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Abstract
A solid solution can spontaneously separate into phases that self-assemble into patterns. This process can be
guided via external fields to form ordered micro- and nanostructures. In this paper, we demonstrate that
notions of interaction energies provide powerful insights into the coupling of these fields with the properties
of the alloy. A phase-field model is developed that incorporates chemical, interfacial, and elastic energies,
including heterogeneous elastic properties, and couples naturally to externally imposed mechanical fields.
Aggregation in bulk and in thin films under patterned external load is investigated. The kinetics and
morphology of phase separation are shown to depend significantly on elastic properties of the system, which
include elastic heterogeneity and the misfit or transformation strain. Eshelby-type asymptotic estimates for
interaction energies are shown to be very useful in understanding and predicting the trends observed from the
simulations.
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Guided Assembly of Nanostructures via Elastic Interactions 

Yucun Lou and John L. Bassani 

Department of Mechanical Engineering and Applied Mechanics 

University of Pennsylvania, Philadelphia, PA, 19014 

June 2008 

Abstract 

A solid solution can spontaneously separate into phases that self assemble into patterns.  

This process can be guided via external fields to form ordered micro- and nano-structures.  In this 

paper, we demonstrate that notions of interaction energies provide powerful insights into the 

coupling of these fields with the properties of the alloy.  A phase field model is developed that 

incorporates chemical, interfacial, and elastic energies, including heterogeneous elastic properties, 

and couples naturally to externally-imposed mechanical fields.  Aggregation in bulk and in thin 

films under patterned external load are investigated.  The kinetics and morphology of phase 

separation are shown to depend significantly upon elastic properties of the system, which include 

elastic heterogeneity and the misfit or transformation strain.  Eshelby-type asymptotic estimates 

for interaction energies are shown to be very useful in understanding and predicting the trends 

observed from the simulations.  

1. Introduction 

An initially homogeneous solid solution (e.g., a binary alloy) at high temperature can be 

quenched and aged to cause phase separation (precipitation or spinodal decomposition).  
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Precipitates can self assemble into patterns, e.g., ordered clusters, on the scale of micro- to 

nano-meters.  This phenomenon has been widely observed, e.g., in Ag-Ru alloys (Pohl et al., 

1999)  and in Cu-Pb alloys (Plass and Kellogg, 2000) to cite two systems out of many.  The 

ability to guide the aggregation process offers tremendous possibilities for designing and 

fabricating devices, including quantum dots, nano sensor arrays, data storage, and molecular 

electronics.  One approach is to grow nanostructures epitaxially on soft or hard templates, for 

example, DNA coated nanostructures (Patolsky et al., 2002) or mesoporous silica (Wu et al., 

2004).  However, the utilization of these methods has been limited because the mechanisms are 

unclear and often the cost of templates is prohibitive. 

External fields, e.g., elastic, electric, and magnetic fields, have been shown to also bias the 

assembly process.  For example, Hung et al. (1999) applied a uniform external stress to affect the 

morphology of precipitates in metal alloy films.  Velev et al. (2003) directed motion of 

nanoparticles using an external electric field.  Ahniyaz et al. (2007) fabricated highly oriented 

superlattices by inducing an external magnetic field.  These experimental findings suggest the 

possibility of directing precipitation to form patterned microstructures through the application of 

non-uniform external fields.  

Technological advances that utilize patterned external fields to control the formation of 

nanostructures inevitably will require a fundamental understanding of underlying mechanisms as 

well as basic engineering design principles based upon mathematical models.  Possible 

modeling approaches include molecular dynamics and Monte Carlo simulations, but both 

generally are limited by accessible spatial and temporal scales.  Continuum methods with 
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physically-based constitutive models offer possibilities to increase the simulation domain and time.  

Among such methods the so-called sharp interface model treats the heterogeneous system as two 

or more different phases separated by mathematically sharp interfaces (e.g., see Kawasaki and 

Enomoto, 1988; Doi, 1996; Thornton et al, 2003), but this requires specification of a kinetic 

relation for the propagating interfaces.  Phase field models do not, and they also overcome the 

challenge of interface tracking by employing continuous field variables that can describe bulk as 

well as interfacial phases. 

Cahn and Hilliard (1958) introduced a phase field model to investigate properties of 

interfaces, especially the dependence of interfacial thickness on temperature.  In their 

pioneering work, the free energy density was taken to depend not only upon field variables, e.g., 

concentrations, but also gradients of those variables in order to account for the interfacial energy. 

Many applications of phase field models followed Cahn and Hilliard (see Chen, 2002; Thornton et 

al, 2003), and no attempt at comprehensive review is made here.  More recently, Eggleston and 

Voorhees (2001) studied the equilibrium morphologies of precipitates affected by the anisotropy of 

interfacial energy.  The influence of elastic energy can be readily incorporated in a phase field 

model, but nearly all studies in the literature that include elastic effects assume that the material 

properties are uniform, i.e., the same in the matrix and precipitate.  For example, Chen and 

coworkers (Li and Chen, 1998; Vaithyanathan and Chen, 2002) investigated the effect of uniform 

external load on the alignment of precipitates including the effects of transformation (or misfit) 

strain in an elastically homogeneous system.  Wen et al (2006) studied the effect of temperature 

on the kinetics of coarsening in an elastically homogeneous 3D bulk.  Suo and Lu (2000) 
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investigated aggregation in a binary epilayer that induces elastic straining in a coherent (and 

elastically homogeneous) substrate.  Johnson and Wise (2002) and Wise et al. (2005) studied the 

effects of surface energy on aggregation in stressed thin films including the effects of patterned 

substrates but also with elastic homogeneity.   

The influence of elastic heterogeneity on the evolution of microstructure has been the subject 

of only a few studies.  For example, Chen and coworkers (Hu and Chen, 2001; Zhu et al., 2001) 

observed that the kinetics of coarsening and the elongation of precipitates in an alloy with a very 

high concentration of solute (50%) is affected by elastic heterogeneity.  In a recent investigation, 

Gururajan and Abinandanan (2007) found that the coarsening and coalescence of precipitates are 

accelerated when precipitate phase is softer than matrix phase and when the uniform external load 

has the same sign as the transformation strain.  However, a systematic investigation of the effects 

of both transformation strain and elastic contrast as well as a theoretical understanding of these 

effects is lacking.   

In this paper we adopt a Cahn-Hilliard model that naturally allows coupling with 

externally-imposed mechanical fields to study aggregation in the bulk and in thin films under 

patterned loads.  Our work differs from most of aforementioned studies in several respects.  In 

this paper, the effects of both transformation strains and heterogeneous elastic properties that result 

from time- and spatially-varying concentration fields during aggregation are investigated 

systematically for isotropic material behavior.  The resulting non-uniform elastic energy density 

is determined from complete solutions to the Navier equations with continuously varying elastic 

heterogeneity.  No approximations, other than those involved in the numerical algorithm, are 
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made for the stress and strain fields (Suo and Lu, 2000, for example, assumed a linear dependence 

of the film stress on local concentration).  As a result, the stiffness matrix must be assembled and 

inverted at each time step, which is the most time-consuming part of the computation.  From 

extensive simulations, the magnitude of the transformation strain and the overall contrast in elastic 

heterogeneity are shown to significantly affect the kinetics of aggregation in the bulk, even in the 

absence of load, and the kinetics and morphology in thin films under patterned loads; in the latter 

case there also is a strong dependence on the sign of the transformation strain as well.  All these 

observations are interpreted in detail in terms of Eshelby-type estimates for elastic self and 

interaction energies between precipitates and with externally applied stress.  Even though these 

estimates apply rigorously only in the dilute and small contrast limits, remarkably they can be 

interpreted to explain the observed trends and, therefore, have potential to provide design 

guidelines to control the formation of nanostructures by diffusional phase separation in a wide 

range of material systems.  

In the next section, a phase field model is developed that couples externally-imposed stress 

field.  In Sec. 3, the constitutive models for chemical energy, interfacial energy, transformation 

strain, and effective elastic modulus are discussed in detail.  The numerical implementation is 

discussed in Sec. 4, and simulations of aggregation in the 2D bulk and in thin films are 

investigated in Sec. 5 and 7, respectively.  Those results are interpreted following Eshelby’s ideas 

for the self and interaction energies, which are developed in Sec. 6. 



