable p is successively bound to each element of Persons. If the age for such a personis bigger than 40, a record consisting of the projected name and salary of the person will be returned ina singleton set. Otherwise, the empty set is returned. The results of these evaluations for all elements ofPersons are unioned together into one set. This NRC+ expression corresponds to the CPL expression in the�rst example of the previous subsection.It is not di�cult to transform arbitrary CPL expressions into expressions of NRC+. Perhaps the mostinteresting is the transformation of comprehensions into a construct Sfe1 j v 2 e2g; this translation was �rst5

H ` e : �1 �1 �NRC+ �2H ` e : �2 v =2H 0H; v : �;H 0 ` v : �H ` true : bool H ` false : boolH ` e1 : bool H ` e2 : boolH ` e1 ^ e2 : bool H ` e1 : bool H ` e2 : boolH ` e1 _ e2 : boolH ` e1 : �1 � � � H ` en : �nH ` [a1 : e1; :::; an : en] : [a1 : �1; � � � ; an : �n] H ` e : [a1 : �1; � � � ; an : �n] 1 � i � nH ` �ai(e) : �iH ` fg : f>g H ` e : �H ` feg : f�gH ` e1 : f�g H ` e2 : f�gH ` e1 [e2 : f�g H; v : �1 ` e1 : �2 H ` e2 : f�1gH ` Sfe1 j v 2 e2g : �2H ` e1 : bool H ` e2 : � H ` e3 : �H ` if e1 then e2 else e3 : � H ` e : �H ` < b : e > : < b : � >H ` e : < b1 : �1 � � � bn : �n > H; v1 : �1 ` e1 : � � � � H; vn : �n ` en : �H ` case e of b1(v1)) e1 ; :::; bn(vn)) en : �Figure 2: Typing rules for NRC+studied by Wadler [34] and is based on three important rules:f e j g) fegf e1 j n v e2; :::g) [ffe1 j :::g j v 2 e2gf e1 j e2; :::g) if e2 then fe1 j :::g else fgSimilarly, there exist transformation rules for all types of CPL expressions. The complete set of transformatonrule can be found in [35].As another example, consider a query that returns the name and project of all managers who have "Julie"as a secretary. In CPL, the information could be extracted in the following way:{[Name:n,Project:p] |[Name:\n,Info:<Manager:[Secr:"Julie",Project:\p]>] <- Persons}];This query rewrites to the following NRC+ query:Sfcase �Info (p) of Empl (e)) fg;Secr(s)) fg; 6

Manager (m)) (if �Secr (m) = "Julie"then f[Name : �Name(p); P roject : �Project(m)]gelse fg)j p 2 PersonsgThe details of the transformation process and the underlying rules are described in [35]. Furthermore, basedon the mathematical properties of monads, a number of important rewriting rules (such as vertical loopfusion and �lter promotion) have been developed that generalize to this richer type system many of thewell-known optimizations for the relational algebra.3 Extending CPL with Updates : CPL+An update is a function from an instance of a given database schema (complex type) to another instanceof that schema. For example, if our database schema were {int} and initial instance were {3}, an updatecould yield a �nal instance of {3,4} but not "Tom".This example is a little unusual, of course, as we tend to think of a database schema as giving a set of namedvalues, as in the example from the previous sections. Here, the schema has two named values at the toplevel { Persons and Projects { and the database is a record type. While it may be convenient to think of adatabase schema as a set of named values, the update language we will describe will work for schemas ofany complex type. Top level updates must merely be correct with respect to the database type given.It is perfectly possible in CPL to specify an update by expressing it completely. Using the Company schemaof the previous section, if we want to increase Tom's salary by $5000 we could write something like thefollowing1:@Persons:={[Name:n,Age:a,Info:i,Salary:if (n="Tom") then s+5000 else s)]| [Name:\n,Age:\a,Salary:\s,Info:\i]<-Persons};However, this form of complete update is cumbersome to specify and ine�cient if executed as written { weare rewriting the entire set of Persons when only one record of one set is updated. We will therefore extendCPL with constructs for partially updating values.Since updates have side-e�ects, we cannot consider updates as CPL expressions that can be used in otherCPL expressions. Instead, it is necessary to introduce a new construct at the root level of the language inorder to distinguish between queries and updates:command ::= expr j @updThe pre�x @ is used to distinguish between conventional CPL expressions expr and the newly introducedCPL+ expressions. The update expression upd is given by the following grammar:upd ::= IDupd jai := upd jb : upd jif c then upd1 else upd2 jif c then upd je j1Person would actually need to be de�ned as a parameterless function, and updated using the syntax let Person ==, butthis merely complicates the point. 7

f su g jsetins e jupd1 ; upd2 jpat) upd jlet v := e in upd jHere, e denotes a conventional CPL expression, and c is a CPL-expression of type bool. The construct patdenotes a pattern matching expression, and su is used to express set updates. The syntax and meaning ofpatterns and set updates is described later.The identity update IDupd represents the identity function, and does not change the database instance. Therecord update ai := upd updates the attribute ai for the given record value by performing update upd on it.The variant update b : upd tests if the branch for the given variant value is b; if it is, then the update upd isperformed on the branch value. Expression if c then upd1 else upd2 evaluates condition c and, dependingon the result, performs either upd1 or upd2; if c then upd is syntactic sugar for if c then upd else IDupd .The update expression e denotes a complete update: The value is completely replaced by the value of e.The collection update fsug updates each element of the set by su. The expression setins e updates a set byinserting the elements of set e. upd1 ; upd2 denotes a sequence of updates. The expression let v := e in updbinds the evaluation of e to v and performs update upd .As in CPL, we use patterns to select subvalues and introduce variables. The update expression pat) updtries to match the value that has to be updated with the pattern. If the value matches, the variables in patare bound to the respective parts in the value and the update upd is performed. If the value does not matchthe pattern, then the value will not be changed.The syntax of patterns is:pat ::= j e j n v j < b : pat > j [a1 : pat1; � � � ; an : patn]The pattern matches anything. Pattern e matches the object whose value is equal to the value of e. Thepattern nv binds variable name v to the value. The pattern < b : pat > matches those variant values thathave branch b. The pattern pat is matched with the respective branch value. Pattern [a1 : pat1; � � � ; an : patn]matches record values that have attributes a1, ..., an and whose attribute values match the patterns pat1, ...,patn; the record value can have other attributes in addition to those in the pattern, i.e. it matches recordspartially. Whenever a pattern pat in pat) upd is not matched, then the update upd will not be performedon the value in the database. Otherwise, the update upd is performed while the new variables from pat canbe used in upd .It is important to note that the variables in a pattern are bound to the old value. That means the update upddoes not have any impact on the value represented by the variables. For example, let us consider the update\a => (a+2;a+5), which can be applied to any integer value. The �rst update a+2 increases the value by2; the second update a+5 increases the value by 5. However, the variable a in the second update representsthe value before the �rst update occured. Therefore, the entire update will only increase the value by 5. Toincrease the value by 7, it is necessary to bind the variable in each of the updates: (\a => a+2;\a => a+5).Set updates transform set values into new set values, in which elements may be inserted, deleted or modi�ed.The expressions below are applied to each of the elements in the set:su ::= setdel jupd jsetrepl e jsetif c then su1 else su2 j 8

