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Abstract
In robot deployment problems, the fundamental issue is to optimize a steady state performance measure that
depends on the spatial configuration of a group of robots. For static deployment problems, a classical way of
designing high- level feedback motion planners is to implement a gradient descent scheme on a suitably
chosen objective function. This can lead to computationally expensive deployment algorithms that may not be
adaptive to uncertain dynamic environments. We address this challenge by showing that algorithms for a
variety of deployment scenarios in stochastic environments and with noisy sensor measurements can be
designed as stochastic gradient descent algorithms, and their convergence properties analyzed via the theory
of stochastic approximations. This approach yields often surprisingly simple algorithms that can
accommodate complicated objective functions, and adapt to slow temporal variations in environmental
parameters. To illustrate the richness of the framework, we discuss several applications, including searching
for a field extrema, deployment with stochastic connectivity constraints, coverage, and vehicle routing
scenarios.
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Adaptive Robot Deployment Algorithms
Jerome Le Ny, George J. Pappas

School of Electrical and Systems Engineering
University of Pennsylvania, Philadelphia, PA 19104

Email: jleny, pappasg@seas.upenn.edu

Abstract— In robot deployment problems, the fundamental
issue is to optimize a steady state performance measure that
depends on the spatial configuration of a group of robots. For
static deployment problems, a classical way of designing high-
level feedback motion planners is to implement a gradient descent
scheme on a suitably chosen objective function. This can lead to
computationally expensive deployment algorithms that may not
be adaptive to uncertain dynamic environments. We address this
challenge by showing that algorithms for a variety of deployment
scenarios in stochastic environments and with noisy sensor
measurements can be designed as stochastic gradient descent
algorithms, and their convergence properties analyzed via the
theory of stochastic approximations. This approach yields often
surprisingly simple algorithms that can accommodate compli-
cated objective functions, and adapt to slow temporal variations
in environmental parameters. To illustrate the richness of the
framework, we discuss several applications, including searching
for a field extrema, deployment with stochastic connectivity
constraints, coverage, and vehicle routing scenarios.

I. INTRODUCTION

There has been in the last few years a significant research
effort dedicated to the deployment of mobile robotic networks.
These systems can be used in a variety of surveillance,
monitoring and search applications as reconfigurable sensor
networks, concentrating their information gathering activities
where it is most critical [27, 19, 18]. In this paper, we define
deployment algorithms as algorithms that aim at reaching a de-
sired steady-state configuration for a robot or group of robots
rather than optimizing a trajectory-dependent performance
objective. The algorithms considered here follow the same
idea as the classical potential function methods for feedback
motion planning [21], but are typically implemented at the
higher levels of a robot motion planner, where we assume that
the robot dynamics can be neglected. The principle underlying
these algorithms is to express the goal configuration for the
robots as the minimum of a suitably chosen objective function,
and to interpret a gradient descent on that function as a motion
plan from the initial to the goal configuration. An additional
benefit of such gradient descent algorithms is that they can in
fact adapt the configuration to slow or infrequent changes in
the environment.

We note that a significant part of the work related to multi-
robot deployment relies on such gradient vector fields. This
includes formation control and flocking [3, 31, 33, 14, 28],
coverage [19, 11] as well as certain vehicle routing problems
[13], or foraging and source seeking [29, 27]. Most of this
work assumes a deterministic model of the environment and
neglects various sources of uncertainty that can complicate

implementations and invalidate convergence guarantees. More
recently, there has been some interest in stochastic deployment
scenarios in partially unknown environments with possibly
noisy measurements [27, 34, 2, 10, 9]. An essential idea
of this paper is that most of these stochastic deployment
problems can be discussed from the unifying point of view
of stochastic gradient descent algorithms, thereby simplifying
the convergence proofs and allowing to easily derive new
algorithms for more complex problems.

The rest of the paper is organized as follows. In section
II we review deterministic gradient descent methods using
potential fields for static deployment problems. A number
of classical and new examples are also introduced, includ-
ing source seeking, deployment with wireless connectivity
constraints, and coverage scenarios, and we point out some
deficiencies of deterministic models. Section III recalls the
powerful framework of stochastic approximations and the
special case of stochastic gradient descent algorithms. Finally,
in section IV we revisit the scenarios of section II and illustrate
how stochastic gradient descent algorithms can form the basis
of new algorithms for complex deployment problems in the
presence of various sources of uncertainty and in the absence
of a precise environment model.

II. DEFICIENCIES OF STATIC DEPLOYMENT ALGORITHMS

In the basic form of deployment problems we want to drive
a mobile robotic network to a fixed steady-state configuration
that optimizes some performance criterion. This criterion does
not capture how the robots reach the goal configuration, i.e.,
transient characteristics such as convergence speed are only
analyzed a posteriori for a given scheme. Because transient
behavior is not accounted for directly in the performance
criterion, numerous strategies can be used to drive the robots
to the final configuration of interest.