 6

2. Phase field model 

Consider a binary mixture that phase separates with the following characteristics: 

i) the formation of precipitates (minority phases) can induce a transformation strain; 

ii) the elastic properties of the system can be heterogeneous; 

iii) an excess energy is associated with interfacial regions. 

A continuous field variable c is introduced to represent the concentration (volume fraction) of 

minority species in a binary mixture.  The free-energy density, f, of the material is assumed to 

depend upon c, c∇  and the strain field ε 1.  Following the work Cahn and Hilliard (1958), the 

leading term of ( ), ,f c c∇ ε  in an isotropic material is expressed as 

 ( ) ( ) ( ), , ,f c c W c c c E cγ= + ⋅ +∇ ε ∇ ∇ ε  . (2.1) 

For an isothermal process, the chemical energy density, ( )W c , is the Gibbs free energy of a 

homogenous material with concentration c, which typically is governed by a multi-well potential.  

The second term on the right-hand side of (2.1) approximates the excess interfacial energy; in 

general ( )cγ , but in this work γ  is taken to be constant.  The third term ( ),E cε  represents 

elastic energy density.  The total strain, ε , is the sum of the elastic strain associated with stress 

plus a transformation strain which, along with the elastic properties, in general depends upon c.  

Aggregation is a non-equilibrium thermodynamic process during which the free energy tends 

to monotonically decrease as material redistributes.  The mass flux, J, is assumed to be 

proportional to the gradient of chemical potential, μ , that is defined by variations in local free 

                                                 

1 Boldface symbols denote tensor variables. 
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energy density with respect to compositional variations (Mullins, 1957).  Therefore,  

  = fM M
c

μ
⎛ ⎞∂

= − − ⎜ ⎟∂⎝ ⎠
J ∇ ∇  , (2.2) 

where M is the mobility2. Mass conservation leads to  

 c
t

∂
= − ⋅

∂
J∇ . (2.3) 

With (2.1) and (2.2) the governing nonlinear diffusion equation (2.3) is:  

 ( ) ( )2 2 ,
2 ijE cd W cc M c

t d c c

ε
γ

⎡ ⎤∂∂ ⎢ ⎥= ∇ − ∇ +
∂ ∂⎢ ⎥⎣ ⎦

 . (2.4) 

The elastic energy density, E, is associated with an equilibrium stress field that is related to 

the elastic strain through a constitutive equation.  The total strain is the sum of the elastic strain, 

which is taken to be linearly related to stress, plus a transformation strain: 

 e T T
ij ij ij ijkl kl ijMε ε ε σ ε= + = +  , (2.5) 

where e
ijε  and T

ijε  represent the elastic and transformation strains, respectively, and ijklM  and 

its inverse ijklC  are tensors of effective elastic compliance and stiffness (modulus), respectively, 

that depend on local concentration of solute.  In general, the transformation strain and the 

effective modulus tensors are functions of c, and explicit approximations are given in the next 

section.  The elastic strain energy density is:  

 ( ) ( ) ( )T T1,
2ij ij ij ijkl kl klE c Cε ε ε ε ε= − −  . (2.6) 

For small deformations the total (compatible) strain is derived from displacement field as 

                                                 

2 In general, the mobility is a second-order tensor, but in this work we consider only isotropic behavior in which 
case the mobility is a scalar quantity. 
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 ( ), ,
1
2ij i j j iu uε = +  . (2.7) 

In the absence of body and inertial forces, overall equilibrium, , 0ij jσ = , is expressed in terms of 

the displacement field using (2.5) and (2.7) that leads to the Navier equations: 

 ( ) T
, ,

,

1 0
2ijkl k l l k kl

j
C u u ε⎧ ⎫⎡ ⎤+ − =⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 . (2.8) 

An important aspect of the class of problems considered in this paper is the fact that spatial 

variations of the elastic properties, ( )C x , and transformation strain, ( )T xε , contribute to 

gradients in the Navier equations (2.8).  

3. Constitutive equations 

Constitutive relations for the chemical energy, interfacial energy, transformation strain, and 

effective elastic modulus are key ingredients of the phase field model outlined in Sec. 2.  These 

relations are discussed in the following subsections. 

3.1 Chemical energy 

Phase separation in a binary alloy naturally occurs in a system described by a free-energy 

function of the form (2.1) with a chemical energy defined by a double-well potential as a function 

of concentration.  For example, from regular solution theory (Guggenheim, 1952): 

 
( ) ( ) ( )

( ) ( )

22
mm pp pm1 1

2

             ln 1 ln 1  B

sW c c c c c

k T c c c c

ε ε ε⎡ ⎤= + − + −⎢ ⎥⎣ ⎦

⎡ ⎤+ + − −⎣ ⎦

 , (3.1) 

where ppε , mmε , and pmε  represent the chemical bonding energies, respectively, between 

precipitate-precipitate, matrix-matrix and precipitate-matrix; s represents the number of nearest 

neighbors per atom/molecule; kB is Boltzmann’s constant; and T represents temperature, which is 
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taken to be uniform in this study.  Equilibrium solute concentrations of precipitate and matrix 

phase, represented by pc  and mc , respectively, are obtained from solutions to the quadratic 

equation: 

 ( ) ( )ln 1 2 0
1B

d W c ck T s c
d c c

ε⎛ ⎞= + − =⎜ ⎟−⎝ ⎠
 , (3.2) 

where, 

 ( )pm pp mm
1
2

ε ε ε ε= − +  . (3.3) 

Since the diffusion process governed by (2.4) depends only upon higher-order gradients of 

( )W c , the linear terms in (3.1) that account for distinct well depths can be omitted and it is 

sufficient to consider: 

 ( ) ( ) ( ) ( )ln 1 ln 1 1BW c k T c c c c s c cε⎡ ⎤= + − − + −⎣ ⎦  . (3.4) 

A simpler expression for a double-well potential W (c) was proposed by Ginzburg and 

Landau (1950): 

 ( ) ( ) ( )2 2
o p mW c w c c c c= − −  , (3.5) 

where ow , pc  and mc  are constant.  The phenomenological expression (3.5) reasonably 

approximates regular solution theory (3.4) as shown Fig. 1 for the case p m1c c= −  with the 

same energy at pc c= , mc c= , and 1 2c = .  Furthermore, the Ginzburg-Landau form can 

readily be extended to systems involving more than two phases:  

 ( ) ( ) ( ) ( )2 2 2
o 1 2 3 ...W c w c c c c c c= − − −  , (3.6) 

as well as different energy levels for each phase:  

 ( ) ( ) ( )22
o m pW c w c c c c A⎡ ⎤= − − +⎢ ⎥⎣ ⎦

 , (3.7) 
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where A  is a constant. 

 In the present study we adopt the phenomenological Ginzburg-Landau potential.  For 

convenience, we replace c with a scaled volume fraction that is zero in the ideal matrix phase and 

1 in the ideal precipitate phase:  

 m

p m

c c
c c

φ −
=

−
 . (3.8) 

In terms of φ , (3.5) becomes 

 ( ) ( ) ( )4 22
o p m 1W w c cφ φ φ= − −  . (3.9) 

3.2 Interfacial energy 

  The coefficient γ  in (2.1) can be related to the interfacial energy density, intΓ .   

Neglecting dependence of elastic energy on concentration, Cahn and Hilliard (1958) have shown 

for 1D or for radially-symmetric 2D or 3D precipitates that (see also Wheeler et al., 1992 and 

Elder et al., 2001): 

 ( )1
int 0

2 dWΓ γ φ φ= ∫  (3.10) 

For example, with ( )W φ  defined in (3.9), γ  is determined by the magnitude of the well depth, 

ow , and the solute concentration in the matrix and precipitate: 

 
( )

int o1/ 2
2

p m

3 w

c c

Γ
γ =

−
 . (3.11) 

As noted by Fried and Gurtin (1994, 1999), (3.10) holds in the sharp interface limit with 

continuous displacements even when elastic properties depend upon c.  From the phase-field 

simulations presented below, estimates of the total interfacial energy (e.g., Fig. 3) are computed 

from the spatial integral of c cγ ⋅∇ ∇ , i.e. the second term on the right-hand side of (2.1). 
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3.3 Transformation strain 

A transformation strain (also referred to as a misfit or eigen strain) associated with phase 

separation generally arises from differences in the molecular structure of the precipitate and 

matrix.  This strain can, in general, involve both dilation and shear.  Since only isotropic 

elastic and interface properties are considered in this study, the transformation strain is taken to 

be purely dilatational, i.e.: 

 ( ) ( )T T
ij ijc g cε δ=  , (3.12) 

where ijδ  is Kronecker delta function.  

