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Snap Transitions in Adhesion
Richard M. Springman and John L. Bassani1

Mechanical Engineering Department, University of Pennsylvania, 220 S. 33rd Street, Philadelphia, PA 19104, USA

Abstract

Equilibrium adhesion states are analyzed for nonlinear spherical caps adhered to a rigid 
substrate under the influence of adhesive tractions that depend on the local separation between 
the shell and substrate.  Transitions between bistable snapped-in and snapped-out configurations 
are predicted as a function of four nondimensional parameters representing the adhesive energy, 
the undeformed shell curvature, the range of the adhesive interactions, and the magnitude of an 
externally applied load.  Non-uniform energy and traction fields associated with free-edge 
boundary conditions are calculated to better understand localized phenomena such as the 
diffusion of impurities into a bonded interface and the diffusion of receptors in the cell 
membrane.  The linear Griffith approximations commonly used in the literature are shown to be 
limited to shells with a small height to thickness ratio and short-range adhesive interactions.  
External loading is shown to alter the adhered configurations and the spatial distributions of both 
adhesive and elastic energies.  An important implication of the latter analysis is the theoretical 
prediction of the pull-off force, which is shown to depend not only on the interface properties, 
but also on the geometric and material parameters of the shell and on both the magnitude and 
type of external loading.  

Keywords: Adhesion; Shell mechanics; Wafer bonding; Cell adhesion; Pull-off 

1. Introduction

The adhesion of thin shell structures either to other shells or to substrates plays an important 
role in many micro- and nano-mechanical systems in engineering and biology.  Geometric 
nonlinearities associated with finite shell deformations and the highly nonlinear nature of the 
adhesive interactions complicates our understanding of these complex and important systems.  In 
this paper bistable (static) equilibrium states are studied to develop a more fundamental 
understanding of nonuniform adhesion.  Specifically, this paper investigates the adhesion of 
spherical caps interacting nonlinearly with a rigid substrate through an adhesion law that is 
derived from Lennard-Jones interactions.  Bulk adhesion parameters are described that represent 
the strength and range of the adhesive interactions.  These adhesion parameters are taken to 
describe the cumulative interactions between the surfaces, including electrostatic forces, Van der 
Waals forces, steric repulsion, and the specific forces of fixed surface groups.  Theoretical 
(Muller, Deryagin and Toporov, 1983; Israelachvilli, 1985; Maugis, 2000) and experimental 
(Israelachvili and Tabor, 1972; Klein, 1982; Leckband et al., 1992; Leckband et al., 1994; Wong 
et al., 1997; Leckband and Israelachvili, 2001) support for the adopted adhesion law is available 
in the literature. 
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Nonlinear shallow shell theory is used to study the elastic deformations of the shell 
structures (Reissner, 1950; Budiansky, 1959; Sanders, 1963; Niordson, 1985).  An important 
implication of the free-edge boundary conditions considered in this analysis is the inadmissibility 
of perfectly bonded configurations, which also are excluded by compatibility in the case of 
closed vessels.  The coupling between shell bending and stretching, as captured with nonlinear 
shallow shell theory, is shown to play a particularly important role in adhesion, which typically 
involves the deformation of curved shell surfaces into nearly planar configurations.  Such 
configurations can not be achieved with a length preserving (isometric) mapping when the 
undeformed shell surface has a nonzero Gaussian curvature (Stoker, 1969).  Nonlinear effects 
associated with this coupling are important once the magnitude of the normal displacement 
approaches half the shell thickness (Reissner, 1950), which can occur for adhesion if the
reference shell height is greater than or equal to the shell thickness.

The vast majority of prior work on the adhesion of elastic bodies assumes the adhesive 
energy of the system is directly proportional to the area of an ideally bonded region (Seifert, 
1991; Mastragelo and Hsu, 1993; Sackmann and Bruinsma, 2002; Turner and Spearing, 2002; 
Freund and Yuan Lin, 2004; Graf et al., 2006).  Since this is analogous to the approach taken by 
Griffith in studies of brittle fracture (Griffith, 1921), this estimate of the adhesive energy is 
referred to as a Griffith approximation.  Kinematical conditions on the displacement field
required to ensure compatibility between the bonded and unbonded surface regions result in a 
separation profile with discontinuous derivatives of second order and higher at the adhesion 
front, which implies a jump in bending-moment that has not been justified physically.  Several
steps have been taken to treat the adhesive energy in a more general way.  For example, Seifert 
(1991) studied the adhesion of inextensible, two dimensional (cylindrical) membranes to a rigid 
half-space by minimizing the sum of the Helfrich bending energy (Helfrich, 1973) and the
adhesive energy. In that work the adhesive energy is treated both by Griffith approximations and 
by considering a finite range adhesive potential that has a dependence on the local separation 
between the membrane and half-space.  In the limit of short-range interactions and moderate to 
large adhesive energy, the computed vesicle shapes of both formulations agree well.  More 
recently, Komura et al. (2005) modeled a spherical shell as a network of tethered springs and 
determined adhered states by minimizing a discrete energy functional that includes stretching of 
the springs, an approximate description of bending resistance, and an adhesive potential that 
depends on the local separation between the nodal points and a rigid half-space.  In addition, they 
use that analysis to infer continuum properties by comparison with linear measures of strain.  
Unlike these prior works, the analysis in this paper accounts for nonlinear coupling between the 
bending and stretching deformations of a continuum shell and finite-range adhesion interactions.

Shell analysis is applicable to wafer bonding, the adhesion of metallic nanocaps (Love et al., 
2002; Charnay et al., 2003; Chen et al., 2004), the adhesion of lipid vesicles with finite shear 
resistance (Evans and Skalak, 1980; Secomb, 1988; Boal, 2002), in micro-mechanical structures 
(Maboudian and Howe, 1997), and to approximately model the adhesion induced deformation of 
biological cells.  In the latter case, it is important to note that the cell membranes of eukaryotic 
cells are stiffened by transmembrane proteins and are supported by a filamentous structure called 
the actin cortex (Boulbitch et al., 2000; Lang et al., 2000; Pesen and Hoh, 2005), while different 
structures support the membranes of prokaryotic cells (e.g. bacteria) (Boal, 2002).  Therefore, in 
the context of living cells the shell structural and material properties should be associated with 
the effective behavior of the cell membrane and attached protein networks.  Force generation 
associated with active structural reorganization (Dobereiner et al., 2004; Reinhart-King, Dembo 
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and Hammer, 2005) accompanies the adhesion of many living cells over long time periods, 
which may limit the applicability of this elastic analysis in studies of these cell types.  However, 
the initial stages of adhesion that occur without structural reorganization are important in their 
own right.  In particular, the traction forces exerted during initial contact are believed to trigger 
the assembly of focal adhesion complexes, which in turn initiate the mechanical signals required 
for actin polymerization and myosin driven contraction (Galbraith et al., 2002).  Furthermore, the 
nonuniform distributions of adhesive energy and tractions presented in this paper are a general 
characteristic of adhesion whenever the interacting surfaces are not perfectly bonded over their 
entire domain.