A common technique is to use low level controllers and
fast internal feedback loops to present to the high level
motion planner an abstract robot model which is fully actuated
and has no dynamics, see e.g. the discussions in [21, 11].
Assuming this is feasible, as is done in this paper, we work
with the following model. We assume that we have m robots
with configurations pk = [p1,k, . . . , pm,k] at time k ∈ Z≥0,
evolving in a shared environment or workspace Q, i.e. pi,k ∈
Q, for i = 1, . . . ,m. Here we assume a discrete-time model
for simplicity and direct correspondence with optimization
algorithms, but a continuous-time model could be used as well.
At the high-level planning stage we assume that we can work



with a fully actuated model

pi,k+1 = pi,k + ui,k, i = 1, . . . ,m, k ∈ Z≥0, (1)

where ui is an available control input for robot i. We have
velocity constraints of the form ‖ui,k‖ ≤ ui, for some ui ∈ R.

Once a model of the form (1) is assumed, we describe
the desired deployment configuration as the minimum of a
well-designed objective function f : Qm → R, also called
a potential function, which depends on the configurations pi
of the robots. We can then design an iterative optimization
scheme of the gradient descent type to find an (often locally)
optimal final configuration, and reinterpret it as a motion for
the robots. Namely, we choose the control law

ui,k = −γk
∂f

∂pi
|p=pk

, (2)

for robot i in (1), where ∂/∂pi represents the vector of
derivatives with respect to the components of pi, and γk is
some small, in general time-varying stepsize. These stepsizes
can also be used to enforce the velocity constraints most of
the time, and we simply truncate ui,k otherwise.

Several issues limit the applicability of such gradient de-
scent schemes however. As the next examples illustrate, in
many multi-robot deployment problems, the computation of
the gradient in (2) often requires the knowledge of certain
a priori unknown environment parameters, or can only be
done approximately due to sensor and environment noise,
or can be simply too difficult on small platforms with lim-
ited computational power. We show in section IV that in
many cases these issues can be solved in an elegant way
by replacing the deterministic scheme by stochastic gradient
descent algorithms, which provably work with the very rough
approximations of control law (2) arising in practice.

Finally, we briefly comment on the fact that potential func-
tion methods can get trapped in local minima of the potential.
The stochastic gradient descent algorithms described later do
not avoid this issue, however we point out that they tend
to escape shallow local minima due to the intrinsic problem
noise, and moreover can be easily combined with simulated
annealing type algorithms by injecting additional artificial
noise in order to asymptotically reach a global minimum of
the potential [36]. However, simulated annealing algorithms
can be slow or require delicate tuning.

A. Source Seeking
In source seeking problems, one or several robots try to

reach the minimum of a scalar field T : Q → R, which
directly represents a physical quantity of interest, such as the
concentration of some chemical in the environment, see e.g.
[27]. Assume for now that the robots adopt an (arbitrary) rigid
formation, with center of mass Mk at time k, which can also
be enforced using potential field methods [31, 27]. Then this
formation can move in order for Mk to descend the gradient
of T , in other words we implement (2) in terms of Mk instead
of pk. Hence the desired dynamics of the center of mass take
the form

Mk+1 = Mk − γk∇T (Mk). (3)

In practice however, the robots can measure T but not its
gradient, which must then be approximated by some form of
finite-difference scheme. A further complication arises due to
the fact that the measurements are subject to noise.

We propose the following algorithm, assuming that the
robots can share their field measurements at their respective
positions in order to estimate ∇T (Mk), can maintain the
rigid formation at all times and can stay relatively close
to Mk in order for the finite-difference approximation er-
ror to remain small. At period k the robot positions are
pk = [p1,k, . . . , pm,k] and these robots take measurements
{y1,k, . . . , ym,k} of the field, of the form

yi,k = T (pi,k) + νi,k, i = 1, . . . ,m, (4)

where νi,k a measurement and possibly environmental noise.
For simplicity we consider a two dimensional environment,
but extension to three dimensions is immediate. Denote

pi,k = Mk + Λi,k, with Mk =
1
m

m∑
k=1

pi,k.

Next, consider a finite difference approximation

∂T

∂x
(Mk) ≈

m∑
i=1

wi,xT (pi,k),
∂T

∂y
(Mk) ≈

m∑
i=1

wi,yT (pi,k).

