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Manuscript

Snap Transitions in Adhesion

Richard M. Springman and John L. Bassani'
Mechanical Engineering Department, University of Pennsylvania, 220 S. 33" Street, Philadelphia, PA 19104, USA

Abstract

Equilibrium adhesion states are analyzed for nonlinear spherical caps adhered to a rigid
substrate under the influence of adhesive tractions that depend on the local separation between
the shell and substrate. Transitions between bistable snapped-in and snapped-out configurations
are predicted as a function of four nondimensional parameters representing the adhesive energy,
the undeformed shell curvature, the range of the adhesive interactions, and the magnitude of an
externally applied load. Non-uniform energy and traction fields associated with free-edge
boundary conditions are calculated to better understand localized phenomena such as the
diffusion of impurities into a bonded interface and the diffusion of receptors in the cell
membrane. The linear Griffith approximations commonly used in the literature are shown to be
limited to shells with a small height to thickness ratio and short-range adhesive interactions.
External loading is shown to alter the adhered configurations and the spatial distributions of both
adhesive and elastic energies. An important implication of the latter analysis is the theoretical
prediction of the pull-off force, which is shown to depend not only on the interface properties,
but also on the geometric and material parameters of the shell and on both the magnitude and
type of external loading.

Keywords: Adhesion; Shell mechanics; Wafer bonding; Cell adhesion; Pull-off

1. Introduction

The adhesion of thin shell structures either to other shells or to substrates plays an important
role in many micro- and nano-mechanical systems in engineering and biology. Geometric
nonlinearities associated with finite shell deformations and the highly nonlinear nature of the
adhesive interactions complicates our understanding of these complex and important systems. In
this paper bistable (static) equilibrium states are studied to develop a more fundamental
understanding of nonuniform adhesion. Specifically, this paper investigates the adhesion of
spherical caps interacting nonlinearly with a rigid substrate through an adhesion law that is
derived from Lennard-Jones interactions. Bulk adhesion parameters are described that represent
the strength and range of the adhesive interactions. These adhesion parameters are taken to
describe the cumulative interactions between the surfaces, including electrostatic forces, Van der
Waals forces, steric repulsion, and the specific forces of fixed surface groups. Theoretical
(Muller, Deryagin and Toporov, 1983; Israelachvilli, 1985; Maugis, 2000) and experimental
(Israelachvili and Tabor, 1972; Klein, 1982; Leckband et al., 1992; Leckband et al., 1994; Wong
et al., 1997; Leckband and Israelachvili, 2001) support for the adopted adhesion law is available
in the literature.
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Nonlinear shallow shell theory is used to study the elastic deformations of the shell
structures (Reissner, 1950; Budiansky, 1959; Sanders, 1963; Niordson, 1985). An important
implication of the free-edge boundary conditions considered in this analysis is the inadmissibility
of perfectly bonded configurations, which also are excluded by compatibility in the case of
closed vessels. The coupling between shell bending and stretching, as captured with nonlinear
shallow shell theory, is shown to play a particularly important role in adhesion, which typically
involves the deformation of curved shell surfaces into nearly planar configurations. Such
configurations can not be achieved with a length preserving (isometric) mapping when the
undeformed shell surface has a nonzero Gaussian curvature (Stoker, 1969). Nonlinear effects
associated with this coupling are important once the magnitude of the normal displacement
approaches half the shell thickness (Reissner, 1950), which can occur for adhesion if the
reference shell height is greater than or equal to the shell thickness.