Although the mechano-chemical coupling that occurs in the presence of mobile chemical 
species is not explicitly considered in this analysis, the presented results have some general 
implications for the coupled system.  Most notably, the spatially nonuniform energy fields that 
are a feature of mechanical equilibrium also result in nonuniform equilibrium distributions of 
chemical species (Freund and Yuan Lin, 2004).  Wafer bonding (Mirza and Ayon, 1999), the 
adhesion of drug delivery microcapsules (Chen et al., 2004), and the adhesion of biological cells 
are important examples of systems where this coupling is important.  For example, in wafer 
adhesion the diffusion of impurities such as water into the interface results in bond degradation 
(Tsui et al., 2006).  Alternatively, the diffusion of integrin molecules in the cell membrane plays 
a critical role in the formation of adhesive linkages, which in turn regulate downstream cell 
function (Guttenberg et al., 2000; Galbraith et al., 2002; Freund and Yuan Lin, 2004; Smith et 
al., 2006; Smith and Seifert, 2007).

Important findings of this work are: adhesive transitions between stable snapped-in and 
snapped-out configurations; nonuniform distributions of adhesive and elastic energies at 
equilibrium; and a strong dependence of the pull-off force on the type of external loading.  
Solutions are presented for a range of parameters that result in both bending and stretching 
dominated structural responses and in varying degrees of nonuniform spatial distributions.  
Furthermore, the results show that a linear Griffith analysis is only accurate in the limiting case 
of short-range interactions and small curvature shells, for which the total adhesive energy at 
equilibrium is roughly proportional to the area of an ideally bonded central region.  Furthermore, 
the jump in moment that occurs at the edge of the ideally bonded region under Griffith (Turner 
and Spearing, 2002) is shown to be the result of a force couple formed by adhesive tractions.

2. Adhesion Model

Consider a shallow spherical cap adhering to a rigid half-space.  The shell is loaded by 
adhesive tractions T  and a uniform external load extP , both acting in the vertical direction.  

Axisymmetric deformations are considered with dependence only on the radial coordinate r .  In 
the reference configuration the spherical cap has a thickness t , a curvature  , and a vertical 
separation iz  that is given by:

21

2i oz r z  , (1)

where oz  is an arbitrary constant (see Fig. 1).  The curvature is related to the projected shell 

radius a and the shell height    0H z a z  by 22H a  .  The tangent angle of the 
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undeformed shell is idz dr r and the vertical offset between the middle and bottom shell 

surfaces is approximately 2t .

An adhesive material layer with continuum thermodynamic properties resides between the 
shell and substrate (Cahn, 1979; Guggenheim, 1993).  The shell, adhesive layer, and substrate 
are imagined to constitute a closed thermodynamic system.  The temperature and the 
concentration of adhesive (or impurity) species in the layer are considered uniform and constant.  
The shallow shell is capable of moderate rotations, but is restricted to small strains (projected 
area approximately constant).  The elastic strain energy of the shell is denoted by eu  and the 

work of the externally applied load by extw , both defined per unit area of the middle shell surface 

(Budiansky, 1968).  Furthermore, the tractions T  associated with the adhesive layer are taken as 
conservative and, therefore, derivable from an adhesive potential au .  For this system the total 

potential energy is postulated to take the form:

 
0

2 d
a

t e a extU u u w r r   . (2)

2.1. The Adhesive Law

The adhesive interactions between two bodies, in general, depend on the atomic interactions 
between the bulk materials, the surface chemistry and charge, and the surrounding medium.  
Despite the complexity of the underlying physics, the effective behavior of the adhesive layer is 
generally characterized by moderate range attractive interactions and short-range repulsive 
interactions (Israelachvilli, 1985; Maugis, 2000).  Examples include the interactions between 
mica surfaces (Israelachvili and Tabor, 1972), polymer layers in solvent (Klein, 1982; Taunton et 
al., 1988), and the interactions of receptor-ligand systems (Leckband et al., 1992; Leckband et 
al., 1994; Wong et al., 1997).  These general observations are captured by adopting a simple and 
classical description of the adhesive potential that is derived from Lennard-Jones interactions.  

The adhesive potential au  and corresponding tractions T are taken in the form (see Fig. 2):

    2 83 3 1

4 4
m o o o

au z
z z

             
     

 ,    
3 9

3 3 

2
m o oT z

z z

           
     

, (3)

where  1.20m oT   is the maximum adhesive traction and the equilibrium (lowest energy) 

separation o sets the range of the interactions, which become vanishingly small for separations 

larger than about 10 o .  The work of adhesion corresponding to (3) is given in terms of m  and 

o by:

   9 3
d

16o
ad m oW T z z


 


   . (4)

Theoretically, the adhesion law (3) corresponds to the interaction between two Lennard-
Jones half-spaces and has been used to account for the adhesive interactions in other models 
(Muller et al., 1983; Maugis, 2000).  Similar adhesion laws have been adopted elsewhere 
(Seifert, 1991; Mishin et al., 2002; Komura et al., 2005).  The equilibrium separation o  should 

not be interpreted as the equilibrium length scale of an atomistic potential (Yu and Polycarpou, 
2004), but should be regarded as a bulk adhesion parameter.  Similarly, the work of adhesion 
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adW and the interface strength m  are also considered bulk parameters in this analysis, 

representing all physics that contribute to the effective behavior of the adhesive layer.  However, 
in interpreting the results that follow, the work of adhesion can be viewed to depend on the 
uniform surface concentrations of adhesive or impurity species.

2.2 Governing Equations for Axisymmetric Deformations of a Spherical Cap

Shell deformation is modeled using Reissner’s nonlinear shallow shell equations for thin 
shells of revolution undergoing axisymmetric deformations with small in-plane strains and 
moderate rotations (Reissner, 1950; Wan and Weinitschke, 1988).  Linear elastic isotropic 
material behavior is assumed.  In the shallow limit, the strain-displacement relations associated 
with these equations are equivalent to those given by Sanders for small strains and moderate 
rotations (Sanders, 1963) and to those of the Donnel-Mushtari-Vlasov (DMV) theory (Niordson, 
1985).  Equivalent forms of these equations are prevalent in the literature on shell buckling 
(Weinitschke, 1958; Budiansky, 1959).  Thin shells are defined as having a ratio 1t R , where
R  is the radius of curvature and t  is the thickness.  According to Reissner, the shallowness 
requirement is given in terms of the shell height H  and projected shell radius a by 1 6H a 

(Reissner, 1958).
A natural choice of solution variables is the separation of the deformed shell z and the 

membrane stress function  , analogous to the Airy stress function in plane elasticity.  The 
change in tangent angle (rotation)  is related to the separation by:

idz dz dz
r

dr dr dr
     (5)

The nonlinear, coupled Euler-Lagrange equations of equilibrium associated with a stationary 
point in the potential energy functional (2) are given as:

    
   

3 2
2

2 0

1
0

212 1

r extPEt d d dz
r T z r dr r

dr dr r dr

   


                  
  , (6)

2
2

2

1 1 1
0

2
idzd d

r
Et dr r drdr

    
              

 , (7)

where  T z  is the adhesive law defined in (3).  The nonlinear term in (6) accounts for the 

coupling between bending and stretching of the shell, whereas the nonlinear term in (7) accounts 
for finite rotations.  An additional loading nonlinearity enters through the integral term in (6).  
Uniqueness can not be guaranteed due to finite geometry changes and nonlinearity associated 
with adhesive tractions derived from a nonconvex potential and, in fact, bistable and unstable 
solutions are found to exist.  Therefore, a stable solution may correspond to a local minima 
(metastable) or global minimum (absolutely stable) of the potential energy.  