Well-known techniques are available to obtain good weights
wx,i and wy,i providing a high-order finite difference approx-
imation, for example based on Lagrange interpolation or the
method of undetermined coefficients [1]. The standard central
difference scheme would correspond to four robots forming
a square, but the weights can be computed for an arbitrary
number of robots forming an arbitrary shape. For example,
for a formation with 3 robots forming an equilateral triangle

Λi,k = δ

[
cos
(

2iπ
3

)
sin
(

2iπ
3

)] with δ sufficiently small, we obtain by

the method of undetermined coefficientsw1,x

w2,x

w3,x

 =
1
δ

 2/3
−1/3
−1/3

 ,
w1,y

w2,y

w3,y

 =
1
δ

 0√
3/3

−
√

3/3

 .
Then we impose that the formation moves according to

Mk+1 = Mk − γkWkYk, (5)

where

Wk =
[
w1,x · · · wm,x
w1,y · · · wm,y

]
and Yk =

[
y1,k, · · · , ym,k

]T
.

This problem is a typical example where the gradient descent
(2) can only be implemented approximately, in the form of
(5), with the additional complication of the noise making
the iterates Mk random. The convergence of similar source
seeking schemes, e.g. the one presented in [27], is often
studied in a deterministic framework by assuming that the
noise can be neglected, which is hard to justify. In section IV-
A, we show that Mk following (5) with appropriately chosen
stepsizes γk converges to a neighborhood of a local minimum
of T almost surely, under very weak conditions on the noise,



e.g. that E[νk|pk] → 0 as k → ∞ and that the random
variables νk have a finite second moment. As an additional
benefit of the stochastic approximation point of view, we
describe later a simple scheme allowing a single robot to
descent the gradient of T with performance comparable to
that of the robot formation, which is clearly useful when
maintaining such a formation is difficult.

B. Deployment Under Wireless Connectivity Constraints

Communication between robots and operator stations is per-
formed over wireless links and this aspect must be accounted
for in deployment problems. Consider the following scenario.
A robot must approach a target point q∗ in the environment
Q ⊂ R2, however communication between the robot and the
base at [0, 0]T must be maintained at all times. For example,
all applications involving Unmanned Aerial Vehicles (UAVs)
currently prohibit the loss of communication with any vehicle.
Suppose that q∗ is outside of the communication range of
the base. Then a string of robots can be deployed in order
to establish an ad-hoc communication network reaching the
target point, see Fig. 1.

Most papers considering such deployment problems use
simplified models of the wireless links, typically assuming a
deterministic and known function predicting the connectivity
at all points of the environment, see e.g. [8] and the references
therein. In fact the Signal-to-Noise Ratio (SNR) between a
transmitter at p1 and a receiver at p2 in Q depends on path loss,
shadowing, multipath fading, and the receiver noise power
[16]. It is in general a random time-varying quantity, denoted
hereafter SNRk(p1, p2) for the period k. Wireless models
usually take the form

logSNRk(p1, p2) = h(p1, p2) + νk,

where h is a deterministic quantity capturing path loss, and νk
is a stochastic zero-mean variation due to shadowing (random
effects due to environmental changes) and possibly multipath
fading. In [15] the authors consider motion planning problems
assuming a realistic communication model but assume an a
priori known SNR map, i.e., h and the distribution of νk
are given. They find that mismatches between the assumed
SNR map and the real one have a significant impact on the
connectivity. To our knowledge, this paper present the first
approach that can adapt to an unknown SNR map, as described
in section IV-B.

We assume that the random variables νk have a steady-
state distribution as k →∞, denote a generic random variable
with this distribution by ν∞, and the corresponding generic
random SNR value by SNR∞, so that logSNR∞(p1, p2) =
h(p1, p2)+ν∞. For simplicity, we assume that the distribution
of ν∞ is independent of p1, p2, although more refined models
could be considered as well. The following simple potential
penalizes points p1 and p2 of Q for which the SNR at time k

is less than some threshold SNRmin

c(p1, p2) =


1
2 (− logSNRk(p1, p2) + log SNRmin)

2

if SNRk(p1, p2) < SNRmin,

0 otherwise.

Now suppose that we look for a simple linear chain con-
figuration, where each robot relays communications between
the robot behind and in front of him, and the last robot
m tries to approach the target. Minimizing the following
potential function provides a final configuration that balances
connectivity constraints with the requirement that the last robot
approach the target

f(p) = E

[
κ1

m−1∑
i=0

c(pi, pi+1) + κ2‖pm − q∗‖

]
, (6)

where κ1, κ2 ∈ R+ are some additional tunable parameters,
and p0 = [0, 0]T is the position of the base. The expectation
operator is with respect to the steady state distribution of the
random variables νk.

