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Antenna radiation in the presence of a chiral sphere

Abstract

The radiation emitted by electromagnetic sources placed both inside and outside of a homogeneous sphere of
chiral media is studied using an exact formulation. For both cases, dyadic Green’s functions are found in terms
of spherical vector wave functions. The radiated fields and radiation resistance are examined for a dipole
located at the center of the chiral sphere. For this case, it is shown that by choosing the sphere’s size and
material parameters properly, purely circular polarization can be achieved in the far field. It is also
demonstrated that the radiation resistance of the dipole can be increased.
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Antenna radiation in the presence of a chiral sphere

Nader Engheta and Marek W. Kowarz®

The Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia,

Pennsylvania 19104

(Received 8 August 1989; accepted for publication 3 October 1989)

The radiation emitted by electromagnetic sources placed both inside and outside of a
homogeneous sphere of chiral media is studied using an exact formulation. For both cases,
dyadic Green’s functions are found in terms of spherical vector wave functions. The radiated
fields and radiation resistance are examined for a dipole located at the center of the chiral
sphere. For this case, it is shown that by choosing the sphere’s size and material parameters
properly, purely circular polarization can be achieved in the far field. It is also demonstrated
that the radiation resistance of the dipole can be increased.

I. INTRODUCTION

Chirality, which refers to the handedness of an object or
a medium, has played an important role in a variety of fields
including chemistry,' optics,? particle physics,® and math-
ematics.* Electromagnetic chirality represents the role of
chirality in electromagnetics and is exhibited in a class of
materials called chiral materials. Owing to the handed na-
ture of their constituents, these materials themselves possess
an intrinsic handedness. For the time harmonic (e ~ “*) and
isotropic case, they are characterized by the following set of
constitutive relations:

D =¢.E + i£_B, (1
H=it,E + B/u,, )

where €., p., and &, are, respectively, the permittivity, per-
meability, and chirality admittance of such media.® It has
been shown that electromagnetic waves in these media dis-
play two unequal characteristic wave numbers for the right-
and left-circularly polarized (RCP, LCP) eigenmodes.5
These unequal wave numbers give rise to a circular birefrin-
gence which results in both optical activity and circular
dichrosim. It is worth noting that, in isotropic chiral media,
this birefringence is independent of the direction of wave
propagation, whereas in anisotropic materials it does depend
on the wave’s direction of propagation. The set of chiral con-
stitutive relations given in (1) and (2) is actually a subset of
the more general constitutive relations used to describe
bianisotropic media. These generalized relations have been
studied extensively by Kong.”®

Recently, there has been renewed attention brought to
the area of wave propagation and radiation in chiral media
due to the possibility of fabricating such materials for
microwaves and millimeter waves. In the past few years, sev-
eral fundamental problems of electromagnetic wave interac-
tion with chiral materials have been investigated and report-
ed in the literature. Among these, one should mention
dyadic Green’s functions in chiral media,%'® waveguiding
structures filled with chiral materials,’""** transition radi-
ation caused by a chiral slab,'* Doppier effects in chiral me-
dia,'® wave propagation in periodic chiral structures, '® point
and distributed radiators embedded in chiral media,'” and

®) Presently at the Institute of Optics, University of Rochester, Rochester,
NY 14627.
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reflection and refraction at a chiral-nonchiral inter-
face.18.19.20

The present paper is aimed at investigating the interac-
tion of radiation emitted by an electromagnetic source with a
sphere made from an isotropic lossless chiral material. The
motivation behind the present investigation, besides its theo-
retical and academic importance, is provided by the poten-
tial applications of chiral materials to the designs of novel
antenna radomes and superstrates, chiral lenses for micro-
wave and optical regimes, and array polarization control.
The antenna radomes made from chiral materials, which we
name chirodomes, are of particular interest since the polar-
ization birefringence present in chiral materials may give
rise to new radiation characteristics. Furthermore, for both
the optical and microwave regimes, lenses made of chiral or
optically active materials may yield novel and interesting
properties such as bifocal lengths.

Il. PROBLEM FORMULATION

In order to study the radiation characteristics of an elec-
tromagnetic source in the presence of a homogeneous chiral
sphere, it is necessary to derive dyadic Green’s functions for
such a problem. However, before proceeding, we must first
consider the case of an unbounded chiral medium. The dya-
dic Green’s function for this case will provide the framework
from which to devise those for the chiral sphere. Bassiri et al.
have already obtained® one form from a coordinate free ap-
proach. Here, we will use an eigenfunction expansion in
spherical coordinates, which is similar to that employed by
Tai for nonchiral spheres,?’ and express the dyadic Green’s
function in terms of spherical vector wave functions. This
expansion will later greatly facilitate the matching of bound-
ary conditions at the interface between the chiral sphere and
the nonchiral dielectric surrounding it.

