
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

April 1971

Access Control and Retrieval Optimization Functions of the Access Control and Retrieval Optimization Functions of the

Supervisor for an Extended Data Management Facility Supervisor for an Extended Data Management Facility

Judith Irene Hirsch
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Judith Irene Hirsch, "Access Control and Retrieval Optimization Functions of the Supervisor for an
Extended Data Management Facility", . April 1971.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-71-21.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/825
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/825
mailto:repository@pobox.upenn.edu

Access Control and Retrieval Optimization Functions of the Supervisor for an Access Control and Retrieval Optimization Functions of the Supervisor for an
Extended Data Management Facility Extended Data Management Facility

Abstract Abstract
The purpose of the Supervisor in an Extended Data Management Facility (EDMF) is to direct the Facility's
handling of a user's request for service. The Supervisor fulfills its task through the use of five main
functions: Access Control, Retrieval Initialization, File Searching, Record Validating and Record
Formatting. The major and most important component of the Retrieval Initialization phase is the Retrieval
Optimization subfunction. This report is concerned mainly with the design and implementation of the
Access Control and Retrieval Optimization functions. Macro instructions are the mechanism through
which a user's program can call upon the ECMF. The Authority Item check is the EDMF's security control
over file access while the Prime Keyword Search is the method used to optimize the retrieval strategy. The
Authority Item check and the Prime Keyword Search are two of the major concepts of the Extended Data
Management Facility.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-71-21.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/825

https://repository.upenn.edu/cis_reports/825

University of Pennsylvania
THE MOORE SCHOOL OF ?3lXCTRICAL ENGINEERING

Philadelphia, Pennsylvania

TECHNICAL REPORT

ACCESS CONTROL AND RETRIEVAL OPTIMIZAmON
FUNCTIONS OF DIE SUPERVISOR

FOR AN EXTENDED DATA MANAGEMENT FACILITY

Judi th Irene Hirsch

Apri l 1971

Submitted t o the
Office of Naval Research

Information Systems Branch
Arlington, Virginia

under
Contract ~00014-67-A-0216-0014

Research Project NR 049-153

Reproduction i n whole o r i n pa r t i s
permitted f o r any purpose of the

United S ta tes Government

Moore School Report No. 71-21

ACCESS CONTROL AND RETRIEVAL OPTTMIZATI ON
FUNCTIONS OF 'ME SUPERVISOR

FOR AN EXTENDED DA'I!4 MANAGWNT FACILITY

Abstract

Ihe purpose of the Supervisor in an Extended Data Management
Facility (EDMF) is to direct the Facility's handling of a user's request
for service. The Supervisor fulfills its task through the use of five
main functions: Access Control, Retrieval Initialization, File Search-
ing, Record Validating and Record Formatting. m e major and most
important component of the Retrieval Initialization phase is the Retrieval
Optimization subfunction. This report is concerned mainly with the design
and implementation of the Access Control and Retrieval Optimization
functions. Macro instructions are the mechanism through which a user's
program can call upon the ECMF. The Authority Item check is the EDMF's
security control over file access while the Prime Keyword Search is the
method used to optimize the retrieval strategy. The Authority Item check
and the Prime Keyword Search are two of the major concepts of the Extended
Data Management Facility.

Security Classification

I DOCUMENTCONTROLDATA- R & D
{Scrlrrity classifiration ol tltlo, body of abstrart and indexing annotetion nluNt be entered when the owra l l report Is rlasallled)

1 . ORIGINATING A C T I V I T Y (Corporate author) (2.. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

ACCESS CONTROL AND liETRIEVAL OPTIMIZATION FUNCTIONS OF 'EE SUPERVISOR I FOR iUi mmmm mm mmGI3aNT XP-cmrn

The Moore School of Electrical Engineering
University of Pennsylvania
Phila., Pa. 19104

J ~>L:SCRIPTIVE NOTES (Type of report and.inc1usivc dates)

Technical Report
8. AU THORIS) (First name, middle initial. laat name)

UNCLASSIFIED
26. GROUP

I Judith I. Hirsch

3. R E P O R T T I T L E

d.

10 . D I S T R I B U T I O N S T A T E M E N T
I

Reproduction in whole or in part is permitted for any purpose of the
U. S. Government.

7b. NO. OF REFS

ll
6. R E P O R T D A T E

April 1971

The purpose of the Supervisor in an Extended Data Management Facility (EDMF)
is to direct the Facility's handling of a user's request for service. The
Supervisor fulfills its task through the use of five main functions: Access
Control, Retrieval Initialization, File Searching, Record Validating and Record
Formatting. The major and most important component of the Retrieval Initialization
phase is the Retrieval Optimization subfunction. This report is concerned mainly
with the design and implementation of the Access Control and Retrieval Optimization
functions. Macro instructions are the mechanism through which a user's program
can call upon the EDMF. The Authority Item check is the EDMF's security control
over file access while the Prime Keyword Search is the method used to optimize
the retrieval strategy. The Authority Item check and the Prime Keyword Search
are two of the mjor concepts of the Extended Data Management Facility

78. T O T A L N O . O F P A G E S

118

I t . S U P P L E M E N T A R Y N O T E S

I
FORM 1473 (PAGE 1) DD es

86. CON T R A C T OR G R A N T NO.

~00014-67-A-0216-0014
b. P R O J E C T N O .

NR 049-153
C.

12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Office of Naval Research
Information Systems Branch
Arlington, Virginia

S/N 01 01 -807-681 1 Securitv Classification

98. O R I G I N A T O R ' S R E P O R T N U M B E R ())

Moore School Report No. 71-21

9b. O T H E R R E P O R T N O W) (Any other ncankra that may be mmml~ad
this aport)

1 3 . A B S T R A C T

'IWBI;E OF CONTEXTS

C K A S m 1 INTROLWCTION

1.1 The EXtended Data Management Facility

1.2 !The Supervisor of the EDMF

1.3 The Scope of the Thesis

(;'HAPTER2 TKE OPENFtJIicTIm

2.1 Definitions

2.1.1 Attribute-Value Pair

2.1.2 Record

2.1.3 Keywords

2.1.4 Keyword Lists

2.1.5 File and Directory

2 .l. 6 Generalized File Structure

2.1.7 Request Description

2.1.8 Entering the EDMF

2.2 Purpose of the Open Function

2.3 Access Control

2.3.1 Introduction

2.3.2 File Level Check

2.3.3 Partitioning the File

2.3.4 User's Authority Item

2.4 Control Blocks

2.4.1 Service Status Block

2.42 File Status Block

2.5 Return to User

!J!ABLE OF CONTENTS (continued)

2.6 The EDMF' s OPN Macro

CHAPTER 3 THE RE'IIRIEVAL INITIALIZATION FUNCTION

3.1 Purpose

3.2 Control Blocks

3.2.1 DMS Open

3.3 Retrieval Optimization

3.3.1 Prime Keywords

3.4 ISAM Keys

3.5 Record Format Numbers

3.6 Control Passed t o the F i l e Searching Function

3.7 me EDMF1s mTR Macro

CKhPTER 4 'IRE CLOSE FUNCTION

4.1 Purpose

4.2 Control locks

4.3 Return t o User

4.4 The EDMF's CLSE Macro

CHAP'PER 5 SUMMARY

BIBLIOGRAPHY

A P P m M A MACROS

A . l Open Macro

A . 1 . 1 Generated Parameter L i s t

A . 2 Retrieval Macro -

Page

25

.
'WBLE OF CONTENTS (continued)

A.2.1 Generated Parameter L i s t

A. 3 Close Macro

A. 3.1 Generated Parameter L i s t

APPENDIX B ROU'I'INES

B .1 Routine OPNPROC

B . l . l Entry Points

B.1.2 Exit Points

B.1.3 External Subroutine Calls

3.1.4 Input Parameter L is t

B.1.5 Register Conventions

~ ~ 1 . 6 Internal Work Area
. .

B.1.7 Internal Codes

~ ~ 1 . 8 Return Codes

B.l.9 Flowchart

B. 2.1 Entry Points

B.2.2 Exi t Points

B .2.3 Ecternal Subroutine Calls

~ . 2 . 4 Input Parameter Lis t

B .2.5 Register Convent ions

B .2.6 Internal Work Area

B.2.7 Internal Codes

13.2.8 Return Codes

B.2.9 Flowchart

Page

A- 6

TABLE OF CONTENTS (continued)

B . 3 Routine MACPROC

B.3.1 Entry Points

B.3.2 Ekit Points

B.3.3 External Subroutine Calls '

B.3.4 Input Parameter List

B.3.5 Register Conventions

B. 3.6 Internal Work Area

B.3.7 Internal Codes

B .3.8 Flowchart

~ . 4 Routine RETRIEVE

~ . 4 . 1 Entry Points

~ . 4 . 2 Bit Points

B .4.3 External Subroutine Calls

B. 4.4 Input Parameter List

B .4.5 Register Conventions

B. 4.6 Internal Work Area

~ . 4 . 7 1nte-1 Codes

B -4.8 Flowchart and Supplementary Diagrams

B. 5 Routine FORPROG

B.5.1 Entry i?oints

B.5.2 -it Points

B.5.3 Input Parameter List

B .5.4 Register Conventions

B.5.5 Internal Work Area

B. 5.6 Internal Codes

Page

B- 21

B-21

B-21

B- 21

B- 22

B- 24

TABLE OF CONTENTS (continued)

B.5.7 Flowchart

B. 6 Routine CLSEPROC

B. 6.1 Entry Point s

~ . 6 . 2 nit Points

B .6.3 External Subroutine Calls

~ . 6 . 4 Input Parameter ~ i s t

B .6.5 Register Convent ions

B. 6.6 Internal Work Area

~ .6 .7 Internal Codes .

