
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

October 2008

A Substrate for In-Network Sensor Data Integration A Substrate for In-Network Sensor Data Integration

Svilen R. Mihaylov
University of Pennsylvania, svilen@seas.upenn.edu

Marie Jacob
University of Pennsylvania, majacob@cis.upenn.edu

Zachary G. Ives
University of Pennsylvania, zives@cis.upenn.edu

Sudipto Guha
University of Pennsylvania, sudipto@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Svilen R. Mihaylov, Marie Jacob, Zachary G. Ives, and Sudipto Guha, "A Substrate for In-Network Sensor
Data Integration", . October 2008.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-08-26

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/888
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76360433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/888
mailto:repository@pobox.upenn.edu

A Substrate for In-Network Sensor Data Integration A Substrate for In-Network Sensor Data Integration

Abstract Abstract
With the ultimate goal of extending the data integration paradigm and query processing capabilities to ad
hoc wireless networks, sensors, and stream systems, we consider how to support communication
between sets of nodes performing distributed joins in sensor networks. We develop a communication
model that enables in-network join at a variety of locations, and which facilitates coordination among
nodes in order to make optimization decisions. While we defer a discussion of the optimizer to future
work, we experimentally compare a variety of strategies, including at-base and in-network joins. Results
show significant performance gains versus prior work, as well as opportunities for optimization.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-08-26

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/888

https://repository.upenn.edu/cis_reports/888

A Substrate for In-Network Sensor Data Integration

Svilen R. Mihaylov Marie Jacob Zachary G. Ives Sudipto Guha

University of Pennsylvania

{svilen, majacob, zives, sudipto}@cis.upenn.edu

Technical Report Number MS-CIS-08-26

October 2, 2008

Abstract

With the ultimate goal of extending the data integration paradigm and query processing ca-

pabilities to ad hoc wireless networks, sensors, and stream systems, we consider how to support

communication between sets of nodes performing distributed joins in sensor networks. We de-

velop a communication model that enables in-network join at a variety of locations, and which

facilitates coordination among nodes in order to make optimization decisions. While we defer

a discussion of the optimizer to future work, we experimentally compare a variety of strategies,

including at-base and in-network joins. Results show significant performance gains versus prior

work, as well as opportunities for optimization.

1 Introduction

As technology continues to advance, we are nearing a point where sensor networks will combine

with intranets and the Internet to form integrated systems: intelligent buildings with visitor guides,

surveillance and intrusion detection systems, building control systems, robot teams, etc. As this

occurs, designers will need to think not simply about building sensor network systems, but about

building sophisticated applications that perform data acquisition and integration across highly

distributed networks of heterogeneous device types: streams of data may come from distributed

sensors, network monitors and other “soft” sensors, server-based applications, mobile applications,

and so on. This leads to a challenge in providing uniform query access to highly dynamic data from

1

remote devices. The Aspen project focuses on this problem: extending the data integration paradigm

and query processing capabilities to ad hoc wireless networks, sensors, and stream systems, in order

to foster a new generation of data-intensive applications.

The primary goal of sensor network query processing is to minimize the number of messages

transmitted (thus reducing battery consumption and congestion). Recent work [DGR+03, MFHH03,

NGSA04] has shown how certain types of computation can be efficiently pushed into a sensor net-

work built using a tree topology. These approaches exploit the fact that selection, projection, and

aggregation can be translated to a tree topology in a natural fashion. However, in contrast to stan-

dard acquisition systems, data integration queries require distributed join computation over streams

from different groups of sensors, perhaps using time- or space-based windows. For example, an inte-

gration query might combine smoke detector and temperature information within the same room; or

combine information from distributed weather stations in a valley, detecting cold fronts by correlating

temperatures at the perimeter.

A thorough understanding of how to set up join computation, so as to leverage the multi-hop

nature of the networks, as well as to allow future cost-based optimization, remains an open question.

Most proposals suggest a single strategy for all queries: join at the base [YLZ06], in a region near

the base [CG05], or by routing through the base [YLÖT07]. At the other end of the spectrum lies

geographic hash table (GHT)-style routing [RKS+03], which can be used to support join at randomly

placed nodes. A key point is that the right strategy for join (i) establishes short, low congestion paths

that are likely to be used over a long period of time, and (ii) sends the minimum number of tuples in

each cycle along these paths.

The establishment of join paths to minimize communication has not been addressed by the ex-

isting work. In the routing tree model, most data gets routed through nodes near the root of the

tree, causing congestion and forcing certain nodes to expend power disproportionately. Ultimately,

the maximally loaded node fails earliest (drops packets, dies, loses connectivity), fragmenting the

network. The GHT model uses hashes of key values to disperse routes over the network, reducing

hot spots but resulting in longer paths that increase join traffic (unless the hashed keys correlate to

geography, in which case we have the same congestion issues). Establishing effective join paths, al-

though similar to routing, is significantly different in objectives — and is the foundation of any future

2

query optimization. The goal of this paper is to devise a substrate that allows the establishment of

join paths while considering congestion (delay), power and battery life (packets forwarded). This is

a key component in the Aspen project, aiming to develop an optimized query processing architecture

supporting long-running data integration queries over heterogeneous multihop wireless networks.

To illustrate the issues, suppose that we have a join of source expressions, possibly with selection

conditions, (σθR
(R)) 1θRS

(σθS
(S)), in a sensor network: this is a windowed join [ABW06], where

we take a snapshot of the tuples emitted by every R sensor satisfying θR in each time step, and

similarly for each S sensor; then we combine the tuples of the R sensors taken within some time-

(or space-) based window with the tuples of the S sensors taken within a (similarly defined) window,

if they mutually satisfy predicate θRS . Each R and S tuple originates at a different place in the

network, so each sensor node may have a different transmission distance. Each R and S sensor may

not produce a tuple in every cycle, if θR or θS , respectively, are not satisfied. Finally, each R tuple

may join with between 0 and |S| tuples from S, in every sampling time step. Given these properties,

it is evident (by our optimization criteria above) that the optimal join strategy is not always simply

to flood large regions of the network, forward tuples to the root node, or even route through the root

node to other destinations [YLÖT07]. Instead, there are a number of different strategies that are

dependent on the query and data. While we provide a formal description in the next section, we

list some “rules of thumb”:

• R and S tuples that do not join should be dropped early, reducing congestion and battery usage.

