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Abstract 

There are three parts to this paper. First, I present what I hope is a conclusive, worst-case, complexity 
analysis of two well-known formulations of the Minimal Diagnosis problem - those of peiter 871 and 
[Reggia et al 851. 

I then show that Reiter's conflict-sets solution to the problem decomposes the single exponential 
problem into two problems, each exponential, that need be solved sequentially. From a worst case 
perspective, this only amounts to a factor of two. in which case I see no reason to prefer it over a simple 
generate-and-test approach. This is only emphasized with the results of the third part of the paper. 

Here I argue for a different perspective on algorithms. that of expected. rather than worst-case 
performance. From that point of view, a sequence of two exponential algorithms has lesser probability 
to finish early than a single such algorithm. I show that the straightforward genaateand-test approach 
may in fact be somewhat attractive as it has high probability to conclude in a polynomial time, given a 
random problem instance. 

1 Overview 

l k o  well-known formulations of model-based first principles diagnosis are Beiter 87, Reggia et al 851. 
In the first part of this paper, after presenting their problem formulations, I present what I hope is thefinal 
word on their complexity. 

Both problems are widely believed to be NP-Hard and the intractability of the latter was proved by both 
Weggia et a1 851 and [Allemang et a1 891. However, NP-Hardness is hardly a complete characterization 
of a problem's actual complexity. All it says is that the problem is at least as hard as any NP-complete 
problem. This paper provides a final accord for such complexity analysis in that it presents same upper 
and lower bounds for the two problems. Showing that both problems may require exponential output, 
it excludes them from the class of NP problems - those that can be solved nondeterministically in a 
polynomial time. 

While NP-complete problems are already hard enough, I urge the reader not to discount a problem's 
amenability to non-deterministic algorithms. There are at least two reasons to distinguish NP (even com- 
plete) problems from exponential ones. The first is theoretic and has to do with the fact that, as of 1990, 
nobody has yet proven that NPfP. The second is more practical, NP problems may be approximated 
(for example, using randomization) so as to achieve probabilistic results while any problem that requires 
exponential output is not amenable to such techniques. 

'This research was supported by the Army Research Office. ARO Grant DAALM-89-C0031PRI. I would like to thank Greg 
Provan, Sanguthevar Rajasekaran and Bonnie Webber for comments and discussion of earlier drafts of this paper. 



The second part of this paper shows that, at least on the surface1, the indirect approach to diagnosis 
generation taken by [Reiter 871 essentially decomposes the diagnosis problem into two subproblems, each 
of exponential complexity that have to be solved sequentially. 

From the point of view of worst case complexity analysis this is just a factor of two. In this case, I 
only argue that [Reiter 871 (as well as [de Kleer and Williams 871) do not show why their algorithm is 
superior to the simple generate-and-test method. However, from a probabilistic point of view, the need 
to solve two worst-case exponential problems sequentially may decrease the number of instances that are 
solved in polynomial time. 

Indeed, I think that worst-case analysis should not be the final word in analyzing A1 algorithms since 
most, if not all, A1 problems have proven to be NP-Hard, exponential, or even undecidable. If the 
runtime performance of those algorithms is to be compared to each other, new metrics must be determined. 
One such metric, I argue, is the likelihood that such an algorithm finishes in a reasonable time, given 
a random problem instance. The third part of this paper shows that an almost straightforward generate- 
and-test approach to solve a problem of the type defined by [Reiter 871 possesses some good probabilistic 
properties of that type. 

2 First Principles, Static, Diagnosis of Multiple Faults 

Research in first principles diagnosis seeks generally applicable paradigms for representing and solving 
diagnostic tasks. Such paradigms do not rely on heuristics, empirical evidence or modelling of human 
expertise. In what follows, I only consider the static (concurrent) setting, in which one can only use 
information available at the outset. No new measurement or observations are allowed as diagnosis is 
carried out. 

Section 2.1 outlines a formal definition of the Minimal Diagnosis problem as proposed by [Reiter 871. 
Section 2.2 outlines Reiter's solution. Section 2.3 outlines the problem definition proposed by [Reggia et al 851. 
Before proceeding, note that many of the definitions in Reiter's formulation rely on consistency of collec- 
tion of formulae. While in general, consistency checking is undecidable, it is feasible in many practical 
settings. Time for consistency checking is totally disregarded in the following analysis. Since it is used to 
a similar extent in the two algorithms compared, this has little or no effect on the comparison made. 