The transformation strain is defined to be zero in the matrix phase, and since the double-well 

chemical energy leads to phase separation with relatively sharp interfaces, intermediate values of 

( )Tg c  typically are confined to interface regions.  For simplicity, ( )Tg c  is assumed to vary 

monotonically with maximum magnitude in the precipitate according to: 

 ( ) ( )

T
p

T T
p m

m

 ,                1

 ,        

0 ,                   0 

c c

g c g c c c c

c c

ε

ε

⎧ ≥ >
⎪⎪= ≥ ≥⎨
⎪ > ≥⎪⎩

  , (3.13) 

where the transition function ( )g c  continuously varies from 0 to1 and, therefore, Tε  is the 

maximum value of the transformation strain.  A monotonic function with continuous first 

derivatives at p m,c c c=  is (Leo et al., 1998): 

 ( )
2 3

m m

p m p m
3 2c c c cg c

c c c c

⎛ ⎞ ⎛ ⎞− −
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

  or  ( ) 2 33 2g φ φ φ= −   . (3.14) 

Since first derivatives of Tε  enter the Navier equations, (3.13) with (3.14) are convenient for 

the simulations that follow.   
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3.4 Effective elastic moduli 

The elastic properties of a multi-phase system are, in general, heterogeneous and spatially 

vary as a function of concentration.  In this work, we imagine that these properties are well 

defined (i.e., known) for the matrix and precipitate, but the concentration dependent properties in 

the regions where m p or c c c≠  (e.g., in the interface regions) are not well known.  Here we 

contemplate continuously varying, local effective elastic moduli, which is different from the 

classical scenario of composite materials.  Therefore, approximations for the effective elastic 

moduli as a function of concentration, ( )ijklC c , are required to evaluate the strain energy 

density (2.6) at each material point.  Estimates commonly adopted for composite materials 

include mean-field approximations, for example, self-consistent (Budiansky, 1965, Willis, 1977), 

composite sphere assemblies (Hashin and Shtrikman, 1963), or Mori-Tanaka (1973) estimates.  

Another approach is to bound the effective properties, for example, Voigtor Reuss bounds (Paul, 

1960), or Hashin and Shtrikman (1963) bounds.  All these estimates, strictly speaking, are valid 

only on length scales that are much greater than the scale of the representative microstructure.   

For continuously varying solute concentration in the presence of non-uniform mechanical 

fields, this separation of length scales is not well defined.  In general, the length scale of the 

representative volume element (RVE) is even smaller than the thickness of interfaces 

surrounding precipitates, which varies from nanometers to micrometers.  Therefore, the 

assumption that the length scale of the RVE is large compared to the scale of the microstructure 

is no longer valid.  Nevertheless, estimates are required for a phase field model that reasonably 

accounts for effects of elastic energy.  Alber et al. (1992, 1996) demonstrated that reasonable 
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estimates, even on the nanometer scale, for the effective elastic properties of grain boundaries 

can be computed from atomic-level (molecular static) simulations.  They showed that the 

computed effective moduli are generally within simple bounds for a representative continuum 

(Alber et al. 1992) and can be used to capture the interfacial waves associated with 

long-wave-length phonons.  That work demonstrated that, at least in the context of grain 

boundaries, that physically meaningful effective elastic properties can be defined at the 

nanometer scale.  In the remainder of this subsection we motivate simple estimates for 

( )ijklC c . 

In this study, we assume linearly isotropic properties, in which case ijklC  can be expressed 

in terms of the effective bulk and shear moduli, K  and G , respectively: 

 ( )3 2
3ijkl ij kl il jk ik jl

K GC Gδ δ δ δ δ δ−
= + +  , (3.15) 

To develop approximations for K  and G  as a function of c, we begin by considering two 

limiting states: the nearly uniform state (short time) and well aggregated state (coarsened).  The 

initial state is imagined to be a homogenous solution with solute concentration avec , and for 

short times after that every continuum material point is imaged to be a nearly homogeneous 

mixture with concentration: 

 ( ) ( )ave, ,c t c c tδ= +x x  , (3.16) 

where cδ  represents small fluctuations.  In this limit, for smooth variations it is reasonable to 

assume that 
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( )
( )

ave ave p m

ave ave p m

K K K c K K c c

G G G c G G c c

δ δφ

δ δφ

′ ′= + = + −

′ ′= + = + −
 , (3.17) 

where aveK  and aveG  are the bulk and shear moduli of a homogeneous mixture with 

concentration avec , K ′  and G′  are constants, and φ  is related to the concentration c  by 

(3.8).  That is, the elastic moduli vary linearly with concentration near the initial state. 

In the process of aggregation during which phase separation into precipitate, matrix, and 

interface regions is underway, at any instant in time there will be material points with 

concentrations distinct from mc  or pc .  Therefore, estimates of elastic properties for 

continuum material points at any solute concentration are required to .  The following 

observations are consistent with the simulations presented in Sec. 5-7:  i) In well coarsened 

states, the interfacial region generally is characterized by m pc c c≤ ≤ ;  ii) Regions surrounding 

a precipitate and its interface at concentrations mc c≠  exist during earlier stages of aggregation; 

and iii) Within precipitates pc c≈  throughout the process.  Let ( )m m,K G  and ( )p p,K G  

denote bulk and shear moduli of ideal matrix and precipitate material, respectively; each these 

moduli are assumed to be positive.  For all material points at any local effective elastic moduli 

are assumed to lie within Voigt and Reuss bounds: 

 
( ) ( )

( ) ( )

11 -1
p m p m

1-1 -1
m m p m

1 1

1 1

K K K K K

G G G G G

φ φ φ φ

φ φ φ φ

−−

−

⎡ ⎤+ − ≤ ≤ + −⎣ ⎦

⎡ ⎤+ − ≤ ≤ + −⎣ ⎦

  . (3.18) 

Since the variations in moduli near the initial state (3.17) and the Voigt upper bound are both 

linear in φ, for simplicity adopt the Voigt estimates (3.18) for the bulk and shear moduli as a 

function of concentration.  For the numerical simulations presented below, at any state in the 
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aggregation process the effective elastic moduli are taken to be a linear function of ( ), tφ x : 

 
( )
( )

p m

p m

1

1

K K K

G G G

φ φ

φ φ

= + −

= + −
 . (3.19) 

4 Numerical analysis 

The non-equilibrium aggregation process is governed by the diffusion equation (2.4) 

associated with a monotonic decrease of free energy comprising chemical, interfacial, and elastic 

energies, where the latter is coupled to solutions to the Navier equation (2.8).  The chemical 

energy is modeled by a Ginzburg-Landau type polynomial (3.5); the interfacial energy is 

associated with concentration gradients, c∇ , i.e. the second term in (2.1); and the elastic energy 

is given by (2.6) and depends upon the transformation strain and elastically heterogeneity. 

The coupled equations (2.4) and (2.8) are solved numerically in non-dimensional form: 

 ( )( ) ( )2 2
ˆ ,ˆ ˆ1 2 1ˆ

iE u
t

φφ φ φ φ φ
φ

⎡ ⎤∂∂
= ∇ − − −∇ +⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
 , (4.1) 

 ( ) T
, ,

,

1ˆ 0
2ijkl k l l k kl

j
C u u ε⎧ ⎫⎡ ⎤+ − =⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 , (4.2) 

where ˆˆˆ,  ,  ijklx t C  are dimensionless length, time, and effective moduli, respectively, given by 

 
( ) ( )

2
o

o 2 2
o p m o p m

ˆˆˆ ,   ,    and      
2 2

ijkl
ijkl

Ctx x t C
M w c c w c c

δδ= = =
− −

, (4.3) 

where the only length scale entering the governing equations is  

 ( ) 1
o o p m= w c cδ γ

−
−  . (4.4) 

Wheeler et al. (1992) show that the thickness of the interface for a 1D Cahn-Hilliard problem 

with the Ginzburg-Landau potential (3.5) is on the order of oδ , which varies from nanometers to 
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ten nanometers for metal alloys.  As oδ  decreases, gradients of concentration in the interface 

increase and, consequently, contributions from gradients of elastic properties to the Navier 

equation (2.8) become more important.  Note that the material parameters o p m,  ,   and w c cγ  

do not appear explicitly in the in the dimensionless equations (4.1) and (4.2), and at most only 

five parameters need to be specified: the transformation strain, Tε , and m m p p
ˆ ˆˆ ˆ, , , ,K G K G  the 

moduli normalized by ( )2
o p m2w c c− .  In the following, we take Poisson’s ratio to be the same 

in each phase and, therefore, the number of parameters to be specified reduces to four.  