• WhenR and S tuples are unlikely to join, they should be joined inside the network: there are fewer

join tuples than source tuples to route to the base, so we reduce congestion, memory usage, battery

consumption, and CPU load at the base.

• When the join condition is not very selective relative to R and S tuples, the join computation

should be done at the base, as this results in fewer messages to the base.

We have sketched a problem of join optimization. This is quite different from query optimization

in distributed databases: here we are considering settings where a single join involves pairs of rela-

tions that are horizontally partitioned, with each tuple at a different location, with a different number

of hops to every other point in the network. Moreover, selectivities may differ for different source

3

tuple values, and the connectivity of the network may gradually change as nodes or links fail, sen-

sors move, batteries deplete, etc. Our contributions in this paper are an efficient content-addressable

routing substrate for supporting distributed join computation and future optimization, which:

• Indexes static and slow-changing attributes (e.g. ID, position), allowing for efficient pruning of

non-viable tuples

• Supports efficient point-to-point and multicast communication based on join values with short

paths, enabling communication among sets of nodes that join.

• Enables handling of link and node failures.

These capabilities enable collective cost-based decisions about where to join: at or near one of the

source nodes, or at the base. While we defer a cost-based optimization model to future work, we

experimentally validate that different join strategies have significant performance implications,

and that in-network joins are often useful, in terms of network messages, network congestion hot

spots, and device memory usage.

Section 2 argues why a new network substrate is required and discusses prior techniques. Sec-

tion 3 presents a novel routing scheme that enables efficient join initiation. Section 4 discusses our

implementation and presents an experimental evaluation. We conclude and discuss future work in

Section 5.

2 The Case for a New Substrate

We assume windowed joins [ABW06, HAE03], in which the join occurs between “relations” repre-

senting state at different nodes in the network. Given a join of the form R 1θRS
S where R and

S represent two (possibly overlapping) collections of sensors and θRS represents a predicate over

attributes of the sensors, we typically specify time windows and sampling intervals over R and S. As

time progresses, the sensors continue to sample new readings, and they send these readings to partici-

pate in the join. In a “push”-based manner, the join buffers new tuples arriving from R and combines

them with buffered tuples from S, and vice versa. The time window over each source relation defines

when and how tuples are to be evicted from the buffer — and also enforces mutual consistency among

4

the tuples in the relations. Alternatively, we also consider space-bounded windows that evict old val-

ues as they exceed capacity and new values arrive. Following a common assumption in stream joins,

we assume that relations are partitioned into sets of independent windows based on join attributes —

each join value forms its own separate window, and hence global coordination is not required across

all nodes keeping state. We consider join to consist of the following steps:

• Query dissemination: propagates the query to all nodes; filters nodes that fail selection conditions

over static attributes.

• Join initiation: determines where and how to send data and compute the join; prunes nodes that

cannot join with others.

• Join computation: routes source data to join points, which compute join results; relays answers to

the base.

• Termination: shuts down join computation; discards join state.

Given a select-join query of the form (σθR
(R)) 1θRS

(σθS
(S)), our goal is to find a partition

of R and S nodes that minimizes overall network transmissions, such that all R and S nodes in the

same partition route to some common join point j, where they may join and the result will be sent

to the root. This cost is dependent on the routes taken from the R and S sensors to the join points,

and from there to the base; as well as by the selectivities of the operations. Shorter, more direct

paths are preferable for reducing overall traffic. Sending source data to be joined at the base station is

advantageous if many source values join together; it is typically detrimental if few source values join

to produce a result. Our goal is to develop techniques to help decide which strategy to use for a given

query. We now survey join strategies.

2.1 Join Strategies and Related Work

When selection and join conditions are based purely on static data (IDs, coordinates of immobile de-

vices, device capabilities, etc.), they can be evaluated once1 by each node to see if they are satisfiable:

if the selection fails or there are no other nodes with which to join, then this sensor cannot partici-

pate in the query. Hence we refine the predicates in our query expression: (σφR∧ψR
(R)) 1φRS∧ψRS

1Once per occasional network tree reconstruction.

5

(σφS∧ψS
(S)) where each φ condition only considers static attributes, and ψ represents the rest of the

condition θ including at least one dynamic attribute. We factor the predicates into CNF, then sep-

arate based on the presence of dynamic attributes (setting φ to true if there are no static clauses).

Most queries of interest possess such separation, and using the static selections φS , φR helps any

strategy (hence in this paper we assume this is always done). Predicates involving non-static com-

ponents, ψ, must be evaluated in every cycle. The dynamic join condition, ψRS , must be evaluated

at some common point that receives potentially-joining R and S data; finally, φRS may be evaluated

simultaneously, or during a pre-pruning step. Specifics depend on the strategy used.

2.1.1 Join paths along the routing tree

The vast majority of sensor network query processing research has focused on computation with a

single routing tree.

Placing computation and data: The problem of adaptively placing in-network query operators

in efficient locations is considered in [BB03], which assumes a directed diffusion infrastructure and

periodically performs local neighbor exploration. Complementary work [GM07] focuses on place-

ment of stored data in the network, collecting statistics about update frequency and query rates, then

performing centralized optimization. In this paper, we focus specifically on a routing substrate that

could be used to help support the above work, as well as more join-specific optimizations.