2.3 Boundary Conditions

For unconstrained adhesion of a free-standing, open shell the moment, shear force, and radial 
membrane force must vanish at the shell boundary.  These conditions are given, respectively, as:
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 
3

2
0

12 1
r r a

r a

Et d
M

dr r

  




     
, (8)

 
3 2

22

1 1
0

12 1
r a

r a

Et d d
Q

dr r dr r

  




 
    

   
, (9)

0
r a

    . (10)

Additionally, symmetry requires that the shell slope and radial displacement vanish at the apex.  
Rigid body displacements of the shell are only constrained by the requirement of overall 
equilibrium.  This fact is more evident if the shear force requirement written in (9) is replaced by 
the equivalent requirement of overall force equilibrium:

  2

0
2  + 0

a
extT z r dr a P    . (11)

There are two subtle, yet important implications of boundary conditions (8) - (11).   First, 
the solution for perfect bonding  ,  o iz dz dr    is not admissible unless the undeformed 

shell geometry satisfies certain boundary conditions, which are found by substituting the flat
solution into boundary conditions (8) and (9).  For the spherical cap given by (1) the perfectly 

bonded solution is oz  , r  , and  2 2 2 16Et r r a   .  The moment condition (8) is 

not satisfied by this solution and, therefore, either an applied moment 

 3 12 1r r a
M Et       or a flat geometry 0   is required for perfect adhesion.  All 

equilibrium configurations for 0  and 0r r a
M    will involve nonuniform adhesion to the 

substrate.  Second, the vertical equilibrium requirement (11) requires that the repulsive and 
attraction tractions on the shell surface balance the applied load.  Since nonuniform adhesion is 
guaranteed from the boundary conditions whenever 0  , nonzero adhesive tractions must load 
the shell at equilibrium, even in the absence of applied load.

2.4. Nondimensional Variables

The nondimensional groups most useful for characterizing solutions are:

 

2
ad

3 2 2
, , ,ext o

ad ext o
W P a

W P
t tEt E t

 
 

       , (12)

where the nondimensional work of adhesion adW  measures the relative importance of adhesive 

and elastic energies, the nondimensional range o  sets the range of the adhesive interactions

relative to the shell geometry, and the dimensionless curvature   determines the relative 
importance of shell bending and stretching.  The nondimensional external load extP  is directly 

proportional to the approximate buckling pressure of a uniformly loaded shallow spherical cap 

(Hutchinson, 1967), which for a Poisson’s ratio of 0.3  is  21.21crP E t . The ratio 

2o oH     is found to determine the spatial distribution of adhesive energy.
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The loading variables are adW  and extP .  In this regard, a scenario is imagined where the 

elastic and geometric properties of the shell are fixed and either adW or extP  is varied.  Load

induced shell flattening is conveniently characterized by the flatness parameter Φ , defined as:

   
   0

0
Φ

0

a

i i

z r z
r dr

z r z




 . (13)

When Φ=1 the shell is undeformed and when Φ=0  the shell is perfectly flat.
Values of the nondimensional parameters (12) are estimated for wafer bonding, the adhesion 

of nanocaps, cell adhesion, and the adhesion of lipid vesicles in Table 1.  The estimates are based 
on geometric and material parameters taken from the literature.  Wafer bonding is generally 
characterized by small curvatures, short-range interactions, and a small work of adhesion.  The 
dimensions and material properties considered for nanocaps result in moderate range 
interactions, moderate curvatures, and a small work of adhesion, although the caps can generally 
be manufactured to a variety of specifications.  For the cell, the Young’s modulus and thickness 
are identified with measured properties of the actin cortex (Lang et al., 2000; Pesen and Hoh, 
2005), the reference curvature is typical of a spherical cell, and the equilibrium separation is 
estimated from experiment (Izzard and Lochner, 1976).  For these estimates, cell adhesion 
generally involves moderate range adhesive interactions, large curvatures, and a large work of 
adhesion.  Due to the extremely small thickness of lipid membranes, both the nondimensional 
curvature and work of adhesion are very large.

2.5. Numerical Analysis

The governing equations (6) - (7) , the definition of the rotation (5), and the boundary 
conditions (8) - (10) are discretized using finite differences and a quadrature rule.  Converged 
solutions to the discretized equations are obtained using a tangent predictor step and a Gauss-
Newton corrector step (Allgower and Georg, 1997) treating either the nondimensional work of 
adhesion adW  or the external load extP  as a solution variable.  This continuation algorithm 

allows calculation of both stable and unstable equilibrium solution curves as a function of the 
load parameters.  Details of the discretization and solution procedures are given in the Appendix.  
Solutions are presented for values of the nondimensional curvature   = 1, 6, 12, and 18, and the

nondimensional range o  = 10, 1, 0.1, 0.01, and 0.001.  For all solutions Poisson’s ratio 0.3  .

3.  Equilibrium Solutions in the Absence of External Load

Equilibrium states for a spherical cap deformed only by adhesive tractions ( 0extP  ) are 

studied as a function of the nondimensional work of adhesion adW .  For varying adW  two cases

generally arise: 1) a unique stable solution branch and 2) bistable solution branches with an 
intermediate unstable branch.  The solutions can be characterized by shell flatness or by 
potential, adhesive, or elastic energy, all of which are considered in the following analysis.  
Details of the separation profiles, adhesive tractions, and energy distributions are also discussed.  
A general feature of all the solutions is nonuniform separation and nonzero tractions at 
equilibrium.
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3.1 Equilibrium Solution Paths Characterized by Shell Flatness

Equilibrium solutions characterized by the shell flatness parameter are plotted as a function 
of the nondimensional work of adhesion in Fig. 3 for various values of the curvature and range of 
interactions.  The flatness parameter, which is defined in (13), has a value Φ =1 for an 
undeformed configuration and a value Φ =0 for a perfectly flat configuration.  Although the 
latter state is unattainable for 0   (see Sect. 2.3), states that approach Φ =0 are always the 
most deformed (highest elastic energy) configurations.  In all cases, turning or critical points
( Φ adW   ) indicate a change in stability.  These points are referred to as the snap-in and 

snap-out transition values and they are tabulated in Table 2 for the short-range interactions o =1, 

0.1, 0.01, and 0.001.
A key feature of the equilibrium curves is the emergence of bistable solutions for 

sufficiently large  shells (at fixed o ), whereas for smaller   the solutions are unique.  The

values of  at which bistable solutions appear depends on o .  Deformation modes for long- and 

short-range adhesive interactions can differ substantially:
i)  For relatively short-range interactions and small curvatures the solutions are unique and 

the shell flatness parameter varies monotonically with the load (e.g. o  = 1 and 0.1 with  =1 in 

