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Mode Orthogonality in Chirowaveguides

Abstract
In this paper, we derive the orthogonality relations for modes supported by a general cylindrical
chirowaveguide. As introduced in our earlier work, a chirowaveguide is a cylindrical waveguide filled with
chiral or optically active materials. As in conventional waveguides, the orthogonality relations reported here
can be used to expand an arbitrary E or H field within a chirowaveguide in terms of a complete set of mutually
orthogonal modes in the waveguide.
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Mode Orthogonality in Chirowaveguides 

Abstract --In this paper, we derive the orthogonality relations for 
modes supported by a general cylindrical chirowaveguide. As introduced 
in our earlier work, a chirowaveguide is a cylindrical waveguide filled 
with chiral or optically active materials. As in conventional waveguides, 
the orthogonality relations reported here can be used to expand an 
arbitrary E or H field within a chirowaveguide in terms of a complete 
set of mutually orthogonal modes in the waveguide. 

I. INTRODUCTION 
H E  CONCEPT of chirality, or handedness, has been T a subject of interest in a variety of fields, such as 

chemistry [l], particle physics [2], optics [3] and mathemat- 
ics [4]. The original investigations of the effect of material 
chirality on light polarization, known as optical activity, 
date back to the 19th century. Arago [51, Biot [61-[81, 
Pasteur [l], and Fresnel [91 all examined optical activity in 
solid and liquid chiral media. For the time harmonic 
excitation (e-'"'') and isotropic case, a chiral medium is 
electromagnetically characterized by the following set of 
constitutive relations: 

D = € , E  + i(,B (1) 

H = i [ , E  + B / P ~  (2) 
where E ~ ,  p,, and 5, represent, respectively, the permit- 
tivity, permeability, and chirality admittance of the chiral 
medium [lo]. It has been shown that electromagnetic 
waves in these media display two unequal characteristic 
wavenumbers, 

2 2  k f = f W P C 5 ,  i- W&E, i- Pc5, 

for the right and left circularly polarized (RCP, LCP) 
eigenmodes [ll].  The set of chiral constitutive relations 
given in (1) and (2) is actually a subset of the more 
general constitutive relations used to describe bian- 
isotropic media. These generalized relations have been 
studied extensively by Kong [ 12]-[15]. Recently, there has 
been renewed attention to the area of wave propagation 
and radiation in chiral media owing to the possibility of 
fabricating such materials for microwaves and millimeter 
waves. In the past few years, electromagnetic chirality [16] 
and chiral materials have been extensively investigated in 
a large number of applications. Among these, one should 
mention wave-guiding structures filled with chiral materi- 
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Fig. 1. A cylindrical chirowaveguide filled with an isotropic lossless 
chiral material. The waveguide's cross section S is bounded by the 
curve C.  Vector n is the unit normal to the guide's wall. 

als [ 171-[ 191, dyadic Green's functions in chiral media 
[ll],  [20], transition radiation caused by a chiral slab [21l, 
Doppler effects in chiral media [22], wave propagation in 
periodic chiral structures [23], spherical lenses made from 
chiral materials [24], [25], and reflection and refraction at 
a chiral-nonchiral interface [26]-[29]. 

In our previous works, we introduced the idea of a 
chirowaveguide, which is a cylindrical guided-wave struc- 
ture filled with isotropic chiral materials, and we reported 
a detailed analysis of the propagation characteristics of 
electromagnetic waves guided through such structures 
[17], [HI. We also addressed the notable features of these 
waveguides and discussed their potential applications in 
microwave, millimeter-wave, and optical regimes. Here 
we analyze orthogonality relations for the modes of chi- 
rowaveguides. As in conventional waveguides, such or- 
thogonality relations can be used to represent an arbitrary 
electric or magnetic field within a chirowaveguide in 
terms of the superposition of mode functions. 

11. ORTHOGONALITY RELATIONS 
Fig. 1 presents the geometry of the problem. A cylindri- 

cal waveguide with an arbitrary cross-sectional shape is 
filled with isotropic chiral materials described by (1) and 
(2). The axis of the waveguide is along the z axis. The 
walls of this chirowaveguide are assumed to be perfectly 
conducting. The cross section of the waveguide, which is 
bounded by the curve C, and parameters of the material 
filling the guide are independent of z .  We have analyzed 
and reported elsewhere the general characteristics of 
guided modes in such a guided-wave structure. Let us 
now consider two different modes, viz., mth and nth 
modes, propagating in this chirowaveguide. The electric 
and magnetic fields of these modes are E,, H,, and E,, 
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H,,, respectively. p,, and p,, denote the wavenumbers in 
the guide for the rnth and nth modes. The electromag- 
netic fields considered inside the chirowaveguide propa- 
gate along the z axis. Thus we have 