Specialized joins: Several specialized join operations appear in the literature. REED [AML05]

assumes one of the sources is a static table rather than a stream. The work of [CG05] assumes

disjoint regions for the source nodes to be joined, computes a region “on the way to the base station”

for nodes that join, then distributes a table snapshot among those nodes. It does not easily generalize

to a setting with intermingled nodes, as we target. [ZYVG+05] returns “top-k” answers combining

ranking functions over different attributes.

Naive join: Here, selection conditions are pushed to every sensor node, so that in each epoch, only

tuples satisfying ψR or ψS (for R,S, resp.) are forwarded to the base over the routing tree. Both join

conditions φRS and ψRS are then evaluated at the base station.

Base join: This approach builds upon naive by also pushing static condition φRS into the network,

determining apriori which nodes have the possibility of participating in the join. If a node has such

6

a possibility and satisfies its selection conditions, it forwards data over the routing tree to the base

station, which evaluates ψRS . The push-down of φRS can be accomplished in at least two ways: by

propagating an approximate synopsis of eligible values through the network [YLZ06], or by exploring

the network for all satisfying join pairs. (We shall focus on the latter version.)

Yang+07: Recent work [YLÖT07] has proposed an alternative scheme to joining at the base. The

R sensors forward their data to the base, which assembles a complete snapshot of R. The base then

floods this image down the tree to all S nodes, which perform the join and then send their results up

to the base. This scheme can be arbitrarily more expensive than base ifR has high cardinality or each

R tuple joins with many S tuples. The snapshot of relation R must be split into many packets, and

each needs to be flooded in the network.

Summary: These techniques have low overhead, but establish long join paths (because they are

limited to tree edges) and often have high congestion and hot spots.

2.1.2 Full graph to establish paths

It is natural to consider using the full graph. However, in a fully distributed implementation (we only

focus such schemes), this implies that the entire graph has to be flooded. While this achieves short

paths, the setup cost of the join in flooding from many sources is prohibitive in terms of congestion,

delays, and packet collisions.

2.1.3 Hash strategies to establish paths

The geographic hash table (GHT) [RKS+03] relies on positioning information (actual or virtual) at

every sensor. As each sensor produces a tuple, it sends this to a destination coordinate, typically

computed as a hash of that tuple key, using the Greedy Perimeter Stateless Routing protocol (GPSR).

GPSR routes to the node located closest to the destination coordinate.

In-network GPSR/GHT join: Using these approaches φRS can be pushed into the network for

equality or similar one-to-one predicates, where bothR and S nodes send their data (provided ψR/ψS

is satisfied) to a common node based on the hash of the static components to allow tuples to arrive

at the same node. This node, which may be distant from the source nodes and the base, evaluates

ψRS . (Note that for region and range predicates this common node has to be the base station, i.e., this

7

algorithm must degrade into base. Otherwise, packet forwarding is done using GPSR.)

Summary: As a consequence of hashing, a GHT destination node may be at an arbitrarily distant

location in the network. In addition, the strategy requires planar graphs for routing (and gives a

planarization strategy) but wireless multihop networks may be deployed in a non-planar way (e.g., in

a multi-story building) or positional information may simply not be available.

3 A Substrate for Join

Join initiation is the phase where the nodes in the relations R and S, after passing their respective

static selection conditions, learn whether there exists at least one node with which they might join

in each sampling interval (depending on dynamic conditions ψ). This is achieved by starting at

each r ∈ σφR
(R) node (the initiator node), then exploring where the φRS condition is satisfied over

static attributes (while maintaining a source vector back to r). Nodes s satisfying φS(s) and φRS(r, s)

(these are target nodes) can communicate directly with r by retracing the steps of the vector. Together

(and possibly with other nodes that mutually join), they make an optimization decision about where

to send their data during join computation. We defer further discussion of these optimization steps

to future work. For concreteness’ sake, we assume that the join takes place at a mutually agreed

point, say either r, s or the base station, although our implementation extends significantly beyond

this simple strategy. The overall goals of the join initiation phase are (i) to have a fully distributed

implementation; (ii) to find short paths in hops; (iii) to avoid hot spots; (iv) to handle node or edge

failures (e.g., due to diminishing battery power or hardware failure); and (v) to scale to hundreds of

nodes.

We observe that the benefit of using a single routing tree is that its hierarchical nature allows for

summary structures [MFHH03], and allows “directed flooding” up the tree and down to any children

whose summary structure includes the target join value. This requires significantly less traffic than

flooding the network. But any spanning tree over a graph results in certain nodes in close proximity

being numerous hops apart: consider a cycle, where the pairwise distance of a many pairs of nodes in-

creases once the cycle is broken. The original graph has an advantage in average pairwise path length.

To gain the best features of the single tree and the graph, we employ multiple routing trees over the

same set of nodes: the initial routing tree forms the backbone of the network and is used for common

8

tasks, whereas additional trees are formed afterward and used for directed routing and path distribu-

tion. Given multiple trees with well-chosen roots, the union of the trees together defines a spanner, a

representation of the graph that preserves approximate pairwise distances. Multiple overlapping trees

have previously been used in distributed multicast [CDK+03] in high bandwidth scenarios, but our

goal and use of multiple trees is quite different here — sensors are typically constrained in bandwidth

and power.

However, as soon as we use a graph which has cycles, cycle detection is essential to terminate

searches. This is an advantage of hash-based schemes like GHT. We prevent cycles in our approach

by restricting our algorithm to use the trees wisely (and not naively flood on all sets of edges) to

balance the complexity of distributed cycle detection and the quality of the paths. More specifically,

we mark packets using a single bit to indicate if the packet is traveling up a tree or down a tree,

and do not allow repeated interleaving of these steps. Additionally, in order to minimize redundant

transmissions, we develop a number of novel aspects in our algorithm. But we first discuss how the

multiple trees are created: clearly, choosing the same edges for each tree has no benefit. The trees

significantly impact the distances between nodes, and failure recovery as well, as we show later in

our experimental evaluation.