The Helmholtz equation for the electric field in a chiral
medium is®

VXVXE —20p £ .VXE — o’y €. E=ioud. (3)
Since the equation is linear, the electric field can be found
from a three-dimensional transform of current density I
with the dyadic Green’s function I', (r, r'):

E(r) = ivy, ffc(f, ) J(r)dv'. 4)

© 1990 American Institute of Physics 639
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A differential equation for I, (r, r') is found by substituting
Eq. (4) into Eq. (3), which yields
VXVXI. (r, ') —20u. &, VXL (r, 1)

— o’ T (r, ) =16(r — 1), (5)
with unit dyadic | and Dirac delta function §(r — r').

Equation (5) will now be solved in terms of spherical
vector wave functions. The two orthogonal functions M,

(«) and N, («) are usually defined as follows:

oK) = VX[ ¥, (6)F] = (1/K) VXN, (x), (6a)
"m(K) = (1/6)VXVX [wgmn (K)l']
= (I/©) VXM, (x), (6b)

where « is a yet undetermined wave number, r is the piloting
radial vector, and ¢.  («) is the generating function given

by

Y., (k) =j,(kr)P] (cos0) (m¢) (7

Here, j, (xr) is a spherical Bessel functlon with order # and
P (cos 8) is an associated Legendre function of the first
kind with order (n, m). Only integer values of n and m will
be used in the remainder of this paper. It should also be noted
that the subscripts e and ¢ do not refer to the nature of Mgmn

(r,0,9) €

FIG. 1. Spherical coordinate system.

corresponding unit vectors, are defined in Fig. 1. When un-
primed (primed), these coordinates represent the location
of the observation (source) point. It is apparent that the
functions Mzm" (x) and N;mn (x) are not themselves solu-

tions to the source-free form of Eq. (5), since the curl term
converts one function into the other. However, as has pre-
viously been noted by Bohren,?” it is possible to find linear
combinations of M;mn («x) and N:m" («) which do satisfy the

() or N.U.m,1 (x), but rather to the even or odd character of equation. These combinations, V., (k) and W. (k), are
the generating function. The coordinates (7, 6, ¢), with their ~ normalized such that
1
M. (k) +N. (x)
V., (0) = "
V2
1] m 1
=—|F " Prcos 6) O m)j, (kre, + ”“’“[’J,. (k7) ey
V2 sin 6
P )
Lg;ilws( ¢)(—~—»[;yn(/(r)] j,,(Kr)ed,) +n(n+ 1)P™(cos 0) “r) e (8a)
and
M, (k) —N. (x)
W, () =— "
V2
1
= *1;_ + mP’"(cos 6) (m¢)(j,, (kr)e, — ———[rj,, (kr) ]%)
V2 sin & Kr
IP 7 (cos 6 ,
L mzﬁc_s_)cf’s(m¢)( L 9 (xn ]es —j,,(/cr)e,,) — n(n + 1)P™(cos 9) ( #) ’"( ) ] (8b)
a0 sin Kr Or
I
Thus, V {6} and W,  (x) now satisfy and

V.. () = (1/x)VXV., (), (9a)
W, (k)= — (I/K)VXWSM (). (9b)

With the normalization chosen in (8a) and (8b), the ortho-
gonality relations for V. (x) and W. (x) remain the

same as those for M, («) and N, . (x), thatis

J V"mn (K) w",m'n

640 J. Appl. Phys,, Vol. 67, No. 2, 15 January 1990

(xH)dr=0 (10)

V‘mn (K)v‘m'n’ (KI)
e o 3
f[wzm"(K)W,m,n.(K')} o
_ !
_ Q-4 )mn(n+ D(n+m _)_5'""1,5"",5(,(_,('),
K(2n+ 1) (n — m)!

(11

whered,,, 8,mm »and 8, are Kronecker delta functions. As
canbeseenin Eq. (11),V oy (6) and W, (k) are orthogo-

N. Engheta and M. W. Kowarz 640

Downloaded 17 May 2006 to 158.130.66.18. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



nal functions, but they do not satisfy the standard orthonor-
mal conditions, i.e., inner product equal to one, however, the
definitions used for these functions are completely adequate
for our purposes.