The vast majority of prior work on the adhesion of elastic bodies assumes the adhesive
energy of the system is directly proportional to the area of an ideally bonded region (Seifert,
1991; Mastragelo and Hsu, 1993; Sackmann and Bruinsma, 2002; Turner and Spearing, 2002;
Freund and Yuan Lin, 2004; Graf et al., 2006). Since this is analogous to the approach taken by
Griffith in studies of brittle fracture (Griffith, 1921), this estimate of the adhesive energy is
referred to as a Griffith approximation. Kinematical conditions on the displacement field
required to ensure compatibility between the bonded and unbonded surface regions result in a
separation profile with discontinuous derivatives of second order and higher at the adhesion
front, which implies a jump in bending-moment that has not been justified physically. Several
steps have been taken to treat the adhesive energy in a more general way. For example, Seifert
(1991) studied the adhesion of inextensible, two dimensional (cylindrical) membranes to a rigid
half-space by minimizing the sum of the Helfrich bending energy (Helfrich, 1973) and the
adhesive energy. In that work the adhesive energy is treated both by Griftith approximations and
by considering a finite range adhesive potential that has a dependence on the local separation
between the membrane and half-space. In the limit of short-range interactions and moderate to
large adhesive energy, the computed vesicle shapes of both formulations agree well. More
recently, Komura et al. (2005) modeled a spherical shell as a network of tethered springs and
determined adhered states by minimizing a discrete energy functional that includes stretching of
the springs, an approximate description of bending resistance, and an adhesive potential that
depends on the local separation between the nodal points and a rigid half-space. In addition, they
use that analysis to infer continuum properties by comparison with /inear measures of strain.
Unlike these prior works, the analysis in this paper accounts for nonlinear coupling between the
bending and stretching deformations of a continuum shell and finite-range adhesion interactions.

Shell analysis is applicable to wafer bonding, the adhesion of metallic nanocaps (Love et al.,
2002; Charnay et al., 2003; Chen et al., 2004), the adhesion of lipid vesicles with finite shear
resistance (Evans and Skalak, 1980; Secomb, 1988; Boal, 2002), in micro-mechanical structures
(Maboudian and Howe, 1997), and to approximately model the adhesion induced deformation of
biological cells. In the latter case, it is important to note that the cell membranes of eukaryotic
cells are stiffened by transmembrane proteins and are supported by a filamentous structure called
the actin cortex (Boulbitch et al., 2000; Lang et al., 2000; Pesen and Hoh, 2005), while different
structures support the membranes of prokaryotic cells (e.g. bacteria) (Boal, 2002). Therefore, in
the context of living cells the shell structural and material properties should be associated with
the effective behavior of the cell membrane and attached protein networks. Force generation
associated with active structural reorganization (Dobereiner et al., 2004; Reinhart-King, Dembo



and Hammer, 2005) accompanies the adhesion of many living cells over long time periods,
which may limit the applicability of this elastic analysis in studies of these cell types. However,
the initial stages of adhesion that occur without structural reorganization are important in their
own right. In particular, the traction forces exerted during initial contact are believed to trigger
the assembly of focal adhesion complexes, which in turn initiate the mechanical signals required
for actin polymerization and myosin driven contraction (Galbraith et al., 2002). Furthermore, the
nonuniform distributions of adhesive energy and tractions presented in this paper are a general
characteristic of adhesion whenever the interacting surfaces are not perfectly bonded over their
entire domain.

Although the mechano-chemical coupling that occurs in the presence of mobile chemical
species is not explicitly considered in this analysis, the presented results have some general
implications for the coupled system. Most notably, the spatially nonuniform energy fields that
are a feature of mechanical equilibrium also result in nonuniform equilibrium distributions of
chemical species (Freund and Yuan Lin, 2004). Wafer bonding (Mirza and Ayon, 1999), the
adhesion of drug delivery microcapsules (Chen et al., 2004), and the adhesion of biological cells
are important examples of systems where this coupling is important. For example, in wafer
adhesion the diffusion of impurities such as water into the interface results in bond degradation
(Tsui et al., 2006). Alternatively, the diffusion of integrin molecules in the cell membrane plays
a critical role in the formation of adhesive linkages, which in turn regulate downstream cell
function (Guttenberg et al., 2000; Galbraith et al., 2002; Freund and Yuan Lin, 2004; Smith et
al., 2006; Smith and Seifert, 2007).

Important findings of this work are: adhesive transitions between stable snapped-in and
snapped-out configurations; nonuniform distributions of adhesive and elastic energies at
equilibrium; and a strong dependence of the pull-off force on the type of external loading.
Solutions are presented for a range of parameters that result in both bending and stretching
dominated structural responses and in varying degrees of nonuniform spatial distributions.
Furthermore, the results show that a linear Griffith analysis is only accurate in the limiting case
of short-range interactions and small curvature shells, for which the total adhesive energy at
equilibrium is roughly proportional to the area of an ideally bonded central region. Furthermore,
the jump in moment that occurs at the edge of the ideally bonded region under Griffith (Turner
and Spearing, 2002) is shown to be the result of a force couple formed by adhesive tractions.