( ernr + e m z i ) e l P ~ - Z  (3)  

(4) 

( 5 )  

(6)  

E = e erpnzz = 

H ,  = hrne1pmz = (h, , ,  + h 
m m 

j )e fDmz 
m z 

for the mth guided mode and 

E n n  = e erptiz = ( enr + e , , z . 2 ) e r ~ ~ ~ z  

H,, = hnefP1lz = (h,,, + h n z i ) e f p ~ J 2  

for the nth guided mode, where 2 is the unit vector along 
the z axis. Here, e,, h,, and e,,, h,,, with transverse parts 
e,,, h, , ,  and enr ,hnr ,  and the longitudinal components 
e,,,,, h,,, and e n z , h n z  are functions of the transverse 
coordinates x and y .  Without loss of generality, we 
assume that positive indices correspond to modes travel- 
ing in the positive z direction and negative indices to 
those traveling in the negative z direction.’ These modes 
satisfy the Maxwell equations and the boundary condi- 
tions on the walls of the chirowaveguide. Thus we have 

for the 

(7) V x E ,  = iwp ,H,  + w p , t , E ,  

V x HI,  = w p , [ , H ,  - iwE, 

n x E , = O  (9) 

(10) 

rnth mode and 

V X E,, = iwp,H, ,  + wp,t ,E, ,  

V x H,, = w p c [ , H ,  - i o € ,  

(12) n x E n = O  

for the nth mode. Here n is the unit normal to the wall of 
the chirowaveguide. From (71, (81, (101, (111, and vector 
identities, it can be easily shown that 

‘ . ( E m  XH,*)  
= H,*.V X E ,  - E;V X H,* 

= iwpcH;H,* - io€,* 

+ Ern*H,* ( w p r t r  - w ~ : t c *  (13) 
and 

V*(E,*  x HI,,) 
= H;V X E,* - E,**V X H,,, 

= - iwp:H,;H,Y + iwc ,  

- H,n.E,:(wprtc - ~r~:t ,*)  (14) 
where the asterisk denotes complex conjugation. AddinE 

‘For evanescent modes, this convention corresponds to modes decay 
ing in the positive and negative z directions, respectively. 

(131 and (141, we obtain 
V . (  E,, X H,* + Ef: X HI,, )  

= i o (  pc - p : )  HI; H,* 

+ ( c t r  - :[,* 1 ( Em. H,* - Hm . E,* 1 . ( 15) 
Now, provided that the chiral material filling the chi- 
rowaveguide is lossless, E , ,  p,, and [, are real quantities; 
thus from (15) we obtain 

V . (  E,, X H,* + E,* X H,) = 0. (16) 
Integrating (16) over the cross section of the waveguide 
and using V = V, + ( a / a z ) i ,  we obtain 

/p*( E ,  x H,* + E,* x H,) dS 

By using the two-dimensional form of the divergence 
theorem, the integral having the operator VI  in (17) can 
be written in the form of an integral over the contour C .  
Hence (17) can be written as 

where dl is an infinitesimal line element along the curve 
C.  Since the tangential components of the electric field on 
the surface of the boundary must vanish, the vector ( E ,  
X H,* + E,* X H,) is tangent to the boundary; hence the 
line integral given in (18) is identically zero. Thus we have 

Substituting (31-46) into (19) yields 

For the two different modes n and m, p, # p,. This 
implies that the above integral must be zero. That is, 

for rn # n and p, # p,. (21) 
This is an orthogonality relation for the modes in a 
lossless chirowaveguide.2 If the two modes are the same, 

21f the two modes are degenerate, i.e., p,,, = p,,, (21) does not neces- 
sarily hold. To ensure orthogonality for degenerate modes, one can 
construct a proper linear combination of the degenerate modes such 
that the new subset becomes an orthogonal set and (21) applies to them. 
This technique is commonly used for conventional waveguides filled with 
nonchiral materials [30]. 
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i.e., n = m ,  the above integral yields a nonzero value 
which is proportional to the power P, carried by the 
mode. Thus, we can write (21) in the following form: 

/L(e ,xh ,*  + e :  x h , , ) . i d S = 4  P,sgn(n)6,,, (22) 

where a,, is a Kronecker delta, P,, is the power carried 
by the nth mode, and sgn(n) denotes the sign of n ,  i.e., 
the direction of propagation of the nth mode in the guide. 

Using a similar derivation, we obtain another type of 
orthogonality relation for modes in chirowaveguides. That 
is, 

/ L (  e, X h, - e, X h,) .ids = 0. 