If we try to compute the gradient of f , in order to implement
(2), then assuming that expectation and derivative commute
(this is true under weak conditions), we see that robot i needs
to compute terms of the form

E

"
∂

∂pi
c(pi, pi+1)

#
= E

"“
logSNR∞(pi, pi+1)− log SNRmin

”
× 1{SNR∞(pi,pi+1)<SNRmin} ×

∂

∂pi
h(pi, pi+1)

#
, (7)

where 1{·} is the indicator function. We also have a similar
expression for E

[
∂
∂pi

c(pi−1, pi)
]
. There are clearly major ob-

stacles to the computation of this gradient. Most importantly,
the function h and the distribution of ν∞ are unknown. Even
if they were known using prior measurements and simplifying
models, the calculation of the resulting expectation at each
period would consume significant computational resources
from the robots. Yet we describe in section IV-B a simple
deployment algorithm optimizing (6) which only requires that
the robots have the ability to test the channel quality at
each period with their neighbors, and involves no expectation
computation.

C. Coverage and Vehicle Routing

Consider the coverage problem formulated by Cortes et al.
in [11]. The function to be optimized here comes from the
location optimization and vector quantization literature

f(p) =
∫

Q

min
i∈{1,...,m}

c(di(pi, z))φ(z)dz

= E
[

min
i∈{1,...,m}

c(di(pi, z))
]
, (8)

where di : Q×Q→ R+ is a distance function, c : R+ → R+

is a nondecreasing function, and φ : Q → R+ is a known
probability density function. Intuitively, φ(z) represents some
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Fig. 1. Snapshots of the deployment of 6 robots with wireless connectivity
constraints between a base station (blue square) and a target (red cross).
Wireless connectivity is poor except in the top part of the environment,
preventing the robots to form a straight chain to the target.

prior knowledge about the importance of deploying a robot
close to position z. The specific case where di(pi, z) = ‖pi−
z‖ is the Euclidean distance and c(x) = x2 is considered in
[11] in more details, in which case the gradient takes the form

∂f

∂pi
|p=pk

= pi,k − CVi,k
, where (9)

CVi,k
=

1
MVi,k

∫
Vi,k

zφ(z)dz, MVi,k
=
∫

Vi,k

φ(z)dz,

and Vi,k is the Voronoi cell of robot i at time k, i.e.,

Vi,k =
{
z ∈ Q

∣∣∣‖z − pi,k‖ ≤ ‖z − pj,k‖,∀j 6= i
}
.

Control law (2) then involves the computation of integrals and
Voronoi cells at each step, and the problem becomes more
complicated if other functions c and distances are considered.

The following vehicle routing problem is closely related
to the previous coverage problem. At each period k ∈ Z≥0,
a target appears randomly in the environment Q at position
Zk, according to the probability density φ. At the beginning
of the period, the m robots occupy the reference positions
p1,k, . . . , pm,k, and the robot that can reach the target the
fastest from its reference position services it. Robot i travels
at speed vi, and there are no obstacles, hence the time the kth

target spends waiting for service is mini∈{1,...,m} 1
vi
‖pi−Zk‖

(with obstacles, one should replace the Euclidean distance by
the shortest distance to the target). After the target is serviced,
the robots can travel to new reference positions pk+1. Once
they have reached these new positions, a new period begins. It
is not hard to see that this discrete-time problem can be used
to analyze the continuous time problem of [5, 13] in the limit
where the arrival rate of the targets goes to 0. The goal is to
minimize the steady-state waiting time of the targets

f(p) =
∫

Q

min
i∈{1,...,m}

1
vi
‖pi − z‖φ(z)dz, (10)

which is nothing but the coverage problem with c(x) = x and
di(pi, z) = ‖pi − z‖/vi. Finding a configuration achieving a
global minimum of (10) is known to be an NP-hard problem
[12], but we can still implement the gradient descent controller
(2) to asymptotically reach reference positions which form a
local minimum of f .

Besides the potential computational difficulties involved in
the calculation of the gradient of (9) or (10) however, we
want in practice to deploy the robots when the density φ
is a priori unknown but one can only observe the successive
positions Zk, k ≥ 0 of the targets. Or we may have an initial
estimate of φ which should be refined over time based on these
observations during deployment. This question was considered
recently by Arsie et al. [2] for the objective (10) and Choi et al.
[10, 9] for (9). In section IV-C we give a new simple stochastic
gradient descent algorithm optimizing the general function (8)
for all such scenarios.