setif c then su jsu1 ; su2 jpat) su jsetlet v := e in su jThe primitive setdel deletes the element from the set. The set update upd applies upd to the element ofthe set. Expression setrepl e evaluates the set expression e for the element and includes elements of theresulting set in the overall set. Expression setif c then su1 else su2 evaluates condition c and depending onthe result, performs either su1 or su2 on the element of the set. The construct setif c then su is syntacticsugar and can be expanded to setif c then su else IDupd . The sequence expression su1 ; su2 performs su1and su2 sequentially on the set element. The update expression pat) su tries to match the element of theset against the pattern. If the value matches, then the update su is performed on the value. Otherwise, thevalue will not be changed. The expression setlet v := e in su binds the evaluation of e to v and performsset update su on the set element.Let us consider a few update examples for the Company database:Example 1: Increase Tom's salary by $5000.@Persons:={ \e => if e.Name="Tom" then (Salary:=e.Salary+5000)}Variable e is successively bound to each element of the set Persons. If the condition e.Name="Tom" evaluatesto true for an element, then the salary is raised by $5000. Note that it is also possible to use pattern matchingto express the condition over the name and to bind a variable to salary:@Persons:={ [Name:"Tom",Salary:\s] => (Salary:=s+5000)}These should be contrasted with the complete update expession given at the beginning of this section. Ratherthan specifying the complete new set of persons, only the part that has to be updated is mentioned.Example 2: Insert a new manager named Jim with salary=$45000, age=64, a secretary named Ellen, anda project \NewProj". Ellen has age=25 and salary=$23000; \NewProj" is a new project in the database.@(Persons:=setins {[Name:"Jim",Age:64,Salary:45000,Info:<Manager:("Ellen","NewProj")>],[Name:"Ellen",Age:25,Salary:23000,Info:<Secretary:[Manager:"Jim"]>]};Projs:=setins {[Name:"NewProj", Descr:"Technology"]})In the example, the primitive setins is used to insert two new elements into the set Persons and one newelement into the set Projs.Example 3: Delete project \Test" from the database. This entails deleting it from the project list of allemployees, removing all employees who were only a�liated with that project, replacing the project name ofthe associated managers by \Void", and removing the project \Test" from the list of projects.First, \Test" is removed from the project set:@Projs:={[Name:"Test"] => setdel}All employees who are only a�liated with \Test" are then removed:9

@Persons:={[Info:<Empl:[Projects:{"Test"}]>] => setdel}The project is removed from the set of projects for each remaining employee:@Persons:={\e => Info:= Empl: Projects:={"Test" => setdel}}If the project of a manager is \Test", then replace it by \Void":@Persons:={[Info:<Manager:[Project:"Test"]>)=> (Info:=Manager:[Project:="Void"])}The updates can now easily be combined into one single update on the database:@(Projs:={[Name:"Test"] => setdel};Persons:={[Info:<Empl:[Projects:{"Test"}]>] => setdel};Persons:={\e => (Info:= Empl: Projects:={"Test" => setdel})};Persons:={[Info:<Manager:[Project:"Test"]>]=> (Info:=Manager: Project:="Void")})Note that update expressions can only be applied to values of the correct type. An update of the formPersons:=..., for instance, can only be applied to record values that have a Persons �eld. The updateexpression in the �rst example is only correct for record values that minimally contain an attribute Personswhich is a set with an element type that minimally contains two attributes Name and Salary with the basetypes string and real respectively.3.1 Semantics of CPL+An update can be interpreted as a transformation of an old value in the database into a new value: It ispossible to express the new value as an NRC+ expression as �gure 3 shows.For patterns and collection updates, two auxiliary semantic functions P [[pat ; pv; upd]]�� and [[su]]s�� arede�ned. The collection primitives translate a set of values to a new set of values. Therefore, they areinterpreted as functions from [[f�g]] to [[f�g]]. The semantics of all collection updates is de�ned in �gure 4.Patterns such as in pat) upd introduce variables and impose conditions on the update value. The newvariable bindings must be represented as an extension to the variable environment � before evaluating upd .Conditions are imposed on parts of the updated value. They are represented using the NRC+ expressionsif c then upd1 else upd2 and case e of :::.The semantics of patterns is de�ned by function P [[pat ; pv; upd]]�� shown in �gure 5. This function is de�nedrecursively on the structure of pat . It interprets the pattern expression pat with respect to the value in pv.It reduces pattern expressions based on its structure to the semantics of the update upd with additional.Note the recursive de�nition for record patterns. Within a record pattern, variables newly de�ned in anattribute pattern can be used in subsequent attribute patterns. For instance, the pattern [a : nv; b : v]matches record value that have attributes a and b that have the same attribute value.Like [[upd]]�� and [[upd]]s�� the semantic functions P [[pat ; pv; upd]]�� and Ps[[pat ; pv; upd]]�� are functionsfrom [[�]] to [[�]] and [[f�g]] to [[f�g]], respectively. Figure 5 shows the de�nition of P [[pat ; pv; upd]]�� andPs[[pat ; pv; upd]]��. 10

[[IDupd]]��(v) � v[[ai := upd]][a1:�1;:::;an:�n]�(v) � [a1 : �a1(v); � � � ; ai�1 : �ai�1(v);ai : [[upd]]�i�(�ai(v));ai+1 : �ai+1(v); � � � ; an : �an(v)][[bi : upd]]<b1:�1;:::;bn:�n>�(v) � case v of b1(v1)) v; � � � ; bi�1(vi�1)) v;bi(vi))< bi : [[upd]]�i�(vi) >;bi+1(vi+1)) v; � � � bn(vn)) v[[if c then upd]]��(v) � [[if c then upd else IDupd]]��(v)[[if c then upd1 else upd2]]��(v) � if c then [[upd1]]��(v) else [[upd2]]��(v)[[e]]��(v) � e[[fsug]]f�g�(s) � Sf[[su]]s��(v) j v 2 sg[[setins e]]f�g�(v) � v [e[[upd1 ; upd2]]��(v) � ([[upd 1]]�� � [[upd2]]��)(v)[[pat) upd]]��(v) � P [[pat ; v; upd]]��(v)[[let w := e in upd]]��(v) � [[upd]]��[w 7! e](v)Figure 3: Denotational Semantics for CPL+
[[setdel]]s��(v) � fg[[upd]]s��(v) � f[[upd]]��(v)g[[setrepl e]]s��(v) � e[[setif c then su1 else su2]]s��(v) � if c then [[su1]]s��(v) else [[su2]]s��(v)su1 ; su2��(v) � Sf[[su2]]s�(x) j x 2 [[su1]]s�(v)g[[pat) upd]]s��(v) � Ps[[pat ; v; upd]]��(v)[[setlet w := e in su]]s��(v) � [[upd]]s��[w 7! e](v)Figure 4: Semantics for set updates in CPL+

