
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

March 1989

Blackboard System Generator (BSG): An
Alternative Distributed Problem-Solving Paradigm
Barry G. Silverman
University of Pennsylvania, basil@seas.upenn.edu

Joseph S. Chang
IntelliTek, Inc.

Kostas Feggos
George Washington University

Follow this and additional works at: http://repository.upenn.edu/ese_papers

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/197
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Barry G. Silverman, Joseph S. Chang, and Kostas Feggos, "Blackboard System Generator (BSG): An Alternative Distributed Problem-
Solving Paradigm", . March 1989.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers/197
mailto:repository@pobox.upenn.edu

Blackboard System Generator (BSG): An Alternative Distributed
Problem-Solving Paradigm

Abstract
The classical blackboard model employs a number of relaxations of team decision theory that are commonly
organized into three panels of AI heuristics, including: 1) a shared information panel that offers a capability
for ensuring agent knowledge sharing, 2) a contract formalism for the agent and event scheduling,
coordinating, and control panel, and 3) a blackboard panel for metalevel planning and guidance that offers
whole situation recognition, top down reasoning, and adaptive learning. The nature and implications of these
relaxations are explained in terms of the blackboard system generator (BSG) and via comparisons to what is
done in other blackboard shells. Particular attention is paid to theoretical relaxations inherent in the classical
blackboard model and to research opportunities arising as a result. Progress made to date to counteract
adverse effects of some of these relaxations is described in terms of a project management/work breakdown
paradigm adopted in BSG that: 1) alleviates the knowledge engineering bottlenecks of traditional blackboards
and that provides BSG with a semantic rather than just syntactic understanding of blackboard control and
scheduling; 2) allows a distributed problem-solving capability for connecting agents at virtual addresses on a
logical network and that permits concurrent processing on any machine available on the network; 3)
establishes an open architecture that includes techniques for integrating preexisting agent methods (e.g.,
expert systems, procedures, or data bases) while laying the foundation for assessing the impact of “black
boxes” on the global and local objective functions; and 4) utilizes project management techniques for team
agents planning as well as an analogical reasoner subsystem for BSG metaplanning and generic controlled
learning. This latter item is supported by a connectionist scheme for its associative memory. The techniques of
each of the three panels and of the four sets of paradigm-related advances are described along with selected
results from classroom teaching experiments and from three applications using BSG to date.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/197

http://repository.upenn.edu/ese_papers/197?utm_source=repository.upenn.edu%2Fese_papers%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages

334 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO, 2, MARCH/APRIL 1989

Blackboard System Generator (BSG) :
An Alternative Distributed
Problem- Solving Paradigm

BARRY G. SILVERMAN, SENIOR MEMBER, IEEE, JOSEPH SHIH CHANG,
AND KOSTAS FEGGOS

Abstract -The classical blackboard model employs a number of relax-
ations of team decision theory that are commonly organized into three
panels of AI heuristics, including: 1) a shared information panel that offers
a capability for ensuring agent knowledge sharing, 2) a contract formalism
for the agent and event scheduling, coordinating, and control panel, and 3)
a blackboard panel for metalevel planning and guidance that offers whole
situation recognition, top down reasoning, and adaptive learning. The
nature and implications of these relaxations are explained in terms of the
blackboard system generator (BSG) and via comparisons to what is done
in other blackboard shells. Particular attention is paid to theoretical
relaxations inherent in the classical blackboard model and to research
opportunities arising as a result. Progress made to date to counteract
adverse effects of some of these relaxations is described in terms of a
project management/work breakdown paradigm adopted in BSG that: 1)
alleviates the knowledge engineering bottlenecks of traditional blackboards
and that provides BSG with a semantic rather than just syntactic under-
standing of blackboard control and scheduling; 2) allows a distributed
problem-solving capability for connecting agents at virtual addresses on a
logical network and that permits concurrent processing on any machine
available on the network; 3) establishes an open architecture that includes
techniques for integrating preexisting agent methods (e.g., expert systems,
procedures, or data bases) while laying the foundation for assessing the
impact of “black boxes’’ on the global and local objective functions; and 4)
utilizes project management techniques for team agents planning as well as
an analogical reasoner subsystem for BSG metaplanning and generic
controlled learning. This latter item is supported by a connectionist scheme
for its associative memory. The techniques of each of the three panels and
of the four sets of paradigm-related advances are described along with
selected results from classroom teaching experiments and from three
applications using BSG to date.

“Give me a fruitful error anytime, full of seeds, bursting with
its own corrections, you can keep your sterile truth to your-
se[f:”

Comment on Kepler,
Virfredo Pareto, circa 1900.

Manuscript received June 15, 1987; revised January 28, 1988 and
February 9, 1989. This work was supported in part by NASA JPL Small
Business Innovative Research (SBIR), NASA GSFC SBIR, and the
GSFC code 522 Contracts.

B. G. Silverman is with the Institute for Artificial Intelligence, George
Washington University, Washington, DC 20052 and IntelliTek, Inc.,
Rockville, MD 20852.

J. Chang is with IntelliTek, Inc., Rockville, MD 20852.
K. Feggos is with the Institute for Artificial Intelligence, George

IEEE Log Number 8820137.
Washington University, Washington, DC 20052.

I. INTRODUCTION

HE BLACKBOARD “MODEL” for an expert system T is illustrated in Fig. I(a) as a conference table around
in which a Chair convenes a meeting of a number of
specialists. Each agent is a specialist in a few subjects and
no single agent has the breadth and depth of intelligence
to solve the shared problem in isolation from the others.’
Such meetings are common in everyday problem solving,
examples of which could be a presidential cabinet meeting,
a spacecraft design team meeting, or a family planning
session. There are various rules of protocol for guiding the
conduct of such meetings that the Chair and agents agree
to at the beginning of the meeting. These rules generally
exist to permit each agent to share their unique viewpoints
about their common problem and/or its possible solution;
to be stimulated from the differing viewpoints of the other
agents; and to reason spontaneously and opportunistically
in attempting to reach a creative solution to a common
problem.

In the blackboard model there are generally three princi-
pal subsystems: 1) the blackboard that is a shared, global
data space that facilitates communication and coopera-
tion; 2) the agents that are knowledge sources capable of
reacting to and modifying the blackboard data structures,
and 3) the Chair that both plans agendas and controls
agent activity. An assumption exists that the agents can
pool their insights to build toward the common goal.

A Blackboard can organize information into a hierarchy
of “panels” and ‘‘levels’’ within each panel (see Fig. l(b)).
The agents share information in the lowest panel while the
two higher panels include levels of abstraction of the
shared information and of the overall progress toward the
system’s goal. This paper is devoted to the description of
what happens in each panel (see Sections II-V). By way of
overview: the bottom panel contains what has been said
and what is believed, the middle panel consists of agent
proposals to take action and Chair tactics for controlling

‘Alternately, an agent may be “cloned’ and identical copies of it may
be run on idle resources. Similarly, numerous blackboards can access the
same agent.

0018-9472/S9/0300-0334$01.00 01989 IEEE

SILVERMAN er ul. : BLACKBOARD SYSTEM GENERATOR 335

m Evmlr. .IC

- A u t W Q I - lieauctions

(b)
Fig. 1. Overview of blackboard model. (a) Blackboard and chairman support distributed agent cooperation. (b) Blackboard

panels and levels. *SAR is specialist activation request and WA is work authorization.

the “ meeting” agenda and schedule, while the lughest
panel focuses on overall meeting agenda planning and
learning from past meetings.

Historically, team-agent theory probably draws its roots
from dialectical systems theory (originating in Aristotillian
times) although the modern origins of blackboard technol-
ogy truly began in the 1970’s with the Hearsay I1 project
(Lesser et al., [2]) and has recently been transformed into
the “classical” blackboard model at several AI centers of
note: e.g., see [l], [lo], [13].

Formally speaking, the classical blackboard model is an
attempt to apply heuristics to a mathematically intractible
team-decision problem. Specifically, let there be two as-
sump tions :

1) Different but correlated information for each agent
concerning some underlying uncertainty, and

2) Need for coordinated actions on the part of all
agents to realize system-wide payoff.

Further let,

e (t) = [O , (t) , d , (t) , . . > f3,,(t)l
= a vector of random variables (RV’s) that are the

states of nature;

p (e(t)) = the probability distribution surrounding each

Z = [Z,(t) , Z,(t) , -, Z,(t)] = observations vector on
the states by each of N
agents;

Z, = K,[O(t)] = observation vector (or array) of the n th
agent (n = 1, N) where K is a set of
observation rules or operators.

state of nature;

W t) = [Dl(t>, D,(t),. * * , D J t)

D,(t)= { d , , = WP,,(Z,(t))lWP,, E G ,)

=decision variables of the N agents (each agent
has an array of decision variables).

= the decision variable of the n th decision maker
given the observations he has made on the states
of nature.

D,(t) takes the value of one of the admissible class of
decision functions, G,, of that agent. Note: d,, can also be
written as d,, = WP,,, (K , (e (t)) = F,, , (e(t))) .

p (D (t)) = the proability distribution surrounding the
transition from one state to another.

P (D (t)) = P[Dl(t) = dl,D,(t) = d*r,- * * ? D N (t) = dN,I
= p [e (t + l) = J p (t) = i , , e(t -1)
- ir-l,- . -, e(0) = io] -

336 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO, 2, MARCH/APRIL 1989

Loss = L[D (t) , 8 (t)] = the loss or payoff criterion that
estimates the discrepancy be-
tween the current state and the
goal state.

Then the team-agent decision problem becomes:

Find D(t)optimum, or WP, opt E Gn

for all agents (n = 1, N) such that
min./(t) = “expected value” e(t)(L [D(,8(t)]) .

(1)

The blackboard is thus no more than the lists 8 , Z, p (Z) ,
etc. Loosely put K , is the set of forward reasoning opera-
tors that an agent has for moving from states toward
observations while WP is the agent’s library of back rea-
soning operations for moving from Zs to Zs. D, is the
agents proposals (decision variables) to apply Ks, Fs, and
WPs to the data and to attempt to make a state transition.
Opportunistic reasoning is facilitated via the observations
Z,(t) and decisions D,(t) of each agent. The widely dis-
cussed “principle of least commitment” is capturable as
p (Z) , p (8) . Agent viewpoints are represented as multiple,
conflicting p (D,(t)) and p (Z,(t)) stored simultaneously
and in their desire to optimize their local objective func-
tions (Min J,). Cooperation is the global optimization
problem (Min ./global).

Casting the blackboard model in these terms permits its
recognition as a decision theoretic problem of long stand-
ing (e.g., [21]). Further, it facilitates the application of a
large body of technique from other disciplines such as, but
not limited to, operations research, decision science, mod-
ern control theory, and probability and statistics, to men-
tion a few.

Unfortunately, (1) is the simplest form of the team-agent
decision problem. It is completely static: only one team
decision is made. To correct this it is necessary to intro-
duce new and/or modified constraint functions (oper-
ators) such as D,(t) = WP,(ZJ t - i)) , D J t) = F,(8(t - i),
Z,(t - i)) , Z,(t) = K,(Z,(t - i) , D,(t - i)), where t - i
indicates one or more prior cycles of activity.