2.1 Problem Definition [Reiter] 

Definition 2.1 A System [Reiter] 

A system is a pair (SD~COMPS) where: 
1 .  SD - the system description, is a set offrrst order sentences; 
2 .  COMPS sf { ci}?= - the system's components, afrnite set of constants. 

Definition 2.2 Observations [Reiter] 

o s s  - Observations comprise another set of first order sentences which describe current observations 
that are independent of the system's structure. The triple (SD,COMPS,OBS) denotes a system with current 
observations. 

Definition 2.3 A Diagnosis 

Given (~D,COMPS,OBS),  a diagnosis is a set of components whose abnormality (all other components 
assumed normal) explains oss. Formally, let AB be a predicate designating abnormal components, then 
A ~ C O M P S  is a diagnosis iff s~UossU{ AB(C) I c E A )  U {YAB(C) I c E COMPS-A) is consistent. A 
diagnosis is minimal if it has no proper subset that is also a diagnosis. 

'I  believe this not to be a final detenninatim as it seems to me that conflict sets may prove useful in easily decomposable systems. 



Definition 2.4 The Minimal Diagnoses Problem 

Given (SD ,COMPS ,OBS), find all minimal diagnoses. 

2.2 Conflict Sets - Approaching Diagnosis Indirectly 

To solve the Minimal Diagnoses problem, [Reiter 871 suggests an indirect approach: instead of dealing 
directly with candidate diagnoses, it introduces conflict sets - sets of components that cannot all be 
functioning normally. Reiter then describes the relationship between diagnoses and conflict sets and 
exploits this relationship to derive an algorithm for diagnosis. 

Definition 2.5 Conflict Set [Reiter] 

A conflict set is a set of components that, given SD and oss, cannot all be functioning correctly. Formally, 
x ~ C O M P S  is a conflict set iff SDUOBSU{~AB(C) I C E X )  is inconsistent. 

Definition 2.6 Hitting Set [Reiter] 

Let F be a collection of sets of components. A hitting set for F is a set that shares at least one component 
with each of F's sets. It is minimal i f  it has no proper subset that is also a hitting set. 

Theorem 2.1 On The Relationship Conflict Sets-Diagnosis [Reiter] 

A COMPS is a minimal diagnosis for (SD,COMPS,OBS) iff A is a minimal hitting set for the collection 
of conflict sets for (SD ,COMPS,OBS). 

Algorithm 2.2 Reiter's Conflict Sets Algorithm 

1. Find F ,  the collection of all minimal conflict sets for (SD,COMPS,OBS). 

2. Find minimal hitting sets for F. 

Due to theorem 2.1, all minimal hitting sets are precisely all minimal diagnoses one looks for. 

2.3 Problem Definition [Reggia, Nau and Wang] 

[Reggia et a1 851 casts the diagnosis problem as a set covering problem: 

Definition 2.7 A Diagnostic Problem 

A diagnostic problem P, is a 4-tuple (Dl M, C, M+) where 
D = {dl, . . . , dk) is ajnite set of disorders; 
M = {ml, . . . , m,) is a finite set of manifestations; 
C D x M is a relation indicating manifestation and causality; and 
M+ M are the observed manifestations. 

Definition 2.8 Manifestations 

The set C defines each disorder's manifestations: man(d;) = {mi I (di, mj) E C). Similarly, if X is 
a set of disorders, man(X) = man(di). 

Definition 2.9 Explanation 

For any diagnostic problem P = (D, M, C, M+), E g D is an explanation for M+ i f  M+ g man(E); 
and E is parsimonious (i.e. minimal w.r.t. set inclusion). 

Definition 2.10 Solution to a Diagnostic Problem 

A solution for P sf ( D ,  M, C, M+), denoted Sol (P)  is the set of all explanations for M+. 



3 Minimal Diagnoses and Intractability 

In this section I show that the Minimal Diagnoses (MD) problem (both definitions) are exactly exponential. 
Moreover, I show that even finding one diagnosis, of minimal cardinality, is still NP-Hard (though within 
NP). Interestingly, even though the problem definitions are quite different2, they still share same complexity. 