3.1 Constructing Multiple Trees

We build over the existing TinyDB [MFHH03] routing tree construction algorithm, which we briefly

summarize. Nodes begin in a listening/broadcast mode, where they announce their presence and their

distance from the root (initially infinity, except for the root, at distance 0). Each node determines the

neighbor nearest the root that it can reliably hear from. It chooses that node to be its current parent

and broadcasts its new depth; the process repeats until the network stabilizes. We collect additional

information: Bloom filters on the IDs and other static attributes of all of the nodes in a subtree to

facilitate equijoins; other summary structures — histograms or intervals for range joins on 1D data,

R-Trees and quadrants for 2D data — as well as the depth of the subtree. The summary structures act

like a generalized index structure [Aok98] and support directed forwarding of messages in the tree.

Depth is used in the construction of additional routing trees and in routing.

To create an additional routing tree, we query over the last-built tree for each node’s score: at

9

leaf nodes this score is initialized to be the sum of the node’s depth from the root on every existing

tree; at intermediate nodes it is recursively updated to be the maximum score of the subtree. The

node with the highest final score is chosen as the root of the new tree. The new root node builds its

own tree using the algorithm described above, with one variation. When two candidate parents have

equal distance from the new root, we favor the one that is not a parent in a previous tree, and in the

absence of such, we choose the parent with the fewest children (to minimize the number of siblings

for the current node). The purpose of this step is to ensure path diversity and avoid hot spots. Note

we assume that battery levels need not be considered at our layer: low battery results in weaker radio

connectivity, which reduces the number of prospective routes through a node.

3.2 Routing: Finding Paths Satisfying φRS

As discussed previously, join initiator nodes (say r) perform a multicast based on φRS , looking for

nodes satisfying the condition with r. The request is forwarded in the network in a directed fashion

based on summary structures. Ultimately the request may reach a target node. We encode the routing

path taken by a message as a vector of node IDs: destination nodes receive path vectors to r, which

can be used to send replies to r, ensuring both parties can now communicate without subsequent ex-

ploration. Since physical packets are small (under 30 bytes in TinyOS), we fragment logical messages

(which may contain join keys, source routes, and data) into smaller physical packets. We implement

a retry mechanism to ensure packet delivery in the absence of node failure.

Rather than naively flooding, our BestRoute algorithm (Algorithm 1) takes a number of steps

to reduce redundant transmissions and avoid cycles. The initial part of the algorithm, Lines 1 – 5,

determines when the message has a recipient known to the receiver (the current node or, if the join

is on ID, a known neighbor) satisfying φRS . We postpone a discussion of the middle portion of the

algorithm to the next paragraph. The packet forwarding portion of the algorithm, Lines 25 – 40, is

based on the following observation: we prefer to route from a node down one or more subtrees if their

summaries are positive, because this allows for directed flooding. However, there is no guarantee that

every node is reachable in this fashion. Hence, for correctness, every request must make its way up

one tree to its root (also searching downwards from each node on the way). Yet there is no need to

traverse up all of the trees in the same flood; in fact, avoiding this reduces exploration traffic and

prevents a number of types of cycles. Following this logic, we start from the initiating node and begin

10

exploring downwards (the descending stage), forwarding to any child node in any tree whose node

matches the join condition (Lines 25 – 27). We also spawn an exploration request up the parent node

on each tree: this is the ascending stage of Lines 28 – 30. Exploration requests are typically relayed

by broadcast (Line 35) to all neighboring nodes.

Hence, a node that hears an exploration request must ensure that it is actually an intended recipi-

ent: the sender must be a child or parent node (Lines 9 – 13). Additionally (Lines 14 – 22), the node

determines whether the traversal is in ascending mode (if so, we need to continue exploring up the

same tree, UpTree) or descending mode (if so, we can only search downwards, and only if some

summary is positive for the join condition).

As a node is found to satisfy the join condition, it can use vector PathV and use it to establish

a path back to the sender. At this stage, we actually do not limit our traversal to the multiple rout-

ing trees, but exploit the full graph. We employ an optimization called shortcutting, which helps

“shorten” the routes established by the BestRoute algorithm. Whenever a node can directly commu-

nicate (in symmetric fashion, with high stability) with another node whose ID is more than one step

“ahead” on the path vector, it immediately short-circuits to that neighbor and removes the intervening

node(s) from the path vector in the packet header.

4 Implementation and Evaluation

We implement and experimentally compare the most promising strategies from above, showing their

performance differences. These include the naive strategy, an exact (as opposed to approximate)

version of base, a version of GPSR/GHT, and a version of In-net over our multiple-tree routing

substrate. We consider equality and range predicates, and both static and dynamic attributes.

While this report does not cover query optimization, we make several remarks about how it can

be done. Centralized, global optimization is infeasible: not only is the problem NP-hard (in the size

of the network, not merely the size of the query), but the task of acquiring and updating network

topology information, then disseminating the optimal plan to all nodes, can be extremely expensive.