More importantly, the controls (0,) of each agent in (1)
do not depend on the actions of the other agents.2 In (1)
cooperation occurs: a) statically through the system-wide
objective function, and b) dynamically through changes to
8. A more realistic result would be to let Z, =

K,(8, D,,, Z,,), D,, = WP,(Z,,), etc. where n’ is an indicator
of agents other than agent n. That is, to let an Agent’s
observations depend on both the states and the decisions/
observations of other Agents. This is referred to as IR,
(information required by agent n).

This single set of refinements brings us to an unsolvable
(analytically) team decision problem that seems so central

’Both Barbara Hayes-Roth, whose BB1 exists at over 30 sites, and
Jagannathan (“Juggy”) at Boeing, whose ERASMUS has been used
internally quite heavily, indicated user training and knowledge engineer-
ing to be the major bottleneck. (Discussions at the “Workshop on
Blackboard Systems”, AAAI-87, Seattle, 7-13-87.)

to the concept of opportunism characteristic of the black-
board model. That is (the features most often expected by
users), a blackboard should allow agents to have opportu-
nities in the sense that they can: 1) inspect each other’s
conjectures and decisions, IR(.); 2) alter their own points
of view and beliefs as a result of (1) or as problem solving
evolves (i.e., maintain p(Z,,,), p(D, , , ,) where c and a are
cycle and alternative stamps, respectively); 3) maintain
several potentially conflicting hypotheses (explanations)
simultaneously; and/or 4) suspend a given line of reason-
ing K,,, or WP,,, (possibly for later resumption) in order
to pursue what appears to be a more important reasoning
pathway at present. Since the competing hypotheses are
weighted, the blackboard system is expected to give what it
considers its best answer or solution at any point in time:
it obviously will give more correct solutions as time pro-
ceeds, as more observations are formed, and as more
operations upon these operations occur.

This paper investigates an implementation of the
“blackboard model” by explaining the progress made to
date in the data structures, reasoning schemes, and tech-
niques of a tool called the blackboard system generator
(BSG). BSG represents heuristic relaxation of the opti-
mization requirement implicit in (1). BSG replaces the
global optimization guarantee (“holy grail”) with a set of
plausible heuristics expected to arrive at reasonably robust
local optima. The ultimate research objective of BSG is to
describe a decision theoretic version of the blackboard
model that will facilitate application of known decision
technology that can help minimize team decisions that are
clearly dominated (“valleys”) in terms of the global and
local agent objective functions (Jglobal and J,).

11. THE BLACKBOARD SHARED INFORMATION PANEL

The shared information panel is segmented into levels
that capture and hold distinct sets of input/output infor-
mation that needs to be shared either between different
agents or across cycles by a single agent. These levels are
important in the blackboard model in general, however,
the model gives little insight into how they must be de-
signed for a given application so as to maximize their
likely impact upon the blackboard’s efficiency and effec-
tiveness. The rule of thumb to follow when designing levels
is that lower levels should hold data that will tend to
change more rapidly (or earlier) than that in the upper
levels. For example, many applications will tend to place
states of nature 8’s at the lowest level and the desired
global decision, D, at the uppermost level with various
combinations of F and Z data at the intermediate levels.
This rule of thumb is vague and the precise data to be
placed in each level will vary from application to applica-
tion.

Experience by the lead author with teaching BSG over
the past five semesters to graduate students majoring in AI
has shown that proper design of levels and objects is a
difficult concept to convey. Discussions with other BB
developers has revealed a similar obstacle encountered by

SILVERMAN er UI.; BLACKBOARD SYSTEM GENERATOR 331

Fig. 2. Activity and event networks for distributed problem solving agents. (a) Activity work breakdown structure (WBS).
Defines blackboard levels and state transition events. (b) State transition operators imply activity and method dependencies.
(c) Shared information panels becomes blackboard transaction data base. A-activity. M-method.

their users.2 To overcome thls obstacle, BSG is now taught engineering. That is, the knowledge engineer analyzes the
in terms of a workflow metaphor known as project man- current human tasks and assembles a “work breakdown
agement [22] . The project manager is the Chair whose job structure,” which is an activity hierarchy mapped onto a
is planning and control, while the agents serve as project goal hierarchy (connected hierarchical graph). The WBS
team submanagers, and agent methods are project team hierarchy starts with the top level goal as its root node
“ personnel.” while successively lower levels hold work packages

(hierarchies of activities) to be performed by BSG agents.

A . Activity Work Breakdown Structures (WBS’s)

The BSG knowledge engineer will generally want BSG
to replace actual human-performed tasks and activities. To
that end the project management techniques of work
breakdown and task analysis are utilized for knowledge

B. Blackboard Levels, Events, and Objects

The shared information panel of BSG corresponds to
the WBS structure in that they both must have (by conven-
tion) the same levels. Blackboard objects are event-ori-

338 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS. VOL. 19, NO, 2, MARCH/APRIL 1989

ented, however, and do not represent the work packages
(that is the role of agent methods). When BB Objects are
read to or from, or altered by the agent methods, a
milestone or event is said to have occurred in the project
management sense of these terms (see Fig. 2(a)).

Given both the importance of arriving at an efficient
levels schema and the difficulty of predicting what that
scheme should be a priori, BSG had to be given a number
of features that facilitate rapid prototyping and reediting
of the levels scheme. These include mouse-buttonable,
pop-up menus that permit create, move, delete, and edit
type operations on the object that defines a level and its
attributes. Any number of sublevels also can be defined,
however, each sublevel may have only one direct parent.

C. Activity and Method Dependency Implications

The WBS paradigm requires specification of permissible
sequences of work packages at each level of the WBS. In
such diagrams the activities are the nodes while events are
represented by links, as shown in Fig. 2(b).

Blackboard users mentally construct such diagrams when
knowledge engineering a new application. The coding of
BB Objects on the blackboard levels combined with the
event transition operators of the work packages facilitates
the specification of event-activity interplay. This is a sec-
ond knowledge engineering bottleneck of blackboard ap-
plications (specifying WBS’s was the other mentioned so
far).

D. A Note On Blackboard Object Engineering

BSG is built on top of an object definition language
(ODL) and hence uses an object oriented programming
paradigm throughout, as illustrated for the shared in-
formation panel in Fig. 2 and as will now be further
explained. This paradigm was selected to facilitate
exploratory design, rapid prototyping, definition by spe-
cialization, message passing, and a uniform frame-like
representation for shared data. (Although Knowledge En-
gineering Environment (KEE@) was initially adopted, ulti-
mately an internally developed ODL tool was utilized to
facilitate portability and satisfaction of requirements dis-
cussed in Section V-B-3.)

BB Objects actually hold the information that is to be
shared between agents and/or across cycles. They are
created (via mouse button) as child objects of the
levels/sublevels. There is no practical limit to how many
BB Objects can be attached at each level, although they
must themselves be leaf nodes (they cannot have child
objects).

E. Pros and Cons of Blackboard Objects

The ultimate advantage of any object oriented represen-
tation lies in the ability to imbue the objects with local
intelligence so that they can independently process and
respond to messages they receive from the agents, the

chair, other BB Objects, etc. Several types of local intelli-
gence are embedded in BB Objects as follows:

They are design advisors to the knowledge
engineer -BB Objects are smart about which agents
can operate upon them. Three operations are possi-
ble: BB Put, BB Get, and BB Change. The user (or
application builder) can query the BB Objects to
discover who will post information and who will
react to that posting. In a second regard the black-
board objects provide knowledge engineering sup-
port. This lies in their ability to insulate the knowl-
edge engineer from difficult programming tasks. In
effect, once the knowledge engineer has entered his
levels and BB Objects, his design work is over. In
reality, this information must be parsed into the
(empty) “possibility” space as in Fig. 2(c). This is
done automatically by BSG objects.
They are control advisors to the Chair-There are
two types of control (and planning) knowledge a BB
Object communicates to the Chair:

work packages sequence dependencies, which the
Chair uses in its conflict resolution and control
heuristics, are sent to the Chair at runtime (see
Section IV). Sequence dependencies are simply
the precedence relations established by the agent
BB Put, BB Get, etc., operations that in turn are
internally recognized as WBS events and which,
thus have a schedule and time dimension signifi-
cance in the Chair’s “ project control” paradigm;
and
competing hypotheses (third dimension of Fig.
2(c) are remembered by the BB Objects and
relevant portions of these histories are sent to
the Chair for its control needs (or to the Explain
function, see Section IV).

They will be selfdiagnosing error handlers -A feature
not yet implemented but for which the proper foun-
dation now eixsts is for the BB Levels and BB
Objects to advise the BSG knowledge engineer of
constructional and/or runtime errors and their
source. While object oriented interfaces are useful
for the aforementioned purposes, they run the risk of
inefficiency under operation. Should the number of
alternative hypotheses, observations, etc., for a given
BB Object grow large, the history slot acts as a
sequential “file” that proves somewhat slow to pro-
cess. Several alternative data structures are currently
being investigated, including relational structures (as
in GBB, Corkill [ll]) and BB Object instantiations.
The goal, however, will be to maintain the friendly
interface and only parse the “history slot” into a
more efficient structure at runtime.

F. Case Study of the Design Elicitation Paradigm

Before implementing the WBS, many of the students’
independent study projects tended to adopt distributed
exDert svstem rather than true blackboard architectures. ‘Kee is a registered trademark for IntelliCorp, Palo Alto, CA.

SILVERMAN et ul.: BLACKBOARD SYSTEM GENERATOR 339

Shared Info Panel Agents

Electro-Mech.
Decider 1

Electrical Problem
Agent

Mechanical Problems -
Agents

J

Agents Shared Info Panel

(b)
Fig. 3. Overcoming common design pitfalls with BSG elicitation

paradigm. (a) Car mechanic problenh as distributed expert system
(before WBS paradigm). (b) Car mechanic problem recast as interde-
pendent problem solving heirarchy (after WBS paradigm).

That is, each level of the blackboard shared information
panel was devoted to a separate expert system with little to
no problem solving interdependence between levels.

For example, one student team [3] knowledge engi-
neered BSG for a car mechanic’s shop in which they
initially created three levels corresponding to three special-
ist agents: electrical, mechanical, and electro-mechanical
decider: the cashier greets the car owner and accepts the
job, hence, he was placed at the bottom level even though
he also collects payment when the repair is finished. The
top level agent decides whether a new problem is electrical
or mechanical and one of the two lower level agents then
completes the diagnosis and repair. In this case, most of
the problem solving “power” of BSG has been wasted:
BSG could be replaced by an expert system shell with a
single if-then control rule since none of BSGs functional-
ity for processing intermediate results and hypothesis are
needed.