Furthermore, with the Voigt estimates for K  and G , p mν ν ν= = .  For metal alloys such as 

Cu-Ag or Ni-Al (Vaithyanathan and Chen, 2002) at temperatures in the range 500-1000 oK, ow  

is approximately on the order of 9 10 310 10 mJ−  and the dimensionless bulk modulus, from 

(4.3), is on the order of 50 to 500.  The magnitude of transformation strain, Tε , ranges from a 

fraction of a percent to several percent or even larger, although a large transformation strain 

likely would involve inelastic deformation which is not consider in this work.  

The non-linear PDEs (4.1) and (4.2) are solved numerically for 2D problems using finite 

differences.  These equations of mass transport and mechanical equilibrium are coupled.  

However, since the elastic response is rate independent, i.e. instantaneous and, therefore, in 

essence much faster than diffusion, the system must always be in force equilibrium.  Explicit 

time-integration of (4.1) leads to a numerical algorithm in which the governing equations are 

solved sequentially, albeit with generally small time steps.  Given a concentration field, ( ), ,c x y t , 

the heterogeneous elasticity problem (4.2) is solved to obtain the mechanical fields at time t.  

Then, from the corresponding estimate of elastic energy field at time t, the concentration 
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distribution for the next time step, ( ), ,c x y t t+ Δ , is calculated from the diffusion equation (4.1).  

For the domains and boundary conditions of the problems considered below, a regular grid 

(square mesh) is adopted. The grid spacing is taken to be about one fourth of the thickness of the 

interface to ensure accuracy of the simulations.   

The calculation the displacement field for each time increment is the most time consuming 

part of the simulation.  The system of linear equations resulting from the discretization of (4.2) 

can be solved either by a direct method, such as LU decomposition, or an iterative method, such 

as Gauss-Seidel.  For small time increments, the iterative method tends to be more efficient, 

since the solution from a previous increment is a good initial guess for the updated displacement 

field.  The Bi-Conjugate Gradients Stabilized method (BICGSTAB) developed by Van Der 

Vorst (1992) is used to solve the linear equations for displacement field.  The overall efficiency 

is improved further by factors of two to five using the successive over-relaxation method (SOR) 

as a preconditioner, which also has been incorporated (Van Der Vorst, 1992).   

The time increment in explicit integration generally has to be very small to maintain stability.  

For an aggregation problem associated with a monotonic decrease in free energy, a constant time 

increment is inefficient.  A self-adaptive, time-stepping algorithm is used in this work.  At 

each grid point (xi, yj), the discrete form of (4.1) can be expressed as 

 1n n n
ij ijij t gφ φ+ − = Δ  , (4.5) 

where n
ijg  represent the numerical value of right-hand side of (4.1).  For stability the time 

increment is chosen to be 



 18

 

max
n
ij

t
g

ςΔ =  , (4.6) 

where ς  is a constant taken to be 0.005 for the results presented in this paper.  As equilibrium is 

approached, the magnitude of the driving force, n
ijg , tends to decrease and, therefore, the 

allowable time increment tends to steadily increase.  For the simulations presented below, the 

average time increment is approximately an order of magnitude larger than the initial time 

increment. 

5 Aggregation in the bulk 

To begin our systematic study of the effects of compositionally-dependent elastic properties 

and transformation strain on aggregation, in this section we consider bulk aggregation, with 

complete solutions to the Navier equations for generally heterogeneous media.  Overall 

coarsening evolves as the total energy of the system decreases, as one would expect.  These 

simulations motivate a detailed investigation in Sec. 6 of elastic energies in composite systems 

undergoing transformations, including a study of an idealized 2-particle problem to demonstrate 

correlations between those effects and estimates of self and interaction energies.   

For the bulk aggregation problem, a two-dimensional square domain is considered with 

periodic boundary conditions on both the mass transport and the displacement fields.  The 

initial condition is given by 

 ( ) ( )ave, ,0 ,x y x yφ φ ξ= +  , (5.1) 

where ( ) ( )ave ave m p mc c c cφ = − −  and ( ),x yξ  represents small fluctuations about that value; 

for all results presented in this paper, ave 0.25φ = .  The random fluctuation ( ),x yξ   are taken 
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to have a normal distribution in the range [ ]0.001,  0.001− .  To ensure good statistics, the size 

of the domain must be large enough to accommodate many, e.g. hundreds, of precipitates.  The 

grid spacing is taken to be on the order of 1/4 of the interface thickness, which is approximately 

o8δ  (see eq. 4.4).  The simulation cell is a 512 512×  square grid (appoximately 1024x1024 

oδ ) .  For all results in this paper, the dimensionless bulk modulus of matrix m
ˆ 100K = , which 

is typical of metal alloys, and Poisson’s ratios are taken to be  m p 0.3ν ν= = .  Various 

magnitudes of transformation strain, Tε , and contrast κ  in bulk moduli between matrix ( 0φ = ) 

and precipitate ( 1φ = ) phases are considered, where, 

 p m
ˆ ˆK Kκ ≡  . 

We begin with T 0.005ε =  and 1κ = .  Representative morphologies at short, intermediate, 

and long times in the aggregation process are depicted in Fig. 2 a-c, respectively.  In Fig.2 (and 

other graphics presented below), the deepest blues represents the regions that are depleted of solute, 

and red represents the precipitate phase.  Phase separation evolves from the initial, nearly uniform 

concentration field, i.e. specified by (5.1) with ave 0.25φ = , followed by stages of growth and 

coalescence.  Average energy densities – total, chemical, interfacial, and elastic – as a function of 

time are plotted in Fig. 3, with the longest times corresponding to the morphology in Fig. 2c.  The 

individual contributions to the total energy are computed from spatial integrals of the three terms, 

respectively, on the right-hand side of (2.1).  The normalized time is defined in (4.3), and all 

energies are normalized by ( )2
o p m2w c c− .   

The portion of the total energy associated with interfacial energy, i.e. the spatial integral of 

c cγ ⋅∇ ∇  (with major contributions from interfacial regions) depends on several material properties 
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including intΓ , as discussed in Sec. 3.2,.  Coarsening is clearly seen to be associated with a 

monotonic decease of total energy due, primarily, to a reduction in total interfacial area (in 2D).  

This reduction requires that material previously in the interfacial region, which is at intermediate 

concentrations between the matrix and precipitate values, be continuously redistributed to 

precipitate and matrix regions in order to keep the total concentration fixed.  As a result, the total 

chemical energy also decreases and, as predicted in these simulations, the total elastic energy 

slightly increases as the system coarsens.  This slight increase in elastic energy is likely due to 

higher elastic energy in the precipitate region than in the interfacial region, consistent with the rule 

for the transformation strain (3.13), but its dependence on the evolution of the heterogeneous 

elasticity problem, (2.8), is certainly complex.  Nevertheless, in this case ( T 0.005ε =  and 

1κ = ), the elastic energy is small compared to the chemical and interface energies that tend to 

roughly equal values.   

For other values of Tε  and κ  morphologies similar to those in Fig. 2 are predicted, while the 

evolution of energies and, therefore, kinetics of aggregation are affected.  As the magnitude of the 

transformation strain increases, the total elastic energy tends to increase, but its magnitude 

depends upon the elastic contrast as discussed in Sec. 6. 

A measure of the overall kinetics is the evolution of the average radius of precipitates oR̂ R δ= .  

Given that the interface between precipitate ( 1φ = ) and matrix ( 0φ = ) is relatively thin, the size of 

precipitate is defined to be the region where 0.5φ ≥  (as in Eggleston et al., 2001).  For the case 

of homogeneous elastic properties, 1κ = , R̂  vs. t kinetics are plotted in Fig. 4 for various Tε , 

where the same initial fluctuations are applied in each case and the longest times in these 
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simulations correspond to morphologies like Fig. 2c.  The rate of aggregation is shown to increase 

with increasing magnitude of transformation strain, essentially due to an increase in the magnitude 

of gradients of elastic energy density, and is found to be nearly independent of the sign of the 

transformation strain.  These observations are consistent with simple estimates of self and 

interaction energies introduced in Sec. 6.2. 