Figs. 3b,c).  Alternatively, in the bistable regimes that occur at larger curvatures discontinuous 

snap-in and snap-out transitions are expected at the critical points adW  and adW  for continued 

loading and unloading, respectively.  In particular, under increasing load the snap transitions 
result in the propagation of a nearly flat, central adhesion zone across the shell surface, and a 
corresponding decrease in Φ .  The adhesion zone recedes upon unloading.  The snap-in 

transition values adW   are more sensitive to changes in   than o , whereas the snap-out 

transition values adW   depend on o , but are relatively insensitive to (see Table 2).

ii)  For long-range interactions and relatively small curvature, for example o =10 with  =1

and 6 in Fig. 3a, the shell flatness parameter varies monotonically with respect to load.  
However, at larger curvatures ( =12 and 18) stable buckling occurring at the shell apex results 
in configurations that are concave-down in the interior and concave-up on the periphery, and a 
corresponding increase in the flatness parameter Φ .  These wrinkles are flattened as the load is 
increased further.  For relatively large curvatures (e.g. =18) an unstable buckling transition 
occurs at larger loads resulting in a second curvature inversion (concave-up in the interior and on 
the periphery, concave-down in between).  Both the stable and unstable curvature inversions
occur at relatively large values of adW  (note the scale of the abscissa in Fig. 3a).  

The curvature inversions of the central region in ii) are qualitatively similar to the results of
Komura et al. (2005) obtained for a tethered spring approximation of a closed spherical shell 

loaded by long-range adhesive interactions 2 0.2 1.1o oH      .  However, the problems 

of interest in this study are associated with relatively short-range interactions.  For example, in 
cell adhesion and wafer bonding this ratio takes a typical value that is on the order of 100-1000.  
Therefore, the remainder of this paper focuses on the solutions characteristic of i) above.
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3.2 Potential, Elastic, and Adhesive Energy Paths

Although shell flatness is a measure of the overall deformation, it is not an indicator of 
global stability.  For example, a flat configuration on the secondary solution branch can have a 
higher potential energy than a small deformation solution on the primary branch.  In such a case 
the flat configuration is metastable, while the small deformation, lowest energy configuration is 
absolutely stable.  With no external load ( 0extP  ) the potential energy of the system, defined by 

(2), includes only the adhesive energy aU  and the elastic energy eU .  In this case the reference 

potential energy 0tU   is taken as the undeformed, traction-free state z   . 

Typical variations of the potential, adhesive, and elastic energies with respect to the 
nondimensional work of adhesion are plotted in Fig. 4.  Primary branch solutions are identified 
with relatively high adhesive energy and relatively low elastic energy (see Figs. 4b,c).  
Alternatively, secondary branch solutions are relatively low in adhesive energy and high in 
elastic energy.  Since the secondary branch solutions are nearly flat configurations, the adhesive 
energy varies nearly in direct proportion to the work of adhesion and the elastic energy 
asymptotes to that of a flat configuration. 

The potential energy landscape can be inferred from the equilibrium curves plotted in Fig. 
4a.  Schematic representations of the landscape in terms of the flatness measure Φ  are given in 
Fig. 5.  Although not drawn to scale in this schematic, the height of the barriers can be estimated 
from the potential energy of the unstable solution branches.  In real systems these barriers can be 
lowered by imperfections and by intermediate nonaxisymmetric configurations that occur during 

the (dynamic) snap transitions (Budiansky, 1959).  At a fixed o , equilibrium of relatively small

  shells corresponds to a single energy minimum (A) that progresses continuously toward lower 
potential energy states as adW is increased.  Alternatively, for large there is a unique energy 

minimum (A) for small adW , but at larger adW  a secondary minimum (B) develops 

corresponding to flatter configurations.  At its initiation the secondary minimum (B) is high in 
potential energy (metastable), while the primary minimum (A) is low in potential energy 
(absolutely stable).  As adW  is increased further, the relative depth of the two minima shift and 

eventually the secondary minimum (B) replaces (A) as the global minimum.   With additional 
loading the primary minimum (A) is lost and the shell snaps into the low Φ  configuration (B), 
which becomes a unique, stable solution.  Similarly, upon unloading the stable configuration (B)
is first absolutely stable, then metastable, and then lost, which initiates the snap-out transition to 
configuration (A).

3.3 Bending versus Stretching Modes of Deformation

The fraction of elastic energy due to stretching deformations is plotted in Fig. 4d.  Bending 
deformations always dominate the elastic response of small   shells, while membrane stresses 
play an important role for large , particularly for the flat configurations of the secondary 
branch.  For large   shells and short-range interactions the slightly deformed primary branch 
configurations typical of small adW  are dominated by bending, whereas for long-range 

interactions stretching can still be important.  For example, with 0.01adW   and 6 
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stretching deformations account for about 40% of the elastic energy if o =1, but only about 

0.2% if o =0.001.  Similar results are also found for the larger curvature values  =12 and 18.

Although nonaxisymmetric deformations can not be ruled out without further examination 
for the stretching dominated, high elastic energy states found for  =12 and 18, results from 
previous studies suggest axisymmetric analyses are adequate for the geometric and material 
properties considered in this paper.  For example, in the problem of snap-through buckling 
nonaxisymmetric states are predicted to occur near  = 15 (Bushnell, 1985).  However, in 
problems with adhesion the range of axisymmetric solutions is expected to be extended because 
there is an additional adhesive energy penalty from nonaxisymmetric separation profiles.  
Furthermore, for a discrete spring model of a complete spherical shell nonaxisymmetric solutions 
have been found for long-range interactions ( 1oH  


), but for short-range interactions 

( 1)oH   the buckling modes are suppressed and flat centrally-bonded solutions prevail 

(Komura et al., 2005).  Almost all solutions presented in this paper correspond to moderate 
and short-range interactions ( 1)oH   .

3.4 Separation Profiles, Adhesive Tractions, and Energy Distributions

Typical separation, traction, and adhesive energy profiles are plotted in Fig. 6 for both small 

curvature shells with moderate range adhesive interactions (  = 1, o  = 0.1) and for large 

curvature shells with relatively short range interactions (  = 12, o  = 0.01).  The ratio / oH  is 

useful in characterizing these results, which in the first case (see Figs. 6a-c) has a value 
/ oH  =10 and in the second case (see Figs. 6d-f) a value / oH  = 600.  Clearly in undeformed 

configurations the adhesive interactions can extend over a greater portion of the shell surface for 
/ oH  =10 than for / oH  = 600 (the range of interactions extends to about 10 o ).   