An alternative design was then elicited utilizing the WBS
paradigm. The improvements include: 1) Problem solving
sequences are now better structured; the cashier’s begin
and end functions are separated as they should be and the
cost negotiations prior to actual repairs are now evident
(and integrated across electrical mechanical problems), 2)
important events previously hidden in the agents (and
repeated from agent to agent) have been made explicit on,
the BSG while agents now hold only methods (activities);
and 3 the Chair now has enough domain levels and inter-
dependencies to be able to intelligently sequence activities
and level interplay/interaction. It is no longer possible to
use a single expert system shell on this problem (due to the
cycles, negotiations, and hypotheses that must be ventured
and retracted). Fig. 3(b) is a viable application of BSG
while Fig. 3(a) was not.

111. DISTRIBUTING AGENT DEDUCTIONS ACROSS
MACHINES AND PACKAGES: PROCESSING

VERSUS CONTROL

Two important distributed problem-solving considera-
tions include distributed processing and distributed con-
trol. Distribution of processing allows parallel computa-
tion of concurrent activity for various levels of granularity.
Large granularity might correspond to multiple copies
of a BSG application distributed over several machines;
medium granularity could involve distribution of only
selected agents, WP methods, or knowledge bases; and
small granularity distributed processing might involve par-
allel firing of individual rules or rule subparts in the
knowledge base’s AND/OR graph. Numerous schemes
exist in the general, nonblackboard literature for each of
these levels of granularity: e.g., see [ll], [14]-[19]. The
choice of granularity level is often influenced by machine
constraints, however, most blackboards to date fall under
the large granularity case. Reference [16] appears to be a
proposal for a medium granularity blackboard system.

BSG has been designed in a modular fashion so as to
ultimately offer most of the possibilities just mentioned for
distributed processing and distributed control. At present
only the large and medium granularity processing options
and low and medium control distribution cases have been
attempted. The BSG features that facilitate distribution of
processing and control will now be described.

A. Logical Nets, Virtual Addresses, and Modular
Agent Objects

BSG uses a logical network with virtual addresses denot-
ing the various agent and shared information panel
element locations. The logical network insulates BSG oper-
ations from actual hardware peculiarities. For large granu-
larity, centralized control applications run on a single
processor and the logical network may be turned off to
save processing time. Virtual addressing permits agent
modules and panel segments to be implemented in almost
any degree of granularity and distribution desired. It also
facilitates: 1) instantiating or cloning of agents for use on
idle resources, 2) multiple blackboard applications utiliza-
tion of the same agent, and/or 3) integration of agents
that run almost any shell (e.g., Kee, Art, OPS-5), package
(e.g., Lotus, DB 111, Connectionism/Neural Net), or pro-
cedure (e.g., in situ model, simulator, or trainer). Discus-
sion of instantiating or cloning is postponed to Section

The BSG Logical Net is decomposed into multiple in-
stances of the local logical net that, in turn, consists of
multiple instances of seven types of objects as listed in Fig.
4 and as now described. Local Listener Objects exists on
each branch of the logical net corresponding to either a
physical process or a physical machine. They route mes-
sages to on/off of both the local panel segments. They
also route suspend, kill, and restart process messages rele-
vant to their local net. Each local net may have two
categories of bulletin boards: the remote BSG/SIP seg-

111-D.

340 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO, 2, MARCH/APRIL 1989

Fig. 4.

1 HOD 13 --- SAR 1 3 1

(b)
Formalisms for distributed agent addressing, layering, and editing. (a) Alternatives exist for

control and/or processing. (b) Specialist lattice and pop-up menus.
distributing agent

ments and the local task queue. The latter is simply a
buffer for outgoing or incoming files.

The shared information panel segment is what the spe-
cialists or agents generally have read/write access to across
the logical net. Only agents, generally, are allowed to
modify information on the blackboard (user as an agent).
Each agent has an objective function or goal that causes it
to read lists of Z’s , 8’s and D’s from permissible black-
board panel levels and to formulate Z’s, D’s, e’s, etc.,
that it contributes to the objective or goal, Min J,.

Central to this interplay are the agent contract for-
malisms and work package (WP) method modules that can
be attached to the local logical net for one or more agents.
The agent contract formalism is addressed in Section 111-B.
While some WP methods will need to stand alone, the
more common case is where WP Methods are designed as
high level X functions that integrate and coordinate the
queries, asserts, firings, etc., of the “lower layer” tools and
packages. In general, knowledge engineers will utilize the
WP methods to integrate external shells and preexisting

tools. In such methods, the external shells provide an
inference engine that can be used to propagate 2’s and
F’s and to deduce new Z’s, F’s and new 8’s. These
external tools are also convenient for organizing and hold-
ing the extensive knowledge bases of rules, procedures,
facts, etc: the knowledge engineer can program in what-
ever shell he is comfortable with.

The knowledge engineer can add specialists locally
(boldprint in Fig. 4(b)) or remotely. Remote specialists
appear in normal print and are read-only from the host.
When the knowledge engineer adds a specialist or agent,
n, to the blackboard he enters a lattice of r WP methods
(WP,,) into the BSGs object definition language as shown
in Fig. 4(b). That is, a set of WP methods (r =1, R) are
created for: 1) monitoring and updating lists on the shared
knowledge panel, 2) firing off expert systems and other
packages attached as additional methods to the lower
layers of the agent architecture, and 3) performing any
other procedure desired. WP Methods are created as lisp
objects that inherit several slots from the generic WP

SILVERMAN et 01.: BLACKBOARD SYSTEM GENERATOR

method embedded in the BSG that facilitates the above
three purposes. The knowledge engineer’s task is to edit
the value slot (a WP function partially filled in) and to
specialize it so it will perform one of the three purposes for
the application of interest.

WP methods thus can owe their origin to one of three
sources: 1) inheritance in total or in part from BSG-the
principal methods that exist totally within BSG and are
noneditable are described in Section 3-D; 2) off-the-shelf
vendor packages; and/or 3) user-edited portions of the
WP functions. In all three cases, however, a WP object is
created withn the WP agent method lattice that has the
following slots:

[WP method name (WP,, name),
Parent WP methods (list),
Children WP methods (list),
Address (value),
Information required: (list of variables, 8 , ZR(.)),
Expected output (types of variables generated, P(z)) ,
K partitions referred to (list),
Triggering features (list of types of problems that can be

WP method value (actual code of WP functions and/or

,.g

solved),

pointer to code file)].

Knowledge bases and external packages are similarly con-
nected to the logical net.

D. The Contract Formalism

For most purposes the agent cannot utilize its WP
methods without first sending a proposal or specialist
activation request (SAR) to the Chairman (see Section IV
on the control panel). SARs are a contract formalism for
proposing a useful task.3 If the Chair accepts the SAR, a
return message called a work authorization (WA) is issued
and the Specialist’s WP method will then be automatically
initiated.

SARs are the common language by which the agents
can ensure participation. They are also the set of decision
variables D,(t) available to the agent (a decision is made
when a SAR is committed to and sent). SARs are a
packeted message (object) consisting of a unique header
identifying the specialist as well as the point at which they
were created. In addition they include seven fields or slots
as indicated in the pop-up menu on the bottom right hand
side of Fig. 4(b).

Whle the user enters the slot values in English-like
syntax via responses to each items on the SAR editor, the
true effect of entering this information is to establish the

’The Chairman, in effect, convenes a Proposal Evaluation Board to
rate and select the best proposal(s) on each cycle. A useful discussion of
contract formalism may be found in Smith [15], although, that describes a
fully distributed design wherein each agent is equivalent to the BSG
Chair in functionality.

341

~

Several SARs may be created for each WP,,,; there will
generally be s =1, S, of them created for each WP,,, for a
total of C,“=,S, SARs per agent. Since SARs inherit a
number of their slot values from their WP method parents,
creating SARs does not require as much time as might be
expected. Also, since parent WP methods may themselves
be combinations of several lower level child methods (as
discussed earlier) a given SAR may actually be a proposal
for more than one method. This in turn creates a possibil-
ity for a given WP,,, to give rise to yet other WPs in other
cycles. A related point worth noting is that WP,,, and K,,(,
are essentially a fixed or unchanging possibility set from
cycle to cycle. The decision process, d,, on the other hand
provides the precise trace of reasoning taken through all
cycles, n.

The significance of the values entered into each slot is
further elaborated in the discussion of (1) as contained in
Sections 111-C, IV, and V. Since each SAR object spawns
many instances of itself during execution, a record is
automatically generated of decision processing that can be
used to “explain” its choices of WP’s, K’s, SAR’s, etc.

1) Local agent object function: Moderately distributed
control: In operational terms each specialist strives through
a series of processing states to utilize its various layers to
achieve its local objective function or goal. These states are
summarized in Fig. 5, which depicts the specialist as an
ongoing process constantly trying to solve (1) by watching
the blackboard for triggering events, WA’s, or goals. Upon
detecting a change or stimulus, the left-hand loop of the
diagram is pursued by the agent’s methods assess whether
any action is needed, and if so they then formulate and
issue a SAR. The process cycles to the top of the diagram
and if a WA is received the left-hand loop determines
whether it is still an appropriate task and, if so, the
right-hand loop is then pursued in which the task is
performed and the results appropriated propagated. In

elements of the distributed objective function

Dn,(t) = [WP(z>, t, B , ~(9, Krq(’) , IRi(p(@,
p(Z,), d,)]. The SAR is a proposal (decision)
from the ith agent instantiated on the kth
cycle to attempt state transition activity.
planned (activity) process of Min J,,.
duration of the planned process or activity.
priority of t h s process.
uncertainty of achieving the expected outcome.
expected output (distribution of outcome if
outcome is achieved).
rule set or procedure to invoke (i.e., this is part
of the planned process) if SAR is accepted.
information required to complete the planned
process: i.e., information required from
the blackboard, p (8) , as well as from other
agents j .

342 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO, 2, MARCH/APRIL 1989

7 1
Examine Blackboard fi-%T Check and (Meta Min Knowledge In) for oak1 = IRj (p(O),p().di)

Task Acceptability
1 p r o c e . s ~ ~ 1

- T T * , e d i 3 Events/ Goals

I P J W , F ~ ~ S , A S W ~ ~ S I (&), dn)
= LCZJ dJ

Place Results on
Blackboard

ISAM ILtHENlSI

Request (SAW

Place SAR on

Fig. 5. Processing states associated with agent objective function.

either case the left-hand loop is then reinitialized and a
new SAR is formed.

At this point it is appropriate to rewrite (1) to reflect the
local conflict resolution activity of each agent plus other
refinements such as agent decision sharing and dynamic,
multicycle behavior. Specifically, on each cycle i the agent
must

Thus each agent has a time continuing objective func-
tion J, discretized over i d I intervals (the cycle counter).
In each cycle, the agent is attempting to select the appro-
priate method plus knowledge baselet combination from
those available in the list of SARs. Appropriateness is
measured by the loss function L,, a BSG embedded WP
method that evaluates and selects a current cycle. L, is
sufficiently similar (although simpler than) the Chairman's
Lglobd such that its internals will be addressed in Sec-
tion IV.