Systems with inhomogeneous elastic properties are considered next.  The R̂  vs. t system 

kinetics for 1
2 ,  1, and 2κ =  are plotted in Fig. 5 for a transformation strain of T 0.005ε = .  

Compared to the homogeneous case ( 1κ = ), on the average aggregation is slightly faster for 

systems with stiffer precipitates and slower for softer precipitates.  In both cases the coarsening 

rates are faster than without the effects of elastic energy ( T 0ε = ).  These findings also are 

consistent with theoretical considerations of self and interaction energies and further support the 

notion that gradients in elastic energy density promote coarsening.  Hu and Chen (2001) consider 

systems with different shear but identical bulk moduli, and their findings are qualitatively different, 

probably due to the fact that they considered only a very high volume fraction ave 0.5φ =  which 

does not lead to well defined precipitates (inclusions). 

Figures 4 and 5 clearly demonstrate that the kinetics of aggregation depends non-trivially on 

the non-uniform elastic fields arising from both the intrinsic transformation strain and elastic 

heterogeneity (contrast).  Detailed analyses of the simulations, which for brevity is not 

presented, show that increasing the magnitude of the transformation strain generally has the 

effect of increasing the non-uniformity in the elastic fields for a given contrast in elastic 

properties.   For a positive transformation strain, the non-uniformity in the elastic fields 
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increases with increasing stiffness of the precipitate and decreases for decreasing stiffness; for a 

negative transformation strain the trends are similar.  These are somewhat intuitive findings.  

The corresponding effects on the average magnitudes of the driving forces for aggregation are 

less obvious, but in general the greater the driving force the faster the aggregation.  These 

observations also are consistent with simple estimates of self and interaction energies introduced 

in Sec. 6.2. 

6.  Elastic Energies 

 The magnitude of the transformation strain as well as elastic heterogeneity have a direct 

effect on the kinetics of coarsening in the bulk, as seen in Figs. 4 and 5.  These trends are 

interpreted in this section utilizing Eshelby’s ideas on self energy and interaction energies 

between precipitates and with external loads. (see Eshelby 1957; Ardell and Nicholson, 1966; 

Eshelby, 1966; Mura, 1982).  In general, analytical estimates for these energies are limited to 

dilute concentrations and small contrast in elastic heterogeneity, but somewhat unexpectedly they 

are rather reliable even well beyond of those limits.  In the absence of external load, there is 

direct correlation between the magnitude of the total elastic energy in an aggregating system and 

the magnitude of non-uniformity of elastic energy, which in turn tends to increase the magnitude 

of mass flux.  This is demonstrated both for the bulk aggregation problem and for an idealized 

two-precipitate system.  In addition, estimates for interaction energies that arise from external 

load are developed at the end of this section (and shown, in Sec. 7, to correlate well with the thin 

film simulations).   
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6.1 Elastic energy without external load 

Consider a system with N (non-overlapping) heterogeneous and dilating (transforming) 

ellipsoidal precipitates. The total elastic energy can be partitioned as (Eshelby, 1966): 

 tot self int
1 1

...
N N

i ij
i i j

E E E E E
= ≠ =

= + = + +∑ ∑  , (6.1) 

where the first term in the right hand side of (6.1) represents of the self energy associated with 

each precipitate of distinct elastic properties taken individually in a homogenous matrix and the  

second term is the additional energy due to the interaction between precipitates.  Here we 

consider only two-body interactions.  In the absence of external loading, totE  represents the 

term ( ),E cε  in the free energy (2.1).  Elastic effects have a direct influence on the rate of 

coarsening as shown from simulations of bulk aggregation (see, Figs. 4 and 5).  The 

redistribution of solute in the system is driven by the non-uniformity of the free energy, and the 

driving force tends to increase with the increasing totE , i.e. for a given morphology the higher 

energy generally implies higher energy gradients.   

 Self and interaction energies as a function of Tε  and κ  can be estimated using Eshelby’s 

ideas for both dilute concentration ( 1c ) and small elastic contrast ( 1κ ≈ ).  Below we give 

explicit results for cylindrical precipitates undergoing dilational transformations, i.e. 

T T T
11 22ε ε ε= = , which are needed for comparisons to our 2D simulations (Eshelby, 1961 and 1966, 

and Johnson, 1984, considered the analogous problems for spheres).  Eshelby (1961) 

demonstrated that intE  in (6.1) vanishes for homogeneous and isotropic systems under 

dilational transformations in the absence of externally applied loads.  The derivation of the self and 
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interaction energies is given in the Appendix, and the results are summarized below.   

For N=2, (6.1) is written as: 

 tot 1 2 12E E E E= + +  . (6.2) 

For a precipitate in an infinite body undergoing a dilational transformation, the axisymmetric 

radial displacement field is linear in the radial coordinate inside the dilating cylinder and of the 

form 1 2c r c r+  outside.  With 1r  and 2r  denoting the radii of two non-overlapping precipitates, 

the self energies can be expressed as: 

 ( )2 2
1 2 1 2E E r rα+ = +  . (6.3) 

With small elastic contrast and for p mvν ν= = , which is adopted for all simulations presented 

in this paper, a straightforward analysis that follows Eshelby (1966) yields: 

 ( )( )2T1 2α λ ν ε κ= −  ,  (6.4) 

where , 

 
( )

( ) ( )
m

2
3 1 2

4 1 1

Kπ ν
λ

ν ν

−
=

− +
 . 

Therefore, the self energy for two precipitates is positive, quadratic in the magnitude of 

transformation strain, and proportional to κ  for p mvν ν= = .  This result generalizes 

immediately for N precipitates.  

For small elastic contrast and in the dilute limit, the two-particle interaction energy is:   

 
( ) ( )

2 2
1 22 2

12 int 1 2 2 22 2 2 2
2 1

r r
E E r r

d r d r
β

⎡ ⎤
⎢ ⎥= = +⎢ ⎥

− −⎢ ⎥⎣ ⎦

 , (6.5) 

where d is the distance between the centers of the precipitates and β  is given by: 
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 ( ) ( )
2T 1β λ ε κ= −  . (6.6) 

From (6.5) and (6.6) we see that the interaction energy between precipitates is also quadratic in 

Tε , it vanishes for 1κ = , is positive for 1κ > , and is negative for 1κ < .  Again, in the dilute 

limit, the interaction energy is readily extended for N precipitates.  Estimates in the non-dilute 

limit, which would require extensive numerical analyses, are not available. 

 For an elastically homogeneous and dilute system, the total elastic energy (and self energy 

since 1κ = ) is quadratic in the magnitude of transformation strain and, therefore, independent of 

the sign of the transformation strain.  Consequently, the elastic energy monotonically increases 

with the magnitude of transformation strain.  For a given morphology and some aveφ , an 

increase in elastic energy tends to correspond to an increase in the non-uniformity of the 

chemical potential and, as a result, increase the average magnitude of the mass flux, or 

equivalently, the so-called apparent diffusion coefficient (Larche and Cahn, 1982).  Therefore, 

coarsening is relatively faster in a system with greater magnitude of transformation strain as seen 

in Fig. 4; for example, at a given R̂ , which roughly corresponds to similar morphologies, the 

rate of coarsening, ˆd dR t , increases with Tε .   

 For an elastically heterogeneous system, the interaction energy, intE , in (6.1) is positive for 

stiffer precipitates and negative for softer precipitates as given in (6.5) with (6.6).  Relative to 

the homogeneous case, a system with 1κ <  is energetically more stable (favorable) due to the 

negative interaction energy, and consequently, the coarsening rate is slower than in an elastically 

homogeneous ( 1κ = ) system.  Similarly, one can draw the conclusion that the coarsening rate 

tends to increase for 1κ >  since the interaction energy is positive.  Simulations for bulk 
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aggregation (Figs. 4 and 5) (as well as the two particle systems discussed in Sec. 6.2) are 

consistent with these trends.  In an investigation of Ostwald ripening using a sharp interface 

model, Kawasaki and Enomoto (1988) assume dependencies of the velocity of interfaces on the 

interaction energy that are consistent with (and justified by) these findings.  