With the help of the new spherical vector wave func-
tions, the right-hand side of Eq. (5) may be expressed as
follows by using a technique similar to that of Tai®':

I6(r—r)—J dK z [V (x)A;mn(x)

n=1m=0
W, (OB, ()], (12)
where A , (k) and B , (k) can easily be obtained with the
help of the orthogonahty relations:
¢pn (K)
[Bf,mn («) ]

_2- 8o 2n+1) (n—m)!
27 n(n+1) (n+m)!
(x) and ngn

dence of the functions on the source point r’. Considering the
expansion in (12), it is reasonable to choose

Fc(r,r')=f dKZ Z [etOV,, L (KA. (k)
A g

n=1m=0

K2 o ()
. (13
f,mn (K) ( )

The primeon V. («) represents the depen-

+BUOW,,, (0B, ()] (14)

for the form of the dyadic Green’s function. Substituting
(12) and (14) into Eq. (5), we find

1 1
(k) = = 2op bk —a*ue, (kK—k, Yx+k_)’
(15a)

1 1
Al T+ 2op bk — e, (k+k, Yxk—k_)'
(15b)

where the wave numbers £ , and k_ are given by

k+ a)/‘l’cg +\/(¢) 3§ +w.u'c c? (163)
k— = —w#’cgc +\/a’y’c c+wl‘c€c‘ (16b)

These two wave numbers correspond to the two circularly
polarized modes present in the unbounded chiral medium.$

J

The RCP mode propagates with wave number k . and the
LCP mode with & _

In order to obtain a closed form for T', (r, r'), the inte-
gral in Eq. (14) must be evaluated using contour integra-
tion. Since the differentiation of lﬁ;mn (x), with respect to

spatial coordinates, and its integration, with respect to «,
may be interchanged, it is only necessary to examine the
following integral:

= F(k) . R
I=] d o (KT)j, , (17
J; K(K_k )(K+k$)](Kr_](Kr) (17

where F(x) is a polynomial of x. Equation (17) may be
rewritten, in terms of regular Bessel functions of order
n+1/2, as

I= TTVJ“” F(x)/x
2\/7 0 (K_ki)(K"‘kq:)
X412 (KW o 12 (K7D, (18)

This equation may be written in two equivalent forms when
expressed in terms of Hankel functions®:

T F o FOx
&Kfrr J- (k—k )e+kg)
XH 0 (k0 g (KT (19)
and
J=_T f” » F(x)/x
4frr V- (k—k )kt k)
XJo i (k) H L\ (k). (20)

Because of the radiation condition, which ensures that, in
the far zone, waves propagate away from the source and not
towards it, only the residues corresponding to positive poles
are chosen for the contour. It is important to note that the
singularity of the Hankel function at the origin dictates the
regions over which (19) and (20) are to be used. Therefore,
the integral reduces to

inF(k, ) [:zf.”(kir)j,.(kir') r>r,
k, +k_ Utk .nNhV(k, r) r<r,

where |’ (k , r') is a spherical Hankel function.
We now have the desired dyadic Green’s function ex-
pressed in terms of the new spherical vector wave functions:

I= 2n

(2n+ 1) (n—m)!

r.(r,r S A —— —
) =T 7220

=1m=0

2V, (VY (k) + k2

The superscript (1) invgn’" (k. ), V"‘"’n (k.), W‘;’" k_),
and W{) (k _ ) is present to indicate the substitution of #
for j, in the generating function 1//;m {«). This result, al-
though different in form, is physically equivalent to that ob-

641 J. Appl. Phys., Vol. 67, No. 2, 15 January 1990

n(n+1) (n+ m)!
k2 VD (k Ve (k) + LW (k)WL (k_) r>r
W, (k_YWD(k_) r<r.

(22)

tained by Bassiri ef al.° The assaciation of V. with &
(W. withk _)inEq. (22) suggests that the V;,..,. (W, )

functions yield RCP (LCP) waves. However, as is seen in
Eq. (8a) and (8b), these functions do contain a rapidly de-

N. Engheta and M. W. Kowarz 641
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caying radial component and, therefore, are not truly circu-
larly polarized waves until one reaches the far zone of the
source. It is also interesting to note thatboth V, and W,
contain this radial component, whereas in the (u)riginal set of
spherical vector wave functions only N, = possessed it.
Thus, using the original set for the nonchiral case, M,
could be used to represent the transverse waves, such as TE

or TM, emitted by the source. In the chiral case, only hybrid
waves can be excited and, hence, neither Vv, . nor van can

be purely transverse.

Our solution for I'. (r, ') can easily be verified by se-
lecting a point dipole excitation located at the origin and of
the form**

15(7)8(8")8(4))

J(r')y =e, ~ (23)
() r'<sin @’
Substituting Eq. (23) into Eq. (4) and noting that
0 if m#0
m ’ , — ‘1
Priteos 691y [1 if m=0 (24)
and
(k7 if n>2
Jalk )'/=ol ::{ 0 l' n (25)
k,r 173 if n=1
gives the radiation pattern
I
E(r) = — WLy
22wk . +k )
X[k VEI(k, ) — k> Wk )] (26)

It should be mentioned that this compact expression is valid
for all observation points in both the near and far zones. In
the far zone of the source, the Hankel functions present in
the equation become

}1 g 1) ( ‘f . ’_) - (?ik o

- ’ ( :2‘7 )
k., r kot kr
1 3 . .e'k’r
. o — . 28
p 8r[rh" (ktr)]ki:ril lktr (28)

+
Thus, the far-field radiation pattern is found to be the same
as that obtained by Bassiri e al.®:

. . ik
izt 1, sin (k+ e’

E(r) = — - N G (e, + iey)

4m(k, +k
kf ) eak r .
(ey —iey) ). (29)
r

The sums (e, + /e,) and (ey — ie,) indicate RCP and
LCP modes, respectively.