C. Pros and Cons of Distributed Problem Solving in BSG

I) Distributed Processing Objects: BSG offers the foun-
dations of a virtual operating system that permits the
knowledge engineer to combine diverse machines, vendor
packages, and previously built agent modules into a coop-
erating entity. For applications that do not need to be
distributed the logical net can be eliminated. For moderate
and higher granularity concerns, however, the BSG can I

recognize distributed virtual addresses on the logical net.
At present, logical networks and virtual addresses are

available and the knowledge engineer can experiment to
find the optimum allocation of agent modules to machines.
Future research would be useful for a dynamic optimizer
that alleviates knowledge engineers of having to find the

optimum distribution and automatically re-allocates pro-
cesses to idle machines during the course of operation.
References [14] and [16] are two schemes for dynamic
allocation of tasks to machines that illustrate the need for
research on this subject: using opposing schemes with
complementary advantages and disadvantages. Research
into efficient, dynamic distribution schemes is needed that
combines the advantages of various existing schemes.

2) Design Guidance: BSG provides the apparatus for
writing and programming a distributed objective function.
Via the generic portions of the WP methods and SARs
and via the embedded processing cycle, agent's WP meth-
ods are guaranteed to be part of the distributed algorithm.
Once again, the local intelligence advantages of the object
orientation are exploited. In the following ways the WP
method and SAR objects provide intelligent assistance
beyond the simple agent purposes:

They are design advisors to the builder -WP Method
Objects are smart about which BB Objects they react
to and post to. The user can query the Method in the
pop-up menu of Figure 4b and a dependencies win-
dow will show the Method in the center with links to
nodes representing the BB Object to/from that
Method. SAR objects have the same design insight.
They are control advisors to the chair -Dependency
knowledge is sent to the Chair at runtime that the
Chair compiles into its scheduler techniques (see
Section V).

Distributed Control Concerns: With all this capability
comes a lot of power and room for knowledge engineer
error. To this date, the settings of the local objective
function are entirely determined by the user via the WP
function (WP method) extensions and via the values of the
SAR slots. The present BSG design has no theorem prov-
ing techniques for assessing the validity (or effectiveness)
of user defined objective function element^.^ The advan-
tage of specifying the blackboard model in decision theo-
retic terms, however, is to pave the way for future theorem
proving developments.

It is felt that low and medium distributed control levels
are consistent with the control models of this paper (e.g.,
(2)). Fully distributed control, however, offers no possibil-
ity of implementing theorem proving or suboptimality
checking at a later date. For that reason, the fully, dis-
tributed control model has been avoided in BSG. In addi-
tion, while distributing the processing across various ven-
dor packages and facilitating the incorporation of the
third-party expert systems are advantages of BSG from the
usability perspective, it is deleterious to the goals of dis-
tributed objective function verifiability and suboptimality
avoidance. Use of a third party vendor shell introduces the

4While not an excuse, this is the prevailing mode in inference
engine/expert system shells as well. Most shells offer no help to the
knowledge engineer on the robustness of his or her KB designs (i.e.,
validity of the decision trees).

SILVERMAN et U/.: BLACKBOARD SYSTEM GENERATOR 343

LOGICAL
NET

Real Time
Agent U W Methods

.___-__ L _ _ _ _ _ _ _

LISP
MACHINE

1

LISP
MACHINE

2

IBM
Pc

VAX

Fig. 6. Overview of BSG usage in NASA’s faculty advisor (distributed problem-solving testbed).

prospect of a “black box” for some pieces of the dis-
tributed objective function. Research is needed for objec-
tive function proving techniques that can transcend and/or
interpret the value of the missing pieces. Some of the work
to date on competitive, rather than just cooperative, prob-
lem-solving systems is expected to become relevant to this
line of investigation, e.g., [4], [20], [21].

D. Case Study: Facility Advisor DPS Tested

Many of the distributed agent design features just de-
scribed have been attempted in a NASA testbed called the
facility advisor. Facility advisor is a testbed for ground
system autonomy techniques capable of replacing or better
supporting supervisory staff at ground-based spacecraft
control centers. A control center (or facility) typically
requires four categories of human staff positions that
facility advisor attempts to emulate: facility manager,
telecommunications job scheduler, who schedules user re-
quests to send to (receive from) their spacecraft, facility
operator, and repairman.

Real facilities may have multiple individuals staffing
each of these four categoiies of positions (and variants of
them). Such staff are generally supervisory controllers who
interact with the facility via a CRT or console to detect,
isolate and correct anomalous behavior in the portion of
the facility under their purview. They are idle if anomalies
(or service requests) do not occur, but in busy periods each
staff member may find himself confronted by as many as

several dozen messages requiring action at any given mo-
ment.

To keep up with this workload, while simultaneously
maximizing quality and quantity of service objectives, is
the requirement. The problem-solving requirements of each
position include: the fast pace, magnitude of jobs, simplic-
ity of procedure needed to solve most of the anomalies
(jobs), and deep complexity of a few of the reoccurring
anomalies. No single calculus has yet proven pertinent to
the satisfaction of requirements [4]. This is an application
for which several expert system failures had already oc-
curred, and hence, the facility advisor was conceived as a
testbed of distributed problem-solving techniques applica-
ble to an autonomous control center operation. Several
thousand expert heuristics (rules) were elicited from inter-
views with a number of supervisory controllers. A cogni-
tive model of supervisory protocols was also constructed
that mapped the heuristics onto nine cognitive function
emulators built on top of a real time situational calculus
and numerous off-line calculi depending on problem type
and depth of processing needed (see [4], [5]).

The testbed integrated three types of machines: Lisp
machines for offline problem solving, and the VAX and
IBM PC for real-time facility troubleshooting (see Fig. 6) .
Several off-the-shelf vendor packages were incorporated
including 1) a BBN finite state machine language available
on the VAX for hierarchical factory control and adapted
for real time control center operations, 2) a back-chaining
shell called M.1‘ on the IBM PC, and 3) the knowledge

344 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 2, MARCH/APRIL 1989

engmeering environment (Kee@) on Lisp Machine # 1.
Using BSG, the blackboard was designed, the agents were
implemented and the various hardware and software pack-
ages were integrated.

The facility advisor is still in its relative infancy as
testbed but some of the results already achieved include: 1)
distributed processing at the medium granularity level; 2)
distributed control at the medium case level for off-line
problem solving and fully distributed for real time prob-
lem solving (a necessary “evil” due to the pace require-
ment); 3) parallel processing on Lisp Machine # 2 of
schedule contingencies to support maximizing quantity of
service objectives in the face of link outage predictions
generated by the repairman on Lisp Machine #1; and 4)
quality of service (i.e., depth of processing) available as a
function of variation in guaranteed response time required
(see Section V-A for further discussion of this result).

In addition, the need has been demonstrated for estab-
lishing a long term activity devoted to the collection,
testing, and refinement of distributed problem solving
techniques relevant to the control center domain. Reuse of
effective, validated DPS components is essential to avoid
“reinventing the wheel” from mission to mission.

The facility advisor has already provided a rich domain
for further researching and development of numerous BSG
features including, but not limited to: 1) efficient tech-
niques for dependency direct-backtracking in a distributed
processing milieu; 2) how to recognize the occurrence of a
situation for which a previously solved contingency al-
ready exists (e.g., how much of a solved schedule file needs
to remain in or be loaded into virtual memory in order to
recognize its applicability); 3) what are the optimal clone
and distribution management techniques under varying
degrees of logical network traffic loading; and 4) are there
design heuristics guiding the distribution of processing
modules between local and remote branches of the logical
net. These are topics of investigation in the computer
sciences literature at large and for which there are no
unique answers.

Research in these and related areas is continuing in a
second phase of activity intended to build a DPS system of
immediate use in the Space Telescope Operations Control
Center. This will also hopefully serve as a reusable DPS
module for the Space Station era advanced autonomy
software.

and procedures. It knows a minimal amount about the
domain and is instead adept at initiating blackboard cy-
cles, collecting and rating SARs, and issuing work autho-
rization (WA’s) for specialists.

A. Four Types of SARS.

As shown in Fig. 7, the Chair consists of a schedule
controller who issues WA’s in response to inputs from four
other Chair components. In essence the schedule controller
provides a conflict resolution function (i.e., find the best
SARs to fire in this cycle) while the other components
nominate four types of SARs for consideration onto the
All SARs Agenda.

Agent SAR’s: The agent/event schedule manager
utilizes an agent scheduling paradigm to presort the
agent SAR’s received in the ith cycle.
Event SAR’s: The agent/event schedule manager
also utilizes an event scheduling paradigm to pre-
sort those SARs precipitated by Blackboard events,
i.e., preset guage thresholds, clock/calendar alarms,
etc. That is, a threshold or alarm on a blackboard
data structure can store SARs that get sent to the
Chair when cautionary or emergency conditions are
reached.
Clone SAR’s: A feature useful primarily in parallel
processing environments is that any agent, method,
etc., can be cloned and activated to work on a
parallel or distributed problem. Clone scheduling
becomes particularly important when events and/or
plans require agent operations from already busy
agents.
Plan SAR’s: The meta level of intelligence should
monitor the whole situation that the agents are
involved in and constantly offer SAR’s for events
and/or agent activity it feels would be appropriate
for testing of alternatives, for redirecting overall
progress, and for evaluating results. Meta knowl-
edge and plans is still an experimental component
of BSG that is addressed more fully in Section V
when the planning panel is introduced. For now it
is only important to view it as a fourth source of
SAR’s for the schedule controller to manage.

1)

2)

3)

4)

B. Agenda Control and Scheduling

As indicated earlier the Chair schedules activity sug-
IV’ THE AGENT AND AGENDA gested by the various SARs with the help of control

insight it obtains from the BB Objects and Method Objects MANAGEMENT PANEL

The agent specialists are independently capable of intel-
ligent decisions and of parallel, opportunistic reasoning.
Nevertheless, it is important to ensure that all agents
receive equal attention as times proceeds and that the
overall project objectives are continuously .being ad-
dressed. The Chair is introduced to facilitate these con-
cerns and to manage the project agenda and work autho-
rization schedule. Like a project manager, however, the
bulk of the Chair’s knowledge lies in the control protocols

themselves. Two principal types of control information the
Chair relies on are summarized in Fig. 8(a) and (b) as the
work breakdown structure and method dependency graph,
respectively. The work breakdown structure (WBS) is help-
ful as a quick sort heuristic that the Chair uses to organize
SAR’s into their respective work package. SARs that
support work packages the Chair has already committed to
(or postponed), and can be immediately detected and
placed on the CANDIDATES. SAR’LAGENDA (or left on the

SILVERMAN et ul.: BLACKBOARD SYSTEM GENERATOR 345

CHAIR

&Hans

SARs

Status of Agent Clones

Blackboard Control Panel

Agenda Window

Time (Cycles)

“HHHH

Fig. 7 . Chair’s control architecture. + is control and ’..’ is reporting

ALL.SAR’S.AGENDA, or sent to the REJECTED.SAR.TRACE).
The method dependency graph in turn is used by the Chair
to help sort the CANDIDATESAR’LAGENDA into a permissi-
ble sequence of activities (methods) to be fired and to
generate the READY.SAR’S.AGENDA of those SAR’s whose
action does not depend on other SAWS.