6.2 Coarsening in a two-particle system  

To further demonstrate the ideas in Sec 6.1, we investigate an ideal system derived from two 

representative neighboring precipitates that were extracted from the morphology of Fig. 2a and 

embedded into a homogeneous matrix as shown in Fig. 6a.  Given this initial distribution 

( ),0c x , the corresponding distributions of ( )T ,0ε x  and ( ),0C x  are also imposed according 

to the constitutive equations in Sec. 3.  With only two precipitates, a square domain with a 

128 128×  mesh is sufficient, again with the mesh size chosen to be about one forth of the 

interface thickness.  For this ideal initial configuration, coarsening causes the larger precipitate 

to grow at the expense of the smaller one, as seen in the representative morphologies of Fig. 6.  

The kinetics of this process can be measured by the evolution of the radius of the smaller particle, 

which is plotted in Fig. 7 for various combinations of Tε  and κ .  The variations in the 

coarsening rates with various Tε  and κ  are completely consistent with the theoretical 

considerations discussed in Sec. 6.1: i) for fixed κ , coarsening accelerates as Tε  increases 

and ii) for fixed Tε , coarsening accelerates as p mK Kκ ≡  increases.  As in the case of bulk 

aggregation, for this two-particle system the magnitude of the mass flux tends to increase with 

increasing the total elastic energy, which is always positive, while the contribution for the 

interaction energy can be positive or negative.   
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6.3 Interaction between external load and precipitates  

 As noted above, in Sec. 7 aggregation in a thin film under patterned external load is studied 

in detail.  In addition to the elastic energies discussed in Sec. 6.1, the interaction energy 

associated with external tractions and (internal) transformation strain becomes important; related 

ideas are considered in Mura (1982) in isotropic and anisotropic solids under remote tractions 

corresponding to a uniform stress state.  In an elastically homogeneous system containing a 

dilute concentration of ellipsoidal precipitates (both Eshelby and Mura refer to these as 

inclusions in the homogeneous case), with cylinders a special case, the interaction energy is 

given by: 

 o o T
int ij ijE Vσ ε= −  , (6.7) 

where o
ijσ  is a uniform stress field that defines the traction o

i ij jT nσ= , where jn  is the 

outward normal to some remote boundary, and V is the total volume of precipitates undergoing a 

transformation strain T
ijε .  For dilational transformations, T T

ij ijε ε δ=  ( , 1, 2i j = ), the 

interaction energy is simply 

 o o T
int kkE Vσ ε= −  , (6.8) 

Consequently, the interaction energy is negative for dilatational precipitates ( T 0ε > ) in tensile 

regions and for contractional precipitates ( T 0ε < ) in compressive regions.  In opposite cases, 

the interaction energies are positive.  Therefore, precipitates undergoing 

concentration-dependent dilational or contractional transformation strains, i.e. (3.12), are 

expected to be energetically favored in locally tensile or compressive regions, respectively.   

For the elastically heterogeneous system, precipitates are commonly referred to as 
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inhomogeneities.  Eshelby (1957) pointed out that the stress disturbance of an inhomogeneity 

due to an applied uniform traction is equivalent to that of an inclusion (with same elastic 

properties as matrix) with an appropriately chosen transformation strain, *
ijε .  For an 

axisymmetric external load i.e., o o
ij ijσ σ δ=  ( , 1, 2i j = ), the corresponding transformation strain 

for a cylindrical precipitate in an infinite matrix is: 

 
( )( )

( )

2
* o

m

2 1 1

3 1 2ij ijK

ν κ
ε σ δ

κ ν

− −
=

+ −
 . (6.9) 

The derivation of this equation is straightforward (with 1ru c r=  in precipitate and 

2 3ru c r c r= +  in matrix) and will not be given here.  In this case, following Mura (1984, Sec. 

25), the interaction energy is given by (6.7) with T *
ij ijε ε=  plus the additional term o *1

2 ij ijVσ ε .   

Therefore, for the heterogeneous system in the absence of transformation strain ( T 0ε = ), the 

interaction energy is: 

 
( )( )

( ) ( )
2

2o o * o
int m

1 1

2 6 1 2ij ij kk

VVE
K

ν κ
σ ε σ

κ ν

− −
= − =

+ −
 , (6.10) 

i.e., inte  is positive for stiffer precipitates ( 1κ > ) and negative for softer precipitates ( 1κ < ).  

Therefore, for remote axisymmetric stressing, the interaction energy is lower for stiffer 

precipitates forming in lower stressed regions and for softer precipitates forming in higher 

stressed regions.  The (total) interaction between the precipitate and applied stress for 

heterogeneous systems is the sum of (6.8) and (6.10); note that the dependence on load is linear 

in coupling with the transformation strain and quadratic but normalized by the bulk modulus in 

coupling with elastic contrast.  Under more general states of stress, similar dependencies on its 

magnitude and on the elastic contrast are anticipated and demonstrated in relation to the 
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morphologies predicted in thin film simulations presented in the next section.   

 In summary, due to a uniformly applied remote traction, the interaction energy for dilating 

precipitates in elastically homogeneous systems is estimated (for dilute concentrations) to be 

proportional to o
kkσ  and negative if Tε  and o

kkσ  have the same sign.  For heterogeneous 

precipitates (for dilute and small contrast) there is an additional contribution to the interaction 

energy given by (6.10), which is quadratic in o
kkσ , positive for 1κ > , and negative for 1κ < .  

The observed kinetics and morphology for aggregation in thin films under non-uniform tractions 

presented in the next section are interpreted using the estimates (6.8) and (6.10) by associating 

the local stresses arising in the film in the regions surrounding a precipitate with the remote 

stress o
ijσ  entering those estimates.  Precipitates with T 0ε ≠  and 1κ =  tend to aggregate in 

regions where kkσ  and Tε  have the same sign, and where kkσ  is maximum for T 0ε >  or 

minimum for T 0ε < .  For T 0ε = , precipitates are energetically favored in regions of high 

kkσ  for 1κ <  or low kkσ  for 1κ > .   

7 Aggregation in a thin film under external load  

From simulations of aggregation in the bulk, intrinsic elastic effects have been shown to 

directly affect the kinetics of coarsening, with self and interaction energies between precipitates 

playing a significant role.  Next, we consider the effects of non-uniformly imposed external 

load (tractions) on aggregation in thin films.  The objective is to demonstrate that elastic 

interactions arising from patterned tractions, which also affect kinetics, can be used to control the 

morphology of aggregation, i.e., the microstructure. 
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Consider a film with a nearly uniform initial state that is loaded by normal tractions, which 

approximate indentation by a circular cylinder (2D).  We consider both a single indenter and, in 

the majority of simulations, periodically-arranged distributions of tractions.  In the periodic case, 

the film of dimension L H×  is loaded as depicted in Fig. 8.  For simplicity, a Hertz-type 

contact traction distribution (e.g., for a rigid cylinder on a half-space) is assumed for each 

indentor: 

 ( ) ( ) ( ) [ ]
[ ]

2 2
max 1        ,    

, 2,
0                                ,

yy
P x a x a a

x H t P x
x b a b a

σ
⎧ − ∈ −⎪± ≡ = ⎨

∈ − + −⎪⎩
 , (7.1) 

where 2b is the spacing between indenters of width 2a, maxP  is the maximum magnitude of 

stress, and the origin of the x coordinate is located at the symmetry line of any one of the 

distributions.  For all of the simulations presented below the normalized magnitude 

( )2
max max o p m
ˆ 2P P w c c⎡ ⎤= −⎢ ⎥⎣ ⎦

 is taken to be -0.5 (compressive), which corresponds to maxP  

on the order of 10-500 MPa for metal alloys (based upon typical values of ow , mc  and pc  

cited above).  The first set of results are for the thinner film ( o
ˆ 8H H δ≡ = ) compressed by 

single indenter; the second set of results are for a film that is 8 times thicker ( ˆ 64H = ) with a unit 

cell containing four equally-spaced indenters to account for statistical variations (see Fig. 8).  

For both cases zero mass-flux condition is applied on the top and bottom surfaces and periodic 

conditions on mass transfer on the left and right ends.  The top and bottom surfaces are loaded 

by normal traction distributions of the form (7.1) with zero shear traction, while periodic 

conditions on displacement are applied on left and right sides.  Initial concentrations are given 
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by (5.1).  