A Heterogeneous Coverage Problem: We can in fact signifi-
cantly extend the complexity of the type of coverage problems
amenable to analysis, for example to heterogeneous coverage
problem. For example, consider a vehicle routing scenario
with two types of robots, mA robots of type A and mB

robots of type B, and three types of targets a, b, ab. Targets
of type a must be serviced by robots of type A, targets of
type B by robots of type b, and targets of type ab by a
robot of type A and a robot of type B. When a new target
appears, it is of type α with some unknown probability λα,
α ∈ {a, b, ab}. The spatial distribution of targets of type α is
φα and is also a priori unknown. The asymptotic configuration
of the robots must now optimize the following objective, with
p = [pA1 , . . . , p

A
mA

, pB1 , . . . , p
B
mB

]

f(p) = min
p

 
λa

Z
Q

1

vA
min

i=1,...,mA

‖pA
i − z‖φa(z)dz (11)

+ λb

Z
Q

1

vB
min

j=1,...,mB

‖pB
j − z‖φb(z)dz + λab×Z

Q

min
i=1,...,mA
j=1,...,mB


max


1

vA
‖pB

i − z‖,
1

vB
‖pB

j − z‖
ffff

φab(z)dz

!
.

Note that we consider a target of type ab serviced when both
robots have arrived at its location. Even if all the distributions
were known, computing the gradient of the objective (11)
at each time step can be impractical on small platforms
with limited computational power. Again a stochastic gradient
algorithm optimizing (11) and described in section IV-C is
quite simple to implement and works with no knowledge of
the probabilities φα and λα.

III. STOCHASTIC APPROXIMATIONS

In the previous section we argued that it would be very
useful to extend the gradient descent framework for multi-
robot deployment to situations where we have only access to
an approximate and noisy version of the gradient (2) of the
objective, or where this gradient cannot even be computed
because it depends on unknown environment parameters. We
will see in the next section that the this can be done using
stochastic versions of the gradient descent scheme, and more-
over, computing the approximate gradient descent directions
is often simpler than computing (2). The convergence analysis
of these algorithms relies on the theory of stochastic approx-
imations [25, 4, 24], and we present a few important ideas of
this theory here.



For the purpose of this paper, it is usually sufficient to
consider stochastic approximation (SA) algorithms of the form

xk+1 = xk + γk(h(xk) + bk +Dk+1), (12)

where the sequence {xk}k consists of some random iterates
whose asymptotic behavior is of interest, Dk is some random
zero-mean noise, bk is a small bias term that can be asymptot-
ically neglected, and γk is a small step-size. More precise as-
sumptions about these different terms appear below. The main
idea however is that under broad conditions the trajectories of
the iterates xk verifying (12) follow asymptotically the integral
curves of the Ordinary Differential Equation (ODE)

ẋ(t) = h(x(t)). (13)

Note that if h(x) = −∇f(x) for some real-valued function
f , this “ODE method” [25] says that the behavior of the noisy
iterates (12) can still be analyzed via the simple deterministic
gradient flow ẋ = −∇f(x(t)), just as for the deterministic
gradient descent algorithm (2). Let S = {x : ∇f(x) = 0}
denote the set of equilibrium points of the ODE, which is
also the set of critical points of f . Stochastic approximation
theorems give broad conditions under which the iterates {xk}
converge to S. In general, h is assumed Lipshitz, in order to
guarantee existence and uniqueness of solutions to the ODE
(13). However, the theory extends to differential inclusions
[24], [6, chapter 5], which allows us to consider functions f
that are not differentiable everywhere and replace gradients
by subgradients. This situation arises in the vehicle routing
problem since the function p→ ‖p−z‖ is not differentiable at
z. The following set of additional assumptions, by no means
the weakest possible, allow us to obtain useful convergence
theorems [6]
(A1) The sequence {bk} is bounded and bk → 0 as k → ∞

almost surely (a.s.).
(A2) The stepsizes {γk} are positive bounded scalars satisfy-

ing
∑
k γk =∞,

∑
k γ

2
k <∞ a.s.

(A3) We have E[Dk+1|Ik] = 0, where Ik =
{xm, γm, bm, Dm,m ≤ k}. Furthermore, the random
variables {Dk} are square integrable, with

E[‖Dk+1‖2|Ik] ≤ K(1 + ‖xk‖2) a.s., k ≥ 0,

for some constant K > 0.
(A4) The iterates (12) remain bounded a.s., i.e.,

sup
k
‖xk‖ <∞, a.s.

Assumption (A4) is the most challenging to verify in the
general theory of SA algorithms, but in our case it is typically
dealt with by assuming that the environment Q of the robots
is bounded. Under the previous assumptions, if S is a discrete
set, then {xk}k converges a.s. to a point of S, possibly sample
path dependent [6]. Moreover under typical conditions the
convergence point is a local minimum of f (rather than a
saddle point or maximum).

A. Expectation Minimization Problems

A common case where we have access to a noisy version
of the gradient of the function f to minimize arises when we
assume that f is of the form

f(x) = E[c(x, Z)] =
∫
c(x, z)dP(z), (14)

where Z is a random variable and the expectation operator is
with respect to its distribution (which is assumed here to be
independent of x). Often the expectation is either difficult or
impossible to compute directly, due to the complexity of the
function c or because the distribution of Z is hard to evaluate
or simply unknown. The function values c(x, Z) for given
inputs x, Z can be observed, however.