The Chair next uses two sets of heuristics KB’s to
inspect SAR.Parmeters such as priority, probability, task
duration, etc. so as to organize the READY.SAR’S.AGENDA
into a PRIORITIZED.READY.SAR’S.AGENDA (using other pa-
rameters to break priority ties). The latter is the agenda of
SARs to be authorized (“ WAed”) in the current cycle and
as quickly as the available computer resources will permit.
Finally, a COMPLETED.SAR.TRACE and FIRED.WA.TRACE are
maintained for backtracking and explanation purpose.

The agenda control and activity scheduling heuristics
just described permit opportunistic behavior similar to the
classical blackboards (e.g., Hearsay 11, AGE, or BB1). By
way of example, Fig. 8(c) depicts a permissible agenda in
which activities of a work package are plotted by level in
the vertical dimension and time is plotted in the horizontal
(this is an actual BSG control panel window). This agenda
shows adherence to sequences, system dependencies, and
WBS levels/packages. The reoccurrence of activity 11 1
four separate times indicates opportunism. That is, the
Chair selected the agent method that performs activity 111
to be run four separate times: 1) the first run initiated
activity 1 and in part made activity 112 possible; 2) the
second and third runs appears to interrupt activity 112 and
corresponds to a second and third hypothesis being tested
prior to the completion of 112; and 3) the final run
reinitializes all of work package #1, possibly as a result of
something learned in work package # 2 (or due to a new
state of nature).

In addition to encompassing the behavior of the classi-
cal blackboard model, the agenda of Fig. 8(c) reveals
several added features. The agenda reveals activity concur-
rency, not just sequences of activities. Due to the virtual
addressing of agents on the logical net, BSG will allocate
activities to available resources. Activities stacked verti-
cally on Fig. 5(c) exist simultaneously on the run time
stack. They will be parallel processed automatically if
resources are available to do so. Further, runs 2 and 3 of
activity 11 1 may be automatically relegated to separate
clones for parallel processing.

The two important features just mentioned-concur-
rency and opportunism-are desired in varying quantities
from application to application. Some applications tend to
be highly parallel while others are serial in nature. Simi-
larly, opportunism may be rampant or virtually nonexis-
tent in various applications. For these reasons BSG in-
cludes two toggle switches that are user-set to tailor BSG
to their application: 1) the parallel/serial switch that turns
the logical network on or off, and 2) the opportunism lever
(low, medium, high) that shortens the number of SARs
that may be fired in the current cycle’s execution tree from
all (low opportunism) to only one (highly opportunistic).

The choice of settings primarily influences the speed and
efficiency (number of retracted cycles/total number of
cycles) with which BSG reaches its conclusions (see Sec-
tion IV-E). A completely serial application has no use for a
logical network routing scheme. A highly opportunistic
application requires close Chair scrutiny of each new SAR
proposed (i.e., after each SAR is fired, the agenda should
be entirely reconstructed).

The toggle switches also permit emulation of certain
control strategies described in the blackboard literature.
For example, Barbara Hayes-Roth’s BBl [12] is serial and

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO, 2, MARCH/APRIL 1989

. -. I

IV m 1
(C)

Fig. 8. Project control paradigm of BSGs Chair. (a) WBS insight sent to Chair by BBOs and agents method objects.
(b) Sequence dependency insight sent to Chair by BBs and agent method objects. (c) Typical agenda permitted by Chair.

SILVERMAN et ul.: BLACKBOARD SYSTEM GENERATOR 341

uses one SAR per cycle, the high opportunism setting.
Victor Lessor’s distributed vehicle monitoring testbed
(DVMT), on the other hand, would be emulated with the
parallel toggle setting combined with the low-opportunism
toggle setting [ll].5 The latter toggle permits execution
trees containing multiple SARs to be constructed and
processed (as a plan) since a new SAR watcher is invoked
that determines whether the execution tree must be inter-
rupted due to a valid opportunity. If the interruptions are
infrequent, the solution time will be significantly faster
under the low opportunism setting.

C. Chair Conflict Resolution Algorithm

The Chair’s conflict resolution algorithm is a restate-
ment of (2) , the major difference being that instead of
evaluating only one agent’s SARs, the Chair is evaluating
across four sets of SARs: all agent, events, clones, and
meta plans. The algorithm is:

Collect the four sets of SARs for this cycle, i , to
generate the All SARs Agenda of SAR,,. (Note:
each manager prescreens his own list.)
For SARs in the current work package (CANDI-
DATE.SAR’S.AGENDA) create an execution preference
tree and ensure no SAR is executed ahead of an-
other SAR whose output it depends on.
Thus,

IF: IR,, = p (Z , , (t) , d,, for any N # j E N
THEN: Schedule SAR,, ahead of SAR,,Vj on the

Put those SARs whose input is independent from
other SARs on the ready SARs agenda.
Sort the ready SARs agenda by priority value, B,,
into the priortized ready S A P S agenda.

candidate SARs agenda.

Break priority ties by executing shorter, more certain
processes first. Longer, less certain processes are candi-
dates for cloning and for metaplanning.

IF: B,, = B,,,
THEN: Break priority ties with process uncer-

tainty and duration values as
reverse sort: [Ufl,(p,(Z)), sort(t,,)] and construct

ordered SAR‘s agenda.
Check the control panel’s contingency list to ensure
that no SAR is executed in the current cycle, i , that
was anticipated and run several cycles earlier in if.
Thus,

for any n # j in SAR,,

5)

IF: SAR fll[wpflr(z>7 p (z f l (t)I? K f l q (e l (t)>I =
SAR,,, for any j on the contingency list

THEN: Cancel SAR,, (place it on the rejected
SAR trace) and place results from SAR,,,
on the blackboard shared information
panel.

Lesser et al. have performed numerous and extensive testbed studies
of a far greater range of possible levels of opportunism and distributed
architecture alternatives than are considered here. The reference here
refers to only one of their configurations in which 4 BB’s are given a
limited planning capability.

6) Executes as many SARs from the ordered SARs
agenda as permitted by the toggle switch settings,
update the agenda as soon as these SAR’s are com-
pleted, and return to Step 1.

The Chair’s resolution algorithm is executed in BSG as a
knowledge base of heuristics that is editable by the knowl-
edge engineer: the algorithm is thus only an embedded
WP,, method plus an editable K, , knowledge base parti-
tion. The heuristics of this conflict resolution algorithm are
only a starting position. For example, in some BSG appli-
cations it might be desired to sort rather than reverse sort
in Step 5 of the algorithm. That is, if a distributed system
tends to become communications bound, a more effective
strategy is to always perform the longest tasks first. This
tends to decrease communications and increase agent com-
putation. Other similar changes are equally possible, and
in its present implementation the interface permits a non-
programmer to make changes to the conflict resolution
algorithm via a scheduler heuristics edit window (which
also includes the two toggle switches alluded to earlier).

D. Pros and Cons of Chair Control Techniques

One contribution of BSG to the general blackboard
model lies in its ability to reduce the knowledge engineer-
ing requirement for explicit control knowledge. In many of
the traditional blackboards, the Chair’s control heuristics
must be specified by the knowledge engineer (user) in a
large number of SARs he must write out long hand. The
control of the agenda is thus entirely in the hands of the
user via a trial and error approach to control. For example,
in BB1 the user must decide if each method is strategy,
tactic, or focus (roughly the same as three WBS levels) and
label it as such. SARs must be given weights of impor-
tance (the WBS does this implicitly) in addition to priori-
ties, and the user must ensure all method and SAR depen-
dencies are correctly worked out. In short, there is an
overtly flexible control model offered to the user in BB1
and other blackboards.

This has several adverse effects, however, including: 1)
anyone less learned than the original developers find it
difficult to understand, let alone write the control SARs;
2) since the control heuristics tend to be distributed across
numerous SARs, only an experienced blackboard pro-
grammer can program them to avoid local optima; 3)
theorem proving techniques for verifying the control
heuristics (and for driving towards more globally robust
optima) can have little chance of success; and 4) control
heuristics must be re-specified for each new application.

The incorporation of a control paradigm (model plus
designer’s aids) directly into BGS’s chair is an attempt to
overcome these beginner bottlenecks. A conscious shift to
implicit control knowledge has been made. The user needs
only to specify the agents, methods, BB Levels, and BB
Objects and toggle settings. WBS and MDG knowledge
are implicit in these structures and the BSG’s chair is
intelligent enough to utilize that control insight directly.

~

348 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO, 2, MARCH/APRIL 1989

E. Chair Toggle Switch Results Assessment

Benchmarks have been run to try and determine if
optimal breakpoints can be identified for shifting the two
toggle switches from setting to setting as will now be
reviewed. The benchmark problem used in this paper is
based on a hypothetical working configuration that con-
sists of ten specialists operating on ten blackboard levels.
Each specialist has a single method and each method has
only one SAR. During each problem-solving cycle, six
SARs (specialist SAR instantiations) will be created on
average, but only either one, three, or all six SARs may be
selected as candidates corresponding to the high, medium,
or low opportunism toggle settings, respectively. Methods
have an adjustable execution duration, which is controlled
through a global variable. The entire problem needs 30
SARs to be solved no matter what opportunism toggle
setting is used. In order to examine the effectiveness of
parallel processing, the ten specialists can be organized in
two different setups: one is completely sequential (all
methods are linearly dependent in a line) and the other is
completely parallel (all methods are independent).

All benchmarks were run on Xerox Lisp machines using
InterLisp (Koto release). That particular Lisp machine
permits multiprocesses rather than parallel processing.
There is also no way to control the CPU resource alloca-
tions between processes and no communication buffer to
store incoming messages. Consequently a fix was imple-
mented to permit the distributed version of BSG to run in
that environment. In particular, three machines were used
in which one machine (called the local machine) holds the
Chair plus four specialists while the two remote machines
hold three specialists each. Specialists in the Chair’s
machine cannot be activated concurrently with other
specialists.

Table I shows statistics of basic operation and overhead
in the current implementation of BSG. The three columns
across the top of Table I correspond to the local machine
time, remote machne time (including network overhead),
and display time. The rows of Table I correspond to major
operations associated with the blackboard and contract
formalisms. The step completion times in the body of the
table correspond to the average time to complete one
instance of that operation.

The longer step completion times of Column 2 (remote
machines) may be attributed to network overhead. The
network overhead in the agent’s SAR evaluation is more
than twice that in BB Object operations. Ths is because an
agent’s SAR evaluation requires two communication link
connections while a BB Object operation only needs one
connection. The huge amount of overhead in Table I
means the benchmark result in the following sections will
be slower than other implementations of the distributed
BSG relative to the sequential BSG would be. That is,
most networks impose less overhead.