7.1 Single indenter 

Consider a single indenter applied on the film with dimensions ˆ 8H = , 32L H =  and 

2a H = .  The film is chosen to be sufficient thin so that, as equilibrium is approached, the 

precipitates tend to span the thickness dimension.  As in the previous simulations, m
ˆ 100K =  

and p m 0.3vν = = , while Tε  and κ  are varied.  The mean stress (negative pressure), kkσ /3, 

due to the applied tractions (7.1) acting on an elastically homogeneous film in the absence of 

transformation strain is plotted in Fig. 9.  The magnitude of hydrostatic mean stress is greatest 

beneath the indenter, while the region far away from the indenter is essentially stress free.  A 

small tensile region initially exists adjacent to the indentors, which does influence aggregation in 

some cases.  The corresponding short-time precipitation (for 1κ =  and T 0ε = ) is random, as 

seen in Fig. 10a.  In this case, external load has no effect on the concentration field, since there 

is no coupling, i.e., the interaction energy is identically zero.  With avec c≈ everywhere, the 

initial stress distributions are similar for other cases, i.e. with T 0ε ≠  and/or 1κ ≠ , while, in 

general, kkσ  changes during aggregation due to elastic interactions which affect the kinetics 

and morphology of precipitation.   

For T 0ε ≠  and/or 1κ ≠ , precipitation under non-uniform load is no longer random.  The 

external load directly affects the location of precipitates as seen in Figs. 10b-e. Precipitates are: i) 

adjacent to the indenter, i.e., outside of the high compression region for films with T 0ε >  and 

1κ = or T 0ε =  and 1κ >  or ii) beneath the indenter in the high compression region, for films 
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with T 0ε <  and 1κ =  or T 0ε =  and 1κ < .   

  The morphologies shown in Figs. 10b-e can be correlated with interaction energies if the 

stress o
ijσ  entering (6.8) and (6.10) are interpreted as the local stress that exists initially in the 

loaded state (see Fig. 9).  In the case of elastically homogeneous systems, dilating precipitates 

tend to form in tensile regions (Fig. 10b), and contracting precipitates tend to form in 

compressive regions (Fig. 10c), where in both cases the interaction energy estimated by (6.8) is 

negative.  With elastic contrast in the absence of external load, from (6.10) one expects that 

softer precipitates are energetically favored in the highest stressed regions under the indenter, 

which is consistent with Fig. 10e.  Stiffer precipitates tend to form in lower stressed regions, 

and since the region under the indenter is energetically unfavorable, the solute diffusing from 

that region tends to aggregate just outside of the indenter as seen in Fig 10d.  For other 

combinations of Tε  and κ , morphologies are also consistent with trends predicted from (6.8) 

and (6.10) are predicted, but details are left for a subsequent paper.  

7.2 Periodic indentation 

Next, we consider periodically applied stress as depicted in Fig. 8 on a thicker film 

( ˆ 64 and 32H L H= = ), which allow several precipitates to form through the thickness.  In 

order to introduce non-trivial statistics the unit cell is taken to have four loading periods, each 

represented by (7.1) with 2a H b= = .  The initial stress distribution under the indentor is 

similar to Fig. 9.  Representative states of aggregation for the films with various Tε  and κ  at 

short, intermediate, and long times are depicted in Figs. 11-14.   
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i) In elastically homogeneous systems with transformation strain ( T 0ε ≠  and 1κ = ), nearly 

periodic patterns emerge during early stages of aggregation due to strong coupling between stress 

and transformation strains: a) for dilational transformations, the precipitates preferentially form 

at the edges of the indenters (regions with small, initial tensile stress) as seen in Figs. 11a and 

11b; b) for contractional transformations the precipitates preferentially form beneath the 

indenters as seen in Figs. 12a and 12b.  In both cases, the interaction energy between external 

load and transformation strain is estimated to be minimum in these regions if we interpret o
ijσ  

in (6.8) as the local stress in the film.  Furthermore, by comparing the contrast between light 

blue (corresponding roughly to avec  or ave 0.25φ = ) and darker blue (corresponding roughly to 

mc  or 0φ = ) regions, e.g., in Figs. 11b and 12b, one sees that precipitation tends to be faster in 

regions with higher elastic energy density, i.e., below and adjacent to the indenter, than that in 

regions between the indenters, i.e., nearly unstressed regions.  

The morphologies for intermediate times evolve from those short-time distributions as 

precipitates coarsen and coalesce: see Figs 11c, d and 12c, d.  For T 0ε >  and 1κ = , the 

precipitates tend to grow near the edge of the indenters, drawing solute from both underneath and 

between the indenters, as seen in Fig. 11e.  For T 0ε <  and 1κ = , one relatively large 

precipitate aggregates beneath each indenter as seen in Fig. 12e.  In the homogeneous system, 

equilibrium configurations are attained more quickly for dilatational precipitates than 

contractional ones.  This observation is consistent with the fact that the interaction energy (6.8) 

in the latter case is more negative than in the former one, which tends to reduce the driving force 

for diffusion.  Therefore, elastic effects that decrease/increase the total energy during 
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aggregation (intermediate times) relative to the long-time energy tend to decrease/increase the 

rate of aggregation.   

The morphologies shown in Figs. 11e and 12e persist for much longer times (beyond 

ˆ 40,000t ≈ ).  This is not surprising, since the precipitates extend across the thickness in 

elastically-favored regions and, therefore, the interfacial energy cannot be reduced further unless 

they coalesce, which is not possible due to the effects of elastic interaction with the applied load.  

One final note for these cases ( T 0ε ≠  and 1κ = ): the intermediate and long-time morphologies 

for films are not sensitive to the initial fluctuations.  This has been confirmed by varying the 

initial random distributions (5.1), which only affect the early stages of aggregation.    

ii) For heterogeneous systems in the absence of transformation strain, the short-time 

morphologies tend to be more random, presumably due to the weaker elastic effects; note that the 

estimates of self energies (6.3) and precipitate-precipitate interaction energies (6.5) vanish in the 

dilute limit.  Enhanced precipitation is observed adjacent to the indenters for stiffer precipitates 

(Fig. 13a) and beneath the indenters for softer precipitates (Fig. 14a).  This is consistent with the 

effect of interaction energies between precipitates and applied stress (6.10); for T 0ε =  

precipitation is favored in the low-stressed regions adjacent to indenter for 1κ >  (Figs 13b, c) and 

in the high-stressed regions below the indenter for 1κ <  (Figs. 14b, c).  In both cases, the 

long-time morphologies (Figs. 13c and 14c) are effectively in equilibrium, which has been 

confirmed by extending the simulation beyond 6ˆ 10t = .  This is somewhat surprising since the 

interfacial energy would be further decreased if two precipitates coalesce through the thickness.  

However, complete coalescence seems to be suppressed by high elastic contrast.  In these cases 
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( T 0ε =  and 1κ ≠ ), short and long-time morphologies are found to be sensitive to the initial 

fluctuation.  Simulations with eight different initial random fluctuations indicate that Figs. 13c 

and 14 c are the most probable long-time configurations.  For 5κ = , two pairs of precipitates out 

of eight extended across the thickness in two out of eight simulations; for  1 5κ = , one pair of 

precipitates out of four extended across the thickness in one out of eight simulations.  For brevity, 

those results are not presented.  Nearly-periodic microstructures resulted in all simulations for 

long times.    

8 Conclusions 

A phase field model has been developed that includes spatially-varying elastic properties and 

coupling to an externally-imposed stress field.  Constitutive relations have been adopted for the 

chemical energy, interfacial energy, transformation strain, and effective elastic moduli, all of 

which are key ingredients in the model.  Two-dimensional simulations of aggregation in the bulk 

and in non-uniformly loaded thin films are in remarkably good agreement with theoretical 

considerations based upon estimates of the self and interaction energy of precipitates and the 

interaction energy between external load and precipitates, albeit in a dilute system with small 

elastic contrast.  These estimates aid in the understanding of elastic effects and suggest how to 

control both the morphology and kinetics of aggregation through the application of patterned 

external loads. 

Coarsening in the bulk tends to be faster as elastic energy increases, i.e., with increase in the 

magnitude of transformation strain and/or the stiffness of precipitates.  Theoretical estimates of 
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the elastic energy are quadratic in the magnitude of transformation strain.  Relative to an 

elastically homogeneous system, the elastic energy is higher for stiffer precipitates and lower for 

softer precipitates.  Furthermore, an increase in the elastic energy tends to correspond to an 

increase in the magnitude of the mass flux and accelerates coarsening, which is further 

demonstrated through aggregation of a two-particle system.   