These orthogonality relations resemble those obtained for 
gyrotropic waveguides [31]. 

As in conventional waveguides, the orthogonality rela- 
tion (22) has the physical meaning that the power carried 
by an arbitrary electromagnetic field within a chirowave- 
guide is the sum of the powers carried by all possible 
modes in that waveguide. Indeed, (22) can be used to 
expand an arbitrary electric or magnetic field in a chi- 
rowaveguide in terms of the mode functions.' More 
specifically, for a given time harmonic electric or mag- 
netic field, E or H ,  satisfying the Maxwell equations and 
the boundary conditions within a chirowaveguide, one can 
write 

E = Ea,( emf + e , , i )e iP~~Iz  ( 24) 
in 

H = ( l / i w p . , ) ( V X  E - o ~ , ( , E )  

= Ea,( h,, + h , z i ) e i P ~ ~ ~ z  (25) 
m 

where the sum is extended over all possible modes. By 
using (221, the expansion coefficients a, are obtained as 

The alternative orthogonality relation given in (23) does 
not have physical meaning and the above-mentioned in- 
terpretation of power orthogonality does not hold for that 
relation. It must be noted that the mode orthogonality 
relation expressed in (22) applies only to lossless chi- 
rowaveguides. If either p.,, E , ,  or (, is a complex quantity, 
relation (22) will not hold. However, (23) holds for lossy 
as well as lossless chirowaveguides. It is also worth noting 
that in deriving the two orthogonality relations we did not 
need to assume that the material parameters are constant 
over the cross section of the chirowaveguide, only that 

'Strictly speaking, such an expansion is allowed only when the mode 
functions form a complete set of linearly independent functions. Linear 
independence is guaranteed via the mode orthogonality derived here. 
However, these modes are to be shown to form a complete set. Here, we 
assume that they are complete without attempting to prove this asser- 
tion. 

they are independent of z. Therefore, these orthogonality 
relations also hold for cylindrical chirowaveguides par- 
tially filled with chiral materials. 

For open wave-guiding structures containing chiral ma- 
terials, such as dielectric chirowaveguides which have no 
conducting walls, the foregoing results can also be ap- 
plied. However, care must be taken in using these orthog- 
onality relations for such open structures. It is well known 
that open waveguides can support two types of modes: 
guided modes with discrete wavenumbers, and radiation 
modes whose wavenumbers form a continuum. The guided 
modes have fields that decay exponentially away from the 
guiding region of the structure, whereas radiation modes 
have fields whose distributions are not localized near the 
guiding region. The indices rn and n used to distinguish 
between two different modes may indicate either guided 
modes or radiation modes. For guided modes, these in- 
dices are discrete quantities while for radiation modes 
they form a continuum. In using (22) for open chirowave- 
guides, the surface S, over which the integral is carried 
out, is the entire transverse plane, normal to the longitu- 
dinal axis of the guide, extending to in fin it^.^ If the two 
different modes (mth and nth) are both guided modes or 
one is guided and the other is a radiation mode, the 
Kronecker delta can still be used and (22) still holds. 
However, if the two modes in (22) are radiation modes, 
the Kronecker delta must be replaced by the Dirac delta 
function 6(m - n). Furthermore, it must be noted that for 
open chirowaveguides, the expansions (24) and (25) should 
also include radiation modes for which integration must 
be used instead of summation. Therefore, for simplicity, 
the single summation symbol can be used to indicate both 
the sum over discrete guided modes and the integration 
over the continuum radiation modes. 

111. SUMMARY 
In this paper, we have obtained orthogonality relations 

for electromagnetic modes supported by cylindrical chi- 
rowaveguides. These wave-guiding structures are cylindri- 
cal waveguides containing chiral materials. It has been 
pointed out that one of these relations is valid for lossless 
waveguides while the other holds for the lossy as well as 
the lossless case. We have also demonstrated that the 
orthogonality relations can be used to express an arbitrary 
electric or magnetic field within a chirowaveguide in 
terms of the mode functions. The orthogonality relations 
obtained here resemble those used for gyrotropic wave- 
guides. 

41ndeed, in this case the surface S is split into two portions: one is the 
cross section of the waveguide S, and the other is the rest of the 
transverse plane SI). Equation (17) is then used for each of the surfaces 
S, and SI,. When the two-dimensional form of the divergence theorem is 
used in the first integral of (17) over each surface, the line integral over 
contour C for the integral over surface S, will be canceled by the line 
integral over the same contour for the integral over SI,. This is due to 
the continuity of tangential electric and magnetic fields at the boundary 
of open wave-guiding structures. Thus the only line integral in (18) is the 
one being carried out at infinity, which, for guided modes, vanishes. 
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