Theorem 3.1 The Minimal Diagnoses problem [Reiter 871 is at least exponential. 

i f k 1 + k 2 + . . . + k n  > $  
otherwise 

Figure 1: An example circuit. 

Proof. Consider the circuit in figure 1: n transmitters (cl . . . c,) are linked to a single f-box. When 
operating normally, a transmitter's output is identical to its input and f -box's function is as defined above. 

Minimal diagnoses for this circuit are: 
(a) f -box alone fails; and 
@) any set of half the n transmitters fail. 

By induction, one can show that there are over -& diagnoses of the latter form. Thus for an algorithm 
to display them (disregarding the need to compute them) requires at least exponential run time. 

Theorem 3.2 The Minimal Diagnosis problem [Reiter 871 is at most exponential. 

Proof. Any algorithm that generates-and-tests the whole power set of COMPS will do. 

Corollary 3.3 The Minimal Diagnosis problem [Reiter 871 is exactly exponential. 

At this point, one may argue for relaxing the problem to finding a single diagnosis. I next show that 
if one looks for a diagnosis of minimal cardinality, one remains with an NP-Hard problem. 

Definition 3.1 The Minimum Cardinality Diagnosis Problem 

Given (sc ,COMPS ,ass) ,fmd a single diagnosis A of least cardinality. 

Theorem 3.4 The Minimum Cardinality Diagnosis problem is NP-Hard (but within NP). 

21n fact, Reiter shows that his formulation is more expressive in the sense that all diagnoses captured by the formalism of 
[Reggia et al 851 will also be captured by his formalism. 



Proof. Let ?r(MCD) be the corresponding decision problem. It is easy to show that ?r(MCD) is in 
NP, and that a well-known NP-complete problem called Vertex Cover can be reduced to it. 

Now let us examine the formulation of [Reggia et al 851: 

Theorem 3.5 The Minimal Diagnosis problem [Reggia et a1 851 is at least exponential. 

Proof. Consider a problem in which each manifestation is linked to a set of two disorders, and all these 
sets are pairwise disjoint. Such a problem has exactly 2" solutions, corresponding to any selection of one 
out of every pair of disorders. 

Theorem 3.6 The Minimal Diagnosis problem [Reggia et a1 851 is at most exponential. 

Proof. Again obvious, by enumeration. 

Corollary 3.7 The Minimal Diagnosis problem [Reggia et a1 851 is exactly exponential. 

4 The Conflict Sets Algorithm and Intractability 

Having shown that the Minimal Diagnoses problem has no worst-case polynomial-time algorithm, I can 
now show that Reiter's conflict sets algorithm may be especially troublesome as it gives rise to two new 
problems that have to be solved sequentially: first, the generation of all minimal conflict sets and only then 
identification of minimal hitting sets for this collection of minimal conflict sets3. Both problems, I show 
to be exponential in the worst case, making each, individually, just as hard as the original MD problem. 
Unless shown differently, having to solve these two subproblems sequentially, the conflict sets algorithm 
should be treated as putting one in great disadvantage. 

The exponential complexity of the two subproblems will be proved first. Then, I will show that 
computing minimal hitting sets may be exponential even in cases where the number of conflict sets is 
polynomial. 

Theorem 4.1 The number of minimal conflict sets may be exponential. 

Proof. Consider figure 1 again. The minimal conflict sets for this circuit are exactly all sets containing 
f-box and a combination of half the ci7s. Again, there are exponential number of such sets. 

Theorem 4.2 The number of minimal hitting sets for a collection of minimal conflict sets may also be 
exponential in the number of components. 

Proof. Once again, consider the example of figure 1. The set {f-box ) is one minimal hitting set for 
the collection of minimal hitting sets. The other minimal hitting sets are exactly all sets containing any 
combination of 5+1 of the ti's. Once again, there are O(2") such sets. 

One may argue that the latter proof relies on a very particular setting in which the number of minimal 
conflict sets is also exponential. I next show that even if one was lucky, and the problem at hand had only 
a polynomial number of minimal conflict sets, the number of minimal hitting sets may still be exponential. 