11

P [[; pv; upd]]�� � [[upd]]��P [[nv; pv; upd]]�� � [[upd]]��[v 7! pv]P [[e; pv; upd]]�� � [[if e = pv then upd]]��P [[< b : p >; pv; upd]]�� � case pv of b(v0)) P [[p; v0; upd]]��P [[[a1 : p1; � � � ; an : pn]; pv; upd]]�� � P [[p1; �a1(pv); [a2 : p2; � � � ; an : pn]) upd]]��P [[[a1 : p1]; pv; upd]]�� � P [[p1; �a1(pv); upd]]��Ps[[; pv; su]]�� � [[su]]s��Ps[[nv; pv; su]]�� � [[su]]s��[v 7! pv]Ps[[e; pv; su]]�� � [[setif e = pv then su]]s��Ps[[< b : p >; pv; su]]�� � case pv of b(v0)) Ps[[p; v0; su]]��Ps[[[a1 : p1; � � � ; an : pn]; pv; su]]�� � Ps[[p1; �a1(pv); [a2 : p2; � � � ; an : pn]) su]]��Ps[[[a1 : p1]; pv; su]]�� � Ps[[p1; �a1(pv); su]]��Figure 5: Semantics for patterns in CPL+3.2 Typing rulesAs noted earlier an update expression is applicable to values of di�erent types. This describes the type of anupdate. Let us consider the update (a := 3; b := c : fsetdelg). Obviously, an update value for this updatemust have two attributes a and b (but it can have more attributes). Attribute a must have type int andattribute b must be a variant type that can have branch c which would have to be of a set type. One canobserve that this description speci�es a partial type. A second update example is a := [e : \Tom00; f : 5]where [e : \Tom00; f : 5] is a complete record value. Obviously, this update can only be applied to recordvalues that have an attribute a which has the complete type [e : string; f : int].In order to express such complex update types and to make a distinction between partial and complete types,we introduce a type system for updates:� ::= > j ? j � j [a1 : �1; � � � ; an : �n]u j < b1 : �1; � � � ; bn : �n >u j f�guAn update of a certain update type can only be performed on values of certain types. We say that theupdate accepts the value and its type. The update types > and ? denote the maximum and minimumtype, respectively. Updates of type > are invalid in that they don't accept values of any type. Updatesof type ? accept values of any type. Updates of type � only accept values of type � . Updates of type[a1 : �1; � � � ; an : �n]u accept record values that have attributes a1, ..., an whose values can be modi�ed byupdates of types �1, ..., �n. An update of type < b1 : �1; � � � ; bn : �n >u will accept a variant value that,if it has branch b1, ..., bn, then its branch value has to be acceptable by the updates of type �1, ..., �n,respectively. And �nally, an update of type f�g accepts a set value whose elements are accepted by updatesof type �.By this de�nition, we can easily conclude that update (a := 3; b := c : fsetdelg) has type [a : int; b :< c :f?gu >u]u and update a := [e : \Tom00; f : 5] has type [a : [e : string; f : int]]u, respectively.An update of a certain (update) type accepts values of certain types. Vice versa, a value of a certain(value) type is accepted by updates of certain types. If updates of type �1 accepts all the values (and itstypes) that an update of type �2 accepts, then �1 is a subtype of �2, or �1 � �2. For instance, the update12

a := nv => v + 4 accepts all the values that are accepted by update (a := 3; b := c : fsetdelg). Thesubtyping rules are described in �gure 6.� � > ? � �� � � �1 � �2f�1gu � f�2gu�1 � �01 � � � �m � �0m m � n[a1 : �1; � � � ; am : �m]u � [a1 : �01; � � � ; an : �0n]u �1 � �01 � � � �m � �0m m � n< b1 : �1; � � � ; bm : �m >u�< b1 : �01; � � � ; bn : �0n >u�1 � �1 � � � �n � �n[a1 : �1; � � � ; an : �n]u � [a1 : �1; :::; an : �n] �1 � �1 � � � �n � �n< b1 : �1; � � � ; bn : �n >u� < b1 : �1; :::; bn : �n >� � �f�gu � f�g � � �Figure 6: Subtyping for Update typesBased on this de�nition of update types and the associated subtyping relation, the typing rules for updateconstructs can be obtained. The subsumption rule follows directly from the subtyping: An update of type �1can be considered to be an update of type �2 if, and only if, �1 � �2. By de�nition, the predicate H ` upd : �is true if, and only if, under a type assignment H, it is provable that upd has type �. The speci�cation oftyping rules can be found in �gure 7.H ` upd : �1 �1 � �2H ` upd : �2 H ` IDupd : ? H ` upd : �H ` a := upd : [a : �]uH ` upd : �H ` b : upd : < b : � >u H ` e : � H; v : � ` upd : �H ` let v := e in upd : � H ` e : �H ` e : �H `s su : f�guH ` fsug : f�gu H ` e : f�gH ` setins e : f�gu H ` upd1 : � H ` upd2 : �H ` upd1 ; upd2 : �H ` c : bool H ` upd1 : � H ` upd2 : �H ` if c then upd1 else upd2 : � H ` (pat : � �G) H;G ` upd : �H ` pat) upd : �Figure 7: Typing rules for CPL+Set updates such as setdel operate on sets of values. We use a slightly di�erent notation for the typing ofset updates: H `s su : f�gu. This voids confusion, since normal update expression can also appear as setupdates. The semantics of set updates is shown in �gure 8.Let us �nally consider pattern expressions pat) upd . A pattern pat also has an update types in the sense13

H `s setdel : f?gu H ` upd : �H `s upd : f�gu H ` e : � H; v : � `s su : f�guH `s setlet v := e in su : f�guH `s su1 : f�gu H `s su2 : f�guH `s su1 ; su2 : f�gu H ` e : f�gH `s setrepl e : f�gu H ` (pat : � �G) H;G `s su : f�guH `s pat) su : f�guH ` c : bool H `s su1 : f�gu H `s su2 : f�guH `s setif c then su1 else su2 : f�guFigure 8: Typing rules for set updates in CPL+that it only "accept" values of certain types. Furthermore, patterns impose type restrictions on the newlyintroduced variables. these variables might be used in subsequent subexpressions of the pattern or in upd,thus having an impact on their types. Thus, they must be included in respective type assignments H. Byde�nition, the sentence H ` (pat : ��G) is true, if, and only if, under a type assignment H , the pattern pathas update type � and the introduced variables have types as described in the generated type assignmentG. Type assignment G only includes the new variables and their types.Based on this de�nition, the typing rules for pattern expressions can be obtained easily. Figure 9 showsthe typing rules for patterns. Note that the type of record patterns is de�ned recursively on the number ofattributes, since newly introduced variables can be used in subsequent attribute patterns.H ` (p : �1 �G) �1 � �2H ` (p : �2 �G) � � �H ` (nv : � � v : �)H ` (p : � �G)H ` (< b : p > : < b : � >u �G) H ` e : �H ` (e : � �)H ` (p1 : �1 �G1) H;G1 ` ([a2 : p2; � � � ; an : pn] : [a2 : �2; � � � ; an : �n]u �G2)H ` ([a1 : p1; � � � ; an : pn] : [a1 : �1; � � � ; an : �n]u �G1; G2)Figure 9: Typing rules for patterns in CPL+Note that a pattern imposes restrictions about the type of the value and the value itself. A pattern such as< b : "Test" > matches only the value < b : "Test" >. However, it is important to distinguish between typecorrectness and value matching. A value of type < a : bool; b : string > would surely have the correct typefor the pattern, but it does not necessarily have to match the pattern. This distinction is necessary since theapplication of a pattern to a value with an incorrect type leads to a type error, whereas a value that doesnot match is just not updated using the update upd in pat) upd .An interesting question is whether the pattern should be applicable to a value of type < a : bool >.Obviously, the value could never match the pattern. Thus, the only question is if it has the correct type.This is not determined by our typing rules. Instead it is necessary to examine the meaning of an updatetype < b1 : �1; � � � ; bn : �n >u. It describes updates that accept value of variant types that14