2. Adhesion Model

Consider a shallow spherical cap adhering to a rigid half-space. The shell is loaded by

adhesive tractions 7' and a uniform external load F.,;, both acting in the vertical direction.

Axisymmetric deformations are considered with dependence only on the radial coordinate ». In
the reference configuration the spherical cap has a thickness 7, a curvature x, and a vertical

separation z; that is given by:

zZ; =%Kr2+zo, (1)

where z, is an arbitrary constant (see Fig. 1). The curvature is related to the projected shell

radius @ and the shell height H = z(a)— Z(O) by k =2H / a’ . The tangent angle of the



undeformed shell is dz; /dr = kr and the vertical offset between the middle and bottom shell
surfaces is approximately /2.

An adhesive material layer with continuum thermodynamic properties resides between the
shell and substrate (Cahn, 1979; Guggenheim, 1993). The shell, adhesive layer, and substrate
are imagined to constitute a closed thermodynamic system. The temperature and the
concentration of adhesive (or impurity) species in the layer are considered uniform and constant.
The shallow shell is capable of moderate rotations, but is restricted to small strains (projected

area approximately constant). The elastic strain energy of the shell is denoted by u, and the
work of the externally applied load by w,,,, both defined per unit area of the middle shell surface

(Budiansky, 1968). Furthermore, the tractions 7" associated with the adhesive layer are taken as
conservative and, therefore, derivable from an adhesive potential u,. For this system the total

potential energy is postulated to take the form:

a
U, :27[.[0 [ue +u, — W,y

]r dr. (2)

2.1. The Adhesive Law

The adhesive interactions between two bodies, in general, depend on the atomic interactions
between the bulk materials, the surface chemistry and charge, and the surrounding medium.
Despite the complexity of the underlying physics, the effective behavior of the adhesive layer is
generally characterized by moderate range attractive interactions and short-range repulsive
interactions (Israelachvilli, 1985; Maugis, 2000). Examples include the interactions between
mica surfaces (Israelachvili and Tabor, 1972), polymer layers in solvent (Klein, 1982; Taunton et
al., 1988), and the interactions of receptor-ligand systems (Leckband et al., 1992; Leckband et
al., 1994; Wong et al., 1997). These general observations are captured by adopting a simple and
classical description of the adhesive potential that is derived from Lennard-Jones interactions.

The adhesive potential u, and corresponding tractions 7" are taken in the form (see Fig. 2):

-2l 5], 28 8 (5] o

where o, =T (1 20 50) is the maximum adhesive traction and the equilibrium (lowest energy)
separation 0, sets the range of the interactions, which become vanishingly small for separations

larger than about 105, . The work of adhesion corresponding to (3) is given in terms of o,, and
o, by:

W, =J-;:T(z)dz=%(am 5,) . (4)

Theoretically, the adhesion law (3) corresponds to the interaction between two Lennard-
Jones half-spaces and has been used to account for the adhesive interactions in other models
(Muller et al., 1983; Maugis, 2000). Similar adhesion laws have been adopted elsewhere
(Seifert, 1991; Mishin et al., 2002; Komura et al., 2005). The equilibrium separation ¢, should

not be interpreted as the equilibrium length scale of an atomistic potential (Yu and Polycarpou,
2004), but should be regarded as a bulk adhesion parameter. Similarly, the work of adhesion



W,, and the interface strength o, are also considered bulk parameters in this analysis,

representing all physics that contribute to the effective behavior of the adhesive layer. However,
in interpreting the results that follow, the work of adhesion can be viewed to depend on the
uniform surface concentrations of adhesive or impurity species.