Theorem 4.3 Even if the number of minimal conflict sets is exponential, the overall complexity of the conflict 
sets algorithm may still be exponential. 

31n [Reiter 871 it is suggested that there is no need to compute all conflict sets in advance. While this might be an advantage in 
practice (facilitating parallelism for instance), it is important to note that access to all minimal conRict sets is required before any 
diagnosis can be confirmed. 



Proof. Consider a case in which 2n distinct components are evenly distributed among n conflict sets. 
Exactly 2" minimal hitting sets exist, corresponding to any choice of one component from each set. 

To summarize, the indirect approach replaces one problem of worst-case exponential complexity with 
two such problems that need be solved sequentially. To justify that, one must come up with algorithms 
that at least carry some good probabilistic properties (for example, that perform well in most cases, or on 
average). While this cannot be found in Beiter 871, it is precisely what will be shown for the algorithm 
suggested next. 

5 A Simple, Yet Probabilistically Tractable Algorithm 

As I first noted in the introduction, the bare fact that a problem is exponential in the worst case should not 
prohibit researchers from looking for algorithms that usually perform well. Such an effort may take several 
different forms: [Bylander et al 891 have, with some encouraging success, constrained the problem so as 
on one hand it becomes tractable, while on the other hand, remains capable of expressing problems of 
interest. An equally attractive approach, presented next, is to find algorithms that given some distribution 
on problem instances, has high probability to perform well (i.e finish in polynomial time). 

Before introducing the conflict sets algorithm, Reiter argues against the simple approach of generating- 
and-testing candidate diagnoses: "There is a direct generate-and-test mechanism based upon proposition 
3.4: Systematically generate subsets A of COMPS, generating As with minimal cardinality first, and test 
the consistency of SDUOBSU{~AB(C) I c E COMPS- A}. The obvious problem with this approach is that 
it is too inefficient for systems with large number of components" ([Reiter 871, p. 67). In contrast, I show 
that this extremely simple approach does have some attractive probabilistic properties. 

[de Kleer and Williams 871 uses probability-based refinements to curb the exploration of alternative 
conflict sets. In the subsequent discussion, I use some of those refinements to further cut the number of 
candidate diagnoses considered before the actual failure is reached. However, I concede that a number of 
additional improvements (possibly even out of those suggested by [de Kleer and Williams 871) have to be 
made to the algorithm if it is ever to be used. 

5.1 Failures Are Most Often Small in Size 

Practically, I argue that it rarely is the case that a large number of components all fail at the same time. In 
electronic boards containing hundreds if not thousands of components, failures are usually detected after 
only a few components fail. Failures of small cardinality are also more amenable to repair than replacement 
of a whole unit or device. Small diagnoses thus play a rather major role in diagnostic problems. 

Unfortunately, the conflict sets algorithm cannot take advantage of this fact. While it is true that 
in dealing with small problems, it would only be forced to explore its Hitting-Sets tree4 to a relatively 
shallow level, this does not necessarily imply savings in runtime, as the number of conflict sets that need 
be generated is not directly related to the depth of the tree. As I have just shown, even if the number of 
conflict sets is polynomial, an exponential number of minimal hitting sets may still need be discovered. 

Both Reiter [de Kleer et a1 901 and others poole and Provan 901 have recently pointed out that diag- 
nosticians should not limit themselves to minimal diagnoses. That is not to say that minimal diagnoses 
are not a particularly interesting class of diagnoses, but rather that it is possible that a failure may not be 
minimal. To avoid this discussion, I use the actual failure as a target. I do not assume that the actual 
failure is known, only that it can be recognized once it has been suggested by the algorithm. 

Definition 5.1 The Actual Failure 

Let FAILURE COMPS denote the actual set of failing components. 

4This has to do with the particular way in which a hitting set is discovered in [Reiter 871. I did not describe the hitting set tree 
construction algorithm as it does not have major impact on our claims. 



Before introducing the generate-and-test algorithm, I will introduce some facts that help establish its 
probabilistic properties. I will begin with some simplifying assumptions and then show how some of those 
may be lifted. 

Assumption 5.1 All components have an equal probability to fail. 

Assumption 5.2 Components fail independently from each other. 