1. have at least branches b1,..., bn with at least the respective types.or2. if they include some branches bi (1 � i � n), then the type of the branch must be accepted by updatesof type �i.Interestingly, both interpretations are allowed within our typing rules. Finally, it is not di�cult to constructa type inference algorithm for the typing rules. Note that an update expression is not well-typed if it hastype >.4 OptimizationThe optimization of updates in databases is a complex and intriguing problem. While optimizations on theimplementation level, such as caching and concurrency control, have been designed to reduce the expectedexecution time of udates, algebraic optimizations have not been an issue. However as with query languages,it is possible to identify powerful rewriting rules to improve the cost of executing an update. In this section,we will consider two categories of such rules: The optimization by rewriting and delta�cation.In order to talk about optimization, we must have a measure of update cost. Let us consider the following:A complex value can be thought of as an edge-labelled tree. Interior nodes represent type constructors {records, sets and variants { while leaf nodes represent base values such as 2 or \Tom". Edges representingattributes in records or choices in variants carry the label of the attribute of choice. The number and labelscoming out of a node depends on its type: A variant node, for instance, consists of exactly one edge (subtree)labeled with the choice. In contrast, a set node can have an arbitrary number of unlabelled edges, dependingon the number of elements in the set.Updating a database entails reading and/or updating some of the nodes of the tree representing its complexvalue. A node can be updated multiple times during one update, since sequential updates on the samevalue are possible. Since updates often include the evaluation of expressions such as conditions, sub-values(sub-trees) of the databse may have to be retrieved between the updates. As a simpli�ed model, we assumethat the cost of an update is determined by the number of updates and the number of evaluations in between.That means in our optimizations we try to reduce the number of overall accesses to the database.Furthermore, let us assume that each of the constructs in CPL+ is executed in the obvious way. In particular:The construct if c then upd1 else upd2 evaluates c and performs either upd1 or upd2. The set update fsugiterates over the elements of the set and performs the update su on each of them. The complete update ereplaces the old tree of the value to be updated by a new tree which is the result of evaluating e.4.1 Optimizing Update Expression by RewritingThe semantics of the language CPL+ imply a variety of rewriting rules. Many of them do not reduce thecost of the update directly; it is necessary to apply a series of transformations to restructure and simplifythe expression so that a cost reducing transformation can be applied. After presenting the transformationrules, we will illustrate the advantages of the optimizations by a few examples.Basic Transformations:
15

(if c then upd1 else upd2) ; upd3 =) if c then (upd1 ; upd3) else (upd 2 ; upd3)upd1 ; (if c then upd2 else upd3) =) if c then (upd1 ; upd2) else (upd 1 ; upd3)upd ; e =) eThe last rule relies on the observation that since there is no pattern between the two updates upd and e,the expression e cannot depend on the new value resulting from performing upd . Therefore, the �rst updatecan be eliminated.Update Composition: The following rules de�ne transformations for the composition and decompositionof updates along sequences of updates.(b1 : upd1) ; (b2 : upd2) =) (b2 : upd2) ; (b1 : upd1) (if b1 6= b2)(b : upd1) ; (b : upd2) =) b : (upd1 ; upd2)(a1 := upd1) ; (a2 := upd2) =) (a2 := upd2) ; (a1 := upd1) (if a1 6= a2)(a := upd1) ; (a := upd2) =) a := (upd1 ; upd2)fsu1g ; fsu2g =) fsu1 ; su2gThe last rule is called vertical loop fusion. As an illustration, let us revisit the update example of removingproject \Test" from the database:(Projs:={[Name:"Test"] => setdel};Persons:={[Info:<Empl:[Projects:{"Test"}]>] => setdel};Persons:={Info:= Empl: Projects:={"Test" => setdel}};Persons:={[Info:<Manager:[Project:"Test"]>]=> (Info:=Manager: Project:="Void")})Performing this update as written means that the set Persons is traversed three times. Applying the rule forcomposition of record updates and set updates, we can transform the update into the following expression:(Projs:={[Name:"Test"] => setdel};Persons:={[Info:<Empl:[Projects:{"Test"}]>] => setdel;Info:= Empl: Projects:={"Test" => setdel};[Info:<Manager:[Project:"Test"]>]=> (Info:=Manager: Project:="Void")})In this optimized query, each person is considered only once.Filter Promotion: It is often possible to change the order of containing updates in the syntax tree. Inparticular, we are interested in moving the condition in if c then upd1 else upd2 to the outside of thecontaining update: 16

a := if c then upd1 else upd2 =) if c then a := upd1 else a := upd2b : if c then upd1 else upd2 =) if c then b : upd1 else b : upd2fif c then upd1 else upd2g =) if c then fupd1g else fupd2gfsetif c then su1 else su2g =) if c then fsu1g else fsu2gFor example, consider an update that removes all employees from project Proj1 who earn more than $40000.This entails removing the project Proj1 from the set of projects of each employee who has a salary biggerthan $40000.@Persons:={\p => Info:= Empl:(\e =>Projects:={"Proj1" => (if p.Salary>40000 then setdel)})}Since the condition p.Salary>40000 does not depend on the project or the employee e, it is possible todelegate the condition to the outside of the tree. This leads to the following update:@Persons:={\p => if p.Salary>40000 then Info:= Empl:(\e =>Projects:={"Proj1" => setdel})}As a consequence, only the projects of the persons who have a salary bigger than $40000 are considered. In theoriginal version, the project set of each employee is traversed. Note that for moving if c then upd1 else upd2to the outside of the pattern ne => upd , we need to apply a separate rule that requires that the variable e isnot used within condition c. As described later, this rule is part of an optimization called variable delegation.Set Updates: There are important simpli�cations for set updates. For instance, the deletion of an elementof a set makes the set updates before or afterwards in the sequence unnecessary. Generally, the followingsimpli�cation rules can be identi�ed:su ; setdel =) setdelsetdel ; su =) setdel(setif c then su1 else su2) ; su3 =) setif c then (su1 ; su3) else (su2 ; su3)su1 ; (setif c then su2 else su3) =) setif c then (su1 ; su2) else (su1 ; su3)setins e1 ; setins e2 =) setins e1 [e2fsetdelg ; setins e =) eupd ; fsetdelg =) fsetdelgPattern Simpli�cation: The previously described optimization rules are only applicable as long as thereare no patterns and variable bindings between the expressions. Therefore, a very important part of theoptimization process is the analysis and simpli�cation of pattern expressions. Often, patterns can be re-structured, relocated or eliminated, as the following rewrite rules show:
17