~ . 6 . 8 Return Codes

B .6.9 Flowchart and Supplementary Diagram

APPENDIX C CONTROL BLOCKS

C . l F i l e Status Block

C.2 Service Status Block

C.2.1 User Description Block

C. 3 Record Format Block

CHAPTER 1

INmOmCTION

Today, there i s a rapid and ever increasing grarth i~ the t o t a l

volume of' information. This huge volume threatens t o make the informa-

t ion useless unless ways can be found t o manage It. The purpose of the

ESrtended Data Management Fac i l i ty (EDMF) i s t o provide a f lexib le ,

general purpose, time-shared f i l e management system f o r the orderly

accumulation and dissemination of informt ion [g],

1.1 The Extended Data Management Fac i l i ty

Tne Extended Data Management Fac i l i ty i s an extension of the data

management system tha t presently ex i s t s a t the Moore School on RCA's

Spectra 70146 Time Sharing Operating System (TSOS). The EDMF makes use

of the services offered under TSOS, especially the Data Management

System's Indexed Sequential Access Method (ISAM), and it a lso incorporates

i t s own routines into the operating system.

I n order t o encourage the use of the EDMF, it must be re la t ive ly

sinlple t o use. The EDMF simplifies fo r the user the problem of designat-

ing those records tha t he wishes t o see. The user does not need t o know

the actual addresses of the desired records but he merely must express

a s a logica l expression the character is t ic contents of the records. The

EDMF then takes on the responsibi l i ty of determining the actual record

addresses and uses these addresses t o retr ieve the records. !The heart

of the Fac i l i ty i s the implementation of the generalized f i l e s t ructure

and i t s general r e t r i eva l algorithm a s suggested by Hsiao and Harary

in ~ 8 3 . For an overal l description of the EDMF, the reader i s referred

1.2 The Supervisor of the EDMF

The purpose of the Supexvisor in the EDMF is to direct the Facili-

ty's handling 09 a user's request for service. In this capac~ty, the

Supervisor assumes the roles of "doorman", "foreman", "administrator",

and "dispatcher". It is at first as a "doorman" who accepts the service

requests and initiates their request handling routines. Tnen as a

"foreman", the Supervisor regulates the use of the primitive storage

and retrieval routincs E61 and system subroutines, and also optimizes

the storage and retrieval strategy for a time-sharing environment. In

its role as an "administrator", the Supervisor controls the user's access

to files and validates the systems output of records to the user. It

is also a "dispatcher" who returns the results of the service to the user.

In directing the handling of the user's requests, the Supervisor

performs five main functions: Access Control, Retrieval Initialization,

File Seal*ching, Record Validating, and Record Formatting. The major and

most important component of the Retrieval Initialization phase is the

Retrieval Optimization subfunction. The five main functions in

combination with each other satisfy the above roles which the Supervisor

must assume.

1.3 ?he Scope of the Report

!@is report is concerned mainly with the Access Control and

Hctrieval Initialization Functions of the Supervisor. 'Ihese functions

fulfill the role of "doorman" and partially those of "foreman" and

"admini~trator". Macro instructions are the "doorman's" entrance into

the request handling routines. The Prime Keyword search is the "foreman's"

method of optimizing the retrieval strategy and the check of the user's
-

Authority Item is the "administrator's" security control over file access.

A discussion of the macro instructions and the user's Authority Item

can be found in Chapter Wo, the Open Function; while Chapter Zhree,

me Retrieval Initialization Function, contains a discussion of the

retrieval strategy,

CHAPTER 2

!U-IE OPEN FUNCTTON

2.1 Definitions

Before the Open Function can be discussed, the terms and concepts

which are basic to the EDMF nust be given precis2 definitions. The

definitions used in this thesis are consistent with those in [7] .

However, they will be found to be less formal and more descriptive.

2.1.1 Attribute-Value Pair

The most basic concept which must be defined is that of the

attribute-value pair. Let there be two sets, A and V. lFne elements

of A are those terms which are considered as "attributes", and the

element of V are those terms which are considered as "values". Let

a third set D be the subset of the Cartesian product A x'V, whose

elements are the ordered pairs of the elements of A and V. A single

element of D is called an attribute-value pair, and intuitively it

constitutes the basic element of information. Some examples of

attributes, ~alues, and attribute-value pairs are shown in Example 1.

2.1.2 Record

A record R is a set of attribute-value pairs which collectively

convey some meaningful information. Often these attribute-value pairs

are referred to as the fields of the record. An example of R, a subset

of the set of all attribute-value pairs, is shown in &le 2. Ihe

attribute-value pairs in this record convey to the reader information

about a book on the subject of public education.

l a : A se t of a t t r ibu tes

A = {author, year, topic, abstract, t ex t)

lb : A se t of values

V = {~ieberman, 1960, public education, [the complete abstract

of a book], [the complete text of a book])

l c : A se t D of ordered pai rs which .are attribute-value pairs

A x V -.D = ((author, ~ieberman) , (year, 1960) , (topic,

public education), (abstract, [the complete abstract of a

paper]), (text, [the complete t ex t of a paper]))

Example 1: Examples of at tr ibute, values and
attribute-value pa i r s

R = { (author, w o n ~ieberman),
. .

(t i t l e , The Future of Public ducati ion),

(topic, public education) ,
(publisher, University of Chicago press) ,

(abstract, [the cotnplete abstract of the book]),

(text, [the complete t ex t of the paper])]

&le 2: Record of a book on the subject
of public education

2.1.3 Keywords

A record can be characterized by any combination of the attribute-

value pairs which are in the record. Due to pragmatic considerations,

it would be desirable to have those attribute-value pairs which are

short and can be simply expressed, characterize the record. These

short attribute-value pairs are called keywords, and will henceforth

be denoted symbolically by K,, i = 1,2, ... n. 'Ilhus we can refer to a

record R by referring only to the keywords in R. m e record in Example

2 can be characterized by the set of keywords shown in -ample 3. In

general, the set of keywords of a record R is called an index of the

record R and it is usually a proper subset of R.

The index of R = {(author, w o n ~ieberman) ,
(title, m e Future of Public ducat ion) ,
(topic, public education),

(publisher, University of Chicago press) ,

Example 3: The keywords characterizing the
record in Example 2

At this point we would like to introduce a notational change

for the attribute-value pair. Hereafter an attribute-value pair will

be written in the following manner:

Attribute = Value

mis is the actual notation used in the EDMF for specifying

attribute-value pairs.

2.1.4 Keyword Lists

Each record is also characterized by another pusmeter which is

not part of the actuai information conteined in the record. %is unique

number is the address of a record, which indicates the whereabouts

of the record in the computer storage.

Each keyword K in R may have associated with it the address of
i

another record R f which also contains the keyvord Ki. Effectively

this address in R "points" to R t and for this reason it is called the

pointer of R with respect to Ki or the Ki-pointer of R. If the record

R 1 i s non-existent then the Ki pointer of R is known as the null pointer.

It will be assumed hereafter that every keyword has a pointer associated

with it. Thus we see that records containing a common keyword Ki can

be linked by these pointers into a chain which is called a Ki-list.

Putting it more precisely, a Ki-list is a chain of records, each record

combining the keyword Ki, satisfying the following five conditions:

1) Each of the pointers in the Ki-list are distinct.

2) Each non-null pointer is the address of a record in the

K -list only. i

3) There is one record not pointed to by any 'other record in -
the Ki-list. lhis is the beginning of the Ki-list.

4) mere is one record which has the null pointer; this is the -
end of the K -list. - i

5) For every record in the Ki-list at the address a (n > l), . n
there is a sequence of Ki-pointers

Record
Address

001 is the
IIOLA - Beginning
of Ki-list

Null pointer
indicates -- End of
ki-list

Figure 1: An illustration of a Ki-list

such that:

i) a is the address of the beginning of the Ki-list.
1

ii) the record at the address a contains a K -pointer
3 i

a for j = 1, 2, . . ., n-1.
J+l

mis means that for a given Ki, a record cannot be in more than

one Ki-list. The address of the first record in a Ki-list is known

as a Head-of-List Address or HOIA for short, and this tern will be used

hereafter when referring to the beginning address of any Ki-list. In

Figure 1, a typical Ki-list is illustrated, showing the beginning and

the end of the list and the pointers which chain the records together.

2.1.5 File and Directory

A file is a set of records which completely contains all the -
Ki-list8 made up of those records. In other words, a file is a set,

I

whose elements are records, which is the union of all the Ki-lists .

which contain the records. The HOLA1s of all the Ki-lists in a given

file must be carefully noted and kept separate from the HOLA's of the

Ki-lists in another file because the same keyword, but with different

meanings, can occur in both these files.

?his leads us to the concept of a directory for a file. The

directory associated with a file contains the H m t s of all the Ki-lists

in that file. For each keyword Ki used in the file, there is one entry

in f he directory, the form of the entry being shown in Example 4. More

precisely, a directory for a file is a sequence of m such entries where

m is the number of different keywords used in the file.

Ki
- the ith keyword i n the f i l e F.

n
i

- the number of records i n F containing the

hi
- the number of ~ ~ ~ l ~ s t s i n F.

a i ~
- the HOLA of the jth.gi-list i n F.

Example 4: Format of a directory entry

2.1.6 Generalized F i l e Structure

We can now define a generalized f i l e structure as a f i l e with

its directory. ?his f i l e structure is called generalized because it can

be shown that many commonly used f i l e structures such as inverted, index-

sequential, and lrmltilist are actually sgecial cases of the generalized . .

f i l e structure [8]. An example of a generalized f i l e structure is

shown i n Figure 2.