2.2 Governing Equations for Axisymmetric Deformations of a Spherical Cap

Shell deformation is modeled using Reissner’s nonlinear shallow shell equations for thin
shells of revolution undergoing axisymmetric deformations with small in-plane strains and
moderate rotations (Reissner, 1950; Wan and Weinitschke, 1988). Linear elastic isotropic
material behavior is assumed. In the shallow limit, the strain-displacement relations associated
with these equations are equivalent to those given by Sanders for small strains and moderate
rotations (Sanders, 1963) and to those of the Donnel-Mushtari-Vlasov (DMV) theory (Niordson,
1985). Equivalent forms of these equations are prevalent in the literature on shell buckling
(Weinitschke, 1958; Budiansky, 1959). Thin shells are defined as having a ratio ¢/R < 1, where
R is the radius of curvature and ¢ is the thickness. According to Reissner, the shallowness
requirement is given in terms of the shell height H and projected shell radius a by H/a <1/6
(Reissner, 1958).

A natural choice of solution variables is the separation of the deformed shell z and the
membrane stress function  , analogous to the Airy stress function in plane elasticity. The

change in tangent angle (rotation) 3 is related to the separation by:

dz:. dz dz
e SRR ol 5
p dr dr KT dr ®)

The nonlinear, coupled Euler-Lagrange equations of equilibrium associated with a stationary
point in the potential energy functional (2) are given as:

3 2
Et (rd ﬂ+%—%ﬂJ+(gjw—J‘gT(z)r' dr'+%r2 =0, (6)

12(1—\/2) dr dr dr
1 d’w dy 1 (dz-j 1
—_— +——— - =% +— :O s 7
Et(r dr®  dr rwj dr p 2ﬂ ™

where T (z) is the adhesive law defined in (3). The nonlinear term in (6) accounts for the

coupling between bending and stretching of the shell, whereas the nonlinear term in (7) accounts
for finite rotations. An additional loading nonlinearity enters through the integral term in (6).
Uniqueness can not be guaranteed due to finite geometry changes and nonlinearity associated
with adhesive tractions derived from a nonconvex potential and, in fact, bistable and unstable
solutions are found to exist. Therefore, a stable solution may correspond to a local minima
(metastable) or global minimum (absolutely stable) of the potential energy.

2.3 Boundary Conditions

For unconstrained adhesion of a free-standing, open shell the moment, shear force, and radial
membrane force must vanish at the shell boundary. These conditions are given, respectively, as:



3
AlquZ:___éf___{EQZ+liﬂ} -0, (8)

12(1—1/2) dr r
Ef  |d*B 1dB 1 ~
era12(1v2)|: dr +;E_l"—2ﬂ:|r:a_0, ©
y|_ =0. (10)

Additionally, symmetry requires that the shell slope and radial displacement vanish at the apex.
Rigid body displacements of the shell are only constrained by the requirement of overall
equilibrium. This fact is more evident if the shear force requirement written in (9) is replaced by
the equivalent requirement of overall force equilibrium:

27 [ 'T(2) rdr + 7a’ Py =0 . (11)

There are two subtle, yet important implications of boundary conditions (8) - (11). First,
the solution for perfect bonding (z =68,, f=dz;/ dr) is not admissible unless the undeformed

shell geometry satisfies certain boundary conditions, which are found by substituting the flat
solution into boundary conditions (8) and (9). For the spherical cap given by (1) the perfectly

bonded solutionis z=9,, f=kr,and y = Etlczr(r2 —a? )/16. The moment condition (8) is
not satisfied by this solution and, therefore, either an applied moment

M, |r:a = —EZ‘3K/ 12(1 + v) or a flat geometry x = 0 is required for perfect adhesion. All
equilibrium configurations for x # 0 and M, |r:a = (0 will involve nonuniform adhesion to the

substrate. Second, the vertical equilibrium requirement (11) requires that the repulsive and
attraction tractions on the shell surface balance the applied load. Since nonuniform adhesion is
guaranteed from the boundary conditions whenever x # 0, nonzero adhesive tractions must load
the shell at equilibrium, even in the absence of applied load.