pat) IDupd =) IDupdnv1) (nv2) upd) =) nv1) upd [v2 n v1]< b1 : pat >) b2 : upd =) IDupd (if b1 6= b2)< b : pat >) b : upd =) b : (pat) upd)< b1 : pat >) (b2 : upd1); upd2 =) < b1 : pat >) upd2 (if b1 6= b2)a := (nv) upd) =) nv0) (let v := �a(v0) in upd)It is also possible to decompose record patterns, as in the following example:[a1 : nv1; a2 : nv2]) upd =) v) (let v1 := �a1(v) in (let v2 := �a2(v) in upd))Most record patterns can be decomposed in this way. However, it is not possible to resolve record patternsthat have variant patterns with variable bindings inside its attribute patterns. In this case, it is not possibleto generate simple patterns. The decomposition of patterns is based on the following rewriting rules:pat) upd) nnv) P(pat ; upd ; nv)P(nv; upd ; pv)) let v := pv in updP(e; upd ; pv)) if e = pv then updP([a1 : pat1; � � � ; an : patn]; upd ; pv)) P(pat1;P([a2 : pat2; � � � ; an : patn]; upd ; pv); �a1(pv))P([a : pat]; upd ; pv)) P(pat ; upd ; �a(pv))P(< b : e >; upd ; pv)) if (case pv of b(v)) (v = e); � � �) false) then updThe last rule shows that variant patterns are restricted in that they can only contain single constant ex-pressions as their branch pattern. Note this can be generalized so that variant patterns can contain patternexpressions without variable bindings as their branch patterns.Variable Delegation: It is often possible to delegate variable bindings to lower or higher levels in thesyntax tree. This can lead to signi�cant simpli�cations, since further transformations can be applied. Letus assume that function fv() denotes the set of all free variables in an expression e, update upd or patternpat . The following rules hold:v =2 fv(upd) : nv) upd , updv =2 fv(upd2) : nv) (upd1 ; upd2) , (nv) upd1) ; upd2v =2 fv(c) : nv) (if c then upd1 else upd2) , if c then nv) upd1 else nv) upd1v =2 fv(c) : nv) (setif c then su1 else su2) , setif c then nv) su1 else nv) su1v =2 fv(pat) : nv) (pat) upd) , pat) (nv) upd)v =2 fv(e) : nv) (let v0 := e in upd) , let v0 := e in nv) updv =2 fv(e) : nv) (setlet v0 := e in su) , setlet v0 := e in nv) suBased on the previous transformation rules for patterns, it is always possible to eliminate complex patterns.Under the assumption that variant patterns do not contain variable bindings in its branch pattern, it is18

possible to normalize CPL+ expressions so that they only contain simple variable bindings in front of setupdates and variant expressions: fnv) updg and a := nv) upd .Let Elimination: The let expression is syntactic sugar in that the de�ned variable can be substituted bythe respective expression: let v := e in upd , upd [v n e]setlet v := e in su , su[v n e]Identity Elimination: Many update expression can be reduced to the identity update if they have theidentity update as their component:a := IDupd =) IDupd IDupd ; upd =) updb : IDupd =) IDupd upd ; IDupd =) updif c then IDupd else IDupd =) IDupd fIDupdg =) IDupdsetif c then IDupd else IDupd =) IDupdInline Expansion: Consider the update @Salary:=(s => s*1.2 ; s1 => s1+5000) which raises thesalary of an employee by 20 percent and adds $5000 to it. This update can obviously be transformedinto @Salary:=(s'=> (s'*1.2)+5000) reducing the number of updates from two to one. Formally, we in-terpret the �rst update as a function and modify the pattern variable of the second update in an appropriateway: (upd1 ; nv) upd2) =) nv0) (upd2[v 7! [[upd]](v)])The expression [[upd]] denotes the update function that can be applied to an arbitrary value with the correcttype. The di�culty is that it is not obvious when such a replacement improves the cost of the update.Basically, the inline expansion is useful if the entire value is updated. In this case, recomputing the entirevalue is often cheaper than updating it multiple times.4.2 Delta�cationIn this section we will introduce the notion of \delta�cation" as a way of transforming complete updates(expressed in CPL or NRC+) into CPL+ updates.Let us consider the employee example again: Increase the salary of \Tom" by $5000:@Persons:={ \e => if e.Name="Tom" then (Salary:=e.Salary+5000)}Recall that it is also possible to describe the new set of persons as a CPL expression:@Persons:={[Name:n,Age:a,Info:i,Salary: (if (n="Tom") then s+5000 else s)]| [Name:\n,Age:\a,Salary:\s,Info:\i] <- Persons};The expression on the right hand side of the record update corresponds to the following NRC+-expression:19

Sff[Name : �Name(e); Age : �Age(e); Info : �Info(e);Salary : if (�Name(e) = \Tom00) then �Salary(e) + 5000 else �Salary(e)]g j e 2 PersonsgFor later use we denote this expression as eTom. Assuming that the number of persons in the set is quitelarge, the computation of this expression will be expensive, although only one person is actually updated.That means it is desirable to transform the ine�cient version involving the computation of the entire setinto the update expression that was mentioned �rst. Note that the rewriting rules for CPL+ given earlierwould do nothing to optimize the complete update since it is a CPL expression.A second, slightly more complex update example is the following:@Persons:={[Info:\i,Name:\n] => Info:=case i of <Empl:e> => <Empl:e>,<Secr:s> => <Secr: [Manager:if n="Sarah" then "Karen" else s.Manager]>,<Manager:m> => <Manager: [Project:m.Project,Secretary:if n="Karen" then "Sarah" else m.Secretary]>]}This update expression changes the secretary of manager "Karen" to "Sarah". Furthermore, due to theinverse relationship between manager and secretary the manager of "Sarah" is changed to "Karen". In thisexample, a complete update is performed on the Info attribute of each person. It unnecessarily replacesthe complete Info attribute value of every person, although only two persons are actually updated. A moree�cient (and more concise) version would be the following CPL+ update:@Persons:={\p => Info:=(Secr : if p.Name="Sarah" then Manager:="Karen";Manager: if p.Name="Karen" then Secretary:="Sarah")}In the following, we will present a set of transformation rules that allow the transformation of CPL expressionsinto more e�cient CPL+ update expressions. We will show how to transform the complete updates in bothexamples into the more e�cient delta updates.Let us consider all CPL-expressions as being converted to NRC+. The fundamental part of the transforma-tion system is a function FC(e1; e2) : bool (FC stands for \FindCondition") that generates a conditionalexpression such that if this expression evaluates to true under a variable assignment � (with the free variablesof e1 and e2 bound), then the two expressions e1 and e2 evaluate to the same value:8e1; e2; � : N [[FC(e1; e2)]]�) N [[e1]]� � N [[e2]]�Note that the two expression e1 and e2 have to have the same type. Since equality of NRC+ expressions isundecidable, it is not possible to �nd the exact condition under which two NRC+ expressions denote thatsame value.To illustrate the function let us �nd the condition when the record constructor in the �rst update exampleis equal to e:FC([Name : �Name(e); Age : �Age(e); Info : �Info(e); Salary :if (�Name(e) = \Tom00) then �Salary(e) + 5000 else �Salary(e)]; e)=) not(�Name(e) = \Tom00) 20