Il :RTERICR DYADIC GREEN'S FUNCTIONS FOR A
CHIRAL SPHERE SURROUNDED BY A NONCHIRAL
DIELECTRIC

Having expressed the dyadic Green's function for an
unbounded chiral medium in terms of the new spherical vec-
tor wave functions, we may now use that result to construct
one for a chiral sphere. The geometry of interest is shown in
Fig. 2. It consists of a chiral sphere of radius @ located at the
origin and embedded in a nonchiral dielectric of infinite ex-

€42 J. Appl. Phys., Vol. 67, No. 2, 15 January 1990

region 1

e FIG. 2. Geometry of the
s chiral sphere. The interior
. of the sphere is character-
€ iy €, region 2 e izedbye€,, u,,and £,, while

o Mo y e T2
the exterior is described by

a only € and u.

tent. As depicted in Fig. 2, the exterior and interior of the
chiral sphere are denoted regions 1 and 2, respectively. Since
the dyadic Green’s function for sources in region 1 is differ-
ent from that for sources in region 2, the two cases are con-
sidered separately. Here, we examine the case where the
source is at the interior of the sphere. The exterior case may
be found in the Appendix.

The boundary conditions require that the total tangen-
tial components of E and H be continuous across the inter-
face:

e, XE, =e¢, XE,, (30)
er >< ]—I t = ‘3r >< lélzy ( 3 1 )
where E, and H, are the fields in region 1 and E, and H, are

those in region 2. As before, the electric field can be written
as

E (1) = ivu, fr{;,z’(r, r')d,(r')dV’ (32a)

and

E,(r) = ia),ch- L 22 (r, ' yd,(r)dV . (32b)

The first superscript of the dyadic indicates the location of
the observation point, while the second gives that of the
source. With the electric field representation in Eq. (32a)
and (32b), boundary condition (30) at r = a becomes

e, XIOP (r, v’y =, X2 (r, 1). (33)

In order to express boundary condition (31) in terms of
these same functions, we replace H by E with the help of the
appropriate constitutive relation and Maxwell’s equation
VXE = iwB, which yields

(1/p)[e, XVXT L2 (r, 1) ]
= —(Ug,_. [erxrt((iZ)(r’ l")]

+ (/i) [6, XYXTE (1, ) ]. (34)

From scattering superposition, the total dyadic Green’s
functions in (32a) and (32b) may be written
I‘(lZ)(r, l") — I“.EIZ) (l', l'l),

tot

L2,y =C.(r, 1) + T (r, 1),

tot

(35a)
(35b)

r>a,

r<a,

where good choices for the forms of T'''*(r,r') and
r'?¥(r, r') are

N. Engheta and M. W. Kowarz 642
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(2n+ 1) (n—m)!

rilz)(r» r') S 2-6
27T(k+ + k_ ngl mzo

and

r§22) (l', l") .

n(n+1) (n+m)!
X {[a. VD (k) +a*W (k)1V: (k. )+ [65VID (k) + b¥WD (k)IW.  (k_)
smn emn ] omn + omn omn omn

(36a)

i (2n+1) (n—m)!

n(n+ 1) (n+ m)!

X{[c,,V;m(k+ ) +c:w5mn(k, Y Vima (k) + [40V,,, (k) +d oW, (k)WL (K )}

since these already satisfy their respective homogeneous
Helmholtz equations.”® Furthermore, as is required to
match T'‘'? (r,r') and T*? (r,r’) with T, (r,r’) at the
boundary, the arguments of the primed spherical vector
wave functions agree with those for I', (r, r’). Also, here,
four unknowns are present in each of (36a) and (36b),
whereas only two were needed in the nonchiral version of the
problem.?® The difference arises in the matching of bound-
ary conditions. As has been observed elsewhere,'® it is not
possible to satisfy these conditions separately with each
eigenmode, which explains why different coefficients are
needed for V;mn and W;'ml

Now, all that remains to be done is to solve for the un-
known coefficients a®, a¥, b2, b¥ ¢, c2,d., and d . We
introduce the following simplifying notatlon for this task:

Jj=Jja.(ka) and 31-————[%

s =ju(k,a) and Jj, =k1

+

"a";[’.']n

h=h(ka) and Jh —nklv 9

h, =h{"(k,a) and Jh, = 1

+ 4

a
x_.
ar['