2.4. Nondimensional Variables

The nondimensional groups most useful for characterizing solutions are:
2
I/Vad D _ Pext _Kka S %
t

3 9o - B /1_—7 o, =
Efi? e E(Kt)2 t ?

where the nondimensional work of adhesion 7,; measures the relative importance of adhesive

Wad =

; (12)

and elastic energies, the nondimensional range 5‘0 sets the range of the adhesive interactions
relative to the shell geometry, and the dimensionless curvature 4 determines the relative
importance of shell bending and stretching. The nondimensional external load szt is directly
proportional to the approximate buckling pressure of a uniformly loaded shallow spherical cap

(Hutchinson, 1967), which for a Poisson’s ratio of v=0.3 is P, =1.21E (K‘t)2 . The ratio

H/S, = /1/ 25‘0 is found to determine the spatial distribution of adhesive energy.



The loading variables are W, ; and P

- 1n this regard, a scenario is imagined where the

elastic and geometric properties of the shell are fixed and either W,; or P, , is varied. Load
induced shell flattening is conveniently characterized by the flatness parameter @ , defined as:

oo )20
01z (r) -2 (0)
When ®=1 the shell is undeformed and when ®=0 the shell is perfectly flat.

Values of the nondimensional parameters (12) are estimated for wafer bonding, the adhesion
of nanocaps, cell adhesion, and the adhesion of lipid vesicles in Table 1. The estimates are based
on geometric and material parameters taken from the literature. Wafer bonding is generally
characterized by small curvatures, short-range interactions, and a small work of adhesion. The
dimensions and material properties considered for nanocaps result in moderate range
interactions, moderate curvatures, and a small work of adhesion, although the caps can generally
be manufactured to a variety of specifications. For the cell, the Young’s modulus and thickness
are identified with measured properties of the actin cortex (Lang et al., 2000; Pesen and Hoh,
2005), the reference curvature is typical of a spherical cell, and the equilibrium separation is
estimated from experiment (Izzard and Lochner, 1976). For these estimates, cell adhesion
generally involves moderate range adhesive interactions, large curvatures, and a large work of
adhesion. Due to the extremely small thickness of lipid membranes, both the nondimensional
curvature and work of adhesion are very large.

rdr. (13)

2.5. Numerical Analysis

The governing equations (6) - (7) , the definition of the rotation (5), and the boundary
conditions (8) - (10) are discretized using finite differences and a quadrature rule. Converged
solutions to the discretized equations are obtained using a tangent predictor step and a Gauss-
Newton corrector step (Allgower and Georg, 1997) treating either the nondimensional work of

adhesion 7, or the external load P, as a solution variable. This continuation algorithm

allows calculation of both stable and unstable equilibrium solution curves as a function of the
load parameters. Details of the discretization and solution procedures are given in the Appendix.
Solutions are presented for values of the nondimensional curvature 4 =1, 6, 12, and 18, and the

nondimensional range 5‘0 =10, 1, 0.1, 0.01, and 0.001. For all solutions Poisson’s ratio v =0.3.

3. Equilibrium Solutions in the Absence of External Load

Equilibrium states for a spherical cap deformed only by adhesive tractions (2, = 0) are

studied as a function of the nondimensional work of adhesion W, . For varying W, two cases

generally arise: 1) a unique stable solution branch and 2) bistable solution branches with an
intermediate unstable branch. The solutions can be characterized by shell flatness or by
potential, adhesive, or elastic energy, all of which are considered in the following analysis.
Details of the separation profiles, adhesive tractions, and energy distributions are also discussed.
A general feature of all the solutions is nonuniform separation and nonzero tractions at
equilibrium.



3.1 Equilibrium Solution Paths Characterized by Shell Flatness

Equilibrium solutions characterized by the shell flatness parameter are plotted as a function
of the nondimensional work of adhesion in Fig. 3 for various values of the curvature and range of
interactions. The flatness parameter, which is defined in (13), has a value ® =1 for an
undeformed configuration and a value @ =0 for a perfectly flat configuration. Although the
latter state is unattainable for x # 0 (see Sect. 2.3), states that approach ® =0 are always the
most deformed (highest elastic energy) configurations. In all cases, turning or critical points

(0D / o Wad — o0 ) indicate a change in stability. These points are referred to as the snap-in and

snap-out transition values and they are tabulated in Table 2 for the short-range interactions 5‘0 =1,