A s was evident i n the directory format, there may: be more than

one list corresponding t o a particular keyword Ki, but these l ists are

mutually delusive because of the definition for lists presented

previuusly. In other words, a record containing the keyword K cannot
i '

be in two different ~ ~ - 1 i s t s -

However, since a record may have more than one keyword, it may be

i n more than one keyword list. A record containing the keywords Ki and

K . (with i # j), i s a member of one K i - l i s t and one K -list simultaneously.
J - - 3
For example, if a record contains both the keywords AU'lfIOR = L- and

YEAR = 1960, then that record would be i n both an AUMQR = LBBERMW list

and in-a YEAR = 1m list. mis is i l lus t ra ted i n Figure 3, where the

. - - --

020 AUWOR = LIEBERMAN 080

YEAR = 1960

91 YEAR = 1 g a

Figure 3: Example of intersecting K i - l i s t and K -list
: AU'IHOR = L I E B r n J

Ki
K ~ : YEAR = 1960

-

AUTHOR = LIEBERMAN list consists of records located a t the addresses

020, 80, 110, and 170, and the YEAR = 1960 l ist consists of records

located a t the addresses 0 3 , 80, 115.

2.1.7 Request Description

When a person accesses a f i l e , rarely does he want t o see a l l -
of the records i n the f i l e . Rather, he usually wants t o see only that

part of the f i l e which in teres ts him. Such a par t i t ion can be accom-

plished by l i s t i n g the addresses of the records which he wants. 'Ibis,

however, i s cumbersome and requires much research on the user ' s part

t o find the addresses of the records i n which he i s interested. Another

way t o par t i t ion the f i l e would be t o describe the records of in teres t

by l i s t i n g the i r characterizing keywords i n the form of a Boolean express-

ion. This expression i s called a user ' s request description. Using

the propositional calculus, any Boolean expression can be uniquely written

as a disjunct of conJuncts, known as the Disjunctive Normal Form (DNF).

Some typical request descriptions could be

4a: AU'MOR = MYRON LIEBERMAN

4b: AUTHOR = MYRON L I E B E W h YEAR = 1 9 h

4 ~ : (mmm = MYRON L I E B ~ A YEAR = 1g60) v (A U ~ O R = I I I R S ~)

Ekample 4: m i c a 1 request descriptions

All the request descriptions used i n the EDMF w i l l be i n Disjunctive

Normal Form.

A record s a t i s f i e s a u s e r ' s request description when al l the

keywords i n a t l e a s t one of the conjuncts of the request description

a r e i n t h e record. A record containing only the keywords K, alld K - 3
s a t i s f i e s the request description containing only one conjunct (K A K), 1 3
but does not sa t i s fy (K ~ A K2 A K~). The problem ?f finding i n a f i l e ,

the addresses of records which s a t i s f y a u s e r ' s request description now

l i e s with the EDMF and not the user.

2.1.8 Entering the EDMF

There a r e two ways t o enter the EDMF - e i ther through a terminal

command o r through a system macro. This thes i s w i l l discuss only the

aspect of the system macro. A discussion of the command entrance can

be found i n F0 1.

It was decided t h a t the best way f o r a non-conversational user

t o enter the DMF would be through the use of system macros. Each

macro instruct ion generates a group of assembly language statements.

One of the statements generated i s a supervisor c a l l . The supervisor

c a l l ins t ruc t ion (SVC) enables the program t o switch from any s t a t e

t o the Interrupt Control S ta te (P), i .e . , the SVC causes an interrupt .
3

It i s i n the s t a t e P through the use of the interrupt analyzer, t ha t
3'

the supervisor decodes the SVC number and d.etermines which routine

should handle the in te r rupt . Statements tha t accompany the SVC i n the

rnacro expansion supply the necessary parameters f o r the processing of

the u s e r ' s request;. Once the system knows how t o respond t o the interrupt ,

it switches t o s t a t e P where interrupt responses a r e handled. For a 2

d iag ramt ic flow of the above pracess, see Figure 4.

SVC 10 1) OPEN RaU'I'INE

USER PROGRAM
I N ASSEMBLY LANGUAGE

USER PROGRAM
WITH MACRO EXPANDED

Figure 4: Diagram of Interrupt Handling
Process -

Macro instructions are extremely useful since they are located

in a macro library accessible to allusers. Each time a user writes a

macro instruction, the associated statements and the SVC are generated and

incorporated into his program. The only information the user needs to

know in using a macro is the proper way of calling it; all the other steps,

the generation of instructions and the SVC, are done by the assembler.

Necessary background material has now been discussed and the

remaining part of the chapter will devote itself to the open function.

2.2 Purpose of the Open Function

The purpose of the open function is to check the user's access

rights to a specified partition of a file, to set up the necessary control

blocks for processing the various service requests, and then to return

corltrol to the user. Since the open function assembles the necessary

system control blocks for all the available service requests, it must

be the first function called upon by the user. There are two routines

that implement the open function. They are called OPNPROC and FIFDIRSI.
I

(~p~endix Bsl and B. 2)

2.3 Access Control

2.3.1 Introduction

In any data management facility, the security and integrity of

the records are as important as the ease with which processing occurs,

A good system is one in which the security precautions are reliable

enough to insure file protection while simultaneously not encumbering

any of the processing mechanisms. Insuring the integrity of the files

encourages users to store their files in the data management facility,

and to enlarge the data base. Ease of using the system will encourage

frequent use of this data base, leading to an orderly and efficient

utilization of information storage and dissemination.

2.3.2 File Level Check

In the =tended Data Management Facility (EDME'), the protection

mechanism operates at three levels corresponding to the logical levels

in any file structure. These are the file level, the record level, and

the field level. !Ibis thesis will discuss only the file level check;

a discussion of the other two levels of protection can be found in [4 1.

In general, and as it presently exists under the TSOS Data

Management System (DMS) , a file level check is concerned with the securi-
ty of the file as a whole, and controls any access whatsoever to the

file. There are two possible types of file access - either the write,
or the read option. If a file has the write option, then a user can

update any or all of the existing file records, create new records,

and read from the entire file. If, however, the read option is in

effect, changes may not be made in the existing file, i.e., the user

may only see the records. The present TSOS DMS protection scheme is an

"all or none" type of response; that is, either the entire file is accessi-

ble to the user, or access is completely denied and the user1s request

is terminated. The important point here is that access is dependent on

the accessibility of the entire file.

But there certainly are cases when a user should have access to

certain portions of a file and not be entirely blocked out. For

example, let us suppose that we are dealing with a company's file, named

PRODUCTS IN W I N G (PIP), which is a file of records consisting of

information on products currently in-the planning stages. Possible

products could be televisions, radios, computers, etc. Let us also -
.suppose that a user (call him USER A) has the authority to read all

the records in this file except those pertaining to computers. Under

the current system, access to the file would be denied due to the

"all or none" phenomenon. Since USER a is not authorized to reference

any of the records pertaining to computers, he is denied access to the

entire file.

!Bere are two possible ways to circumvent this problem. One would

be to set up a second file which would consist of a subset of the records

in the PIP FILE and would contain all the PIP records except those per-

taining to computers. Now, USER A would have a file that he c a d

access. But, hat if there exists a USER B who is allowed to work with

all the records in the PIP file except those pertaining to televisions.

you set up another file for him? 'Ibis certainly would amount to a

duplication of information and a large waste of storage space.

m e other and more efficient way of avoiding the "all or none" . .

restriction is by devisag a method which would allow access only to

those partitions of a file that a user is authorized to handle, and block

him out of those that are restricted to him. It is in this way that the

Extended Data Management Facility handles the problem of file protection.

In order to put this method into effect, there must be a way of validating

a user's author~zation and secondly, a way of partitioning a file. First,

we will discuss the method used to partition a file.

2.3.3 Partitioning the File

'Ihe expression used to partition a file for the open function is

the same type of expression that will be used in requesting the retrieval

uf records. It is a logical 'expression in Disjunctive Normal Form (DW)

where each element of a conjunct is a keyword of the file. !Ibis

partitioning method is very flexible since it can be used for any file in

RECORD 1

AU!IHOR = BROWN, CHRISTY

TITLE = DCM ALL 'ME MYS

PUBLISHER = SltEIN AND M Y

YEAR RJBLISHED = 1970
* .- *

~ A U ~ O R = TRAVERS, M I L ~ N
J

TI= = EACH O'JXER'S VICTIMS

ISHER = SCRIBNER

RIBLISHED = 1970

AUrnOR = RAM>, AYN

m m = WE IME LIVING

PUBLISHER = RANDOM HOLTSE, INC.

YEAR PUBLISHED = 1936
"

*

AUrnOR = WEIrn, J

A

AUrnOR = RAND, A m

TITLZ = ATLAS SHRUGGEa

PUBLISHER = RANDOM HCIJSE, INC .
YEAR PUBLISHED = 1957

i

Figure 5: Library Catalogue File

i

TIm = ?HE VAUTE OF NOTKING

ATBLISHER = STEXN AND RAY

YEAR PUBLISHED = 1970

the system. In addition, it does not require that the user lolow the

actual addresses of those records that he is interested in.

For purposes of illustration, let us say we had a library catalogue

file with only the five records that appear in Figure 5. One ,partition

of this file would be those records which refer to books that were

publislred by Random House, Inc. in 1936. A DNF description would

appear as:

(m~~mm = RANDOM HCXTSE, INC. A YEAR PUBLISIIED = 1936)

Only record 4 satisfies this description.