Substituting (36a) and (36b) into Eqgs. (33) and (34) yields
the following sets of linear relations:

a, k2 oh,
av k2 h
T =], . (37a)
c k2 oh .,
| el k* h,
and
b — k2 on_
T bu K h_ 376
del | kLon_ | (376)
| a7 —k* h_
with the matrix T given by
643 J. Appl. Phys., Vol. 67, No. 2, 15 January 1990

(36b)
-
ch — oh —-3di, a_
. AR
T= T TS (38)
1ok 1ok —g, —d
Ih -k —j,  j_

and where /, the impedance ratio between the sphere’s interi-
or and its exterior, is

I=e/u/\JEL + (e./p.). (39)

The inverse of T can be found by Gaussian—Jordan elimina-
tion. However, because of the tediousness of the task, we
used the Mathematic™ computer mathematics system in-
stead, which yielded the result:

20|ty 1 by hg 0
Lyl Ly lag
with

th=U—-1Dj_d, h—U+1j,. d_h
+21j,j_ oh,

tp=—(U+1j_d oh+(U-1), d_dh
+20dj,dji_h

ta=—U-=-1j_dj, h=U+1)j, dj_nh
+2j.Jj- oh

ty=—U+1j_d, dh—(U-1)j, dj_oh
+2dj,9_ h,

=0 +0j_di, h—U—-1)j, Jj_h
—2j,j. oh

y=U=1)j_ i, dh—(+1)j, dji_ oh
+20di,dji_ h

ty=—U+1)j_3d, h—U-1), dj_h
+2j.Jj_ oh

a=(U—1)j_3dj, oh+(I+1), d_ Jh
23,9 A,

ty=—21dj_ h*+27%j_ hoh,

ty= —20j_ Oh*+2%3_ hah,

ty= —203j_ h*+2_ hoh,

N. Engheta and M. W. Kowarz 643
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ty= —2lj h*+23i hoh, iV. DIPOLE RADIATION

ty=21di, h" —=21%, hoh, While our purpose here is not to examine the general use
to= —21j, h 2422 3. hah, of the. dyadi.c Green’s f:un.ctions we l}ave derived, we shg.ll
. , ) examine their characteristics for one simple case. We consid-
taw= —209j, h*+2, hoh er the radiation pattern from an electric dipole source at the
ty=2j, oh?—23j, hoh, center of a chiral sphere. The current distribution J, (r') is
and?® again given by Eq. (23). Inserting this distribution and Eq.
36a) into (32 d usi lati 24) and (25), -
D=2 (hzf?h g+ ok 2j+j_ ) t(aina) into (32a) and using relations (24) and (25), we ob
—hoR(P+ 1), d_ +j_ G, ). (41) op d,
Hence, the coefficients of the dyadic Green’s functions for E(r)= - 2 \/i
o ; m(k, +k_)
sources at the interior of the chiral sphere are
X [{at — bV (k) + (@ — bIWL (0 ].

a =k’ (+1)G h—3d_h) (46)
Xy, ok, —dj, h,)/D, (422) Thus, as one might expect, the form of the radiated field for
av*= —k*® (I-1)(_oh+di_h) all regions is identical to that in Eq. (26). Only the magni-

tude of each mode is different. For the far field, i.e., kr> 1,

XU, 0k, —dj, h,)/D, (42b) (46) reduces to
b= —kL (-1, dh+di, h) iop I,sin 6 ot
X(. 0h_ —d_ h_)/D, @wa B = T T Y e
by=k> (+D(, =3, h X [{a] — b} ey + iey)
XG_dh =g h /D, (430) +{b% — at}e, — ie,)]- (47)
c=k% [P+ DhohG_ Sk, +3df_ h.) We limit our attention to large spheres, for which?®
—~2@G_ h, dh*+3j_ oh, hz)]/D, (44a) ) cos(k , a) 48)
' K (P 1YhOhG, Ok, — 3. h,)/D, (44b) T i T TE
d®= —~k2 (1>~ 1)hoh(j_ Oh_ —3d_h_)/D, (45a) . sin(k , a)
, J, = ———, (49)
dy=k> [(I*+ 1)hohG, dh _ +3dj, h_) kia»t  k, a
~2G, h_ h*+3j, on_ h*)]/D. (45b) B, = - et (50)
k,oa»l k+a
Substituting the coeflicients (42a)—(45b) into Eqs. (36a) - ik, a
and (36b), we obtain the complete expression of the dyadic Oh, = —i e . (51)
Green’s function for electromagnetic sources at the interior kyaxl k,a
of the chiral sphere. Thus, Eq. (47) becomes
|
E (r) _ iwﬂclo Sin 0 eik(r—a) [A«+ (eg + le¢) +AV (ee it le¢)] (52)
ST 4mk, + k) r 2cos[(k, +k_)a] —i(I*+ Dsin[(k, +k_)a]’
where
A, =k, (U+De "+ k_(U—1e""" (53a)
A=k _(U+De “ "4k, (-1e"" (53b)