Let us assume that (x, z) 7→ c(x, z) is differentiable with
respect to x, for almost all z, and that we know ∇xc(x, z).
Note that for Z a random variable, ∇xc(x, Z) is a random
vector, called the stochastic gradient of c. Consider then the
SA algorithm

xk+1 = xk − γk∇xc(xk, Zk), (15)

which can be rewritten in the standard form (12)

xk+1 = xk − γk(E[∇xc(xk, Zk)|xk] +Dk+1)

where Dk+1 = ∇xc(xk, Zk) − E[∇xc(xk, Zk)|xk] satisfies
(A3). Suppose now that it is valid to interchange expectation
and derivation in the previous equation, so that

E[∇xc(x, Z)|x] =
∫
∇xc(x, z)dP(z)

= ∇
∫
c(x, z)dP(z) = ∇f(x). (16)

Here we have used the fact that the distribution of Z is
independent of x. Hence in this case ∇xc(x, Z) is an unbiased
estimate of the gradient of f at x. We see then that the ODE
associated to (15) is the gradient flow

ẋ = −∇f(x(t)).

In particular under broad conditions such as the ones presented
previously, the iterates of (15) converge to a local minimum
of f almost surely. Conditions guaranteeing the interchange of
integral and derivation in (16) can be obtained from the dom-
inated convergence theorem [32] and are usually satisfied. In
fact, this interchange could even be valid only approximately
up to a small bias term bk that converges to 0 asymptotically
as in assumption (A1).

B. Kiefer-Wolfowitz Algorithm

Sometimes we do not even have direct access to a noisy
version of the gradient of the function f : Rd → R to
minimize, but only to noisy measurements of the function f
itself. We must then reconstruct the gradient estimates, using
some form of finite-difference scheme. Hence suppose that we
have access to measurements of the form f̃(x) = f(x)+ν(x),



where ν(x) is a random noise term with E[ν(x)|x] = 0. Now
consider the algorithm

xik+1 = xik − γk

(
f̃(xk + δei)− f̃(xk − δei)

2δ

)
(17)

= xik + γk

[
−
(
f(xk + δei)− f(xk − δei)

2δ

)
+Di

k+1

]
= xik + γk

[
− ∂f
∂xi

(xk) + bik +Di
k+1

]
, i = 1, . . . , d,

where the zero-mean noise term Di
k+1 is defined by

Di
k+1 =

ν(xk + δei)− ν(xk − δei)
2δ

,

and the additional perturbation vector bk is O(δ‖∇2f(xk)‖),
assuming that the function f is twice differentiable. Here this
term does not satisfy assumption (A1), however if it remains
small then the results of [6, chap. 5] for example imply that the
iterates converge to a neighborhood of some local minimum
of f . This version of the stochastic gradient descent algorithm
using a noisy finite difference approximation of the gradient
is known as the Kiefer-Wolfowitz procedure [22].

C. Spall’s SPSA Algorithm

An interesting variation on the Kiefer-Wolfowitz scheme
that is useful for our purpose is the Simultaneous Perturbation
Stochastic Approximation (SPSA) of Spall [36]. In a basic
version of this method we generate random variables ∆k ∈ Rd
i.i.d., with ∆k independent of D1, . . . , Dk+1 and x0, . . . , xk
and P (∆i

k = 1) = P (∆i
k = −1) = 1

2 . Then we replace (17)
by

xik+1 = xik − γk

(
f̃(xk + δ∆n)− f̃(pk)

δ∆i
k

)
, (18)

where f̃(x) = f(x) + ν(x). Again the iterates converge to a
neighborhood of a minimum of f almost surely [36, 6]. Note
that for f : Rd → R, (18) requires only 2 function evaluations
instead of 2d for (17) !

D. Choice of Stepsizes and Tracking

One potential issue associated with stochastic gradient al-
gorithms is that their practical performance is sensitive to
the tuning of the stepsizes γk. The choice of these stepsizes
has been extensively investigated [24, 36]. Assumption (A2),
which is satisfied for example by γk = 1/(k + 1), is a typical
assumption in theorems that prove asymptotic convergence
to a fixed point. In practical applications, other choices are
possible, in particular letting γk converge asymptotically to a
small constant. In that case, we usually only have convergence
to a neighborhood of an equilibrium of the ODE. However,
asymptotically constant stepsizes allow us to track slowly
varying changes in the system [4]. In our robotic applications
this means that the configuration can adapt to slow variations
in the environment parameters.