A second partition would be those books published by Stein and Dqy

and those published by Random House, Inc.

(PUBLISKER = S T E I N AND DAY h PUBLISHER = RANDOM HWSE, INC.)

Records 1, 2, 4, and 5 satisfy this description.

A third partition might be those . . books published by Stein and Day

in 1970 and books that were published in 1957

(PUBLISHER = S ~ I N AND m y A YEAR PUBLISHED = 1970) v

(YEAR PUBLISHED = 1957)

The satisfactory records here are 1, 2, and 5.

2.3.4 User s Authority Item

In order to validate a user's authorization to access a file, the

system must obtain fnformation concerning the user's access rights to

that particular file. %is information could be stored in a record at

the head of each file. %is type of security system would be file-

oriented.

The EDMF does not take this approach but rather a user-oriented

one. lChe EDMF creates a system file which is known as the Authority

Item file. This file consists of a set of records with one record for

each user. Each record is an individual user s authority item (UAI) -
!he UAI1s contain information pertaining to the user's access rights to

the files maintained by the system. merefore, by examining a specific

user's authority item the system can determine to what degree the user

is allowed to utilize the existing files.

There are two advantages to this user-oriented type of protection.

First of all, since all. authorizing information is stored in a system

file, it is better protected than if it were stored at the head of a

user file. In this case, only the system is allowed to handle the

information, thereby making the chance of user intervention very slight.

?he second advantage is that updating authority information is quite

routine. The user's authority information is all stored in one place -
the User's Authority Item. Since the system file's internal format is

consistent with the internal format of the user files, the Bsme retr4eval

and updating routines may be used. Additional processing routines for

bhe authority items are unnecessary, consequently making the most

efficient use of the EDMF retrieval and updating routines.

Upon the issuance of a call to the open function, the user's

authority item is referenced. If access to the requested partition of

a file is granted, processing continues with the necessary system control

blocks being established; if access is denied, the system returns control

to the user with an explanatory message.

2.4 Control Blocks

When access to a file is granted, the open function makes entries

into two important system control blocks. One is the Service Status

Block and the other is the File Status Block. -

2.4.1 Service Status Block

The Service Status Block (SSB) contains s ta tus information about
P

every f i l e processed by a user durirSg a TSOS session [9 1. It i s user-

oriented, which means t h a t each user of the system has h i s own SSB,

containing information relevant t o onla those f i l e s which he is using.

The SSB i s created when a user logs on t o TSOS, remains with the user ' s

task throughout i t s existence i n TSOS, and is destroyed when the user

logs off .
The purpose of the SSB is t o eliminate duplicate r e t r i eva l s of

control information about the user f i l e s . It i s certainly more worth-

while t o use a small amount of storage space t o hold the control informa-

tion, than t o spend processing time t o re-retrieve it. The problem can

best be i l lus t ra ted as follows. Suppose a user opens a f i l e under the

system and then t r i e s t o re t r ieve some information. Due t o the structure

of the TSOS system, the retr ieve request, a s f a r a s the system is concerned,

i s a separate en t i ty from the previous open. &is means t h a t the pro-

cessing routine f o r the re t r i eva l must be able t o check t h a t the requested

f i l e has been previously opened. For security reasons, t h i s information

is kept i n the SSB i n privileged system memory. The first f i l e t o be

opened by a user r e su l t s i n information being stored i n the SSB section

created during logon. A l l subsequent f i l e openings cause additional SSB

sections (one per each f i l e part i t ion) t o be chained t o the i n i t i a l sec-

t i o n i n a linked l i s t . Thus, each user ' s SSB can grow a s the number of

f i l e s or t h e i r par t i t ions referenced during a session grows. Consequent-

ly, there is one SSB section f o r each f i l e par t i t ion t h a t i s requested.

One important point t o note is that a f i l e need not be opened

t o have an entry i n the user s SSB. (See Chapter 4) What ii relevant

i s whether or not the f i l e ' s control information i s already i n storage.

Th i s could be the case i f the f i l e had been previously opened and then

closed. I f the f i l e ' s control information i s i n storage, then addresses

t o t h i s information can be found in the SSB. This procedure saves

unnecessary re t r ievals and the waste of duplicate processing time.

2.4.2 F i le Status Block

m e F i le Status Block (FSB) - contains s ta tus information about every

f i l e tha t i s currently being processed by - any user during a TSOS session.

It i s file-oriented which means tha t an entry i s made i n the FSB each

time a user opens some par t i t ion of a f i l e . This FSB entry is established

immediately a f t e r the SSB block i s created. Each f i l e referenced during

a TSOS session has its own linked l i s t whose entr ies include the follow-

ing information; the user ' s Id, the type of open requested, and the

par t i t ion of the f i l e that has been opened.

The purpose of the FSB i s t o establish p r io r i t i es re la t ive t o the

use of the f i l e . The problem can be i l lus t ra ted as follows. Let us

suppose tha t two users, USER A and USER B, want t o work with FILE 1.

USER A wants t o read from the f i l e while USER B wants t o update it. Let

us also assume that USER A issued h i s open request first. Then the

system, by referencing the FSB, could establish tha t USER A has the

pr ior i ty and permit him t o read from t h e f i le , while blocking USER B from

updating it. Otherwise, USER A could possibly receive erroneous informa-

t ion.

Now l e t us look at an example where partitioning plays a pa&.

G o ~ n g back t o our l ibrary catalogue example (~ i g u r e 5) , suppose that

USER A vants t o update that part i t ion of the f i l e which sa t ibf ies the

DNF description

PdBLISHER = RANDOM HCUSE, INC A YEAR RIBLISHED = 1936

Recall that record 4 i s the only member o r t h i s part i t ion. Let us

also suppose that USER B wants t o read from the par t i t ion satisfying

(PUBLISHER = SmIN AND MY) V (PUBLISHER = RANDOM HCUSE, INC.)

me satisfactory records are 1, 2, 4, and 5. Again, USER A issued h i s

open request f i r s t and therefore had priority. But, the only requested

record that USER A and USER B have i n common is record 4. !Be system

references the FSB chain fo r the l ibrary catalogue f i l e t o determine

the position of USER A ' s entry. USER A ' s entm precedes USER B ' s i n

the chain and therefore, A has priority. USERA i s allowed t o update

record 4 while USER B i s blocked out. But, USER B is allowed t o read

records 1, 2, and 5 .

lbe individual FSB entries remain i n the f i l e l i s t u n t i l the user

closes the f i l e , It i s a t t h i s time that the user no longer holds any

position i n the pr ior i ty l i s t and therefore h i s FSB entry is removed.

2.5 Return t o User

After both the SSB and FSB have been constructed, the system returns

control t o the user. If the user entered the system via an SVC c a l l

issued from a program, then control i s returned t o the instruction follow-

ing the SVC cal l . If, however, entry was from a command, then control

i s returned t o the Terminal Cornand Processor which returns control t o

the user a t the terminal. The user, now i n control, i s f ree t o continue -
the execution of h i s program or c a l l upon any other f'unctions of the EDMF.

2.6 The EDMFts OPN Macro

One way of in i t i a t ing the open function (see Sect. 2.1.8) i s

through the use of the EDMF macro named OPN. me OPN macro has three

required parameters. One i s the requested f i l e name. A second i s the

type of open requested, i .e. , e i ther update or read. The th i rd one

can be e i ther the actual partitioning description or the address of

where t h i s description can be found. For a more detailed discussion

of t h i s macro, please see Appendix A.1 .

c w m 3

THE RETRIEVAL INITIALIZA~ON FUNCTION

The main purpose of the Retrieval Tnitializat5.on (RI) function - -
i s t o optimize t h e r e t r i e v a l processing and t o obtain necessary informa-

t ion f o r the ac tua l record r e t r i eva l . This information includes prime

keywords, ISAM keys and Record Format numbers. But, before t h i s informa-

t i o n i s obtained, the control blocks t h a t were established by the open

function must be checked.

3.2 Coiltrol Blocks

I n order f o r the processing of the ac tua l r e t r i e v a l mechanism t o

s t a r t , t he user must have previously issued a sa t i s fac tory open request.

If t h i s was the case, then there i s an SSB entry f o r tha t p a r t i t i o n of the

f i l e t h a t he wishes t o reference. A s the f i r s t s tep i n the processing

of the R I function, it checks the SSB ent r ies . I f the required entry

is found, then a TSOS DblS open macro is issued. I f t he SSB entry does

not ex i s t , the processing of the r e t r i e v a l i n i t i a l i z a t i o n function i s

terminated and an explanatory e r ro r message i s returned t o the user.

3.2.1 DMS Open

!Be TSOS DMS open must precede any c a l l f o r the primitive storage

and r e t r i e v a l routines. Without t h e DMS open, the primitive rout ines

cannot access the f i l e . The primitive routines actual ly perform,

through the data management f a c i l i t i e s provided by the operating system,

the input and output of records f o r other system components. Xhese

routines handle the ac tua l reading and writing of the data records,

t he manipulation of the f i l e s ' director ies , and the generation and

updating of the records and d i rec tor ies of the f i l e s .

- 26 -

In processing the retrieval optimization algorithm, the RI

function needs to reference the file's directory. In order to use

the directory routines, a DMS open must be issued. This brings us to

an important point relative to the issuance of the DMS open. There

are two possible times that the DMS oper,, macro could be issued: either

during the processing of the EDMF's open f'unction or during the RI function.

It was decided that the best time would be during the processing of the

RI function. This decision was made for the following reason. Once a

DMS open is issued, entry into the opened file is blocked to other users

until a DMS close is issued. m e routines that actually require a DMS

open, that is, the primitive routines that handle the requested file's

directories and/or records, are not needed until the RI phase of the EDMF.