Instead, we advocate a strategy of performing optimization in a decentralized way. Nodes whose data

joins together should discover one another, and then collectively decide on a join strategy (e.g., In-net

vs. base joins). Our network substrate is designed to help support precisely this type of behavior —

11

Algorithm 1 BESTROUTE(CN,P, PathV, TopNode, φRS , TAttr, SV al, UpTree)
Input: Receiving node CN , incoming packet P , path vector from start PathV , top of ascending part
of path vector TopNode, static join condition φRS , target attribute TAttr, source value SV al, tree
to traverse upwards UpTree

1: if φRS(SV al, CN.TAttr) then return and acknowledge: routing is complete
2: if TAttr is ID and some neighbor N of CN has φ(SV al,N.TAttr) then
3: Forward P to N
4: return and acknowledge: complete
5: end if
6: if sender initiated the request and is a child of CN in tree T then
7: UpTree← T
8: end if
9: Set SourceIsChild if sender is a child of CN in tree UpTree

10: Set SourceIsParent if sender is a parent in any tree
11: if not SourceIsParent and not SourceIsChild then
12: return without acknowledgment: spurious message
13: end if
14: if not SourceIsParent and TopNode is not PathV .end then
15: return without acknowledgment: spurious message
16: end if
17: if SourceIsChild and TopNode is PathV .end then
18: Set IsAscending
19: end if
20: if not IsAscending and not exists T where P is sent by parent in T , and CN has a child N in T with a

summary satisfying φRS(SV al,N.TAttr) then
21: return and acknowledge: redundant search
22: end if
23: ExploreSet← ∅
24: for all trees T do
25: if not IsAscending and some childN ofCN in tree T has a summary satisfying φRS(SV al,N.TAttr)

then
26: Add N to ExploreSet
27: end if
28: if IsAscending and (T = UpTree or CN is initiating the request) then
29: Add CN ’s parent N in T to ExploreSet
30: end if
31: end for
32: Append CN.ID to PathV
33: if IsAscending then TopNode← PathV .end
34: if |ExploreSet| > 1 then
35: Broadcast updated P to every node in ExploreSet
36: else if |ExploreSet| = 1 then
37: Unicast updated P to the node in ExploreSet
38: end if
39: Wait for acknowledgment by all nodes in ExploreSet
40: return and acknowledge: complete

it enables direct communication among nodes that might join with one another.

We implemented our algorithms in 10,600 lines of nesC and compiled them using the toolkit

for TinyOS 2.0. Our current implementation generates 71KB of code (including packet queuing,

12

fragmenting, and reassembly) and uses a minimum of 3.5KB of memory to maintain 3 summary

structures for each routing tree, state for up to 20 neighbors (including summary structures for each

child subtree), and buffers for 30 simultaneous route requests. This fits easily within the 8KB RAM

and 128KB program memory of the IRIS series motes. Experiments on motes are conducted using the

TOSSIM [LLWC03] simulator, specifically to have results that incorporate errors and retransmis-

sions due to the standard radio model. We are also not assuming time synchronization. TOSSIM is

perhaps the most realistic simulator of the Crossbow MICAz and IRIS hardware platforms. Experi-

ments were run on Xeon X3220 workstations with 4GB of RAM and Fedora 7. We performed several

thousand simulation runs to obtain a good coverage of our large parameter space, as well as present

95% confidence intervals where applicable. This constrains our comprehensive study to networks of

the around 100 motes, with a more focused look at scalability to 50 and 200 nodes; we believe this

scale factor is already larger than that used in most sensor network studies.

Methodology. To understand our algorithms under different conditions, we generated 9 runs each of

synthetic network configurations with 100 nodes in the following topologies: random with an average

of 6 neighbors per node (“sparse random”); random with 7, 8, and 13 average neighbors (“moderate,”

“medium,” and “dense random”); and grid with an average of 7 neighbors (“grid”). Unless otherwise

specified, experiments were conducted on 3 different sensor layouts for each topology. We also

constructed 50- and 200-node networks, both having 8 neighbors on average per node. We also

validated our algorithms on real sensor data and a real topology, using the Intel Berkeley Research

Lab dataset 2.

Metrics. Our algorithms and measurements focus on packet transmissions, rather than actual en-

ergy, because in some settings sending packets is the predominant consumer of energy, packets are

approximately the same length making the conversion simple, and we aim to generalize to a variety of

sensor types with different energy consumption profiles. Given that, we are evaluating the initiation

phase to be compatible with arbitrary join queries we are interested in (1) path profiles, for example,

length, maximum number of paths per node (2) total and maximum routing traffic per node, when a

random pair of nodes is chosen for a join.
2db.csail.mit.edu/labdata/labdata.html

13

0

2

4

6

8

10

12

Dense
Random

Medium
Random

Moderate
Random

Sparse
Random

Grid

A
ve

ra
ge

 p
at

h
le

ng
th

 (h
op

s)
1 Tree
2 Trees
3 Trees
GPSR
Full graph

(a) Average path lengths

0

1

2

3

4

5

6

7

8

9

Dense
Random

Medium
Random

Moderate
Random

Sparse
Random

Grid

M
ax

im
um

 n
od

e
lo

ad
 (t

ho
us

an
ds

 o
f p

at
hs

)

1 Tree
2 Trees
3 Trees
GPSR

(b) Max node load
Figure 1: Path quality & congestion

0

20

40

60

80

Dense
Random

Medium
Random

Moderate
Random

Sparse
Random

Grid

N
um

be
r o

f E
xp

lo
ra

tio
n

P
ac

ke
ts

 (
pe

r r
eq

ue
st

)

3 Trees / Flood
3 Trees / Best Route
2 Trees / Best Route
GPSR

Figure 2: Traffic per exploration request

0

1

2

3

4

5

6

7

8

50-Node
Medium

100-Node
Medium

200-
Node

Medium

A
ve

ra
ge

 p
at

h
le

ng
th

1 Tree
2 Trees
3 Trees

(a) Path length

0.0

0.1

0.2

0.3

0.4

0.5

50-Node
Medium

100-
Node

Medium

200-
Node

Medium

M
ax

im
um

 n
od

e
lo

ad
 (n

or
m

al
iz

ed
 p

er
 p

at
h) 1 Tree

2 Trees
3 Trees

(b) Node load
Figure 3: Scaleup

0

10

20

P
at

hs
 th

ro
ug

h
no

de

Student Version of MATLAB

0

10

20

Student Version of MATLAB

Figure 4: Query 1: 1 vs. 2 trees

0

10

20

P
at

hs
 th

ro
ug

h
no

de

Student Version of MATLAB

0

10

20

Student Version of MATLAB

Figure 5: Query 2: 1 vs. 3 trees

0

10

20

P
at

hs
 th

ro
ug

h
no

de

Student Version of MATLAB

0

10

20

Student Version of MATLAB

Figure 6: Query 3: 1 vs. 3 trees

1

10

100

1000

Traffic at
Base

Max traffic
by any node

Tr
af

fic
 (M

B
)