IV. ADAPTIVE DEPLOYMENT ALGORITHMS

We now revisit the examples of section II and discuss the
application of stochastic gradient descent algorithms in these
dynamic scenarios.

A. Source Seeking with Noisy Measurements

Recall that in subsection II-A, we wanted to understand
the asymptotic behavior of the center of mass of the rigid
formation following the update (5), in the case where the
robots take the noisy measurements (4). We can now see that
this scheme is essentially the Kiefer-Wolfowitz procedure of
section III-B (with a more general finite difference approxima-
tion), hence we know that Mk will converge to a neighborhood
of a local minimum of T almost surely. In contrast to [27],
the argument does not rely on the possibility of neglecting
the noise, which can be quite large, or on any assumption
on the noise distribution except for the fact that its mean
converges asymptotically to zero. The distribution of νi,k can
even depend on the position pi,k.

In addition, a single robot taking noisy measurements can
descend along the gradient of T using the following algorithm
derived from Spall’s SPSA algorithm, see subsection III-C. We
divide period k into two steps. First, the robot takes a noisy
measurement yk = T (pk) + νk at its current position, and
generates a random vector ∆k = [∆1

k,∆
2
k]T , with P(∆i

k =
−1) = P(∆i

k = +1) = 1
2 . In the first phase of the period, it

moves by a small amount δ∆k to get the noisy measurement
ŷk = T (pk + δ∆k) + ν̂k. In the second phase of the period,
the agent moves to the point pk+1 = [p1

k+1, p
2
k+1]T with

pjk+1 = pjk − γk
ŷk − yk
δ∆j

k

, j = 1, 2.

Note that in general, using more robots moving in formation
and averaging their measurements clearly improves the quality
of the gradient estimates, by simply averaging the noise faster
than in the SPSA algorithm. However, the exact relationship
between the quality of the gradient approximations and the
speed of convergence of the stochastic gradient descent algo-
rithm is not straightforward to establish. In fact, there is some
empirical evidence suggesting that the SPSA algorithm can
perform as well as the Kiefer-Wolfowitz procedure in practice
[36], even though it operates with much less measurements.
This would imply that a single robot on average can converge
as fast as a robot formation to a minimum of T .

B. Wireless Deployment with Random Fading Channels

Consider the deployment problem with wireless connectiv-
ity constraints of section II-B. What is required to implement
a stochastic gradient descent algorithm for deployment is
an estimate of the expectation (7). Two successive robots i
and i + 1 in the chain can test the quality of the channel
connecting them at each period. At period k, they measure
the random value mi,i+1

k := logSNRk(pi,k, pi+1,k). The
quantity (7) also involves the computation of ∂

∂pi
h(pi, pi+1),

for which we construct a finite difference estimate using the
SPSA algorithm. More precisely, at period k, after the robots



obtained the quantity mi,i+1
k , they all take random steps as

follows. For i = 1, . . . ,m, robot i generates random variables
∆i,k = [∆1

i,k,∆
2
i,k]T as in the previous paragraph, and moves

to pi,k + δ∆i,k, with δ sufficiently small. Again, the robots
test the channel quality with their neighbors in the chain, so
that robot i collects the value m̂i,i+1

k := logSNRk(pi,k +
δ∆i,k, pi+1,k + δ∆i+1,k). Now consider the following Taylor
expansion, with pi = [p1

i , p
2
i ]
T

h(pi,k + δ∆i,k, pi+1 + δ∆i+1,k)− h(pi,k, pi+1,k)
δ∆1

i,k

≈ ∂h

∂p1
i

(pi,k, pi+1,k) +
∂h

∂p2
i

(pi,k, pi+1,k)
∆2
i,k

∆1
i,k

+
2∑
j=1

∂h

∂pji+1

(pi,k, pi+1,k)
∆j
i+1,k

∆1
i,k

.

All the terms except the first one have zero mean hence enter
as additional noise terms in the stochastic approximation. In
other words, the quantity (m̂i,i+1

k −mi,i+1
k )/(δ∆1

i,k) is, up to
second order terms, an unbiased estimate of ∂h/∂p1

i . We can
reason similarly for the other partial derivatives ∂h/∂p2

i re-
quired by robot i to perform its gradient descent. In summary,
a stochastic approximation of the expression (7) is obtained at
period k by

(mi,i+1
k −log SNRmin)

 m̂i,i+1
k −mi,i+1

k

δ∆1
i,k

m̂i,i+1
k −mi,i+1

k

δ∆2
i,k

1{SNR∞(pi,pi+1)<SNRmin}

This expression, which depends only on quantities that robot i
can obtain by direct interaction with its neighbors in the chain,
is then used in place of (7) in the gradient descent. The almost
sure convergence to a neighborhood of a local minimum of f
defined by (6) follows directly from the existing analysis of
the Kiefer-Wolfowitz or SPSA procedure. A small deployment
example was presented on Fig. 1.