Adhered configurations for either short- or long-range interactions can be distinguished by 
the spatial distributions of adhesive energy.  In the former case the adhesive energy density

a adu W   over a central adhesion zone and 0au   over the rest of the shell (see Fig. 6f).  In the

latter case no such partitioning is possible, since the adhesive energy is nonuniform over the
entire shell surface (see Fig. 6c).  The separation profiles (see Figs. 6a,d) that result in these 
energy distributions are described as follows:  i) for short-range interactions a central adhesion 
zone develops with oz  , outside of which the deformation is driven by compatibility and ii) 

for long-range interactions the separation profiles are everywhere nonuniform.  A notable 
exception to this classification is for short-range interactions and small adW , for which the 

central adhesion zone is not flat nor the adhesive energy uniform (e.g. adW =0.1 in Figs. 6d-f).  

Tractions tend to be distributed over the entire shell surface for long-range interactions (see 
Fig. 6b), but for short-range interactions the tractions are localized to a small transition region 
(boundary layer) at the edge of the centrally adhered region (see Fig. 6e).  In the latter case, the
traction distribution is nearly statically equivalent to a concentrated adhesive couple, which is 
responsible for the steep variation in the moment at the adhesion front (see Fig. 7b).  No steep 
variations in the moment distribution are observed for long-range interactions (see Fig. 7a).

Bistable adhesion states that are shown to exist for moderate work of adhesion and 
sufficiently large curvature can correspond to very different configurations despite having 
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comparable potential energies.  An example is plotted in Fig. 8 for  =6, o =0.1, and 

0.21adW  .  The lowest energy state 20.08t adU a W   exhibits a flat central adhesion zone, 

where the majority of deformation occurs (see Fig. 8d). For the metastable state 
20.06t adU a W   the adhesion zone extends over a larger fraction of the shell surface, 

resulting in an increase in elastic energy that is partially offset by the reduction in adhesive 

energy.  The unstable solution 20.06t adU a W corresponds to a bonded central region that lies 

between the two stable solutions.  As discussed in Sect. 3.2, the energy barrier in transitioning 
between absolutely stable and metastable states can be estimated from the unstable solution.  For 
the case plotted in Fig. 8 the energy barrier in going from the stable to metastable state is

20.14t adU a W  , while for the reverse transition 20.12t adU a W  .

3.5 Discussion

The equilibrium states of adhered shell structures are difficult to determine due to the 
nonlinearities associated with both finite kinematics and adhesive loading.  In general, the full 
nonlinear governing equations must be solved to determine the adhered states, which often are 
not unique.  In the literature approximate analytic solutions have been constructed using linear 
bending theory and Griffith approximations (Seifert, 1991; Turner and Spearing, 2002; Freund 
and Yuan Lin, 2004; Graf et al., 2006), avoiding the complications of the full problem.  

Classification of solutions in terms of  and in terms of the ratio 2o oH     is useful to 

characterize the complete solutions and to determine when these approximate solutions fail.
The dimensionless curvature  distinguishes between solutions dominated by bending and 

those dominated by stretching.  Small  shells are dominated by linear bending.  Conversely, for 
1 


the coupling between bending and stretching must be accounted for if accurate solutions 
are to be obtained.  In the work of Graf et al. (2006) and in the continuum limit of Komura et al. 
(2005), the stretching contribution to the elastic energy is taken to have a quadratic dependence 
on the linearized in-plane strain tensor, which neglects coupling due to moderate rotations.  
Neglect of this coupling can result in significant errors in the elastic energy.  Displacement fields 
of the nonlinear solutions can be used calculate the linearized elastic energy for (posteriori) error 
estimates.  For example, the elastic energy of the primary branch solutions just prior to snap-in is 

overestimated in the linear theory by 1.5, 20, 40, and 52 percent for o  = 0.01, and  =1, 6, 12, 

and 18, respectively.  Corresponding errors on the secondary solution branch with 2adW   are 

2, 45, 76, and 88 percent, respectively.  These estimates are fairly insensitive to o  for the

parameter values considered.
For the linear Griffith approximations to have validity the solutions must satisfy two 

requirements: i) linear bending theory must apply, which is satisfied if 1 


 as discussed above, 

and ii) the total adhesive energy of the system must have the form 2
a c adU a W  , where ca  is 

the radius of a perfectly bonded, central adhesion zone.  As shown by the adhesive energy 
profiles plotted in Fig. 6f, the latter condition is well approximated for short-range interactions
( 1oH   ).  However, breakdown of the Griffith approximation is expected at small adW , 

where no centrally flat adhesion zone can be identified.  Although ii) is also well approximated 
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for large curvature shells, there is no clear way to construct a Griffith approximation from the 
nonlinear theory.  

The analysis of this paper can be calibrated against the approximate solutions constructed by 
Turner and Spearing (2002) for linear bending ( 1 


) and short-range tractions ( 1oH   ).  

Adapting their model to the current problem, snap-in and snap-out transitions are predicted to 

occur at adW =0.18, and 0.08, respectively, for 0.3   independent of  or o .  As anticipated, 

these values are very close to the values given in Table 2 for small curvature shells with short-

range interactions.  Despite good agreement in this narrow regime, for other values of   and o

the linear Griffith approximations are inadequate.

4.  Effect of Externally Applied Loads

In addition to adhesive tractions many systems of interest are also loaded externally during 
fabrication or in their natural state.  External loading is also important for peeling or pull-off 
experiments used to measure the adhesive properties of an interface.  The work done by applied 
loads enters the overall energy balance, altering both the equilibrium configurations and the 
energy distributions.  In this section external loading by a uniform surface load (dead load) and a 
uniform edge load are considered, both applied in the vertical direction.  An important aspect of 
this analysis is to show that not only is the magnitude of applied external load important, but also 
critically important is how the load is applied.

4.1 Uniform Surface Load

A uniform surface load (a body force) is applied to the adhered shell in the vertical direction, 
effectively adding to the adhesive tractions.  The applied load extP  is negative for compressive 

loading of the adhesive layer and positive for tensile loading (see Fig. 1).  Under free-edge 
boundary conditions (8) - (10) static solutions only exist for external loading if 0adW  .  

Representative cross-sections of the equilibrium surface Φ( , )ad extW P  are plotted in Fig. 9 for 

 =6 with o =0.1 and 0.01.  Figures 9a,b are equilibrium adW   curves at fixed values of the 

normalized external load extP  = 0.01, 0.1, and 1, which is defined in (12).  Figures 9c,d are 

equilibrium extP  curves at fixed values of the normalized work of adhesion adW = 0.05, 0.1, 

and 1.  Snap-in and snap-out adW  values corresponding to Figs. 9a,b are given in Table 3, 

whereas the critical points in Figs. 9c,d are given in Table 4.  Details of these results follow.
For fixed geometric and material parameters compressive external loading enhances shell 

flattening, as shown in Figs. 9a,b.  For relatively small pressures (e.g. extP = 0.01 and 0.1 for 

the case  =6) the main characteristics of the adW   equilibrium curves are not changed; there 

are bistable adhesion states for a given o  and sufficiently large  .  However, the corresponding 

snap-in and snap-out adW transition values are reduced (see Table 3).  Relatively large pressure 

(e.g. extP =1 for  = 6) can result in unique solutions corresponding to flat configurations, even 

if bistable states exist in the absence of external load. 
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Multiple solutions are also predicted under the conditions of constant work of adhesion and 
varying external load, as shown in Figs. 9c,d.  In these figures Φ 0extP   corresponds to 

stable solutions and Φ 0extP   to unstable solutions.  For adW =0.1 in Figs. 9c,d there are 

both bistable and unstable adhesion states.  In contrast, for small work of adhesion (e.g. 

adW =0.05) the solutions are unique for all values of extP , and for large work of adhesion (e.g. 

adW =1) there is one stable branch corresponding to flat configurations and one unstable branch.