This result is obtained by applying the following sequence of rules:FC([a1 : e1; :::; an : en]; e) � FC(e1; �a1(e)) ^ � � � ^ FC(en; �an(e))FC(�a(e1); �a(e2)) � FC(e1; e2)FC(if e1 then e2 else e3; e4) � (e1 ^ FC(e2; e4)) _ (not(e1) ^ FC(e2; e3))FC(e; e) � trueFC(� � �; � � �) � falseA rule is only applied if the function parameters match the patterns of the rule and the previous rules inthe sequence are not applicable. These rules are part of a large rule system that is shown in �gure 10. It isimportant to note that a variety of other rewriting rules are necessary. In our example, for instance, rules forsimpli�cation of boolean expressions are needed. Note again that since we are dealing with an undecidableproblem we can only approximate the equality condition. That means the two expressions might be equaleven though the result of FC(e1; e2) does not indicate that.We extend the de�nition of FC(e1; e2) by allowing the use of a special expression at any place within e2.Two expressions e1 and e2 are then considered to be equal if there is a substitute expression e for thatmakes the two expressions equal:8e1; e2; � : N [[FC(e1; e2)]]�) 9e : N [[e1]]� � N [[e2[n e]]]�Furthermore, a function FE(e1; e2) (FE stands for "FindExpression") is de�ned that determines the expres-sion e that matches the symbol in e2. This expression is only valid if the condition FC(e1; e2) evaluatesto true.As shown in �gure 10, we extended the set of rules for FC(e1; e2) by the equality FC(� � �;) � true.This rule system consists of the most important rewriting rules. However, it is possible to identify more,probably more complex rules for evaluating FC(�; �). Using more complex structures, it is possible to obtainrules for Sfe1 j v 2 e2g and other constructs. They are, however, beyond the scope of this paper. The rulesfor records and variants in �gure 10 are an outcome of the following equivalences:�ai([a1 : e1; � � � ; an : en]) � ei[a1 : �a1(e); � � � ; an : �an(e)] � ecase e of b1(v1)) e; � � � ; bn(vn)) e � ecase e of b1(v1))< b1 : v1 >; � � � ; bn(vn))< bn : vn > � eIn order to evaluate project expressions correctly, we use special construct for partial records: [a1 : e1; :::; an :en;2]. Let us consider the evaluation ofFC(�a1(if c then [a1 : 1; a2 : 2] else [a1 : 1; a2 : 3]); 1)Clearly, this should yield true. Partial records allow us to resolve this kind of expressions, as one can easilyverify by applying the rules to the example:FC(�a1(if c then [a1 : 1; a2 : 2] else [a1 : 1; a2 : 3]); 1)� FC(if c then [a1 : 1; a2 : 2] else [a1 : 1; a2 : 3]; [a1 : 1;2])� (c ^ FC([a1 : 1; a2 : 2]; [a1 : 1;2])) _ (not(c) ^ FC([a1 : 1; a2 : 3]; [a1 : 1;2]))21

FC(c1; c2) � (c1 = c2)FC(v ; c) � (v = c)FC(v1; v2) � (v1 = v2)FC(if e1 then e2 else e3; e4) � (e1 ^ FC(e2; e4)) _ (not(e1) ^ FC(e2; e4))FC(�a (e); e 0) � FC(e; [a : e 0;2])FC([a1 : e1; :::; an : en]; e) � FC(e1; �a1(e)) ^ � � � ^ FC(en; �an(e))FC(e; �ai ([a1 : e1; :::; an : en])) � FC(e; ei)FC(e; �ai ([a1 : e1; :::; an : en;2])) � FC(e; ei)FC(e; �b([a1 : e1; :::; an : en;2])) � trueFC(< b : e >;< b : e 0 >) � FC(e; e 0)FC(case e of b1(v1)) e1 ; :::; bn(vn)) en; e 0) � case e ofb1(v1)) (FC(e1; e 0) _(FC(e1; < b1 : v1 >) ^ FC(e; e 0)); :::;bn(vn)) (FC(en; e 0) _(FC(en; < bn : vn >) ^ FC(e; e 0))FC(fg; fg) � trueFC(feg; fe 0g) � FC(e; e 0)FC(e1 [e2; e 01 [e 02) � (FC(e1; e 01) ^ FC(e2; e 02)) _(FC(e1; e 02) ^ FC(e2; e 01))FC(� � �;) � trueFC(� � �; � � �) � falseFigure 10: Rules for FC(�; �)� (c ^ (FC(1; �a1([a1 : 1;2])) _ FC(2; �a2([a1 : 1;2]))))_(not(c) ^ (FC(1; �a1([a1 : 1;2])) _ FC(3; �a2([a1 : 1;2]))))� (c ^ (FC(1; 1) _ true)) _ (not(c) ^ (FC(1; 1) _ true))� c _ not(c)� trueBased on these functions, an algorithm for delta�cation has been developed. Let us illustrate the mainidea of delta�cation using the expression Sfe1 j v 2 e2g. Delta�cation means basically to �nd out how theexpression e2 is changed through the expression. We can make the following observation: An element of e2gets deleted if FC(e1; fg) holds. It gets modi�ed if e1 yields a singleton set, i.e. FC(e1; fg) is true. Themodi�ed expression is obtained by FE(e1; fg). If none of the two conditions is true, then the element hasto be replaced by expression e1.Let us now consider the delta�cation function �(e1; e2). It identi�es the changes between e1 and e2 andgenerates an appropriate CPL+ update expression that, if applied to e1, yields e2:[[�(e1; e2)]]��(e1) � N [[e2]]�For our update example, we can rewrite the update in the following way:22

@Persons := eTom =) @Persons := �(Persons; eTom)The function �(e1; e2) is de�ned recursively on the structure of e2. The previous observation about thedelta�cation of Sfe1 j v 2 e2g is reected in the following rule:�(e2;[fe1 j v 2 e2g) � fv) setif FC(e1; fg) then setdel elsesetif FC(e1; fg) then �(v ;FE(e1; fg)) else setrepl e1)gThis rule is a special case of a larger system of rules that is shown in �gure 11. These rules allow thedelta�cation of a wide range of NRC+ expressions.�(v; v) =) IDupd�(e1; if c then e2 else e3) =) if c then �(e1; e2) else �(e1; e3)�(e1;Sfe2 j v 2 e3g) =) �(e1; e3) ;fnv) setif FC(e2; fg) then setdel elsesetif FC(e2; fg) then �(v ;FE(e2; fg))else setrepl e2)g�(� � �; fg) =) fsetdelg�(e1; e2 [e3) =) �(e1; e2); setins e3�(e; [a1 : e1; :::; an : en]) =) (a1 := �(�a1 (e); e1); � � � ; an := �(�an(e); en))�(�a(e1); �a(e2)) =) �(e1; e2)�(e1; �a(e2)) =) if FC(e2; [a :;2])then �(FE(e2; [a :;2]); e1) else �a(e2)�(e; case e of b1(v1)) e1 ; :::; bn(vn)) en) =) b1 : nv1) (if FC(e1; < b1 : >)then �(v1;FE(e1; < b1 : >)) else e1);...bn : nvn) (if FC(en; < bn : >)then �(vn;FE(en; < bn : >)) else en)�(� � �; e) =) eFigure 11: Rules for �(�; �)Let us now consider the expression �(Persons; eTom). eTom is of the form Sfe1 j v 2 e2g with e2 = Personsso that the previous rule can be applied. Obviously, the following equalities hold:FC(f[Name : �Name(e); Age : �Age(e); Info : �Info(e);Salary : if (�Name(e) = \Tom00) then �Salary(e) + 5000 else �Salary(e)]g; fg) = falseand 23