1) Degree of opportunism: The benchmark was run three
separate times with the opportunism switch set to low (six

TABLE I
TIME REQUIRED TO PERFORM VARIOUS BSG FUNCTIONS (p s)

Step Completion Times

On Local On Remote Display
Machine (Network oh) Overhead

BB Object Operation
bb get
bb put

SAR not created
SAR created

Agent’s SAR Evaluation

Agent’s Method Invocation
Basic Control Steps

Agent’s SAR evaluation
Chair’s SAR processing
Chair’s executive control

31 864
41 886

248 2399
808 4805

2+Ch 830+C

6695
1217

“567

“Display option switch may be turned on or off
hMethod duration.
“Number of candidate SARs.

SARs in one cycle), medium (three SARs per cycle), and
high (only one SAR fired per cycle), respectively, using the
sequential processing benchmark setup. These settings cor-
respond to the three columns of Tables II(a) and (b).
Execution time statistics were collected separately for: 1)
the agent SAR evaluation steps (i.e., those of Section
11-B-1 and Fig. 5) ; 2) the Chair’s SAR processing steps
(Steps 2-5 of Section IV-C-Step 1 is part of agent SAR
evaluation); and 3) Chair/agent WA processing (i.e., Fig.
5 for agent WA processing plus Step 6, Section IV-C for
Chair WA processing). These correspond to the three
groups of rows along the sides of Tables I1 (a) and (b).

The results of Tables II(a) and (b) indicate that as the
number of SARs fired per cycle increase, the time re-
quired to solve the entire problem will decrease roughly
following the curve:

T A +(Y/DO), where
T total problem solving time
A agent problem solving time (e.g., 30 C from Table

DO degree of opportunism (# of SARs fired per

V a constant.

11)

Chair cycle)

This implies that a low opportunism problem being
solved in a hgh opportunism toggle setting will result in
an unnecessary slowdown, especially if the opportunism
setting is close to 1, the highest setting (see Fig. 9 for the
Table II(a) data).

Without considering the network overhead, both Tables
II(a) and II(b) are very similar except the percentage of
time spent in an agent’s SAR evaluations in the multiple
machine case is less than that in the single machne case.
That is due to parallel SAR evaluations in multiple ma-
chines.

2) Degree of Distributed Problem Solving: The differ-
ences between distributed and sequential BSG are quite
simply that the former: 1) routes all agent and chair

SILVERMAN et al. : BLACKBOARD SYSTEM GENERATOR 349

TABLE I1
TIME REQUIRED BY VARIOUS BSG COMPONENTS (ps) WITH AND WITHOUT DISTRIBUTED PROCESSING

AND AT VARYING DEGREES OF OPPORTUNISM

Time to Compute 30 SAR/WA Sets

HI& Opp (1 SAR) Medium Opp (3 SARs) Low Opp (All 6 SARs)

Time Percent Time Percent Time Percent“

Agent’s SAR Evaluation
Total
Cycle average

Total
Cycle average

Processing
Total
Cycle average

Entire problem
Cycle average

Chair’s SA R Processing

Chair and Agent WA

Grand Total

A. SINGLE MACHINE-SEQUENTIAL PROCESSING

112844 76 36025 55
3761 3602

16 368 11 10190 15
545 1019

20176+30Ch 14 19675+30C 30
672 + C 1967 + 3C

149388+30C 65 890 + 30C
4978 + C 6588 + 3C

17210 38
3442

9020 20
1804

19079+30C 42
3815+6C

45 309 + 30C
9061 + 6C

B. MULTIPLE MACHINES, SEQUENTIAL PROCESSING

Total 1143030 57 350 980 35 199000 24
Cycle average 38 101 35098 39 800

Total 187 230 9 71 520 7 43 195 5
Cycle average 6241 7152 8639

Processing
Total 663420+30C 33 572160+30C 58 570790+30C 70
Cycle average 22114+C 57216 + 3C 114158 +6C

Entire problem 193680+ 30C 994660 + 30C 812985 + 30C
Cycle average 66456+ C 99466 + 3C 162 597 + 6C

Agent’s SA R Evaluation

Chair ’s SA R Processing

Chair and Agent WA

Grand Total

“Percent is computed assuming method completion time = 0.
’C is a variable corresponding to the method completion time

communications over the logical net; 2) implements each
agent (and user-specified agent methods) as distinct physi-
cal processes; and 3) permits concurrent parallel process-
ing on distributed machines available over the logical net
(three machines for the benchmark). The parallel process-
ing power speeds up agent’s SAR/WA processing, but the
effectiveness is bounded by the number of machines avail-
able, machine load (agent distribution), and agent’s method
execution duration. Inorder to better understand these
bounds let,