Therefore, the issuance of a DIG open during the EDMF1s open function

would block the requested file from other users for .a longer period of

time than necessary.

3.3 Retrieval Optimization

In an attempt to make the retrieval system as efficient as possi-

ble, an optimizing retrieval method was needed to minimize the time re-

quired to process a retrieval request. The algorithm chosen for the

optimization phase was part of the General Retrieval Algorithm as suggested

by D. Hsiao and F. Harary in their paper titled "A Formal System for

Information Retrieval From Files" [8 1. The first step of the algoritkrm

involves the selection of prime keywords from the user's DNF description

of requested records.

3.3.1 Prime Keywords

As you recall, each user's DNF request description consists of

one or more conjuncts whose elements are keywords of the fi1.e. For

example, a possible DNI? description could be

K2 V K q

where the Ki are keywords of the file. For the purposes of this example

let us say that

K3: TOPIC = MATH

K4: AUIMOH = CCBlEN

Our description would then appear as follows:

(AUTROR = SMfW A YEllR = 1964 A TOPIC = MAIM) V (AuIIHOR = cam)

Associated with each of the keywords. in the file's directory is the num-

ber of records in the file in which the keyword appears. Ihe prime

keyword is defined as that keyword of the conjunct which appears in -
the least number of records in the file. Going back to our exatllple:

let N be the number of records in which a keyword appears, and let the

following correspondence be established:

Keyword - N

K1 AUTHOR = E24JXK 10

K2 YEAR = 1964 15

TOPIC = MAM 2

K4 AUIIHOR = COHEN 15

For the fir st conjunct (K ~ A K2 A K) , K would be the prime keyword 3 3
since only 2 records exist in the file that contain TOPIC = MATH. 'Ihe

-
prime keyword for the second conjunct must be K4 since it is the sole

member of the conjunct.

Now, how does the designation of prime keywords relate to optimizing

the retrieval? First of all, we only want to retrieve those records

that satisfy each conjunct. Since a record can only satisfy a conjunct

by containing every keyword in the conju~ct, all satisfactory records

mst contain the prime keyword. Thus searching the file using the prime

keyword, i. e . , actually retrieving the least number of records that

could possibly satisfy the expression, minimizes the costly time of actual

retrieval and thereby results in an optimum retrieval scheme.

The selection of the prim keywords is accomplished in a routine

called RETRIEVE. The RErnIEVE routine also picks up the ISAM keys. -
ISAM Keys

In order for the primitive routines to actually retrieve records,

they must know the locations of the requested records. The address of

the record location depends on the type of access method used to store

the records. The EDMF utilizes RW's 150s Data Management System Indexed

Sequential Access Method (ISAM) - for device level input/output. In this

access method, each record of a file is assigned a key, a number from

0 to 99,999,999. This number allows one to refer to a record by a

logical address (its ISAM key) instead of a physical disk address [: 6 1.

Once the prime keyword for a conjunct is established, the RETRIEVE

routine must pick up the corresponding ISAM keys for the actual record

retrieval. Again, the RETRIEVE routine returns to the directory.

Associated with each keyword in the directory are the head of list

addresses (HOLA) . These head of list addresses are ISAM keys whose records
contain that keyword [3 1. The RETRIEVE routine then makes a list of all

HOLh's that correspond to the prime keywords of the description. Once

this is finished, corresponding record format numbers must be established.

3.5 Record Format Numbers

One of the major design criteria used in determining the form of

the EDMF records and their control information is as ' follows. As much

information as possible should be removecl from the record and stored

as file control information. This prevents duplication of information

appearing in many records, thus making files smaller. In other words,

general structural information is centralized into one file control

block rather than decentralized in the individual records.

When records are collected into a file, the usual case is that all

records have similar attributes, because they contain the same type of

information. For example, all records in a file of library books are

likely to contain the attribute "Author". Thus it is reasonable to

expect that there are only a limited number of different attributes in

a file. In order to save space in the file, the attributes are removed

from the records and placed in a file control block called the Record

Format Block (RFB). Associated with each attribute in the RFB is a for-

mat number. It is this fomnat number and not the entire attribute that

is stored in the record [9 1 . A detailed specification of the RFB can be

found in Appendix C . 3 .
After a record has been retrieved from disk, it is necessary for .

the record validating function [4 1 to determine if it satisfies the user's

description. In order to do this, it must check to see if all the key-

words of a conjunct can be found.in the record. Since only the format

numbers and not the actual attributes are stored in the record, it is

.
necessary to determine the corresponding format numbers before the record

d

validating function can operate. The program that performs this service

for the RI function is called FORPROG. It checks the attributes

in the user's request description against those in the FU?B and then

makes a list of corresponding format numbers.

3.6 Control Passed to the File Searching Function

Once the lists of prime keywords, ISAM keys, and Record Format

numbers are established, the work of the Retrieval Initialization

function is finished. The lists and supervisor control is then passed

to the File Searching Function [41. After the File Searching, Record

Validating and Record Formatting f'unctions [4] have completely processed

the request, the system initiates a DMS close macro. The file can now

be actively accessed by other users subject to the priorities established

in the File Status Blocks.

3.7 The EDMF's RETR Macro

One entrance to the Retrieval Initialization function is through

the use of the EDMFts FETR macro. This macro has six possible parameters,

Of these six parameters at least three and not more than five may appear

in one macro call. W o of the required parameters are the file m e and

the output specification. The third required parameter can be either the

user's retrieval request description or the address where this descrip-

tion can be found. The fourth parameter, which is optional, is the maxi-

mum number of satisfactory records that the user wants retrieved. If

this parameter is omitted, all the records satisfying the request descrip-

tion will be outputted to the user. The fifth parameter would be a label.

For a more detailed discussion of the RE?IR macro, see Appendix A.2.

CHAP'IIER 4

!DIE CLOSE FUNCTION

4.1 -pose

The purpose of the close function is t o remove a user ' s p r io r i ty

hold over a specified pa r t i t ion of a f i l e . A user i n i t i a t e s the EDMF1s

close function when he no longer desires t o work with the pa r t i t ion of

a f i l e t h a t he had previously opened. The close function makes necessary

changes i n the control blocks, the SSB and FSB, t o indicate t h a t the

user has finished a l l processing of the specified par t i t ion of the f i l e .

Once t h i s has been done, the user no longer has access t o the part i t ion.

I f he wishes t o work with it again, he must r e - in i t i a t e the EDMF open

function. m e close function i s therefore the l a s t EDMF function t h a t a

user would c a l l upon. The routine tha t implements the close function is

cal led CZSEPROC . (~ppendix B .6)

4.2 Control Blocks

During the processing of the open function, a Service Status Block

and a F i l e Status Block were created (see Section 2.4). The FSB entry

established f o r the user a position i n a p r i o r i t y l i s t re la t ive t o the

use of the specified f i l e par t i t ion . Now t h a t the user has finished

working with t h a t par t i t ion , he should not maintain h i s position i n the.

p r i o r i t y l is t . He no longer has the r ight t o block out other users fram

accessing the records of the part i t ion. Therefore, the system removes

h i s FSB entry from the p r io r i ty l i s t and a l so indicates i n the corres-

ponding SSB entry t h a t the EDMF close function has been referenced and

t h a t the pa r t i t ion i s not open f o r h i s use.

4.3 Return to User

After both the FSB and SSB have been updated, the system returns

control to the user. The user is now free to continue processing aqy

other files that he had opened, initiate the EDMF open function for

another file partition or terminate his session.

4.4 me EDMF"s CLSE Macro

One entrance to the close function is through the use of the EDMFts

CLSE macro. This macro has three possible parameters. Of' these three

parameters at least one, and not more than two, may appear in one macro

call. The required parameter is the file name. The optional one can

be either the actual partitioning description or the address of where this

description can be found. If the optional parameter is mitted, the

system asswnes that the user wants to close out all the partitions of the

specified file that he had opened. Otherwise, only the specified parti-

tion is closed. For a more detailed discussion of the CLSE macro, see

Appendix A. 3 .

(2HKem 5

SUMMARY

m e Extended Data Management Facility (EDMI?) was implemented to

provide a general purpose data management system for the orderly accumu-

lation and dissemination of information. The EDMF utilizes a generalized

file structure and an efficient retrieval algorithm for efficient data

management.

It was the purpose of this thesis to discuss a portion of the

Supervisor's task in the EDMI?. The task is to direct the Facility's

handling of a user's request and by so doing, the Supervisor assumes

the oles of "doorman", "foreman", "administratorft, and "dispatcher".

In order for the Supervisor to fulfill its task and satisfy its roles,

it performs five main functions: Access Control, Retrieval Initialization,

File Searching, Record Validating, and Record Formatting. The last three

functions, File Searching, Record Validating and Record Formatting, are

the functions which partially fulfill the roles of "foreman", "administra-

tor" and "dispatcher". They are discussed in detail in [4]. This thesis

has discussed the Access Control and Retrieval Initialization Functions
I

with special emphasis on the Retrieval Optimization subfunction.

These functions fulfill the role of "doorman" and partially those

of "foreman" and "administrator". As you remember, macro instructions

are used as the "doorman's" entrance into the request handling routines.

The Prime Keyword search (~etrieval Optimization subfunction) of the user ' 6
DNF Boolean request expression is the "foreman's" method of optimizing the

retrieval strategy. The "administrator'st' role is fulfilled by the Access

Control function. It maintains the security control over file access by

checkin6 the user's authority item before processing his request.