The effect of external load on the equilibrium configurations of the shell, i.e. the separation, 

traction, and energy distributions, are plotted in Fig. 10 for the parameters  =6, o =0.1, and 

adW =0.1 with extP = – 0.01, – 0.1, and –1.  As shown clearly for the large compressive load 

values in Fig. 10b, the adhesive tractions on the flat central region of the shell are repulsive in 
order to satisfy equilibrium and, therefore, the separations are less than o .  The smaller 

separations increase the local adhesive energy density, as evident in Fig. 10c.  Changes in the 
elastic energy fields correlate with increased shell flattening caused by the compressive load (see 
Fig. 10d).

4.2 Pull-Off Force: Surface versus Edge Loading

Pull-off occurs for load prescribed boundary conditions at the points on the loading curve 

for which no stable, higher Φ  states exist.  For example, consider the two cases o =0.1 and

o =0.01 in Figs. 9c,d, respectively, with adW =0.1.  In the first case of relatively long-range 

interactions, unloading from flat configurations results in a snap-out transition that, in the 
presence of moderate dissipation mechanisms (e.g. viscous drag), comes to equilibrium in a 
stable configuration.  The solutions remain stable under continued load reductions until, under a 
small tensile load, pull-off occurs at the terminus (indicated by circles in Figs. 9c,d) of the stable 
equilibrium branch.  In the second case, unloading from flat configurations results in pull-off
directly from a small Φ state since there are no stable, higher  Φ solutions for larger tensile 
load.  Alternatively, when unloading from high Φ  states pull-off occurs at the terminus of the 
solution branch, but at a much smaller tensile load than pull-off from the flat configuration (see 
Table 4 for comparisons between the critical values).

A uniform edge load is also applied to the spherical cap to investigate pull-off under an 
alternate external loading condition.  The edge load corresponds to adding a shear force oQ  to 

the right-hand side of boundary condition (9) or equivalently adding the force o2F a Q  to the 

left-hand side of (11).  For brevity, detailed analysis of the equilibrium profiles and traction 
distributions are not presented for this loading configuration.  However, it is sufficient to note 
that the redistribution of adhesive tractions is concentrated near the shell boundary where the 
edge load is applied, in contrast to the more uniform redistribution in the case of a surface load.

Pull-off force calculations for both a uniform surface load and a uniform edge load are 

plotted in Fig. 11 for   = 1, 6, 12, and 18 and the two values o =0.1, and 0.01.  For all cases in 

this figure, pull-off occurs from a relatively flat configuration, as in the cases adW =1 in Figs. 

9c,d. Evidently, the critical load required to separate the shell from a flat configuration depends 
dramatically on how the load is applied.  In some cases the resultant pull-off force under edge 
loading can be more than an order of magnitude smaller than for surface loading.  In addition, 
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the pull-off force is much more sensitive to   and o for edge loading than for surface loading.  

In fact, surface loading is shown to be relatively independent of both   and o .  At moderate to 

large adW the pull-off force under edge loading varies nearly in direct proportion to the ideal 

interface strength 2
ma   (see Figs. 11c,d), although the proportionality depends on both   and 

o .  Conversely, for small adW  the correlation under edge loading is nonlinear.  The important 

implication of this result is that the type of applied loading must be accounted for when deducing 
adhesive properties from experimentally measured pull-off force values.  In all cases calculated 
pull-off forces are less than that of an ideal interface due to the release of stored elastic energy.

4.3 Discussion

By altering the equilibrium configurations at a local level, external loading can change the 
adhesive energy required for snap transitions and it can even induce such transitions.  As may be 
expected, compressive loading reduces the snap-in and snap-out adW  values, while tensile 

loading increases them.  Similarly, increasing adW  reduces the magnitude of compressive 

external load extP required for snap-in and increases the magnitude of tensile load for snap-out or 

pull-off.  As a result of the snap-transitions there is hysteresis in a bonding-unbonding process.  
The local equilibrium fields and, therefore, the pull-off forces are shown to depend strongly on 
how the external load is applied.

Application and subsequent removal of compressive load with the goal of inducing flat 
configurations can result in poor adhesion (metastable states).  Depending on the geometry and 
on both the material and adhesive properties, load induced high energy states can result in 
spontaneous failure under external perturbations.  Configurational robustness, measured by the 
height of the potential energy barrier between stable configurations, can be estimated from the 
potential energy of the unstable state (see Sect. 3.2).  Typically maintaining a high work of 
adhesion comes at some cost, for example in wafer bonding surface contamination must be kept 
to a minimum.  Estimates of the system robustness can be used to determine the best 
compromise between structural integrity and work of adhesion.  For example, a work of adhesion 
below the snap-in transition value can be chosen such that, in conjunction with an external 
loading cycle, a robust, absolutely stable configuration is obtained.

5. Summary and Discussion

The adhesion of a shallow spherical cap to a rigid substrate is studied using the nonlinear 
shallow shell equations and a nonlinear adhesion law derived from Lennard-Jones interactions.  
Free-edge boundary conditions (or continuity for a closed shell) lead to equilibrium states with 
nonuniform energy distributions and nonzero tractions.  In particular, when the ratio between the 
shell height and the range of the interactions is small the adhesive energy is nonuniformly 
distributed over the entire shell surface, whereas when this ratio is large the adhesive energy is 
roughly proportional to the area of an ideally bonded central region.  In addition, the coupling 
between bending and stretching that arises due to the nonzero Gaussian curvature of the shell 
results in the development of membrane stresses during flattening deformations.  This nonlinear 
coupling must be accounted for once the height to thickness ratio of the shell approaches unity.  
Together, these findings demonstrate that approximate solutions based on linear bending theory 
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and Griffith assumptions are applicable only in the case of small curvatures and short-range 
interactions.

Snap-in and snap-out adhesive transitions induced by both adhesive tractions and externally 
applied load are predicted for sufficiently large curvature shells with fixed material properties.  
Compressive external loading is shown to promote flat configurations and, when held constant, 
reduces the work of adhesion required for snap-in and snap-out transitions.  Similarly, increased 
work of adhesion reduces the compressive external load required to initiate snap-in transitions 
and increases the tensile load required for snap-out or pull-off.