Yang+07
GHT/GPSR
Naive/Base
In-net

10

100

1000

10000

Total traffic

Tr
af

fic
 (M

B
)

Yang+07
GHT/GPSR
Naive/Base
In-net

Figure 7: Intel dataset: traffic at the root
node, max traffic at any node, total traffic

1

10

100

1000

0.00 0.01 0.10 1.00
Sampling frequency (values/cycle)

D
el

ay
 (c

yc
le

s)

Through root
GHT/GPSR
Naive/Base
In-net

(a) Result delay

0
2
4
6
8
10
12
14
16
18

0.01 0.10 1.00

Thousands

Sampling frequency (values/cycle) D
ro

pp
ed

 m
es

sa
ge

s
(th

ou
sa

nd
s)Through root

GHT/GPSR
Naive/Base
In-net

(b) Result quality
Figure 8: Increasing sampling rate

0%

20%

40%

60%

80%

100%

1 4 7 10 13 16
% nodes failed

%
 c

or
re

ct
ly

 e
st

. p
ai

rs

Single tree
RepairRoute L1
RepairRoute L2

(a) Established join pairs

2
2.5

3
3.5

4
4.5

5
5.5

6

1 4 7 10 13 16

Thousands

% nodes failed

Tr
af

fic
 p

er
 c

or
re

ct
 p

ai
r (

K
B

) Single tree
RepairRoute L1
RepairRoute L2

(b) Total traffic
Figure 9: Node failures

14

4.1 Path Profiles and Traffic

The first task of any in-network join algorithm is to discover which pairs of nodes must join. Note

that both sources and targets can detect if they are potential participants, but they must discover that

there is a matching target or source, respectively. In this subsection we ask the following: if any two

arbitrary pair of nodes wish to perform a join, on an attribute which is uncorrelated to location (for

example, id) what would be the characteristic of the join path in terms of length and load.

For BestRoute we study 1, 2 and 3 trees and consider the shortest discovered path. For GPSR, we

implemented the strategy outlined in Section 2.1, using a routing destination selected by a hash of the

join key. Figures 1a and b show the average join path length and maximum node load, respectively,

for routes connecting all pairs of nodes (100 nodes and 9900 pairs) 10 pairs at a time, across differ-

ent topologies. Further experiments (not plotted due to space constraints) confirmed that the load on

roughly the top 15 most traversed nodes followed a similar pattern to Figure 1b, in that we saw ben-

efits in BestRoute from going from 1 to 2 to 3 trees, and that GPSR performed worse than BestRoute

with 2 and 3 trees. Overall, our observations are that (a) using 3 trees provides near-optimal paths on

average; (b) GPSR does not give near-optimal paths; (c) GPSR has significantly worse load distribu-

tion for the top 15 nodes. We conclude that given reasonably long-running joins, join initiation using

BestRoute with 3 trees is the best strategy.

Initiation Traffic. Another critical factor is how much traffic is created during exploration related

to join initiation. Figure 2 confirms that the amount of traffic generated byBestRoute is significantly

lower than flooding.

Node Scale-up and Number of Trees. Figure 3 shows that as we scale the number of nodes from

50 to 200, for our algorithm, per-path load on individual nodes (Figure 3b) remains quite consistent,

with a slightly more significant benefit to 3 trees when we get to 200 nodes. As expected, average

path length (Figure 3a) increases as the network diameter grows; again, with 200 nodes there is a

noticeable benefit in using 3 trees. We conclude here that three trees is the optimal choice, because

it provides short paths and reduced hot spots while only slightly increasing the state required at each

node. Further increasing the number of trees leads to diminishing returns and progressively larger

memory requirements.

Joining Real Data. Next, we used the Intel Research-Berkeley real-life dataset, focusing on po-

15

sition data (over which we constructed an R-tree summary structure) and humidity. Our query was

R 1dist(R,S)<5m∧R.id<S.id∧abs(R.hum−S.hum)>1000 S, which forms join pairs of nodes at most 5 meters

apart, and reports results whenever they encounter a humidity difference greater than 1000. For this

experiment, we performed an in-network join at the endpoint closer to the base station (breaking ties

arbitrarily). We used conservative assumptions σr=σs=1 and σrs = 20%. In this case all the nodes

participated in the join and therefore Naive and Base were the same. Figure 7 reports the experiment

in log scale. Total traffic was over 100MB, but the congestion as well as total traffic was halved by in-

network execution. GHT performed worse than Naive/Base, and the Yang+07 algorithm [YLÖT07]

generated the most traffic.

Radio-on Time. A natural question is whether a scheme like ours, which supports point-to-point

and multicast communication across the entire network and does not require (hence, cannot exploit)

global time synchronization, inherently requires nodes to keep their radios listening for longer periods

of time in each sampling epoch. We are addressing this with ongoing work. However, preliminary

experiments suggest that only 5% of messages sent by our substrate would require sensor radios to

be on longer than in the single-tree case. We are investigating strategies for allowing those messages

to cross into the next sampling epoch, so our scheme has identical or even lower listening overhead.