BIBLIOGRAPHY

1. Chen, T., et al., "An Interim Report on the Ituplementation of the

Integrated Facility," Project Report, The Moore School of Electrical

Engineering, University of Pennsylvania, April, 1970.

2. Corwin, B., et al., "An Integrated Information Storage, Retrieval

and Dissemination Facility," Project Report, The Moore School of

Electrical Engineering, University of Pennsylvania, June, 1969.

3. Desiato, B., "Directory Constructing and Decoding in a Generalized

File Structure," M.Sc. Thesis, The Moore School of Electrical

Engineering, University of Pennsylvania, work in progress.

4. Ets, A. R., "The File Searching, Record Validating and Record For-

matting mnctions of the Supervisor for an Ektended Data Management

Facility," M.Sc. Thesis, The Moore School of Electrical Engineering,

University of Pennsylvania, August, 1970.

5 . Gana, J., "A Command and Query Language Assembler for an &tended

Data Management System," M.Sc. Thesis, The Moore School of Electrical

Engineering, University of Pennsylvania, work in progress.

6. Horton, M., "Reading, Writing, Creating and Updating Records and

I Files in a Generalized File Structure," M.Sc. Ilhesis, The Moore

School of Electrical Engineering, University of Pennsylvania, work in

progress.

7. Hsiao, D. K., "A File System for a Problem Solving Facility,"

Ph.D. Dissertation, The Moore School of ELectrical Engineering,

University of Pennsylvania, m y 1968.

8. Hsiao, D. K. and Harary, F., "A Formal System for Information

Retrieval From Files," Communications - of the ACM, Vol. 13, No. 2,

February, 1970.

9 . Manola, F., "An Extended Data Management Facility for a General

Purpose Time Sharing System," M.Sc. Thesis, The Moore School of

Electrical Engineering, University of Pennsylvania, work .in progress.

10. McDonald, J., "A Command and Query Language Interpreter for an

Extended Data Management System," M.Sc. Thesis, The Moore School

of Electrical Engineering, University'of Pennsylvania, August, 1970,

11. Wexelblat, R., "The Development and Mechanization of a Problem

Solving Facility," Ph.D. Dissertation, Tne Moore School of Electrical

Engineering, University of Pennsylvania, December, 1965.

APPENDIX A

MACROS

A.l Open Macro

Naae: OPN

Type : Keyword

Four possible keywords - maximum of three permissable
at one time - minimum of two required.

Required

1) FILF,NAM - name of the file (up to 54 characters)
2)*(a) DESCRIP - the actual partitioning logical

expression in Dm form (up to 127

characters, due to the system's

restriction on the length of para-

meters). Single quotes must enclose

the expression and any internal quotes

or ampersands must be doubled. See

the examples.

*(b) DESADDR - this parameter is mnemonic for
description address and it must be

used when the desired DNF partition-

ing expression is longer than 127 ,
characters. Zhis necessitates the

placement of the logical expression

in an area external to the macro

and it is referenced by a symbolic

address .

Optional

1) TYPE - the type of open requested

(a) READ - can only read from the f i l e .

Default case.

(b) UPMTE - can read and write t o the f i l e .

Examples of Macro Calls

OPN FILENAM=$HORTON bUG!ITES 3, TYPE=READ, DESCRIP= 'AUIMOR=

OPN FILENAM=MULILTES 3, TYPE=UPMTE, DESADDR=LOGEXPl

STORAGE AND RETRIEVAL && PUBLISHER=THE MOORE SCHOOL

PENNSYLVANIA '

Note: * - Only one of these may be used i n one macro cal l . -
A . l . l Generated Parameter L i s t

!Be OPN macro generates a parameter l ist whose address i s placed

i n Register 1 and which i s passed on t o a handling routine via an SVC

cal l . Ihe generated parameter l i s t has the following format:

Bytes Content

0 - 1 Length of f i l e name

2 - 55 Fi le name (l e f t just if ied with spaces)

56 Code for type of open
~ ' 4 2 ' -- Read
~ ' 4 3 ' -- Update

57 - 59 Address of - partitioning logical expression

Length of partitioning logical expression

Partitioning logical expression if
included in macro

Code for presence of partl.tioning
description
X'OO' -- No description
x'p'lj" -- Description present

A.2 Retrieval Macro

Name: RE?tR

Keyword

Six possible keywords - maximum of five permissable
at one time - minirm of three required.

Required

1) FILENAM - name of the file (up to 54 characters)

2) CUTSPEC - output specification (up to 10. characters)
(a) CORE - output is in special core format [4] in

core to be used by program

(b) CCKTNT - the system returns with the number of
satisfactory records and - not the

actual records

(c) PRINT - output is sent to the printer
(d) TTY - output sent to teletype. Default case.

3) *(a) DESCRIP - the actual partitioning logical
expression in DNF form (up to 127

characters, due to the system's

restriction on the length of param..

eters) . Single quotes must enclose

the expression and any internal quotes

or ampersands must be doubled. See

the examples.

*(b) DESADDR - this parameter is mnemonic for
description address and it must be

used when the desired DNF partition- -
ing expression is longer than 127

characters. %is necessitates the

placement of the logical expression

in an area external to ti~e macro and

it is referenced by a symbolic address.

Optional

1) RECNO - the number of desired records satisfying
the description.. If this parameter is

omitted, all the records. satisfying the

request will be presented to the user.

2) LABEL - name associated with RETR macro will be used

Examples of Macro Calls

2) RETR F-=rantmS3,CeT1SPEC=COREyDESADDR=LOCMP2,LABEL=

AGAIN

3) RETR FILEDIA.M=ERTLTIESl, UJTSPEC=CUJNT, DESADDR=LOGEXP2 .

STORAGE AND REmIEVAL && PUBLISHER=IDLE: MOORE SCHOOL

OF ELEC?IIICAL ENGINEERING OF IXE UNIVERSITY OF

PENNWVANIA ' OR" TOPIC--MAmNZCS9

Note: *- Only one of these may be used in one macro call.

A.2.1 Generated Parameter L i s t

The RETR macro generates a parameter l i s t whose address is placed

in Register 1 and which i s passed on t o a handling routine vfb an SVC

cal l . The generated parameter l i s t has the following format:

Bytes Content

0 - 1 Number of requested records t o be
retrieved
X1OOOO' -- A l l records. Default case.

2 - 6 Output specification. CORE, CCWNT, PRINT
or m,.

7 - 11 Label

12 - 13 Length of f i l e name

14 - 67 File name (l e f t just if ied with spaces)

68 Function code
X122' -- Retrieval code

69 - 71 Address of logical expression

72 - 75 Length of logical expression

76 - 202 Logical expression i f included i n the macro

I

A. 3 Close Macro

Name: CLSE

me: Keyword

Three possible keywords - maximum of two permissable
at one time - one required.

Required

1) Fn;ENAM - name of the file (up to 54 characters)
Optional

l)*(a) DESCRIP - the actual partitioning logical
expression in DNF form (up to 127

characters, due to the system's

restriction on the length of para-

meters). Single quotes must enclose

the expression and any internal quotes

or ampersands must be doubled. See

the examples.

DESADDR - this parameter is mnemonic for
description address and it must be

used when the desired DNF partition-

ing expression is longer than 127

characters. This necessitates the

placement of the logical eqression

in an area external to the macro

and it is referenced by a symbolic

address.

E S r q l e s of Macro Calls

CLSE F I ~ = $ H O R T O N . MITLTIIES~

CLSE F~;ENAM=$HORTON. MUT,TPES~,DESCRIP= 'AUTHOR=BITNET'

CLSE Fl3XllAM=mTTES 3, DESADDR=LOGMP3

LOGEXP3 DC C 'MONTd=MAY && m = 1 9 6 5 " OR KEY PHRASES=INFOFMA!I?ION

STORAGE AND FU3TRIEVAL && FUBLISHER=WE MOORE SCHOOL

OF ~ C 8 1 1 R I ~ ENGINEERING OF m UNIVERSITY OF

Note: * - Only one of these may be used i n one macro c a l l . -
A.3.1 Generated Parameter L i s t

Tne CZSE macro generates a parameter l i s t whose address i s placed

i n Register 1 and which i s passed on t o a handling routine via an SVC

ca l l . The generated parameter list has the following format:

Bytes Content

0 - 1 Length of f i l e name

2 - 55 F i l e name (l e f t jus t i f i ed with spaces)

5 6 Code fo r type of close
X t 48' -- Close a l l pa r t i t ions of the

f i l e
~ ' 4 9 ' -- Close only the specified

pa r t it ion

Address of part i t ioning logicaL expression

Length of part i t ioning logica l expression

Partit ioning logica l expression if
included i n the macro

APPENDIX B

ROUTINES

B.l Routine OPWROC

'Phe OPNPROC routine i s the f i r s t of two routines t h a t implement the

Open Function of the EDMF'. This routine checks the user ' s access r igh t s

t o the specified pa r t i t ion of a f i l e and s e t s up the SSB and FSB control

blocks.

B . l . l Entry Points

OPNPROC has three entry points. The entrance v ia an SVC c a l l i s a t

OPNPROC while the command entrance is a t O O P N . The FIFBLOCK entrance

is used when only the FCB f o r the F i l e of ~ i l e s (FIF) i s needed.

B.1.2 Bit Points

There i s only one ex i t point f o r t h i s routine. It begins a t BREXURN

where control i s returned t o the cal l ing program.