An important conclusion of this paper is that the pull-off force, which is generally not a 
direct measurement of the interface strength (see Figs. 9,11), depends not only on the geometric 
and material parameters of the shell, but also on the type of applied loading.  The latter 
dependence may partly explain the discrepancy between the relatively large pull-off forces 
measured in single molecule experiments of receptor-ligand pairs compared to those obtained for 
adhered vesicles with the same receptor-ligand system (Guttenberg et al., 2000).  For the latter 
case the measured pull-off force depends intimately on the mechanics of the vesicle in addition 
to the adhesive layer.  Nevertheless, if o  is known, then the interface strength can be inferred 

from pull-off force measurements by comparison with the theoretically predicted values, for 
example, calculated in Fig. 11.  Of course the dependence of m  on the receptor and ligand 

densities must be known in advance in order to calculate the strength of single bonds.
When bistable adhesion states exist energy loss occurs during complete (quasi-static) 

loading cycles.  The dissipated energy can be calculated by considering variations of the 
potential energy (2) with respect to the load variables adW  and extP .  The amount of hysteresis in 

a complete loading cycle depends on both the snap-in and snap-out transition values and the 
details of both the primary and secondary solution branches.  The dissipation may have 
important implications for the cyclic adhesion of shell structures in MEMs devices and in the 
cyclic adhesion of certain biological cells (e.g. Lymphocytes) (Dustin and Springer, 1991; 
Gunzer et al., 2000).  In both cases power must be supplied in excess of the loss.

Adhesion induced snap transitions could be used to experimentally measure the work of 
adhesion.  For example, an array of caps could be manufactured with known geometric and 
material parameters that are identical except in their curvature.  When adhered to a surface the 
different curvature caps will obtain different adhesion states.  In this example, the largest 

curvature cap that exhibits a snap-in transition indicates a critical point cr
adW   for the family of 

theoretical solution curves calculated for different curvatures.  The material and geometric 
properties associated with this critical curvature shell can be used to deduce the work of 
adhesion.  An estimate for o  is required in this procedure.  Although similar to micro-cantilever 

arrays developed for measurement of the adhesive properties of metallic surfaces (Mastrangelo 
and Hsu, 1993; Maboudian and Howe, 1997), a benefit to this method is the large geometry 
changes associated with the snap transitions.  Optical measurements of some shallow caps 
depend sensitively on geometry (Charnay et al., 2003), which make them ideal for determining 
the critical curvature.

In another example, single cell studies have observed an increase in projected cell area with 
increased surface densities of ligand, although a maximum projected area is reached (Engler et 
al., 2004).  Increased ligand coating should result in more receptor-ligand interactions and, 
therefore, increased work of adhesion, at least until entropic penalties become important.  The 
presented results show increased flattening with increased work of adhesion, which also 
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corresponds to increased projected area (results not shown), albeit the increase is small for the 
shallow cap.  Of course many other factors are present in the experiments of Engler et al. (2004)
on living cells.

The solutions presented in this investigation assume a uniform work of adhesion, which may 
depend on the concentration of certain adhesive or impurity species.  If the concentrations are 
fixed uniformly on the surface then the equilibrium solution paths for varying adW (e.g. Fig. 3) 

can be interpreted in terms of chemical concentrations.  In the case of wafer bonding the 
solutions clearly indicate that large concentrations of impurities, for example water, can have a 
critical effect on the adhered configuration, particularly when the work of adhesion is close to the 
snap-in or snap-out transition values.  More generally, the distribution of chemical species is 
nonuniform and coupled to the local mechanical fields (Xu Yan and Bassani, 1999; Mishin et al., 
2002; Freund and Yuan Lin, 2004; Smith and Seifert, 2007).  A detailed analysis of this 
mechano-chemical coupling will be given in a subsequent paper.

6. Acknowledgments

Support of the National Science Foundation Grant CTS-04-04259 and the Ashton 
Foundation is gratefully acknowledged.

7. Appendix

Numerical solutions of the governing equations (6) - (7), the compatibility condition (5), and 
boundary conditions (8) - (10) are obtained using finite difference methods.  The derivative 
terms are approximated using five-point finite differences over a nonuniform grid and the 
integral term in (6) is approximated by a quadrature rule based on quadratic Lagrange
interpolating polynomials.  Solutions of the discretized equations are found using a continuation 
method that utilizes a tangent predictor step and a Gauss-Newton corrector step (Allgower and 
Georg, 2003).  Details of the solution procedure are discussed below.

The governing equations are normalized by the nondimensional variables:
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along with the nondimensional geometric and load parameters: 
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The nondimensional radial coordinate  0,1r  , defined as:

r r a , (A16)

is discretized into n  nodal points, with kr  the position of the thk  node and 1k k kh r r    the 

spacing between successive nodes.  Boundary conditions (8) - (10) are enforced using a fictitious 
node 1n   located outside the solution domain at 1 1 21 2n n nr h h     , with the corresponding 

solution variables 1nz  , 1n   and 1n 
 , determined by boundary conditions at the thn  node 

(Bushnell, 1985).
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Five-point finite difference approximations for a nonuniformly spaced grid are used to 
approximate derivatives in the governing equations.  Denoting the first and second finite 

difference operators by r  and 2
r , respectively, the derivative approximations take the form: 

5

1 5r k
dy d y

y O
dr dr


 

     
 

 ,           
2 5

2
22 5r k

d y d y
y O

dr dr

 

     
 

, (A17)

where 1  and 2  are constants that depend on the mesh spacing and the derivatives are evaluated 

within the domain of the five grid points used in the approximation.  On the interior nodes 
central difference approximations are used, whereas forward and backward difference 
approximations are used on the boundaries.  For a uniformly spaced grid, both approximations 
are fourth order accurate on interior points, while for a nonuniformly spaced gird the accuracy of 
the second derivative is only third order.  At the boundary points k = 1, 2, n, and n+1, the 
forward and backward difference approximations of the second derivative are always third order 

accurate, even for a uniformly spaced grid.  The exact forms of the operators r  and 2
r are

determined from standard analysis.
A discrete approximation to the integral term in (6) is constructed by integration of a 

quadratic Lagrange interpolating polynomial that is fit to the integrand y at three adjacent 
points.  At the first grid point the polynomial is fit to function values at points 1,2,3k  , for the 

thn  grid point to the function values at , 1, 2k n n n   , and for all interior points k  to the 

function values at 1, , 1k k k  .  The result is a third order accurate approximation rI to the 

integral that takes the form:
4

3 40

kr
r k

d y
y dr I y O

dr

 

     
 




  , (A18)

where 3  is a constant that depends on the grid spacing and the derivative is evaluated within the 

domain  0, kr .  Once again, the form of the operator rI is determined from standard analysis.

With the derivative and integral operators defined above, the discrete form of governing 
equations (5) - (7) are given, respectively, as: 

       2 0r k k kz r      , (A19)

   2 2
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
    



              
   

 
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, (A20)
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, (A21)

where the discrete traction function kf  is given by:

3 9
2 23 3

2
o o

k
k k

f
z z

 
 

          
     

 

 
 . (A22)

The discrete boundary conditions (8) - (10)  follow directly: 
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2 0r n r n        , (A23)

2 0r n r n n         , (A24)

0n   . (A25)

Symmetry conditions are imposed at the origin by replacing equations  (A19) - (A21) for 1k 
with:

1 0  ,     1 0r z  ,     1 0  . (A26)

The first two conditions impose symmetry of the vertical displacement and the third condition 
insures there is no radial displacement at the origin.  