C. Adaptive Coverage and Vehicle Routing

Consider the coverage problems of section II-C, where the
distribution φ of the targets is now unknown. At each period,
a target is present at position Zk ∈ Q, and we assume that
at least the robot closest to the target can observe it. The
successive positions Zk could also correspond for example
to a single target with Markovian dynamics, as long as a
stationary distribution φ exists. At the end of each period, the
robots can change their reference points in order to optimize
the steady-state objective (8). We now see that this problem fits
the expectation minimization framework discussed in section
III-A. In particular, the stochastic gradient descent laws to
implement are typically much easier to compute than the
corresponding deterministic gradient updates. Indeed, equation
(15) simplifies to

pi,k+1 =

{
pi,k − γk ∂c(di(zk−pi,k))

∂pi
if i is closest to zk,

pi,k otherwise.
(19)

Note that no Voronoi cell computation or integration is re-
quired, only a distributed mechanism to find which robot is
the closest to the target. Only the closest robot updates its
reference position for the period. We can then specialize (19)
to the standard coverage case with c(x) = x2, which gives the
update pi,k+γk(zk−pi,k) for the closest robot. This particular
adaptive algorithm has been used extensively in various fields.
It is an adaptive vector quantization algorithm also known as
LBG [17], the K-means algorithm of MacQueen [26], and it
is related to Kohonen’s self-organizing maps [23]. The fact
that this algorithm is a stochastic gradient descent algorithm
is discussed by Bottou [7]. The recent papers [9, 10] have
also considered certain cases of the coverage problem with
quadratic function c from the point of view of stochastic
approximations.

For the vehicle routing objective (10), we obtain the update
pi,k + γk

zk−pi,k

‖zk−pi,k‖ for the closest robot, which is somewhat
different from the quadratic case because the stepsize does not
vanish as the distance to the target becomes small. With the
corresponding update law, the robots converge to the so-called
median Voronoi configuration, which is a local minimum of
(10). This asymptotic configuration is also obtained by [2],
by a somewhat more complicated update law (there a robot
should compute the median of all the targets it visited in the
past every times it moves). Consequently, their convergence
proof is quite complex, whereas we see that for our update
law the convergence is an immediate consequence of the SA
theory.

Heterogeneous Coverage: In addition to simplifying the
convergence proofs, the stochastic gradient point of view
allows us to find simple update laws for more complex
problems. To illustrate this point, consider the routing problem
with heterogeneous vehicles discussed at the end of subsection
II-C. One can immediately verify that the stochastic gradient
update rule takes the following form. When a target of type a
appears, the closest robot of type A moves toward it by a step
γk

zk−pi,k

‖zk−pi,k‖ , and similarly for a target of type b. If the target
is of type ab, the closest A and B robots first find which of
the two is the farthest from the target. Then only this robot
moves by the step γk

zk−pi,k

‖zk−pi,k‖ . In view of the complicated
expression of the objective function, such a simple rule based
update law is quite appealing. We illustrate its behavior on
Fig. 2.

V. CONCLUSION

This paper proposes a general framework for a range of
robotic network deployment scenarios, based on stochastic
gradient descent algorithms and the related theory of stochastic
approximations. The framework is very flexible in the type of
uncertainties it can handle. Among their known drawbacks,
stochastic gradient descent algorithms can be slow compared
to their deterministic counterparts, and the asymptotic behavior
of the algorithms is sensitive to the choice of the stepsizes γk.
Keeping γk asymptotically constant allows us to track slow
variations in the environment parameters [4]. Regarding the
issue of convergence speed, we could in deployment problems
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Fig. 2. Vehicle routing for a system with two types of vehicles, A (full
circles) and B (empty squares). Only the reference points of the vehicles at
the beginning of the periods are shown. Targets requiring service from type
A appear with probability 40% and a distribution centered at [2; 6]T . Targets
of type B appear with probability 20% and a distribution centered at [6; 2]T .
Finally targets of type AB appear with probability 40% and a distribution
centered at [6; 6]T . Note how vehicles of type A and B tend to pair in order
to service the targets of type AB efficiently (here vA = vB).

obtain a first configuration using a deterministic deployment
algorithm based on prior information about the environment,
followed by the stochastic gradient scheme which accounts for
the updated information collected by the robots. In general,
the simplicity of the stochastic deployment algorithms would
make them ideal candidates for implementation on small
platforms with limited computational power. There are also
many other deployment problems not discussed here that
can benefit from such a stochastic approach. For example,
formation control using noisy observations and communication
links can be studied from this point of view (the recent papers
[30, 35, 20] study the related stochastic consensus problem
using stochastic approximations).
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