The following facts can be easily inferred.. 

1. The cardinality of the actual failure, as a random variable, is distributed binomially B(n,  p), n being 
the number of components and p  the probability of failure for each component. 

2. The probability that k or more components are concurrently faulty is thus: 

( : ) def PZO~(~FAILURE(>_ k) = CYzk , where q = 1 - p .  

To estimate these sums, one can use the normal approximation. By the Law of Large Numbers, 
I F A I L U R E ~ N  N(np, npq)) and this approximation is regarded excellent when both np, and nq are greater 
than 5. 

Chemoff [Augluin and Valiant 791 established upper bounds for such sums. These are accurate (not 
an approximation), but are many times looser than those provided by the normal distribution. Applying 
Chernoff bounds, for any k > np, 

Assumption 5.3 Assume further that the average number of concurrently failing components is bound by 
some constant d. 

Proposition 5.4 Let w > 1 represent any chosen factor. The probability for a failure of size larger than 
wd may be approximated by: 

P~O~(~FAILUREI>  wd) M Q ( ~ ~ ~ ~ ~ ~ ~ - ~ ~  a ) = a(-), using the Normal approximation. 

It can otherwise be bounded (not necessarily tightly) by: 

P ~ O ~ ( ~ F A I L U R E ( >  wd) 5 ($ )Wde-d ,  using Chernoff bounds. 



Example 5.5 Given a circuit with n=100 components, consider average failures of 3,5, and 7 components, 
the following graphs show the probability for failures of size larger than the average. 

Ni -Normal approximation for an average failure of size i. 
Ci - Chernoff bounds for an average failure of size i. 

Figure 2: Probabilities for failures of different sizes 

5.2 Algorithm 

The following algorithm takes advantage of the observations just made. The Next-Set routine in the 
algorithm is responsible for generating candidate diagnoses. As a first approximation, I assume that sets 
of minimal cardinality are generated first. Step 2 may be implemented directly based on the definition of 
a diagnosis. 

Algorithm 5.6 
- - -  

Until no more sets, do 

I .  A t Next-Set 0. 

2. Check if A is a diagnosis. 

* 

5.3 Complexity Analysis 

The suggested algorithm is obviously simpler than the conflict-sets algorithm. Not only does it eliminate 
the need to solve two hard problems, but also consistency checking for a candidate diagnosis is much 
easier than for conflict sets. The reason is that in the case of a diagnosis, consistency is checked with 
A B  literals instantiated for all components, while when checking inconsistency for a conflict set, only 
those components in the conflict set itself are instantiated, leaving all permutations of the rest as open 
possibilities. 

It is obvious that in the worst case, the algorithm would have to traverse all sets of b gf I J F A I L U R E ~  
or less components. Section 5.1, however, has shown that chances are very high that b is no more than a 
small constant. The number of traversed sets is thus well bound by O(nb)5 .  

51n fact, as b grows. the number of sets is significantly lower than O(ab). Recall however that to consider actual run time one 
has to factor the time required for each invocatim of the wnsistency checking step. 



5.4 Where This Algorithm Fails 

The above algorithm does not solve all problems in a practically feasible time since, as I have shown, 
the problem is itself exponential. Next, I present an example in which the number of candidate diagnoses 
tested by algorithm 5.6 before hitting the first diagnosis is also exponential. 

Consider the circuit in figure 3. It has a total of 2n gates (n inverters and n OR gates). The output of 
all inverters is connected to the input of all ORs. 

For all i, j Inp(~i)=O, Out(oj)=O, Inpi(oj)=Out(~i). 

Figure 3: A Bad Case 

Given that all inputs and all outputs are zeros, the only minimal diagnoses are that either all inverters 
are faulty, or that something is wrong with all ORs. At any rate, each of the diagnoses involves at least 
n components, forcing the generation of at least all sets of n-1 components before an actual failure is hit. 
The number of such sets is exponential. 

6 Discussion 

6.1 The Uniform Failing Rate Assumption 

I have so far assumed that different components fail at the same rate. While this assumption is helpful in 
the derivation of upper bounds for the algorithm's complexity, it does not reduce the complexity of the 
problem. A slight change to algorithm 5.6 results in an algorithm that is even more efficient in the case of 
distinct failure rates. 