It is worth noting that, due to the geometry of the problem, the angular dependence of the dipole’s radiated fields are similar to
those of a dipole in an unbounded chiral or nonchiral medium.
The total radiated power P is given by

P:%Refn-(Ele’,")dS. (54)

Since, outside the sphere, the ratio of the electric field to the magnetic field in the far zone is  2/€, this may be written in terms
of the € and ¢ components of the electric field as

P= 1/](1E3|2+ |E4|*)r sin 0 d6 d¢. (55)
/e
Substituting (52) into this relation and performing the integration, we obtain
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p PRIE (k2 +k2—)(12+1)+2k+,k‘ (I* = Deos[ (k. +k_)a] - (56)
3mfulek, +k_)2  4Pcos’[(k, +k_)a]l+ (P + 1)?sin’[(k, +k_)a]
Therefore, the radiation resistance?® is
R 207u’A’? (k% + k)P + 1) + 2k, k_ (12—1)cos[(k+ + k_)a] (57)

T 3nfule(k, +k_ ) AlPcos’[(k, +k_)a]+ P+ DIsin’[(k, +k_)a]

since P = I°R /2. The graph of Eq. (57) asa functionof (k , + k_ )aisshowninFig. 3 for /€, = 0.16. Two notable effects
are seen in the graph: the first is the strong resonance that occurs when (k , + k _ )ais an odd multiple of 7 and the second is
the increase in radiation resistance due to increased chirality. The former effect is simply a result of constructive interference
occurring with the sphere. The second one enters into the problem by changing both the impedance of the sphere and the
radiation characteristics of the dipole, i.e., by exciting the RCP mode more strongly than the LCP mode. More will be said on

this latter effect of chirality once we have examined the polarization of the electric field in Eq. (52).
Using the standard representation for the Poincaré sphere,?® we may express the polarization of a point on the Poincaré

sphere with latitude 2y as

: |’1—|2—|'{+|2 2(kz+ _kz—)l
sin 2y = = s= - , (58)
A_P+1a, | (k% + k2 )P+ 1) +2k, k_(I2—Deos[(k, +k_)a]
since
A, P=k d+1D2+k%L -1 +2k k_(I*—1)cos[(k, +k_)a]. (59)

For right-hand elliptically polarized waves

— 1 «sin 2y <0, whereas for left-hand elliptically polarized
waves 0 <sin 2y < 1. At the extremes, sin2y = — 1 and
sin 2y = 1, the waves are RCP and LCP, respectively. Fur-
thermore, when sin 2y = 0 the polarization is linear. There-
fore, it follows from Eqgs. (58), (16a), and (16b) that for
positive (negative) &, the radiated field is always of right-
(left-) handed polarization. A plot of Eq. (58) is found in
Fig. 4 for several values of positive &..

It is evident from Fig. 4 that, when (k , +k_ )aisan
even multiple of , one may achieve complete right circular
polarization. The physical conditions which permit this phe-
nomenon are of particular interest to radome design. To ex-

12
10 1
g 8 -
é 6 0=095
o
8
g 41 Q=07
2 Q=045
2=025
=0
0 T ¥
2nm 2n+D)xn (2n+2)x

p

FIG. 3. A plot of the normalized radiation resistance as a function of sphere
size. The normalization used is R /R,, Where R, = o*u?A%/6mfii/€ is the
radiation resistance in the absence of the chiral sphere. Here,
p=(k, +k_)a, Q=¢.Ju./€c., nis alarge integer, =y, and €/
€. =0.16.
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r

amine these conditions, we must seek the roots of Eq. (59)
or, in a more intuitive form, of

k> R?>—2k_ k_cos[(k, +k_)a]R+k’ =0,

(60)
where the reflection coefficient R = — (/- 1)/(/ + 1).
The solution of (60) is
R=(k, /ky)cos[(k, +k_)a]
+ —sin’[(k, +k_)a]}, (61)

which requires that (kK . + k_ )a = nz in order to have
real values for R. Therefore, for |4 , |? =0,

[ k,/k_ neven 62)
= , a
—k,/k_ nodd (
0.2
00 =00
" .‘/—’—m\ .
. ]
£ 047 n=01
-0.6
081 Q=02
4 f1=07
Q=04
10 (n+h)n Qi) n
[

FIG. 4. A plot of ellipticity of the polarization ellipse vs the size of the chiral
sphere. As before, u = u. and €/€, = 0.16.