degree of parallelism =

of running WA’s
~~~~~ 

# of running WA’s + # of SAR’s in ready SAR’s agenda 

Degree of parallelism equals 1 means all executable 
SARs are running (an obviously ideal situation corre- 
sponding to one machine per WA). If the degree of paral- 
lelism is less than 1, say i, there are only of the 
executable SARs running and the rest of the executable 
SARs are waiting for free machines (WA is pending). 
Delay may be a result of either too few machines in the 
system or the problem of load imbalance. Table I11 pre- 
sents the rows corresponding to two, four, and all six 
executable SARs  while varying degrees of parallelism are 
the columns. Our experiment only permits two machines 

1 (seconds) 

65.89 + A 14g.3g+Al! 45.31 + A 

A- Degree Opportunism of 

Opportunism setting versus completion time trade-off curve. 
Note: A is 30C for benchmark, T is WP method completion time, and 
V is constant. T = A + ( V / D O ) .  

Fig. 9. 

working in parallel (Chair is on the third machine), hence, 
the theoretical maximum speed up rate for any of these 
cases is 50 percent. 

The second column of Table I11 shows that for each 
degree of parallelism the results were repeated for each of 
three levels of WP method delay: no method delay, 10 
seconds, and 100 seconds. Finally, there are only two 
degree of parallelism results per case since the cases can 
only be run on either one or two machines. For example, 
two READY.AGENDA.SAR’S may be run on two machines 
(degree of parallelism = 1) or on one machine (degree of 



350 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO, 2, MARCH/APRIL 1989 

TABLE 111 
SPEEDUP RESULTS DUE TO VARYING DEGREES OF PARALLEL 

PROCESSING (MULTIPLE MACHINE, PARALLEL PROBLEM) 

With Parallel Without Parallel 
Processing Processing Agent 

Method Degree of Degree of Speedup 
Delay (s) Time (s) Parallelism Time (s) Parallelsim Percent 

TwoSARs 0 39.1 
10 59.1 

100 239.1 I 2 

FourSARs 0 72.1 

100 472.1 

10 174.2 
100 714.2 

1 
2 
1 
2 

1 
4 

10 112.1 I 4 
I 
4 

Six SARs 0 114.2 I 6 

1 
6 
I 
4 

41.2 
54.9 
147.1 
80.0 
106.6 
299.1 
194.1 
234.3 
508.1 

1 - 5  
1 7 
1 38 
I 2 
1 

I 
I 
3 
I 
3 
I 

- 11 
2 5 
2 31 

~ 70 
- 35 

3 29 

parallelism = i). The percent speed up corresponds to the 
speed up of two machines rather than just one machne for 
the same number of ready SARs. 

The results shown in Table I11 approach the theoretical 
maximum of 50 percent speed up for each cluster of cases 
attempted as method duration lengthens. The negative 
percent speed up may be explained by the overhead of 
multiprocesses handling that becomes apparent when the 
method delay decreases. 

As mentioned earlier, the effectiveness of parallelism is 
bounded by two factors: the number of machines available 
and machine load balance. For example, in Table 111, the 
case of two SARs with degree of parallelism 1/2 repre- 
sents a load imbalance, since only one of the two machines 
is being utilized. The same degree of parallelism in the case 
of four SARs is not an imbalance since all machines are 
busy. 

The two different causes of low degree of parallelisms 
can be distinguished by another measurement, machine 
utilization. This commonly is defined as 

Total machine busy time 
Total operations time 

gl. 

If degree of parallelism is low, low utilization may be a 
good indication of load imbalance. On the other hand, low 
parallelism with high utilization indicates more machmes 
may be needed. If the degree of parallelism is high, the 
performance cannot be upgraded by adding more ma- 
chines, unless a different level of processing granularity is 
also attempted. 

In conclusion, the two toggle switch settings in BSG 
provide a means for users to adjust their applications to an 
optimal working point. Without sacrificing the needed 
opportunism to guide problem solving, increasing the 
number of fired SAR's per cycle significantly speeds up 
the performance. The best setting may be input from users 
or automatically adjusted depending on the problem solv- 

machnes. The performance can be monitored through the 
two parameters, degree of parallelism and machine utiliza- 
tion during problem solving. The logical network and 
cloning mechanism can be used easily to reallocate ma- 
chines and re-distribute agents, in order to maximize de- 
gree of parallelism. A performance monitoring system that 
facilitates these features will be implemented in a later 
stage of BSG development. 

V. BSG PLANNER PANEL 

A generic planner is not an essential component of the 
general blackboard model and the BSG components de- 
scribed to this point are sufficient to implement a rela- 
tively comprehensive blackboard application with. Indeed, 
except for [ll], many of the blackboards built to date have 
no planner as such and their builders see no reason to add 
one, e.g., [l], [2] ,  [lo], [12]. Instead, the knowledge engineer 
is expected to explicitly code planning knowledge into the 
individual SARs by altering parameter levels as a function 
of the current situation. That is, SAR parameters such as 
priority or probability are dynamically altered during run- 
time to alter the relative importance of a given activity, 
situation-by-situation (a parameter lookup table is often 
used). 

The research objectives for BSG, however, include trying 
to isolate an underlying planning model that can help the 
Chair assure that more global optima are being located 
and that help alleviate the knowledge engineering bottle- 
neck of asking users to isolate planning parameter levels 
on a case by case basis for their particular domain.6 The 
purpose of a planner is thus to provide a semantic level of 
insight to the control knowledge that the BSG control 
subsystem already sees. The BSG Chair's control tech- 
nique, and most other blackboards for that matter, may be 
viewed as a syntactic interpreter of plan inputs. It is adept 
at control decisions but has no higher level semantic 
understanding of their implications. 

ing state. The degrek of parallelism initially depends on the 
parallelism toggle setting and the agent distribution across 

61nroads into this topic have been made by Hayes-Roth in her 
BB * work p 3 1 .  



SILVERMAN er ul.: BLACKBOARD SYSTEM GENERATOR 351 

TABLE IV 
RESOURCE ALLOCATION PLANNER'S SEMANTIC UNDERSTANDING AND RELATIVE IMPORTANCE OF SAR PARAMETERS 

Resources To Be Allocated 

Time to Achieve (CP) SAR CPU Method Accuracy and Analogical 
Situation Event/Milestone Selections Reauests Allocation Calculus Oualitv Reasoner 

Critical Path Clone Agent Solution 

Real time 
(guaranteed 
solution time) 
problem 
solving 
sessions 

Learning and 
investigative 
sessions 

favor 
shorter 
CP activity 
duration 

favor 
longer 
task 
durations 

favor favor 
shorter shorter 

activity 
method 

CPplans CP 

favor favor ' 
longer h yo thesis 
CP testing 
plans method 

Clons 

favor 
chair 
allocation 
EOS's 

favor 
agent 
allocation 
EOS's 

favor 
situational 
calculus 
and/or 
shallow KB 
methods 

favor agent 
nondeterministic 
and/or 
deeper KB 
methods 

accept favor 
local lessons 
optima learned 

lookup 
SARs 

strive for favor 
more disanalogy 
global elimination 
optima SARs 

Without a planner, the Chair may be susceptible to 
knowledge engineering errors (in SAR parameter settings). 
For example, the Chair in Section IV-A was able to 
accommodate an opportunistic request to run activity 111 
four separate times (see Fig. 8). However, the Chair had no 
internal insight as to whether that was a good idea. It 
simply parsed parameter settings and syntactically reacted 
as it was programmed to do. It had no basis for determin- 
ing whether four hypothesis tests might be inappropriate, 
for example, in light of a guaranteed response time objec- 
tive. 

This is but one example of a number of resource alloca- 
tion semantics the planner could enlighten Chair control 
about. Note, however, that a planner imposes a serial 
overhead cost. At present the planner panel of BSG is 
experimenting with several major categories of resource 
allocation semantics as summarized in Table IV and as 
further described in the two following sections in terms of: 
1) a resource allocation planner, and 2) an analogical 
model based planner. 

A.  Resource Allocation Planner 

The resource allocation planner has been one of the 
subjects of the ongoing facility advisor experiments aimed 
at isolating generic planning elements relevant to the re- 
source allocation concerns of Table IV: see [4] and [5] and 
Section 111-D. In those experiments a testbed has been 
constructed, called facility advisor, for implementing and 
benchmarking distributed AI techniques appropriate to 
spacecraft control centers in particular, and to any supervi- 
sory control facility in general. In fact, the resource alloca- 
tion planner techniques being developed under facility 
advisor are felt to be entirely generic and will be presented 
as such in what follows. 

First it is important to note that the WBS and depen- 
dency graph inputs to the Chair (i.e., earlier Figs. 8(a) and 
8(b)) are not plans: they are planning inputs. For example, 
the dependency graph plus individual activity duration 
estimates (a SAR parameter) can be used by the planner to 
construct a plan. They are not yet a plan, and to transform 

them into one, yet another project planning technique is 
useful-that of PERT/CPM [22]. PERT/CPM plots ac- 
tivity completion times into the dependency graph (Fig. 
8(b)), and isolates those activities that comprise the longest 
route through the activity network that corresponds to the 
shortest time in which the project (problem) can be com- 
pleted (solved). Activities that lie on the critical path (CP) 
route must be completed on time or else the problem will 
take longer to solve (other activities have slack). 

If a guaranteed solution time requirement were imposed, 
the planner would use its PERT/CPM methods to seek 
out CP activities with shorter durations (i.e., lower quality, 
locally optimal, and/or shallower solutions) or shorter CP 
plans achieved by efficient machine time allocations and 
CP activity method cloning. The planner would also have 
to monitor actual progress being made toward the solution 
time headline and would need to generate new plans in 
response to deviations. 

In a similar vein, when the situation calls for learning or 
investigative study rather than real-time solutions, plans 
need to be generated that favor longer search times, more 
hypotheses being tested, nondeterminisms being more 
heavily considered, and time spent by the analogical rea- 
soner to study how past solutions might support the cur- 
rent situation. This latter topic is addressed more fully in 
Section V-B. It is worth noting that under time constraint 
the analogy planning subsystem will tend to 'be bypassed 
for a simple lessons-learned-lookup operation whereas in 
the absence of a time constraint disanalogies between the 
past and present problem-solution pairs can be more fully 
investigated as will now be elaborated. 

B. Analogical Model-Based Planner 

As shown in Fig. 10, the heart of this capability is a 
controlled generic leaning based analogical reasoner that 
takes a snapshot of the problem-solution pairs currently 
unfolding on the shared information panel (and on the 
AGENDA.TRACE.WINDOW) and compares them to past or 
analogous problem-solution pairs that are already fully 
defined and that are stored in the analog KB or AKB. If 



352 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO, 2, MARCH/APRIL 1989 

UUU 
thatman 

Fig. 10. Details of Chairman planning. --* is control and ...’ is re- 
porting. 

current problems (or problem elements) are seen to match’ 
past, analogous ones within a given tolerance, the past 
problem-solution pair is used as a model of what’s ex- 
pected to happen in the current situation. This analog or 
model contains a great deal of detail about past problems, 
d,( t - I), and solutions that worked (i.e., WP,,, K,,, 
d,,(t) ,  p , ( Z ( t ) ) ,  etc) and has been implemented as a con- 
nectionism concept (modified neural net). That informa- 
tion is placed on the BSG expectations list as a statement 
of what is likely to unfold in the upcoming cycles. Also, 
the agents may tap that knowledge to facilitate their own 
search and problem-solving behavior. As future cycles 
unfold, the shreds of knowledge (WP,K, d, p,etc.) that 
begin to deviate from the model are detected by the 
metaguidance system and are placed on the problems list 
(see Fig. 10). The problem isolator hypothesizes likely 
sources of deviation as does the learning based planner, 
both of which stimulate the generate & test suggestor to 
create a set of SARs for alternatives to be investigated by 
the attached agents. These are the plan-generated SARs 
that are placed on the generate and test list on the BSG 
Planning Panel. These plan-generated SARs are one of the 
four types, mentioned earlier, that must be scheduled by 
the Chairman’s schedule controller. The lessons learned 
KB is used to store results of what did and did not work 
when a new problem is being solved. After that problem is 
solved the lessons learned KB file is transferred to the 
AKB. 

’Matching here uses a combination of Tverskian attribute weighting, 
semantic net link distances and net sibling relations. 

I )  Status of the metaplanning components: The designs, 
algorithms, and code for Ariel are more fully as described 
in [6], [7] and example metaguidance system algorithms are 
described in [4]. A prototype implementation of the entire 
design was accomplished in about 11 000 lines of code on a 
Lisp machine in the first half of 1986 as documented in [7] 
with a follow-up refinement and beta-test effort scheduled 
for completion in late 1988 as described in [SI. 

2) Overview of the metaplanning algorithm: The simplest 
possible algorithmic overview of what was described previ- 
ously is as follows. 

1) 

2) Use Ariel to: 

Monitor [eM --+ DN] pairs unfolding at all levels of 
the shared knowledge panel. 

a) identify and genetically merge analogous [ 19, --+ 

D,]: pair(s) making particular use of the se- 
mantic information contained in the current 
problem: DJWP,, (triggering features slot), K,, 
(typology symptoms slot)]. 

b) fill expectation list with detailed analogical 
knowledge (obtained from associative memory) 
of the [OM + DN] A pair such as 

(WPnr,Knq) A pairs for all i 

(e,,p,(z))A pairsforall i 

NOTE: Expectation list becomes a Min Jglob4 
hypothesis. 

Use the meta guidance system to monitor Min Jgloba] 

= expectation list as suggested by 
IF:  ([e, - D N ] t  - [e ,  + D N ] , (  > threshold 
THEN: Set uncertainty alarm, and isolate offend- 

ing agent/deviating elements. 
Use the metaguidance system to isolate sources of 
deviations as suggested by: 
IF: emergency > uncertainty alarm > thresh- 

THEN: 

3) 

4) 

old 
set B,, to caution level, AND 
send G and T the source of the deviation, 
( WPn r )  K n, 1 

ELSEIF: uncertainty; alarm > emergency 
Set B,, to>>1.0 
and set G and T the source of the devia- 

Use G and T suggestor to generate SARs for the 
relevant agents to investigate whether they can (or 
should) try to achieve the expected output. This is a 