0.1, 0.01, and 0.001.
A key feature of the equilibrium curves is the emergence of bistable solutions for

sufficiently large A shells (at fixed 5~0 ), whereas for smaller A the solutions are unique. The

values of A4 at which bistable solutions appear depends on 50. Deformation modes for long- and

short-range adhesive interactions can differ substantially:
i) For relatively short-range interactions and small curvatures the solutions are unique and

the shell flatness parameter varies monotonically with the load (e.g. 5‘0 =1and 0.1 with A=1 in
Figs. 3b,c). Alternatively, in the bistable regimes that occur at larger curvatures discontinuous
snap-in and snap-out transitions are expected at the critical points 7, and W, for continued

loading and unloading, respectively. In particular, under increasing load the snap transitions
result in the propagation of a nearly flat, central adhesion zone across the shell surface, and a
corresponding decrease in @ . The adhesion zone recedes upon unloading. The snap-in

transition values /7,5 are more sensitive to changes in A than &, , whereas the snap-out
transition values 7, depend on &, but are relatively insensitive to 1 (see Table 2).

ii) For long-range interactions and relatively small curvature, for example 50 =10 with A=1

and 6 in Fig. 3a, the shell flatness parameter varies monotonically with respect to load.

However, at larger curvatures (A =12 and 18) stable buckling occurring at the shell apex results
in configurations that are concave-down in the interior and concave-up on the periphery, and a
corresponding increase in the flatness parameter @ . These wrinkles are flattened as the load is
increased further. For relatively large curvatures (e.g. A =18) an unstable buckling transition
occurs at larger loads resulting in a second curvature inversion (concave-up in the interior and on
the periphery, concave-down in between). Both the stable and unstable curvature inversions

occur at relatively large values of Wad (note the scale of the abscissa in Fig. 3a).

The curvature inversions of the central region in i7) are qualitatively similar to the results of
Komura et al. (2005) obtained for a tethered spring approximation of a closed spherical shell
loaded by long-range adhesive interactions H/J, = /1/ 250 ~0.2-1.1. However, the problems

of interest in this study are associated with relatively short-range interactions. For example, in
cell adhesion and wafer bonding this ratio takes a typical value that is on the order of 100-1000.
Therefore, the remainder of this paper focuses on the solutions characteristic of 7) above.



3.2 Potential, Elastic, and Adhesive Energy Paths

Although shell flatness is a measure of the overall deformation, it is not an indicator of
global stability. For example, a flat configuration on the secondary solution branch can have a
higher potential energy than a small deformation solution on the primary branch. In such a case
the flat configuration is metastable, while the small deformation, lowest energy configuration is

absolutely stable. With no external load (Pext = 0) the potential energy of the system, defined by
(2), includes only the adhesive energy U, and the elastic energy U, . In this case the reference
potential energy U, =0 is taken as the undeformed, traction-free state z = oo.

Typical variations of the potential, adhesive, and elastic energies with respect to the
nondimensional work of adhesion are plotted in Fig. 4. Primary branch solutions are identified
with relatively high adhesive energy and relatively low elastic energy (see Figs. 4b,c¢).
Alternatively, secondary branch solutions are relatively low in adhesive energy and high in
elastic energy. Since the secondary branch solutions are nearly flat configurations, the adhesive
energy varies nearly in direct proportion to the work of adhesion and the elastic energy
asymptotes to that of a flat configuration.

The potential energy landscape can be inferred from the equilibrium curves plotted in Fig.
4a. Schematic representations of the landscape in terms of the flatness measure ®© are given in
Fig. 5. Although not drawn to scale in this schematic, the height of the barriers can be estimated
from the potential energy of the unstable solution branches. In real systems these barriers can be
lowered by imperfections and by intermediate nonaxisymmetric configurations that occur during

the (dynamic) snap transitions (Budiansky, 1959). At a fixed 5~0 , equilibrium of relatively small
A shells corresponds to a single energy minimum (A) that progresses continuously toward lower
potential energy states as Wad is increased. Alternatively, for large 4 there is a unique energy