N. Engheta and M. W. Kowarz 645

Downloaded 17 May 2006 to 158.130.66.18. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



and for |4 _ |7 =0,

neven

nodd’

k_/k,
=[ (62b)

—k k,

However, since £, is fixed at a particular value, it is only
possible to satisfy one of the two equations in a given medi-
um. We can suppress the LCP wave only when . is positive
and the RCP wave only when it is negative. Physically, the
elimination of one of the modes, let us say the LCP mode,
may be explained as follows: when condition (62b) is satis-
fied, a fraction &k _ /k , of the RCP wave is reflected at the
sphere’s boundary and becomes an LCP wave. This latter

J

iop dysin 8 gkt @ & a
Ar(k . +k_) r

E](l') =

Comparing this form with Eq. (29), we see that the fields are
exactly the same at r = a. As expected, past this boundary,
the field in (63) propagates with a single wave number £,
whereas that in (29) continues withboth 4 |, and k _ . Also,
with the impedance matching condition, the radiation resis-
tance reduces to the simple form previously found by Bassiri
et al.® for a dipole embedded in an unbounded chiral medi-
um:

V. CONCLUSIONS

[k, e (e, +ie,) +k_e (e, —iey)].

wave now has the same magnitude as the original LCP wave
since, for an unbounded chiral medium, the ratio of the am-
plitude of the RCP mode to that of the LCP mode is & . /
k _ . If the latter wave is 180° out of phase with the original
LCP wave radiated by the source, the LCP mode is com-
pletely canceled. Furthermore, as the chirality progressively
increases, a smaller and smaller portion of the RCP mode is
needed for the cancellation, which results in the greater radi-
ation efficiency seen in Fig. 3.

As a final consideration, we investiagate the effects of
matching the sphere’s impedance to that of the surrounding
medium, that is, the case where / = 1. Equation (52) then
simplifies to

(63)

GUIANKY + k) ouANQEL 4 €/u,)
6mJEl + €./,

(64)

R=ZHE2
Imjuse(k, +k_)?

It must be noted that due to the impedance matching offered
by / = 1, the above radiation resistance is independent of the
sphere’s radius.

We have studied the radiation characteristics of electromagnetic sources in the presence of a sphere of isotropic, homoge-
neous, lossless chiral material. Two cases have been considered: (1) the source placed at the interior of the chiral sphere and
(2) the source located outside the sphere. For both cases, using an exact formulation, the dyadic Green’s functions have been
derived and expressed in terms of the appropriately defined spherical vector wave functions. As an illustrative example, a
short electric dipole found at the center of the chiral sphere has been studied in detail, and the radiated fields and radiation
resistance have been examined. We have shown that, in this case, the dipole’s radiated fields are, in general, elliptically
polarized. Furthermore, by choosing the sphere’s size and material parameters properly, circular polarization may be ob-
tained. We have also demonstrated that the radiation resistance of the dipole depends on the sphere’s size and increases
monotonically with chirality parameter £,.

Results of this study have potential applications to novel radome designs, spherical lenses for microwave, millimeter-
wave and optical regimes, and multipclarized antennas with polarization control. In particular, spherical lenses made of
homogeneous chiral materials and their characteristics are currently being examined. The results of this investigation will be
reported shortly.
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APPENDIX: EXTERICR DYADIC GREEN'S FUNCTIONS FOR A CHIRAL SPHERE

In this appendix, we examine the case where the excitation is at the exterior of the sphere. Equations (32a) and (32b) are
changed to
(Ala)

1ot

E (1) = iop f T (r, )3, (r)dV,

E,(r) =iwyfFf(f("(r, r')J, (e)dV'. (Alb)

The boundary conditions in (33) and (34) are unaltered if )2’ (r, r') is replaced by T\’ (r,r') and T'22(r,r’) by

tot
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T2V (r, r'). Using scattering superposition again:

rt(oltl)(r’ r')=T(r,r) +r§”)(r7 r'), rza, (A2a)
L2 (r,r) =T (r,r), r<a, (A2b)
where
2y7(1) ’ 2 ) ’
roinry = 5: Z (25 y2nt D) (nmmt [F Vi OVin (6 4 KW, COWE, () o
oth k TP Ty V., (KVE) (k) + kW, (KW (k) rer,
l'\(ll)(r r (2n+ 1) (n-—m)'
£ W o n(n+1) (n+m)!
x{ &, Vi, (k) + e Wi (k)| Ve (k) + [f7 Vi (k) + £ We) (D W) (k) } (Ada)
and
@2n+1) (n—m)!
I““)(r,r)=— (2—6,0)
n; mZo *“n(n+1) (n+m)
X{[& Von (ki) + 87 W, (kD JVEL () + [AL Ve, (k) +hTW,, ()W (k). (Adb)