B.1.3 External Subroutine C d l s

There are eight external subroutines t h a t may be cal led upon by

OPNFROC. One i s AIRETR which re t r ieves the u s e r ' s authority i t e m . A

second is AU!EICHK which checks the use r ' s access r ights t o the specified

pa r t i t ion of a f i l e . A t h i r d i s t o the location ESQCATto obtain the

task number. A fourth external subroutine i s FIFDIRS1. FEDIRS1 i s used

to, re t r ieve the F i l e Information Block (FIB) f o r the specified f i l e . me

following three are entry points i n the SSBOPTR routine [g] . SSBACQR i s

used t o obtain the SSB chain f o r a specified user. SSBLOGON i s used t o

es tabl i sh the SSB chain if it has not already been done and SSBGTNU is

used t o obtain a new SSB block t o l i n k t o the use r ' s SSB chain.

The eighth external subroutine i s FSBOPrf13. This subroutine i s used

t o es tab l i sh the FSB en t r i e s . The DSECTS tha t a r e associated with the

SSROPTR and FSBOPTR rout ines a re %he following:

Name - Bytes

SSR DSECT

Content '

SSBIUIIDR 0 - 7 SSB Header

S S m I 0 - 3 Address of User 's Authority Item

SSBFIF 4 - 7 Address of F a f o r F i l e Information F i l e

SSBTXT 8 - 91 SSB t e x t

SSUF'NAM 8 - 63 2 bytes - length of f i l e name
54 bytes - f i l e name

SSBCL 64 - 67 Control Information

64 Type of request

65 Indicator - EDMF open
. .

66 - 67 Unused

SSBFIB

SSBFCB

SSBDTBIN

SSBDThB

SSBCrnC

SSBFSR

SSI~CTL~

SSBI'TR

FSB

E'SBUSHID

FSUCZ

F'S13DFXDR

68 - 71 Address of F i l e Information Block (FIB)

72 - 75 Address of F i l e Control Block (FCB)

76 Open description indicator

7'7 - 79 Address of user description block

80 - 83 Address of Core Format of the record

84 - 87 Address of F i l e Status Block

88 Control Information f o r pointer

89 - 91 Pointer t o next SSB block

DSECT

0 - 7 User Ident i f ica t ion

8 - 11 Control Information -
12 - 15 Address of u s e r ' s par t i t ion ing description

Name - Bytes Content

FSBLTBLK 16 - 19' Pointer to previous FSB block in chain

FSBCTRL 20 Control Information

FSBNTBLK 21 - 23 Pointer to next FSB block

~.1.4 Input Parameter List

The address of the input parameter list (PARAMOP) must be in

Register 1 and Register 13 must contain the address of the calling

routine's save area.

Name - Bytes Content

PARAMOP DSECT

FLNMLN 0 - 1 Length of file name

FLNAME 2 - 55 File name (left justified with spaces)

FlTNCODE 56 Code for type of open requested

LOG= 57 - 59 Address of partitioning logical expression

LNLOGMP 60 - 63 Length of partitioning logical expression

LOGMP 64 - 1 9 Partitioning logical expression if included
in OPN macro

DESC0.DE 191 Code for presence of partitioning descrip-
t ion

3.1.5 Register Conventions

The registers in OPNPROC are assigned in the following manner:

Register Utilization

0 Not used

1 Address of parameter list given to
called subroutine. Miscellaneous use.

2 Miscellaneous use.

3 Base for OPNPROC -
4 Miscellaneous use

Reni ster Utilization

Address alid base of SSB

Counter for number of charactc1-s in User
Id. Miscellaneous use.

Miscellaneous use

Address of current SSB block

Address and base of SSBTEXT

Length of requested file name

Address and base of OPNPROC work area

Address and base of input parameter list
(PARAMOP)

Address of OPNPROC save area

Return address in OPNPROC

Subroutine call address. Error codes.

B. 1.6 Ir~ternal Work Area

The internal work area (OPENRQ) used by OPNPROC also contains the

parameter lists for some of the routines called by OPNPROC. The DP'LIS'IYI

list is passed to AU'MCHK while PAROPEN is passed to FIFDIRSl. The work

area has the following format:

Name - Bytes

OPENRQ DSECT

Content

DPARM 0 - 7 Parameter area for error messages

Rl3TARF,A 8 - 11 Address of area to return to after call-
ing subroutine to check user's authority

DPLISTA 12 - 95 Parameter list passed to AUBICHK

IIADRAI 12 - 15 Address of User ' s Authority Item

DNlREC 16 - 19 Address of record to be checked

DFNLEN 20 - 21 Length of file name

Name -
DFILNAM

DNADDR

DNAKIB

IMODEAR

USERID

FCBFIF

FIFKYARG

PAROPEN

AFCBFIF

FILEFIB

Bytes Content

22 - 75 File name of file whose access is to be
checked

76 Code for presence of partitioning
description

77 - 79 Address of partitioning logical exprestion

80 - 83 Length of partitioning logical expression

84 Code for service request

85 Code for checking level

86 - 87 Control information about limiting
description

88 - 91 Address of internal form of limiting
description

92 - 95 Address of Key Information Buffer (KIB)
for limiting description

loo - 103
104 - 107) Paremeters for $RE&M

112 - 183 Save area for OPNPROC

184 - 187 Address of area for 'lM(JDE macro

188 - 189 Length of area for TMODE mcro

190 - 219 Area for lMODE macro

220 - 227 User Identification

228 - 739 Area for File Control Block (FCBO of
File of Files (FIF)

740 - 747 Parameter in FCB of FIB

748 - 759 Parameter list passed to FIFDIRSl

748 - 751 Address of FCB of FIF

752 - 755 Address of File Information Block for
requested file

Content

FILE3'CB 756 - 759 Address of FCB fo r requested f i l e

STACKN3R 760 - 763 Address of stack axea of SVC

DNQhCCES 764 - 765
7 6 - 768 ? For re-entrant error message

DMESAG1 769 - 859

TSKIWM 860 Task number

CKcO1)z 861 Code Tor errors
6

SW1 862 Code - found matching f i l e name

'mJ@A 863 - 913 Temporary area

SW2 9111 Code for macro entrance

B .l. 7 Intiernal Codes

The various internal codes in the OPNPROC routine are l i s t e d below

by hexadecimal d ig i t s .
. .

CKCODE

Return from AUTiICTIK

X ' O O ' Access granted

X101' Access denied

Return from SSBACQR

X I O O 1 SSB exis ts but has not been acquired

~ ' 0 4 ' SSB exis ts and has been acquired

~ ' 0 8 ~ SSB does not exist

Return from SSBGTIW

X 1 l O ' RZQM error

Return from SSDLOGON

X I O O ' SSB exists but has not been acquired

DESCODE (~escription 'code)

XtOO' Partitioning logical expression not present

X'FF' Partitioning logical express-tqn present

X'FF'

WNCODE (Function code)

~'42'

~'43'

~'42'

~ ' 4 3

SSlnCZFl

X'0Ot

X'FF'

X'FF'

X'FF'

Code that indicates partitioning logical
expression present

Code that indicates good pointer in FSB
block

Read type open

Update type open

Read type open

Update type open

File partition EDMF closed

File partition EDMF open

Code that indicates good pointer in SSB
block

Code that indicates user description block
present

Code that indicates matching file name
found on SSB

Entrance _from a macro

~ . 1 . 8 Return Codes

A l l re turn codes can be found i n the right-most byte of Segis ter 15

and they a r e l i s t e d below by hexadecimal d i g i t s .

X'OO' Everything O.K.
. -.

Otherwise Error occurred

B.1 .9 Flowchart

Figures B.1.a - B.1.d contain the flowchart f o r the OPNPROC routine.

I Establish I

Get
User Id

--7--- -

'=4
I
--. -. ...-.-. .---.

Check SSB
entries

.''.'--I
Call SSBACQR

C - - - - . ---- ---.I

CKCODE = ~'04'1

User ' s
CKCODE = X'OO'? Authority Item

A

-- -- ---
Establish f i r s

Call SSBLOGON

Figure B.1.a: OPNPROC Initialization.
Retrieve SSB - Chain.

parameter list

level check

Check user1 s I authority

Access granted? Return to

CKCODE = X'OO1? instruction.

+

after calling
instruction

1 - - - - --.

Error Message: 1
Open request

I

denied for
specified file I

Figure B.1.b: Authority Item Check

d

r

Retrieve FIF
directory and
FCB for file
Call FIFDIRSl

1

Retrieval Exit to
accomplished? calling program

Yes ------ ..
Put FIB and FCB
addresses
into SSB 1

k-Q

Put file name
and its length

into SSB i
- .. f

File name open

Establish area

description

description L--
Establish FSB block

Exit to
calling program

Figure B.1.c: Set up SSB.
Establish FSB.

Get new
SSB block

Call SSBGTNU

CKCODE = X1lO'? Terminate

\. ." . .. , . .

..+. -.... I... ~.- -......

Store address of
new SSB block 1

I into pointer of ;
previous block

---. -.--------. - . -,---
1

I
SSBCTI,~ +- x FF
of preceding

block I

Put FIF and FCg I
addresses from

SW1 = X'FF'? previous SSB with

new SSB block
--P

same file name

Figure B.1.d: Get New SSB

-

Authority Item ,

retrieved?
SSHJAI = X'FFt? ,I

SSB entry (open update?
\ SSBCZ = x143'? /

&- .. --
ts --.

. . I -
End of

update? SSB chain?
.--..-.-. ...-./

(**-Le"'; requested file nam No y; End of
= length of SSB SSB chain?

f i l e name?