FC(f[Name : �Name(e); Age : �Age(e); Info : �Info(e);Salary : if (�Name(e) = \Tom00) then �Salary(e) + 5000 else �Salary(e)]g; fg) = truewithFE(f[Name : �Name(e); Age : �Age(e); Info : �Info(e);Salary : if (�Name(e) = \Tom00) then �Salary(e) + 5000 else �Salary(e)]g; fg)= [Name : �Name(e); Age : �Age(e); Info : �Info(e);Salary : if (�Name(e) = \Tom00) then �Salary(e) + 5000 else �Salary(e)]Therefore, we can rewrite:�(Persons; eTom) = fe) setif false then setdel else (setif true then�(e; [Name : �Name(e); Age : �Age(e); Info : �Info(e);Salary : if (�Name(e) = \Tom00) then �Salary(e) + 5000 else �Salary(e)])else � � �gUsing the rule in �gure 11 for resolving �(e; [a1 : e1; :::; an : en]) and the rules for simplifying CPL+ expres-sions, the following result is �nally obtained:�(Persons; eTom)� fe) (Name := �(�Name(e); �Name(e));Info := �(�Info(e); �Info(e));Salary := �(�Salary(e);if (�Name(e) = \Tom00) then �Salary(e) + 5000 else �Salary(e)))g� fe) (Salary := if (�Name(e) = \Tom00) then �(�Salary(e); �Salary(e) + 5000) else �Salary(e))g� fe) setif (�Name(e) = \Tom00) then Salary := �Salary(e) + 5000gLet us recall the second update example, which changes the secretary of manager "Karen" to "Sarah". Inthis example, a complete update is performed on the Info attribute of each person. A very importantrequirement for the application of delta�cation rules is the simpli�cation of patterns. Using the rewritingrules of CPL+ the pattern [Info:\i,Name:\n] => Info:=... can be replaced by \p => Info :=... wherei and n are replaced by p.Info and p.Name, respectively:@Persons:={\p => Info:=case p.Info of <Empl:e> => <Empl:e>,<Secr:s> => <Secr: [Manager:if p.Name="Sarah" then "Karen" else s.Manager]>,<Manager:m> => <Manager: [Project:m.Project,Secretary:if p.Name="Karen" then "Sarah" else m.Secretary]>]}The CPL expression case p.Info..., which updates the Info attribute, is transformed into the followingNRC+ expression:case �Info(p) of Empl(e))< Empl : e >; 24

Secr(s))< Secr : [Manager : if �Name(p) = "Sarah" then "Karen" else �Manager(s)] >;Manager(m)) < Manager : [Project : �Project(m); Secretary :if �Name(p) = "Karen" then "Sarah" else �Secretary(m)] >Let us denote this NRC+ expression as eKaren. Note that this expression has only one free variable, p, whichis bound within the containing CPL+ pattern expressions. It is easily observable that the value updated bythe NRC+ expression is �Info(p). Therefore, we can rewrite the CPL+ expression in the following way:@Persons := fnp) Info := eKareng =) @Persons := fnp => Info := �(�Info(p); eKaren)gIt is now possible to apply the delta�cation rules listed in �gure 11:�(�Info(p); eKaren)=) Empl : ne) if true then �(e; e) else < Empl : e >;Secr : ns) if true then �(s; [Manager :if �Name(p) = "Sarah" then "Karen" else �Manager(s)]) else � � � ;Manager : nm) if true then �(m; [Project : �Project(m);Secretary : if �Name(p) = "Karen" then "Sarah" else �Secretary(m)]) else � � � ;=) Secr : ns) (Manager := �(�Manager(s); if �Name(p) = "Sarah" then "Karen" else �Manager(s)));Manager : nm) (Project := �(�Project(m); �Project(m));Secretary := �(�Secretary(m);if �Name(p) = "Karen" then "Sarah" else �Secretary(m)=) Secr : ns) (Manager :=if �Name(p) = "Sarah"then �(�Manager(s); "Karen") else �(�Manager(s); �Manager(s))Manager : nm) (Secretary :=if �Name(p) = "Karen"then �(�Secretary(m); "Sarah") else �(�Secretary(m); �Secretary(m))=) Secr : if �Name(p) = "Sarah" then Manager := "Karen";Manager : if �Name(p) = "Karen" then Secretary := "Sarah"This leads to the already mentioned, more concise and e�cient update expression.5 ConclusionsIn this paper we presented an update language for complex value databases based on the functional querylanguage CPL. The update language, CPL+, allows the intuitive and concise speci�cation of updates andadmits a wide range of optimizations.Two forms of optimizations were presented: Rewriting update expressions and delta�cation. Delta�cationis special type of rewriting rule that relies on the analysis of query expressions. Most often, only a smallpart of the database is actually changed during an update. Therefore, converting complete updates (queryexpressions) into CPL+ expressions that only update the changing parts of a value is a powerful optimization25