request to justify the deviation. 
If a correction cannot be tendered or if an accept- 
able justification is offered, the expectation list must 
be modified and this algorithm repeats. 

tion, W‘,,,K,,J. 
5 )  

6) 



SILVERMAN er ul.: BLACKBOARD SYSTEM GENERATOR 353 

Shared Information Panel rml 
Control 

Spreadsheet 

Spreadsheet 

Fig. 11. Archtecture overview of expert project management system 
(EPMS). 

VI. APPLICATION OF ANALOGICAL META 
PLANNING TO THE NASA PROJECT 

MANAGEMENT DOMAIN 

A prototype called the expert project management sys- 
tem (EPMS) generator was designed using BSG plus Ariel 
to support the analogical planning plus project control 
needs of NASA project managers (PM’s). EPMS is in- 
tended itself to be a shell for the project management 
domain that is organized as indicated in Fig. 11. EPMS is 
too large to be fully described here. Basically, it has a set 
of project planning agents and project control agents that 
help plan and control the project budget (which is stored 
in a spreadsheet system) and that communicate via the 
shared information panel. The planing agents are sup- 
ported by Ariel whom they depend on to retrieve analo- 
gous situations (problem solution pairs). 

When presented with a few high level symptoms or 
requirements of a new spacecraft, EPMS locates analogous 
spacecraft and presents project budgets (cost and staff) by 
milestone, subsystem, and other dimensions. The PM user 
(with EPMS’s help) selects which elements of the past 
plans (problem-solution pairs) seem most appropriate and 
enters these (or modifications of them) as his plan (expec- 
tation list). EPMS agents monitor actual project progress, 
cause the screen to blink as deviations from the plan occur, 
and shows the user PM the project submanager(s) who was 
responsible for the deviation as well as what the deviation 
was. This sequence may be repeated for replanning if the 
PM user so desires. 

The accuracy and usefulness of the analogical reasoning 
process of EPMS (and Ariel) improves as more domain 
analogs are saved away in associative memory. The archival 
associative memory requires an unusual knowledge repre- 
sentation scheme to facilitate rapid search and retrieval. In 
particular, each analog is stored as three semantic nets; 

one for the problem, a second for the solution to that 
problem, and a third net consisting of predicate mappings 
(holograph pointers) between various problem and solu- 
tion objects (nodes). The associative memory in turn stores 
these triplets in yet another net, a context net, that orga- 
nizes the domain into classes and types of situations. 

These knowledge representation requirements have been 
combined with the BB Object representation requirements, 
dynamic hypothesis management concerns, and random 
access object needs (Section IV). Earlier versions of BSG 
included several alternative representation techniques for 
these varying requirements. At the time of this writing a 
unified, modular representation technique called the se- 
mantic network language (SNL) is being implemented that 
will satisfy the peculiar set of requirements imposed by all 
of these requirements. In addition to ,  features already 
addressed, SNL is being designed to also support im- 
proved default logic and nonmonotonic reasoning, as well 
as simplifies frame representation (without inheritance). 

VII. CONCLUSION 

This paper has reviewed the status of a generic black- 
board-based distributed problem-solving environment in 
which multiple agent cooperation can be effected. This 
environment is organized into a shared information panel, 
a chairman control panel, and a metaplanning panel. Each 
panel, in turn, contains a number of embedded AI tech- 
niques that facilitate its operation and that provide heuris- 
tics for solving the underlying team-agent decision prob- 
lem. The status of these panels and heuristics has been 
described along with a number of robustness considera- 
tions. 

Bluckboard Object Orientation: Unlike other black- 
boards, BSG stores hypotheses on the blackboard as object 
slots. This facilitates exploratory design and message pass- 
ing. Equally important, the use of objects permits BB 
Objects to be intelligent in several ways: they advise 
knowledge engineers on how to create them; they recom- 
mend agent sequences to the Chair; and they provide a 
foundation for implementing error diagnostics (not fin- 
ished yet). One concern about objects is their potential 
slowness relative to relational data structures such as in 
GBB [lo]. For this reason a random access, dynamic 
hypothesis management capability is currently being incor- 
porated into the BSG object paradigm. 

Distributed Agent Implementation: BSG permits the use 
of a logical network with virtual addresses denoting the 
various agent locations. Virtual addressing permits agents 
(or agent subprocesses) to exist on any machine address- 
able on the file server. BSG‘s design also facilitates agent 
instantiating or cloning to use idle resources, multiple BSG 
applications accessing the same agent, and/or connection 
to (embedding behind) traditional off-the-shell packages 
(e.g., OPS-5, Lotus, DBIII+, etc.). More importantly the 
virtual addressing/logical networking functionality is the 
keystone to facilitating low, medium, and high granularity 



354 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO, 2, MARCH/APRIL 1989 

parallel processing as well as the gamut of distributed 
agent control options from none to complete. At present 
these features have been achieved for low and medium 
categories of distributed processing/control. A future goal 
is to extend the capability to the highest granularity users 
for a wider set of distributed processing categories. How- 
ever, it is argued that fully distributed agent control may 
encourage suboptimal solution selection. 

Generic Control Paradigm: In the area of chair control 
an effort has been made to research and develop an 
underlying control paradigm. The designer’s mental model 
has been elicited and partially embedded in BSG to offer 
intelligent design assistance. The control paradigm embed- 
ded in BSG allows it to guide domain knowledge engineers 
in specifying the activity-event relationships and depen- 
dencies implicit in agent methods and BB Objects. Several 
semesters of graduate student application projects and 
three BSG applications to date have served to verify the 
value of the control technique elicitation and paradigm. 

Control technique flexibility on the other hand has been 
maintained by providing knowledge engineers with a con- 
trol heuristics editor window in which they can reset BSG 
default heuristics; reset toggle switches for degree of op- 
portunism and degree of distribution permitted; and edit 
the control rules BSG elicited from them. 

Future research in the blackboard field as a whole is 
needed into still further ways to facilitate blackboard 
knowledge engineering; to design and test additional 
generic control heuristics; and to develop theorem proving 
techniques that can be applied by the Chair to verify 
correctness and optimality of control decisions taken. 

BSG Planning: BSG, and most other blackboards exist- 
ing today operate with rather simplistic, syntactic planning 
techniques. Research and development is currently under- 
way to imbue BSG with a semantic understanding of the 
plans it is controlling and with more intelligent planning 
capabilities. In particular, two planning paradigms are 
currently under active development for BSG: guaranteed 
response time planning and analogical reasoning via a 
learning and associative memory capability. These para- 
digms are intended to support two major categories of 
applications: supervisory process control and reusable so- 
lution domains, respectively. Research is needed in generic 
blackboard planning techniques for yet additional types of 
applications as well. 

Several applications of the blackboard system generator 
(BSG) to automobile failure diagnosis, to real-time satellite 
command and control, and to project management have 
been cited along with some of their results. The need for a 
number of research, development, and algorithm proving 
investigations have been delineated. Even without these 
investigations, blackboards (and BSG) are encountering 
more widespread usage. A number of BSG projects are 
underway in case-based reasoning, machne learning by 
discovery, template-driven knowledge acquisition aids, and 
in several more domain-relevant applications, that will be 
utilizing BSG quite heavily [4]-[9] and that will be report- 
ing further results as they occur. 

ACKNOWLEDGMENT 

The authors gratefully acknowledge a recently awarded 
U.S. Army SBIR that will support continuation of future 
research. 

Finally, since beginning this article in the Fall of 1986 
and finishing the first draft (Winter 1988), many of the 
ideas expressed here indeed appear to reflect the opening 
quote. The underlying metaphor (project management) has 
blossomed into a full-fledged theory and formalism of 
distributed problem-solving and cognitive modeling. Look- 
ing back at this paper from the Winter of 1988 there is no 
simple way to update it to reflect how far we have come. It 
should be read as an interim set of fruitful ideas (seedlings) 
that lead our group to a healthier result in a short span of 
time. 

REFERENCES 

P. Nii, “Blackboard systems,” AI Magazine. pp. 1-13, Spring 1986. 
V. R. Lesser, R. D. Fennell, L. D. Erman, and D. R. Reddy, 
“Organization of the Hearsay-I1 speech understanding system,” 
IEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-23, 

T. Quigley, D. McKenna, and B. Yoon, Term project report, 
available from the GWU Institute for Artificial Intelligence, Dec. 
1986. 
B. G. Silverman, “Distributed inference and fusion algorithms for 
real time control of satellite ground systems,” IEEE Trans. Syst. 
Man Cybern., vol. SMC-17, no. 2, pp. 230-239, Mar. 1987. 
-, “Facility advisor: A distributed expert system testbed for 
spacecraft ground facilities,” Expert Systems in Government Symp. 
Proc., IEEE-CS Order No. 738, Oct. 1986, pp. 23-32. 
B. G. Silverman and V. Moustakis, “INNOVATOR: Representa- 
tions and heuristics,” ch. 17, Expert Systems for Business, B. G. 
Silverman, Ed. 
B. G. Silverman, A. Murray, C. Diakite, and K. Feggos, “Analogi- 
cal reasoning in the expert project management system (EPMS),” in 
I987 Goddurd Conf, On Space Applications of Expert Systems, 
NASA/GSFC/Code 514, Greenbelt, May 1987. 
D. W. Garrett, “NASA selects small business proposals,” in NASA 
News, Dec. 9, 1986. 
J. Simkol, G. Wenig, and B. G. Silverman, “JAMS: A computer 
aided electronic warfare vulnerability assessment (CA-EWVA) 
technique,” Symp. Aerospace Applications of A I ,  AFCEA, May 
1987. 
D. D. Corkill, K. 0. Gallagher, and K. E. Murray, “GBB: A 
generic blackboard development system,” in Proc. AAAI-86, pp. 

V. Lesser and D. Corkhill, “The distributed vehicle monitoring 
testbed,” AI Mag., vol. 4, no. 3, pp. 15-33. 1983. 
B. Hayes-Roth, “Blackboard architecture for control,” Artificial 
Intell. J . ,  vol. 26, pp. 251-321. 1985. 
R. S. Englemore, “Overview of blackboard tools,” in Blackboard 
Workshop Proc., Seattle, WA, June 1987. 
R. Smith, The Contract Net Formalism. Ann Arbor, MI: Univ. 
Mich. Press, 1983. 
L. Erman, M: Fehling, S. Forrest, and J. Lark, “ABE: Architectural 
overview,” presented at Workshop of Distributed Arti/icial Infelli- 
gence, Palo Alto, CA, Teknowledge, Inc., 1986. 
V. Singh and M. R. Genesveth, “Variable supply model for dis- 
tributing deductions,” IJCA I-85 Proc., Palo Alto, CA, pp. 39-45. 
R. A. Finkel and J. P. Fishburn, “Parallelism in alpha beta search,” 
Artificial Intell. J . ,  vol. 19, no. 1, pp. 89-106, Sept 1982. 
S. J. Stolfo, “Five parallel algorithms for production system execu- 
tion on the DADO machine,” AAAI-84 Proc., 1984, pp. 300-307. 
R. D. Fennel and V. Lesser, “Parallelism in artificial intelligence 
problem solving: A case of Hearsay 11.” IEEE Trans. Conipufers, 
vol. C-26, no. 2, pp. 98-111, Feb. 1977. 

pp. 11-23.1975. 

Reading, MA: Addison-Wesley, 1987. 

1008-1014,1986. 



SILVERMAN et U/.:  BLACKBOARD SYSTEM GENERATOR 355 

[20] T Azarewicz et a1 ,“Multi-agent plan recognition in an adversanal Joseph S. Chang received the B S and M.S 
domain,” 1987, Expert Syst. in Gou. Conf. Proc., J Benoit, J. degrees in computer science, in 1983 and 1986, 
Antoinesse, B. G. Silverman, Eds. Silver Spring, IEEE Computer respectively, from the University of Maryland at 
Society, Oct. 1987. College Park. He is a senior research program- 

[21] Y.-C. Ho, “Team decision theory and information structures,” mer at IntelliTek, Inc., Rockville, MD, where he 
Proc. IEEE, June 1980, vol. 68, no. 6, pp. 644-654. is the lead product developer for the Blackboard 

[22] R. D. Archibald, Managing High Technology Programs and Pro- System Generator (BSG). He has developed a 
jects. New York, Wiley-InterScience, 1916. control architecture that incorporates a metarule 

[23] B Hayes-Roth, “A layered environment for reasoning about system for multiple control strategies, goal- 
action,” Stanford Umversity HPP Tech. Report, Stanford, CA, directed and data-directed reasoning for focus of 
1986. attention, and an execution monitonng system 

for feedback control and dynamic planning His current research includes 
techniques for multi-agent distributed problem solving 

Mr. Chang is a member of AAA1 

Barry G. Silverman (M78-SM83) was born in Boston, MA, in 1952. He 
received the B.S , M.S , and Ph D degrees in systems theory in 1975, 1976, 
and 1977, respectively, from the University of Pennsylvania, Philadelpha 

He is Director of the Institute for Artificial Intelligence, and Professor 
of Engineering Administration at ?he George Washington University. 
Washington, D C. Since 1980 he has specialized in research on algorithms 
for analogical reasoning and distributed problem solving and has pro- 
duced 100 technical reports, over 50journal articles, and several books on 
these and related topics He is also directing several teams of researchers 
currently building a set of software tools to implement these algorithms 
for teaching, research, and development purposes under a variety of 
governmental and industnal sponsorships. 

Kostas Feggos received his B.S. in civil engineer- 
ing in 1983 from the University of Patras, Patras, 
Greece and his M.S. in engineering administra- 
tion in 1986 from the George Washington Uni- 
versity, Washington, D.C. 

He has been working as a Research Engineer 
with the Institute for Artificial Intelligence of the 
George Washington University since 1985, where 
he is currently pursuing a Ph.D. degree in engi- 
neering administration. 


	University of Pennsylvania
	ScholarlyCommons
	March 1989

	Blackboard System Generator (BSG): An Alternative Distributed Problem-Solving Paradigm
	Barry G. Silverman
	Joseph S. Chang
	Kostas Feggos
	Recommended Citation

	Blackboard System Generator (BSG): An Alternative Distributed Problem-Solving Paradigm
	Abstract


	Blackboard system generator (BSG): an alternative distributed problem-solving paradigm - Systems, Man and Cybernetics, IEEE Transactions on