4.2 Path Distribution

We next consider the load with respect to spatial distribution of sensors, showing 3D plots where the

plane represents the coordinates of each sensor node and the height of each bar represents the number

of paths through that node (bars are projected against the axes). We show results for 3 queries over the

synthetically generated topologies. We assigned simulated static sensor values for a static attribute x

to every node in the network, sampled from an exponential spatial distribution with range [7, 60], with

nodes towards the center of the network biased towards higher values. Static attribute y is sampled

from [0, 10) random uniform distribution.

Query 1, σ40<R.x<100R 1R.x=S.x σ40<S.x<100S, imposes heavy communication at the core of the

network. Figure 4 shows the results on the grid network topologies; other topologies behave similarly.

After adding a second tree, we see a major reduction in the load placed on the interior nodes, with

an evenly distributed path load in the middle of the network. Intuitively, by switching trees, our

16

algorithm “short-circuits” across the middle of the network without traversing nodes at or near the

root. (We omit the 3-tree case, which provided minor benefits beyond the second tree in this query.)

Query 2 considers joins at the fringes: σ0<R.x<12R 1R.x=S.x σ0<S.x<12S. Figure 5, generated

with the random dense topology (but representative of the others), shows that for the 1-tree case, this

workload places high load at and near the root. In contrast, 3 trees produces significantly fewer and

lower hot spots. Runs using 2 had performance falling in-between the 1 and 3 tree cases.

For Query 3, the endpoints in the join are evenly distributed throughout the network:

σR.id<25R 1R.x=S.y+5 σS.id>50S. Figure 6 shows this for the random medium topology (similar effect

is observed on all the other three topologies). Here, two trees provide some benefit but three trees

provide the most gain — not only to the maximum load of the top nodes, but also the overall number

of heavily loaded nodes is significantly reduced.

4.3 Congestion (Stress)

We apply several techniques to improve the performance of our system under high data rates. First,

each node tracks free buffer memory; if it is running low on space, it notifies its neighbors through

a congestion bit carried by data messages. Neighbors attempt to route around the node. For traffic

sent through a congested node n towards the base station, the sender picks an alternative node to n

at the same level in the first routing tree (so long as it is not also congested). For traffic sent through

n towards some other destination node nd, the node preceding n on the path replaces n with an

alternative neighbor that can reach the n’s successor on the path. This scheme does not lengthen the

paths traversed by any message. Of course, in some cases congestion avoidance might be impossible:

in the extreme case the removal of the congested node n might disconnect the network. In this case,

n will stop acknowledging received packets and discard them until it manages to send its outgoing

messages. Other nodes needing to traverse n will attempt to resend their packets later.

Multipath routing has been proposed to better reduce maximum load on nodes and congestion,

before they occur. A similar strategy to the above can be used here: when a packet may be routed

through several alternate nodes at any step in the path, the routing algorithm can randomly choose

among these nodes.

In order to evaluate our system under congested settings, we took the query used for real life

17

data and varied the sampling frequency from 0.003 values/cycle to 1 value/cycle, while executing

for a fixed number of sampling cycles. We measured the freshness (propagation delays of the data

values), and the number of packets dropped. In Figure 8a, for Naive (same as Base in this case),

GHT, and Yang+07, the delay between the production of data values and their reception at the base

station begins to grow for frequencies above 0.05 values/cycle, exceeding 100 cycles. In other words,

result freshness for Naive, GHT, and Yang+07 worsens significantly under high sampling frequencies.

Moreover, all methods except In-net begin to drop data values in this range, as they cannot keep up

with the increased sampling frequency (Figure 8b). At very high frequencies Yang+07 has fewer

drops than GHT: sending data on a single tree allows for opportunistic combining of physical packets

more efficiently than GHT. To summarize, In-net incurs delays at least 4 times lower than GHT, 7

times lower than Naive, and 12 times lower than Yang+07 — with better overall result quality.

4.4 Failure Handling during Join Initiation

Failed links and nodes are a frequent occurrences in sensor networks, especially due to limited

battery life. There are two failure cases in join initiation: (1) during exploration, which we do not

focus on since BestRoute explores redundant paths and trees at this stage; and (2) after explo-

ration, when path vectors between join pairs have been established, and the nodes need to coordinate.

Suppose node n1 is sending to node nd along path vector [n1, . . . , nf , . . . , nd], and nf is unreach-

able from its predecessor nf−1. We initiate RepairRoute (Algorithm 2) which unlike BestRoute

explores paths sequentially rather than in parallel, while tolerating link failures rather than node fail-

ures. RepairRoute searches for any node ng along the vector [nf+1, . . . , nd], and if successful the

new path to ng is merged with the original path vector. During this time nf−1 queues up messages

in a repair buffer; and on success immediately forwards all of these messages along the new path. A

special case is when nd is the base station. If nf−1 can communicate with another node n1 at the

same level as nf in the main tree, then we forward the request to n1. This single tree repair strat-

egy in isolation requires only one routing tree, and we use it as a baseline in our comparison with

RepairRoute.

Our evaluation consists of failing up to 16 out of 100 nodes while executing the query

σid<25∧h(u,σr)R 1R.x=S.y+5∧R.u=S.u σid>50∧h(u,σs)S, where h(u, σp) = (hash(u)%d1/σpe = 0) on the

18

Algorithm 2 REPAIRROUTE(CN,P, PathV, TopNode,DestNode, PathV R, State)
Input: Receiving node CN , incoming packet P , path vector from start PathV , top of ascending part
of path vector TopNode, DestNode destination of the failed routing, path from the failed node to
DestNode PathV R, acknowledgement ACK or NACK in State

1: if CN appears on PathV R then return: ACK, routing complete
2: if for some neighbor N of CN : N appears on PathV R then
3: Forward P to N
4: return ACK, routing complete
5: end if
6: if CN is the initiator and State=NACK then
7: return NACK: repair is unsuccessful
8: end if
9: if sender is a child of CN in tree UpTree then Set IsAscending