minimum (A) for small ~ad , but at larger Wad a secondary minimum (B) develops
corresponding to flatter configurations. At its initiation the secondary minimum (B) is high in
potential energy (metastable), while the primary minimum (A) is low in potential energy
(absolutely stable). As Wad is increased further, the relative depth of the two minima shift and
eventually the secondary minimum (B) replaces (A) as the global minimum. With additional
loading the primary minimum (A) is lost and the shell snaps into the low ® configuration (B),
which becomes a unique, stable solution. Similarly, upon unloading the stable configuration (B)
is first absolutely stable, then metastable, and then lost, which initiates the snap-out transition to
configuration (A).

3.3 Bending versus Stretching Modes of Deformation

The fraction of elastic energy due to stretching deformations is plotted in Fig. 4d. Bending
deformations always dominate the elastic response of small 4 shells, while membrane stresses
play an important role for large A, particularly for the flat configurations of the secondary
branch. For large A shells and short-range interactions the slightly deformed primary branch

configurations typical of small Wad are dominated by bending, whereas for long-range

interactions stretching can still be important. For example, with W, ; =0.01 and 1 =6



stretching deformations account for about 40% of the elastic energy if 50 =1, but only about

0.2% if §,=0.001. Similar results are also found for the larger curvature values 1=12 and 18.

Although nonaxisymmetric deformations can not be ruled out without further examination
for the stretching dominated, high elastic energy states found for 4 =12 and 18, results from
previous studies suggest axisymmetric analyses are adequate for the geometric and material
properties considered in this paper. For example, in the problem of snap-through buckling
nonaxisymmetric states are predicted to occur near A= 15 (Bushnell, 1985). However, in
problems with adhesion the range of axisymmetric solutions is expected to be extended because
there is an additional adhesive energy penalty from nonaxisymmetric separation profiles.
Furthermore, for a discrete spring model of a complete spherical shell nonaxisymmetric solutions
have been found for long-range interactions ( H/8, < 1), but for short-range interactions

(H/S, >>1) the buckling modes are suppressed and flat centrally-bonded solutions prevail

(Komura et al., 2005). Almost all solutions presented in this paper correspond to moderate A4
and short-range interactions (H/5, >>1).

3.4 Separation Profiles, Adhesive Tractions, and Energy Distributions

Typical separation, traction, and adhesive energy profiles are plotted in Fig. 6 for both small
curvature shells with moderate range adhesive interactions (4 =1, 5‘0 =0.1) and for large

curvature shells with relatively short range interactions (4 = 12, 5~0 =0.01). Theratio H/9, is

useful in characterizing these results, which in the first case (see Figs. 6a-c) has a value
H /6,=10 and in the second case (see Figs. 6d-f) a value H /5,= 600. Clearly in undeformed

configurations the adhesive interactions can extend over a greater portion of the shell surface for
H/6,=10 than for H/6,= 600 (the range of interactions extends to about 10 5, ).

Adhered configurations for either short- or long-range interactions can be distinguished by
the spatial distributions of adhesive energy. In the former case the adhesive energy density

u, = -W,; over a central adhesion zone and u, ~ 0 over the rest of the shell (see Fig. 6f). In the

latter case no such partitioning is possible, since the adhesive energy is nonuniform over the
entire shell surface (see Fig. 6¢). The separation profiles (see Figs. 6a,d) that result in these
energy distributions are described as follows: i) for short-range interactions a central adhesion
zone develops with z = §,, outside of which the deformation is driven by compatibility and i7)

for long-range interactions the separation profiles are everywhere nonuniform. A notable

exception to this classification is for short-range interactions and small ¥, , for which the

central adhesion zone is not flat nor the adhesive energy uniform (e.g. W,;=0.1 in Figs. 6d-f).

Tractions tend to be distributed over the entire shell surface for long-range interactions (see
Fig. 6b), but for short-range interactions the tractions are localized to a small transition region
(boundary layer) at the edge of the centrally adhered region (see Fig. 6¢). In the latter case, the
traction distribution is nearly statically equivalent to a concentrated adhesive couple, which is
responsible for the steep variation in the moment at the adhesion front (see Fig. 7b). No steep
variations in the moment distribution are observed for long-range interactions (see Fig. 7a).