This nonlinear, coupled system of 1n  equations can be written in the form:

 , , , , 0ad ext oW P   F y   , (A27)

where , ,k k kz     y   is the solution vector and the remaining load and geometrical parameters 

are fixed.  In this study the equilibrium states are presented as a function of the loading 
parameters adW  and extP .  However, the parameterization (A27) fails at critical (turning) points, 

and therefore, an augmented system of equations must be defined to trace the equilibrium paths 
with bistable solutions.  Consider the two augmented systems of equations:

 1 1
ˆ ˆ , , , 0ext oP   F y   , (A28)

 2 2
ˆ ˆ , , , 0ad oW   F y   , (A29)

where the solution variables are 1ˆ , , ,k k k adz W    y    and 2ˆ , , ,k k k extz P    y   .  These 

underdetermined nonlinear systems of equations can be solved with the addition of a scalar 
constraint equation, for example a constraint limiting change of the most rapidly varying solution 
variable (parameter switching) (Rheinboldt, 1980).  Alternatively, the properties of the Moore-
Penrose inverse can be used to solve the underdetermined system of equations in an analogue to 
Newton’s method, commonly called the Gauss-Newton method (Allgower and Georg, 1997; 
Allgower and Georg, 2003).  For the current study, a variation of the Gauss-Newton method that 
relies on parameter switching (outlined in algorithm 10.2.10 of Allgower and Georg (2003)) is 
used to calculate the equilibrium solution curves.

Initiation of the continuation algorithm requires a starting solution, which is obtained by 
solving (A27) with a globally convergent Newton method (Press et al., 1992).  To initiate the 

continuation algorithm for (A28), the starting solutions are calculated using either 41 10adW  

or  3adW  .  In the first case the initial guess is that of an undeformed shell with apex separation 

0.8 o , and in the second case the initial guess is that of a perfectly flat shell with separation 

0.99 o .  Similarly, to initiate the continuation algorithm for (A29) initial solutions are calculated 

using either 0extP   or ext mP     with an undeformed or flat configuration used as an initial 

guess, respectively.
Due to the emergence of interior boundary layers, an adaptive grid refinement strategy is 

needed to ensure accurate solutions.  At each step in the continuation algorithm the discrete 
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equations are solved twice.  For the thi  step in the continuation algorithm, a solution i
ky  is 

obtained using the grid 1i
kh   of the previous step.  This solution is used to calculate the location

*ir where the solution variables vary most rapidly, from which a new grid i
kh is constructed to 

ensure consistent solution accuracy.  The governing equations are solved again on the new grid 

to obtain the stored solution i
ky .  Rapid convergence of the second solution is obtained using a 

piecewise cubic interpolation of i
ky  as the initial guess to obtain i

ky .  The mesh progresses 

smoothly with the solution as long as the step size in the continuation algorithm is sufficiently 
small.

A simple refinement strategy based on the work of Chong (1978) proved sufficient for this 
problem.  An estimate for the magnitude of the derivatives inside the boundary layer is based on 
exponential solution growth  expy C r  :

 
n

n
n

d y
O

dr
 


. (A30)

With this estimate applied to the local error terms in (A17) and (A18) the grid spacing *h

required to maintain a set accuracy  is estimated from the test functions r kz  , r k  , r k  , 

and  r k kr f  after each step.  A minimum grid spacing tolh  is enforced.

A uniform grid consisting of *n  points with spacing *
kh h  is centered at the location *r , 

which corresponds to the location of the maximum derivative determined from the test functions 
above.  Outside the boundary layer the spacing is increased according to

   *
*

2
  1

k

I n k
h h 

 
  , where I is the grid number at *r  , and   determines the rate of 

increase.  Derivatives outside the boundary layer are estimated to be  1O and, therefore, a 

maximum gird spacing of 1 3  insures an estimate consistent with the error inside the boundary 

layer.  In the results presented 31 10   , 1.5 2.5   ,  and the maximum gird spacing is 
1 30.1 .  The minimum spacing estimated by the test functions is generally conservative, so the 

computation time can be decreased by setting tolh  = 45 10 - 51 10 , which still maintains 

good convergence.
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8. Figures

Figure 2.  Adhesive energy density and corresponding tractions as a function of separation, as given by (4).

Figure 1.  Thermodynamic system comprised of a shallow spherical shell that interacts with an adhesive layer and a 
rigid substrate at fixed external load.
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Figure 3.  Shell flatness plotted as function of the nondimensional work of adhesion.
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Figure 4. Total a) potential, b) adhesive, and c) elastic energies, and d) the fraction of elastic energy due to 

stretching deformations plotted as a function of the nondimensional work of adhesion for o =0.1.
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Figure 5.  Schematic of the potential energy landscape characterized by the shell flatness parameter.
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Figure 6. a,d) Separation, b,e) traction, and c,f) adhesive energy profiles.
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Figure 7.  Radial moment as a function of the radial coordinate.
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Figure 8.  Bistable and unstable adhesion states for a fixed nondimensional work of adhesion adW =0.21 with  =6, 

and o =0.1.  The dash-dotted (red) and solid (black) lines correspond to stable configurations, whereas the dashed 

(blue) lines correspond to an unstable configuration.



27

Figure 9.  The effect of uniform surface loads on the adhesion state as measured by the shell flatness parameter for 
 =6.
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Figure 10.  The effect of uniform surface loads on the a) separation,  b) traction, c) adhesive energy, and d) elastic 

energy fields for  =6, o =0.1, and adW =0.1.
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Figure 11.  Calculated pull-off force for a,b) uniform surface loading, and c,d) uniform edge loading.
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9. Tables

Table 1.  Typical geometric and material parameters for adhesion of wafers, nanocaps, biological cells, and lipid 
membranes.  a. For the wafer and gold nanocap shell height is calculated using the given system parameters and the 

shallow cap approximation 2 2H a , while for the cell and lipid bilayer the height is set equal to the estimated 

radius for a spherical geometry;  b. Maximum stress is calculated using the given system parameters and (4);  c.
Turner and Spearing (2002);  d. Yu and Polycarpou (2004);  e. Salvadori et al. (2003);  f. Charnay et al. (2003);  g. 
Pesen and Hoh (2005);  h. Estimated thickness of the actin cortex from Lang et al. (2000) and Pesen and Hoh 
(2005);  i. Simson et al. (1998);  j. Izzard and Lochner (1976);  k. Estimated from the membrane bending modulus 

191.2 10D N m   (Secomb, 1988) using the shell bending modulus relation  3 212 1D Et    with the given 

vesicle dimensions and a Poisson’s ratio 0.3  ;  l. Sackmann and Bruinsma (2002).
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Table 4.  Critical values of ext mP  for snap-in/snap-out/pull-off from terminus of stable equilibrium states/pull-off 

from relatively flat configurations, corresponding to Figs. 9c,d for  =6.

Table 2. Snap-in/out adW  transition values in the absence of external load ( Pext
 =0).

Table 3.  Snap-in/out adW transition values for external loading and  =6, corresponding to Figs. 9a,b.
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