10: else Set IsDescending
11: end if
12: if State=NACK and (IsAscending or (IsDescending and P was previously seen as descending)) then

return NACK
13: if IsDescending and not exists T where P is sent by parent in T , and CN has a child N in T with a

summary on ID positive for DestNode then return NACK
14: end if
15: ExploreList← []
16: for all trees T do
17: if IsDescending and some child N of CN in tree T has a summary on ID positive for DestNode

then
18: Add N to ExploreList
19: end if
20: if IsAscending and (T = UpTree or CN is the initiator) then
21: Add CN ’s parent N in T to ExploreList
22: end if
23: end for
24: Append CN.ID to PathV
25: if IsAscending then TopNode← PathV .end
26: if |ExploreList| > 0 then
27: if State=ACK then
28: Unicast to first node N in ExploreList
29: return same result returned by N
30: else if P ’s sender exists in ExploreList at position i and i < |ExploreList| then
31: unicast P to the node N at position i+ 1
32: return same result returned by N
33: end if
34: end if
35: return NACK

medium random topology. This query expands Query 3 with dynamic predicates: attribute u is

dynamic and it is generated to conform to selectivity estimates σr or σs. As in Query 3, multiple

attributes are joined, and we expect the endpoints in the join to be fairly evenly distributed throughout

the network, because of the uniform y predicate, and also because by construction there is no spatial

correlation between node IDs. Thus endpoints are separated by long paths, which makes failure

recovery non-trivial.

19

We evaluate RepairRoute and single tree repair for this query. For a given number of nodes set

to fail, their times of failure are scattered across the initiation run. We study the increase in the

overall traffic and percentage of successfully established source-target join pairs. A given join pair

is considered successfully established if both source r and target s are aware that they are joining,

and both agree on a join node j, which also knows to join them. RepairRouteL1 and L2 differ in

the summary structure used for routing. While L1 utilizes a Bloom filter of the IDs of children in a

particular subtree, L2’s Bloom filter also holds the children’s immediate neighbors, thus increasing

the likelihood of success at the expense of some added exploration. As indicated by Figure 9a, by

using RepairRoute we can recover completely from up to 3% node failures. We achieve up to 20%

increase in the number of successfully established pairs over single tree repair. In Figure 9b we

observe that for node failures up to 12% we maintain comparable traffic per successfully established

pair with single tree repair, after which repairs becomes progressively more expensive because of

significant degradation in connectivity.

5 Conclusions and Future Work

This paper proposes a substrate for supporting join initiation: discovery of short paths among sets

of nodes that mutually satisfy some join condition, and thus are eligible to join in each cycle. This

is the basis of in-network join computation, which we have shown to perform better than alternative

strategies in a number of cases. Our methods scale to hundreds of nodes.

We are currently focusing on further mote-specific energy-reducing techniques. Then, the next

phase of our research agenda is to build upon this substrate and address the issues of query optimiza-

tion. The first step is to choose a cost model appropriate for sensor networks, which considers overall

message transmissions, but also hot spots. The subtlety here is that the cost model needs to take

into account opportunities for shared computation: we could share a single join point across multiple

source nodes, or alternatively we could keep them separate — a problem we refer to as multi-pair op-

timization. We hope to choose an initial join strategy and join point based on predicted selectivities,

then monitor and react to actual selectivities and move the join point as appropriate.

20

References

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query language: se-

mantic foundations and query execution. VLDB J., 15(2), 2006.

[AML05] Daniel J. Abadi, Samuel Madden, and Wolfgang Lindner. Reed: Robust, efficient filtering and

event detection in sensor networks. In VLDB, 2005.

[Aok98] Paul M. Aoki. Generalizing “search” in generalized search trees. In ICDE, 1998.

[BB03] B. Bonfils and P. Bonnet. Adaptive and decentralized operator placement for in-network query

processing. In IPSN, 2003.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Rowstron, and

Atul Singh. SplitStream: High-bandwidth multicast in cooperative environments. In SOSP,

2003.

[CG05] Vishal Chowdhary and Himanshu Gupta. Communication-efficient implementation of join in

sensor networks. In DASFAA, 2005.

[DGR+03] Alan J. Demers, Johannes Gehrke, Rajmohan Rajaraman, Agathoniki Trigoni, and Yong Yao.

The Cougar project: a work-in-progress report. SIGMOD Record, 32(3), 2003.

[GM07] Thomer M. Gil and Samuel Madden. Scoop: An adaptive indexing scheme for stored data in

sensor networks. In ICDE, pages 1345–1349, 2007.

[HAE03] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid. Stream window join: tracking

moving objects in sensor-network databases. In SSDBM, 2003.

[LLWC03] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate and scalable simu-

lation of entire TinyOS applications. In SenSys, 2003.

[MFHH03] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Design of an

acquisitional query processor for sensor networks. In SIGMOD, 2003.

[NGSA04] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson. Synopsis diffu-

sion for robust aggregation in sensor networks. In SenSys, 2004.

[RKS+03] Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin, Ramesh Govindan, Li Yin, and

Fang Yu. Data-centric storage in sensornets with GHT, a geographic hash table. Mob. Netw.

Appl., 8(4), 2003.

21

[YLÖT07] Xiaoyan Yang, Hock-Beng Lim, M. Tamer Özsu, and Kian-Lee Tan. In-network execution of

monitoring queries in sensor networks. In SIGMOD, 2007.

[YLZ06] Hai Yu, Ee-Peng Lim, and Jun Zhang. On in-network synopsis join processing for sensor net-

works. In MDM, 2006.

[ZYVG+05] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, and V. Tsotras. The threshold

join algorithm for top-k queries in distributed sensor networks. In DMSN, 2005.

22

	A Substrate for In-Network Sensor Data Integration
	Recommended Citation

	A Substrate for In-Network Sensor Data Integration
	Abstract
	Comments

	tmp.1226345047.pdf.uhzp9