tool. A representative set of rewrite rules were given, and their e�ectiveness illustrated using some typicalupdate examples.A fundamental issue in designing CPL+ was the contradiction between evaluation in functional programminglanguages and the imperative character of stateful functions like assignment. We solved this problem byintroducing a separate top-level language construct for update. The extension was based on an imperativeparadigm with notions of sequential execution, context, and side e�ects.The problem of incorporating stateful functions in functional languages has been well studied. I/O systemsand arrays are two examples where side e�ects are an essential cornerstone of the system. The concept ofmonads as a method for implementing side e�ects in functional programming languages was discussed byWadler [1], Moggi [23] and more recently in [7]. A wide range of other theoretical concepts have also beendeveloped (Linear Logic [5], Persistant Functional Language [29], Variable Type Logic of E�ects [22], etc.)Some of the proposed frameworks have been implemented in languages such as Haskell [17]. Based on thework of Reynolds on idealized Algol [26], di�erent type systems and derivation of the lambda calculus thatinclude imperative statements have also been developed [30, 31, 21]. Similar to the work presented in thispaper, they separate stateful and stateless functions, introducing multiple layers of types.While the logical speci�cation of updates in relational and deductive databases has been studied (e.g. [12,13, 25, 2, 4, 24]), the design, implementation and optimization of update languages in object-oriented andcomplex value databases has received little attention. The interaction between updates and complex typesystems on the language level and the potential for optimizations was recently studied by Hull [20], where anotion of \hypothetical updates" on complex values as a database programming language concept was given.As with CPL+, delta update primitives for speci�c complex types, such as records and sets, were providedalong with optimization rules. Hypothetical updates, however, do only produce virtual states that can beused by subsequent updates. That means the semantics of updates is di�erent.The language CPL+ and its optimization rules (including delta�cation) have been partially implemented,although no prototype is available yet. Various interesting practical and theoretical aspects remain to beinvestigated. The speci�cation of an execution model with a more detailed cost analysis to allow the dynamicoptimization of updates should be studied. The issue of transaction primitives with a reconsideration ofoptimizations should be studied. Since CPL is currently being used for querying multiple, heterogeneousdatabase systems [15], the issue of what updates across databases mean and how to optimize them shouldalso be addressed. This raises the interesting questions about the design of update interfaces between thedatabases and the CPL+ update processor. Lastly, embedding the core language in application languagesand visualizations tools is, as always, useful for providing a user-friendly environment.Acknowledgments: We would like to thank Peter Buneman for his original ideas about the updatelanguage and Val Tannen for many helpful discussions.References[1] Imperative Functional Programming, 1993.[2] S. Abiteboul. Updates, a new frontier. In Second Conference on Database Theory, pages 1{18. Springer,1988.[3] S. Abiteboul and P. Kanellakis. Query languages for complex object databases. SIGACT News, 21(3):9{18, 1990.[4] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. Journal of Computerand System Sciences, 43(1):62{124, August 1991.26

[5] Samon Abramsky. Computational interpretation of linear logic. Theoretical Computer Science, 111:3{57,1993.[6] F. Bancilhon, S. Cluet, and C. Delobel. A query language for the O2 object-oriented database system.In Proceedings of 2nd International Workshop on Database Programming Languages, pages 122{138.Morgan Kaufmann, 1989.[7] N. Beton and P. Wadler. Linear logic, monads and the lambda calculus. In Proceedings of 11th IEEESymposium on Logic in Computer Science, New Brunswick, New Jersey, July 1996.[8] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In Proceedingsof 3rd International Workshop on Database Programming Languages, Naphlion, Greece, pages 9{19.Morgan Kaufmann, August 1991. Also available as UPenn Technical Report MS-CIS-92-17.[9] Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Naturally embedded query languages. InJ. Biskup and R. Hull, editors, LNCS 646: Proceedings of 4th International Conference on DatabaseTheory, Berlin, Germany, October, 1992, pages 140{154. Springer-Verlag, October 1992. Available asUPenn Technical Report MS-CIS-92-47.[10] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong. Comprehension syntax.SIGMOD Record, 23(1):87{96, March 1994.[11] R. G. G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kaufmann, San Mateo,California, 1996.[12] W. Chen. Declarative updates of relational databases. ACM Transactions on Database Systems,20(1):42{70, 1995.[13] E. Bertino D. Montesi and M. Martelli. Transactions and updates in deductive databases. IEEETransactions on Knowledge and Data Engineering, 9(5):784{797, 1997.[14] S.B. Davidson, C. Hara, and L Popa. Querying an object-oriented database using CPL. In Proceedingsof the Brazilian Symposium on Databases, October 1997.[15] Susan Davidson, Christian Overton, Val Tannen, and Limsoon Wong. Biokleisli: A digital library forbiomedical researchers. Journal of Digital Libraries, 1(1), November 1996.[16] R. Zicari F. Ferrandina, T. Meyer, G. Ferran, and J. Madec. Schema and database evolution in the o2object database system. In Proceedings of the 21th International Conference on VLDB, pages 170{181,Zrich, Switzerland, September 1995.[17] Joseph H. Fasel, Paul Hudak, Simon Peyton-Jones, and Philip Wadler. The functional programminglanguage Haskell. SIGPLAN Notices, 27(5), May 1992.[18] Stephane Grumbach and Victor Vianu. Tractable query languages for complex object databases. Tech-nical Report 1573, INRIA, Rocquencourt BP 105, 78153 Le Chesnay, France, December 1991. Extendedabstract appeared in PODS 91.[19] H. Liefke and S.B. Davidson. Updating complex value databases. Technical Report MS-CIS-98-06,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pa 19104,1998.[20] R. Hull M. Doherty and M. Rupawalla. Structures for manipulating proposed updates in object-orienteddatabases. In SIGMOD Conf, pages 306{317, 1996.27

[21] D. Rabin M. Ordersky and P. Hudak. Call by name, assignment, and the lambda calculus. In ConferenceRecords of the 20th ACM Symposium on Principles of Programming Languages, pages 43{56, Charleston,South Carlina, January 1993.[22] I. Mason and C. Talcott. Reasoning about object systems in vtloe. Journal of Foundations of ComputerScience, 6(3):265{298, 1995.[23] E. Moggi. Computational lambda calculus and monads. In Proceedings of 4th IEEE Symposium onLogic in Computer Science, California, June 1989.[24] J.D. Ullman R. Fagin and M.Y. Yardi. Updating logical databases. In Proceedings of the ACM Sympo-sium on Principles of Database Systems. Springer, 1988.[25] R. Reiter. On specifying database updates. Journal of Logic Programming, 25(1):53{91, 1995.[26] J.C. Reynolds. The essence of algol. In Proceedings of ACM Symposium on Algorithmic Languages,pages 345{372, North Holland, 1981.[27] John F. Roddick. Schema evolution in database systems | An annotated bibliography. SIGMODRecord, 21(4):35{40, December 1992.[28] Andrea H. Skarra and Stanley B. Zdonik. Type evolution in an object oriented database. In BruceShriver and Peter Wegner, editors, Research Directions in Object Oriented Programming, pages 392{415.MIT Press, Cambridge, Massachusetts, 1987.[29] Carol Small and Alexandra Poulovassilis. An overview of PFL. In Proceedings of 3rd InternationalWorkshop on Database Programming Languages, Naphlion, Greece, pages 96{110. Morgan Kaufmann,August 1991.[30] J.C. Springer. Implementation of Functional Languages with State. PhD thesis, University of Illinois atUrbana-Champaign, 1996.[31] D. Sutton and C. Small. Extending functional database languages to update completeness. July 1995.[32] P. W. Trinder. Comprehensions, a query notation for DBPLs. In Proceedings of 3rd InternationalWorkshop on Database Programming Languages, Nahplion, Greece, pages 49{62. Morgan Kaufmann,August 1991.[33] P. W. Trinder and P. L. Wadler. Improving list comprehension database queries. In Proceedings ofTENCON'89, Bombay, India, pages 186{192, November 1989.[34] Philip Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2:461{493,1992.[35] Limsoon Wong. Querying Nested Collections. PhD thesis, Department of Computer and InformationScience, University of Pennsylvania, Philadelphia, PA 19104, August 1994. Available as University ofPennsylvania IRCS Report 94-09.
28

	Updating Complex Value Databeses
	Recommended Citation

	Updating Complex Value Databeses
	Abstract
	Comments

	tech-rep.dvi