Definition 6.1 A priori Failing Rate 

Let ci E COMPS be a component. By AP (ci) we denote the a priori probability that ci fails, given there 
is a fault. Now, let x be a set of components. Assuming components fail independently, the a priori failing 
rate of x is given by: 

From now on, assume components are sorted so that whenever i > j ,  then A P ( C ~ )  < AP (cj). 

An a priori failure rate is often available for real world diagnostic problems (e.g. from a circuit's 
history). Algorithm 5.6 may take advantage of this by giving high priority to sets with higher a priori 
probability to fail. 

A Next-Set routine that does exactly that is described next. It uses a heap (initiated by Init-Sets- 
Generator) in which sets are ordered by their probability of failure. Sets with higher probability are 
generated and expanded first. 



Algorithm 6.1 Candidate Diagnoses Generation for Non-Uniform Failing Rate. 

Procedure Init-Sets-Generator () 
H + Make-Heap ((1). 

Procedure Next-Set () 
if H # empty-heap do 

I .  S t Delete-Max (H). 
2. Let k +- rnax(~,~s~ i , (0 ifS={)) 
3. For all Ci such that i > k do Insert-Heap(H, S U{Ci}) 
4. return S 

- 

Proposition 6.2 If all components have an a priori failing rate that is less than or equal to $, then for every 
set of components s and for every single component c E COMPS-s, AP (s) > AP (sU{c)). 

Corollary 6.3 If no single component has an a priori probability that is larger than 4, then the Next-Set 
routine of algorithm 6.1 produces sets of monotonically increasing a priori probability for failure. 

The following proposition shows that in the case of non-uniform failing rate, using the altered Next-Set 
procedure, chances are of hitting FAILURE even faster than in the case of uniform failing rate. 

Proposition 6.4 Let F be the collection of sets of components, sorted by increasing cardinality. Let F' be 
the same collection, sorted by a priori failure probability. Then, for all 1 < i < Z n ,  the a priori probability 
that FAILURE is one of thefrrst i sets of F' is equal or higher than that it is one of the first i sets of F .  

Corollary 6.5 In the case of non-uniform failure rate, the modifred algorithm does even better than the 
original algorithm. 

6.2 The Independently Failing Components Assumption 

In real life components do not fail independently of each other. In electronic circuits, for instance, it 
often happens that a failing component causes the failure of adjacent components. One way to deal with 
such dependencies is to explicitly represent causality. Here, we would only discuss a simple extension 
to the basic generate-and-test algorithm that uses empirical data to take into account frequently failing 
combinations of components. 

Suppose that we have a database of past failures. In one pass over this database, it is possible to 
construct a heap in which sets are ordered based on their database frequency. Theoretically, such a heap 
may require O(Zn) nodes. In practice, however, the number of such nodes may not exceed the number of 
past failures recorded in the database and most often would be much smaller. 

The set generation step in the algorithm would then simply hand the set currently at the root of the 
heap and proceed by deleting it from the heap. When the heap is empty, the sets generator will output all 
remaining sets (not all sets are represented in the past failures database) in some pre-agreed order (e.g. by 
their cardinality or by the total/product of the a priori probability of their components). 

7 Summary 

In this paper I have shown: 



1. that the Minimal Diagnoses problem is exponential, and not only NP-Hard; and 

2. that the plain generate-and-test approach does have some desirable properties when examined through 
the glasses of expected performance. Without advocating its use, I show that it is an equal competitor 
with current, more complex, algorithms for diagnosis. 

The class of problems that is well-covered (i.e. solved quickly) by a given algorithm seems to be 
an interesting area of research. Such a determination may allow the choice of a good algorithm for the 
particular problem at hand. It also seems, though I have not worked this out completely, that the conflict 
sets algorithm does particularly well on examples in which the generate-and-test algorithm fails miserably, 
and vice versa. If this is the case, it may well pay to run the two in parallel so as to significantly increase 
the likelihood of quick diagnosis at the modest expense of doubling the run time. 

Current work: 
Being exponentially hard, it seems worthwhile to re-examine the very definition of the diagnostic problem. 
In current work, I redefine the problem in terms of its goals [Rymon 911. 
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