Periodically patterned (non-uniform) external load is shown to be effective in guiding 

aggregation in thin films with non-zero transformation strain and/or elastic heterogeneity.  

Depending on the sign of the transformation strain, Tε , and the magnitude of the contrast κ  

relative to the elastically homogeneous case, the precipitates tend to grow either adjacent to or 

beneath the indenter.  These effects can be qualitatively interpreted via interaction energies 

between external load and precipitates, although the fields considered are more complex than those 

for which (6.8) and (6.10) are strictly valid.  For example, soft precipitates tend to aggregate in 

highly stressed regions and contracting precipitates in regions of compressive, both of which exist 

under the indenter.  Hard precipitates are favored in low-stressed regions and dilating precipitates 

in tensile regions, both of which exist adjacent to indenter.  These findings have practical potential 

to guide the formation of patterned nano-structures. 
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Appendix 

The derivations for the self energy and the interaction energy between two precipitates, i.e., 
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(6.3)-(6.6), are outlined below and follows Eshelby (1966) and Mura (1982). 

 The total elastic energy for a system of non-overlapping precipitates occupying a total volume 

pV  in an infinite matrix, each undergoing a transformation strain T
ijε  in the absence of externally 

applied load, can be expressed as (Mura 1982): 

 ( )
p

T T
self int

1 1
2 2ij ij ij ij ij

V V

E dV dV E Eσ ε ε σ ε= − = − = +∫ ∫  , (A.1) 

where ( )1
, ,2ij i j j iu uε = + , selfE  is the part of the energy associated with each precipitate 

transforming individually in an infinite homogeneous matrix, and intE  is the interaction energy 

between precipitates.  Let variables with a prime denote an elastically heterogeneous system, i.e., 

p m
ijklijklC C≠ , and those without a prime a homogeneous system.  In the absence of external load, 

 
p p

0ij ij ij ij
V V

dV dVσ ε σ ε′ ′= =∫ ∫  . (A.2) 

Therefore, for identical transformation strains in both systems, from (A.1) the total elastic energy 

of the heterogeneous system can be rewritten as: 

 ( ) ( )
p p

T T1 1
2 2ij ij ij ij ij ij ij

V V

E dV dVσ ε ε ε σ ε ε′ ′ ′= − − = −∫ ∫  . (A.3) 

Similarly, 

 ( )
p

T1
2 ij ij ij

V

E dVσ ε ε′= −∫  . (A.4) 

Therefore, the variation of elastic energy due to elastic heterogeneity is given by: 

 ( ) ( )( )
p

p m T T1
2 ijkl ij ij kl klijkl

V

E E E C C dVε ε ε ε′ ′Δ = − = − − −∫  (A.5) 

For small elastic contrast, i.e., p m
ijklijklC C≈ , the difference in the primed and unprimed fields are 
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also small, and (A.5) can be approximated to first order in contrast by replacing ijε ′  with ijε , the 

strain field in the homogeneous system comprising of N precipitates, Consequently, EΔ  can be 

partitioned as the change of self energy, selfEΔ  and that of the interaction energy, intΔE , i.e., 

 ( ) ( )( )p m T T
self

1

1
2

N

ijkl ij ij kl klijkl
V

E C C dV
α

α α

α
ε ε ε ε

=
Δ = − − −∑ ∫  , (A.6) 

( ) ( )( ) ( )( )p m T T T T
int int

, 1

1Δ 2
2

N

ijkl ij ij kl kl ij ij klijkl kl
V

E E C C dV
β

α α α β

α β
α β

ε ε ε ε ε ε ε ε
=

≠

⎡ ⎤= = − − − + − −
⎣ ⎦∑ ∫  , (A.7) 

where ij
αε  is the strain associated with precipitate α  transforming in an infinite uniform 

matrix.  Note that in the homogeneous dilute system, int 0E =  (Eshelby, 1961). 

Explicit results based upon the above relations are now obtained for an isotropic, cylindrical 

precipitate (2D) of radius or  undergoing a dilational transformation, i.e., T T
ij ijε ε δ= , in an 

unbounded matrix.  Let pK , pG  and pν  denote the bulk modulus, shear modulus and 

Poisson’s ratio, respectively, of the precipitate and mK , mG  and mν  the corresponding 

properties of the matrix.  In this case and for an elastically homogeneous system, 

 
( )

( )

T

o
m

2T
o

o
m

                      for 
2 1

        for  
2 1

rr

rr

r r

r r r
r

θθ

θθ

εε ε
ν

εε ε
ν

= = ≤
−

⎛ ⎞
= − = >⎜ ⎟⎜ ⎟− ⎝ ⎠

 . (A.8) 

From (A.8), one sees that the strain field inside the precipitate is purely hydrostatic and uniform, 

while the strain field outside the precipitate is purely deviatoric (zero hydrostatic part).  

Consequently, selfΔE , from (A.6)-(A.8), selfE  and intE  in 2D can be expressed as:  
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( )( )

( )
( )

2
2m T 2

self 2
1m

3 1 2

6 1

Np PK G
E rα

α

ν
ε π

ν =

+ −
=

−
∑  , (A.9) 

 
( )

( )
( )

4 22Tm
int 2 22 2, 1m2 1

N
P r rG GE

d r

α β

α β αβ βα β

ε
ν =

≠

−
=

− −
∑  , (A.10) 

where dαβ  represents the distance between the centers of precipitate α  and β  with the 

radius rα  and rβ , respectively, and  

 ( ) ( )
( )

222 2
22 2A

r
x x y y dxdy

d rβ

β
α α

αβ β

−
⎡ ⎤− + − =⎢ ⎥⎣ ⎦

−
∫  , (A.11) 

has been used, where ( ),x yα α  represents the position of the center of the precipitate α .  

Finally, we note that for  p mν ν ν= =  , (A.9) and (A.10) reduce to the expressions (6.3)-(6.6) 

for two precipitates. 
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Figure 1.  Two representations of the chemical energy. 
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Figure 2.  Bulk aggregation: (a) short-time, (b) intermediate-time, and (c) long-time 

concentration fields for T 0.5%ε =  and 1κ = .  The deepest blue represents regions that are 

depleted of solute and red denotes the precipitate phase. 
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Figure 3.  Average energy densities normalized by ( )2
o p m2w c c−  as a function of normalized 

time given by (4.3) with (4.4).  
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Figure 4.  The evolution of the average dimensionless radius as a function of normalized time 

( 1κ = ).  Note: the results for T 0.5%ε = −  and 0.5% are nearly indistinguishable. 
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Figure 5.  The evolution of average dimensionless radius as a function of normalized time 

( T 0.5%ε = ). 
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Figure 6.  Two-particle system: (a) initial, (b) intermediate, and (c) equilibrium concentration 

fields. 
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Figure 7.  Dimensionless radius of the smaller particle as a function of normalized time.  Note: 

the results for T 0.5%ε = −  and 0.5% with 1κ =  are nearly indistinguishable. 
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Figure 8.  Periodic indentation. 

 

 

Figure 9.  The mean stress, 3kkσ  , normalized by ( )2
o p m2w c c− , for a homogeneous film 

with T 0ε =  and 1κ =  and a normalized max
ˆ 0.5P = − .  The deepest red regions are under 

highest compression and blue regions are slightly tensile. 
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Figure 10.  Concentration fields ( ˆ 500t ≈ ) for a thin film under a quadratically-varying traction. 
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Figure 11.  Thin film under periodically-patterned external load with T 1%ε =  and 1κ = : (a) 

and (b) short-time, (c) and (d) intermediate-times, and (e) long-time concentration fields.  There 

is no observable change from (e) up to ˆ 40,000t ≈ . 
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Figure 12.  Thin film under periodically-patterned external load with T 1%ε = −  and 1κ = : (a) 

and (b) short-time, (c) and (d) intermediate-times, and (e) long-time concentration fields.  There 

is no observable change from (e) up to ˆ 40,000t ≈  
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Figure 13.  Thin film under periodically-patterned external load with T 0ε =  and 5κ = : (a) 

short-time, (b) intermediate-times, and (c) long-time concentration fields.  There is no 

observable change from (c) up to 6ˆ 10t ≈ . 

 

 

Figure 14.  Thin film under periodically-patterned external load with T 0ε =  and 1 5κ = : (a) 

short-time, (b) intermediate-times, and (c) long-time concentration fields.  There is no 

observable change from (c) up to 6ˆ 10t ≈ . 
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