Applying the boundary conditions to these equations:

e — k2
ey — k2%
T |= —lkzjaj (AS5a)
| g2 — k2%
and
/. k? 3j
Sx —k%j
T = _Iszaj (ASb)
hY Ik?j

where T is still given by Eq. (38) and T~' by Eq. (40).
Therefore, the desired coefficients are

&=k, d_[U+1D2dGh+ (—1)%3h]
+38i,j_[d=1*dh+ U+ 1)}dh]

— 4G, j_ djon+dj, d_jm}/2D, (A6a)
ev=—k*=1G, & +d, j_ )Gk~ 3h)/2D,
(A6b)
fo=—k\*—1G, d_ +di, j_)idh—3djh)/2D,
(A7a)
fe=k*, d_[d-1)2h+ (I +1)%dh]
+3dj, j_ [ +1)?*Gh+(A—-1)%0h]
— 4G, j_ didh+3dj,di_ jr)}/2D, (A7b)
g =k(I+1)(j_ oh—3dji_h)(jdh—3djh)/D, (A8a)

gv= —kAU-1)(, dh+dji, h)(jdh— dih)/D,

(A8b)
ht= —k¥I—1)§_ dh+3dj_h)(jdh—djh)/D,

(A9a)
he=kU(+1)(, dh—3j, h)(jdh—djh)/D. (A9b)

647 J. Appl. Phys., Vol. 67, No. 2, 15 January 1990

'L. Pasteur, Ann. Chim. Phys. 24, 442 (1848).

%J. F. Nye, Physical Properties of Crystals (Oxford University Press, Ox-
ford, 1957).

3S. L. Adler and R. F. Dashen, Current Algebra (Benjamin, New York,
1968).

“R. H. Crowelland R. H. Fox, Introduction to Knot Theory (Springer, New
York, 1963).

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, Appl. Phys. 18, 211
(1979).

%S. Bassiri, N. Engheta, and C. H. Papas, Alta Frequenza LV-2, 83 (1986).

’J. A. Kong, Proc. IEEE 60, 1036 (1972).

8J. A. Kong, J. Opt. Soc. Am. 64, 1304 (1974).

°J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1986).

'ON. Engheta and S. Bassiri, IEEE Trans. Antennas Propag. AP-37, 512
(1989).

''N. Engheta and P. Pelet, Opt. Lett. 14, 593 (1989).

12p. Pelet and N. Engheta, IEEE Trans. Antennas Propag. AP-38 (1990).

13C, Eftimiu and L. W. Pearson, Radio Sci. 24, 351 (1989).

“N. Engheta and A. R. Mickelson, IEEE Trans. Antennas Propag. AP-30,
1213 (1982).

'SN. Engheta, M. W. Kowarz, and D. L. Jaggard, J. Appl. Phys. 66, 2274
(1989).

'*D. L. Jaggard, N. Engheta, M. W. Kowarz, P. Pelet, J. Liu, and Y. Kim,
IEEE Trans. Antennas Propag. AP-37, 1447 (1989).

'"D. L. Jaggard, X. Sun, and N. Engheta, IEEE Trans. Antennas Propagat.
AP-36, 1007 (1988).

18S. Bassiri, C. H. Papas, and N. Engheta, J. Opt: Soc. Am. A 5, 1045
(1988).

'*B. V. Bokut and F. I. Federov, Opt. Spektrosk. 9, 334 (1960).

20M. P. Silverman, J. Opt. Soc. Am. A 3, 830 (1986).

2'C. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Intext, San
Francisco, CA 1971).

2C, F. Bohren, Chem. Phys. Lett. 29, 458 (1974)..

A, Sommerfeld, Partial Differential Equations in- Physics (Academic,
New York 1949).
A

The homogeneous Helmholtz equation. - for region 1 s
VXVXE — kE =0, where k = o/pe. The corresponding one for re-
gion 2 is given by Eq. (3) with the right-hand side set equal to zero.

2In the nonchiral case, half the coefficients are ‘eliminated because
ay=ay, b, =by & =cyandd’ =d>.

*In these equations, 6/ % should be interpreted as.{%)>.

*8Because of the geometry involved, all of the sphicrical Bessel and Hankel
functions in this section are of order 1.

3C. H. Papas, Theory of Electromagnetic Wave Propagation (McGraw-
Hill, New York, 1965).

N. Engheta and M. W. Kowarz 647

Downloaded 17 May 2006 to 158.130.66.18. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



	University of Pennsylvania
	ScholarlyCommons
	January 1990

	Antenna radiation in the presence of a chiral sphere
	Nader Engheta
	Marek W. Kowarz
	Recommended Citation

	Antenna radiation in the presence of a chiral sphere
	Abstract
	Comments


	tmp.1147889639.pdf.yVfog