Bistable adhesion states that are shown to exist for moderate work of adhesion and
sufficiently large curvature can correspond to very different configurations despite having
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comparable potential energies. An example is plotted in Fig. 8 for 1=6, 5‘0 =0.1, and

W, =0.21. The lowest energy state U, = —0.087ra2Wad exhibits a flat central adhesion zone,
where the majority of deformation occurs (see Fig. 8d). For the metastable state

U, = —0.067ra2Wad the adhesion zone extends over a larger fraction of the shell surface,
resulting in an increase in elastic energy that is partially offset by the reduction in adhesive
energy. The unstable solution U, = 0.06ﬂa2Wad corresponds to a bonded central region that lies

between the two stable solutions. As discussed in Sect. 3.2, the energy barrier in transitioning
between absolutely stable and metastable states can be estimated from the unstable solution. For
the case plotted in Fig. 8 the energy barrier in going from the stable to metastable state is

AU, = 0.147a*W,; , while for the reverse transition AU, = 0.12za*W,, .

3.5 Discussion

The equilibrium states of adhered shell structures are difficult to determine due to the
nonlinearities associated with both finite kinematics and adhesive loading. In general, the full
nonlinear governing equations must be solved to determine the adhered states, which often are
not unique. In the literature approximate analytic solutions have been constructed using linear
bending theory and Griffith approximations (Seifert, 1991; Turner and Spearing, 2002; Freund
and Yuan Lin, 2004; Graf et al., 2006), avoiding the complications of the full problem.

Classification of solutions in terms of A and in terms of the ratio H/5, = 1 / 26, is useful to
characterize the complete solutions and to determine when these approximate solutions fail.
The dimensionless curvature A distinguishes between solutions dominated by bending and

those dominated by stretching. Small A shells are dominated by linear bending. Conversely, for
A >1 the coupling between bending and stretching must be accounted for if accurate solutions

are to be obtained. In the work of Graf et al. (2006) and in the continuum limit of Komura et al.
(2005), the stretching contribution to the elastic energy is taken to have a quadratic dependence
on the /inearized in-plane strain tensor, which neglects coupling due to moderate rotations.
Neglect of this coupling can result in significant errors in the elastic energy. Displacement fields
of the nonlinear solutions can be used calculate the linearized elastic energy for (posteriori) error
estimates. For example, the elastic energy of the primary branch solutions just prior to snap-in is

overestimated in the linear theory by 1.5, 20, 40, and 52 percent for 50 =0.01,and A=1, 6, 12,
and 18, respectively. Corresponding errors on the secondary solution branch with Wad =2 are

2,45, 76, and 88 percent, respectively. These estimates are fairly insensitive to 50 for the
parameter values considered.

For the linear Griffith approximations to have validity the solutions must satisfy two
requirements: 7) linear bending theory must apply, which is satisfied if 1 <1 as discussed above,
and i7) the total adhesive energy of the system must have the form U, = —ﬂaczWad , where a, is

the radius of a perfectly bonded, central adhesion zone. As shown by the adhesive energy
profiles plotted in Fig. 6f, the latter condition is well approximated for short-range interactions

(H/5, >1). However, breakdown of the Griffith approximation is expected at small Wad ,
where no centrally flat adhesion zone can be identified. Although ii) is also well approximated
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for large curvature shells, there is no clear way to construct a Griffith approximation from the
nonlinear theory.

The analysis of this paper can be calibrated against the approximate solutions constructed by
Turner and Spearing (2002) for linear bending (A < 1) and short-range tractions (H/5, > 1).

Adapting their model to the current problem, snap-in and snap-out transitions are predicted to
occur at Wad =0.18, and 0.08, respectively, for v = 0.3 independent of 4 or 50. As anticipated,
these values are very close to the values given in Table 2 for small curvature shells with short-
range interactions. Despite good agreement in this narrow regime, for other values of 4 and 50
the linear Griffith approximations are inadequate.

4. Effect of Externally Applied Loads

In addition to adhesive tractions ma