L--- --L

Yes

1
----- NO t r ,t next -1

t Yes
-- j Yes -
Requested f i l e \ 'I

name = NO Cr j

b'
name? --- - - i F -, vj

1

rJ

Get next
SSB block

Figure B.1.e: SSB Check
d

d

Routine FIFDlRSl

The FIFDIRSl routine i s the second of two routines tha t implement

the EDMF"s Open Function. This routine establishes the F i l e Control

Block (FCB) f o r the F i l e of F i l e s (FIF), searches the FIF directory and

re t r ieves .bhe F i l e Information Block (FIB) f o r the requested f i l e .

B .2 .1 Entry Points

FIFDIRSl i s the only entry point i n t h i s routine.

B.2.2 Exit Points

FIFDIRSl has two e x i t points. The normal ex i t begins a t CUE and

the er ror e x i t begins a t ClJT1. In both cases, program control is returned

t o the cal l ing program.

H.2.3 External Subroutine Calls

RETRREC [6 1 is the only external subroutine called by FIFDIRS.

The f i r s t time RETRREC i s called it retr ieves the FIF directory; the

second time, it re t r ieves the FIB f o r the requested f i l e s . The DSECT's

tha t a re associated with the FIF directory and the FIB are the following:

Name -
DIRFIF

HÎ XDERD

F I B

Bytes

DSECT

0 - 14
0 - 2

3 - 4

5 - 9

10 - 1 4

DSECT

0 - g2

Content

Header

Length of FIF directory

Count of FIF directory

Lowest key i n directory

Highest key i n directory

Individual en t r i e s

~ e g i n n i n g of FIB

Name - Bytes Content

FCB 93 - 252 File Control Block

RFB 253 - Record Control Block

B. 2.4 Input Parameter L i s t s

There are two necessary input parameter l ists fo r the FIFDIRSl

routine. The address of the PAROPEN input l ist must be i n Register 1

while the address of the PARAMOP input l i s t must be i n Register 12.

Register 13 mst contain the address of the calling routine's save area.

Name - Bytes Content

PAROPEN DmCT

AFCBFIF 0 - 3 Address of FCB of FIF

FIWIB 4 - 7 Address of FIB of the requested f i l e

FIL;EFCB 8 - 11 Address of FCB of the requested f i l e

PARAMOP DSECT

FLNMLN 0 - 1

FLNAME 2 - 55

FUN CODE 5 6

LOGEXPAD 57 - 59

LNLOGMP 60 - 63

LOGEXP 64 - l g O

DESCODE 191

Length of f i l e name

Fi le name (l e f t just if ied with spaces)

Code for type of open requested

Address of partitioning logical expression

Length of partitioning logical expression

Partitioning logical expression i f included
i n OPN macro

Code for presence of partitioning
description

B.2.5 Register Conventions

The regis ters i n FIFDIRSl are assigned i n the following manner:

Register Ut i l iza t ion

0 Not used

Address of parameter l i s t given t o called
subroutine

2 Length of FIF directory

Length of requested f i l e name

4 Address and base of DIRFIF. Address and
base of FIB.

5 Base f o r FIFDIRSl

6 Length-1 of f i l e name i n FIF directory.
Miscellaneous use.

7 Pointer t o entry i n FIF directory

9 Address of l a s t byte i n FIF directory

Address and base of input parameter l i s t
(PAROPEN)

11 Address and base of FIFDIRSl work area

Address and base of input parameter
l i s t (PARAMOP)

13 Address of FIFDIRSl save area

14 Return address i n FIFDIRSl

15 Subroutine call address. Error codes.

B. 2.6 Internal Work Area

The internal work area (-1) used by the FIFDIRSl routine a l so

contains the parameter l i s t (PLIST) t o be passed t o RETRREC [6 1. The

. work area has the following format:

Name -
SUP1

SAVE1

WKAREA

OPPARAM

CZPARAM

WFCB

m A R G

PLIST

Bytes

DSEC'J?

0 - 71
72 - 75

76 - 83

84 - 91
92 - f 3 3

604 - 61.1
612 - 627
612 - 615
616 - 619

Content

Save area for FIFDIRSl

%mporary work area

Parameter area for DMS open

Parameter area for DMS close

File Control Block

Parameter in FCB

Parameter area passed to RElRRFC

Address of FCB

Address of area to place retrieved record

PISAM 620 - 624 ISAM key for requested record

PZREC ' 625 - 627 Length of area to place retrieved record

B.2.7 Internal Codes

m e various internal codes in the FIFDIRSl routine are listed

below by hexadecimal digits.

DESCODE (~escription code)

XIOO1 Partitioning logical expression not present

X'FF' Partitioning logical expression present

FUNCODE (F'unction code)

~'42' Read type open

~'43' Update type open

~.2.8 Return Codes

All return codes can be found in the right-most byte of Register

15 and they are listed below by hexadecimal digits.

X'OO1 Everything O.K.

Unable to- open FIF

Unable t o retrieve FIF or FIB of
requested f i l e

Requested f i l e does not exis t in the
system

FEQM error X'OF'

B.2.9 Flowchart

Figures B.2.a - B.2.b contain the flowchart fo r the FIFDIRSl

routine.

Enter I FIF'DIRS1

- . . L -, --- r Establish 1
1 Work Area 1

Establish area 1 ! for FIF directory
and FIB of file 1

i -------*--
i
I

!
-.- 3

r s e t up parameter
lists for Dl43

open and
I

DMS close -- .---.- -

1 DMS open
FIF

8 . - ---- -. . - - ..*.-

7 NO Open accomplished?
. . ,.-- Y;s -.-

(Retrieve FIF 1
directory I

Figure B.2.a: FIFDIRSl Initialization and FIF
Directory Retrieval

Retrieving FIB
Call RETRREC L --I---'-

i n FIF directory -
= length .of f i l e FIF directory?

name i n F'IF t o next entry

P

re t r ieve records
-. -..-.---.----

name = f i l e name

Set up I FCB

Error Message:'
F i l e requested

not i n FIF
directory

DMS close 1 FIB

-.--- ,.. . -...---.---..
Set up parameter

l i s t f o r re-
t r iev ing FIB f o r
requested f i l e L
--T-

I Bit t o I
ca l l ing program

....- ----- I
Figure B.2.b: Retrieval of F i l e FIB and FCB

B . 3 Routine MACPROC

The MACPROC routine obtains necessary information before the

re t r ieval optimization phase i s entered. m e main function of this

routine i s t o check i f an ED@ open has been issued and if so, issue

a DMS open. Also, i f entry i s non-conversational In nature, the routlne

obtains the internal form of the user 's request description. I f entry

i s conversational, the internal form has 'already been obtained.

B . 3 . 1 Entry Points

There are three entry points. MACPROC is used when entry i s from

a user program (non-conversational); COMENTER is the point a conversational

user enters. After the EDMF has processed a retr ieval , it i s necessary

t o DMS close the specified f i l e . This is accomplished a t the WILE

entry point.

B. 3.2 Exit Points . .

MCICPROC has two ex i t points. One i s the normal ex i t point and

the other i s used when an error occurs. ?he normal ex i t i s t o the

REmIEVE routine. The error ex i t i s a t CHKMIT.

B . 3 . 3 External Subroutine Calls

!Two external subroutines are called by MACPROC. Ihe first is t o

the location =CAT t o obtain the task number. The second is t o the

entry point SSBACQR of the SSBOPTR routine [9 1. !Ibis is used t o obtain

the SSB chain for a specific user. The DSECT tha t is associated with

the SSBOPTR routine is the following:

Name - Bytes - Content

SSB DSECT

SSBHDR 0 - 7 SSB Header -
SSBUAI 0 - 3 Address of User's Authority I t e m

Name -
SSBFIF

SSBTXT

SSBFNAM

By-be s

4 - 7

8 - 91

8 - 63

SSBFIB 68 - 71

SSBFCB 72 - 75

SSADTBIN 76

SSBD!PiB 77 - 79

SSBCREC 80 - 83

Content

Address of FCB f o r F i l e Information F i l e

SSB text

2 bytes - length of f i l e name
54 bytes - f i l e narae

Control Information

Type of request

Indicator - EDMF open

Unused

Address of F i l e Information Block (FIB)

Address of F i l e Control Block (FCB)

Open description indicator

Address of user description block

Address of Core Format of the record

SSBFSD 84 - 87 Address of F i l e Status Block

SSBCTL~ 88 Control Information for pointer

SSBPTR 89 - 91 Pointer t o next SSB block

~ . 3 . 4 Input Parameter L i s t

There a re two possible input parameter l i s t s f o r the MACPROC rou-

t ine . MACDS i s the input l i s t used when entrance i s non-conversational.

RPARA is the conversational parameter l is t and it i s a lso the l i s t

t h a t i s passed t o RETRIEVE. l%e address of the input parameter l ist ,

e i the r MAWS or RPARA, must be i n Register 1 and Register 13,nrust

contain the address of the cal l ing rout ine ' s save area.

Name -
RPm

AFCB

RFBA

USRID

RECNO

aJTSPEC

FLNMLN

FLNAME

FUNCODE

CONTROL

LlCLEP

LDCB

DCB

KIB

MACDS

MRECNO

Bytes -
DSECT

0 - 3

4 - 7

8 - 15

16 - 17

DSECT

0 - 1

Content

Address of F i le Control Block (FcB)

AdQess of Record Format Block (RE'B)

User Identification

Number of requested records t o be
retrieved.

Output specification

Length of f i l e name

F i le name (l e f t jus t i f ied with spaces)

Code for function requested

Part of internal form of user ' s descrip-
t ion

Length of DCB and K I B

Length of DCB

Actual Description Control Block (D(SB)

Actual Key InPomation Buffer (KIB)

Number of requested records t o be
retrieved

Output specification

Length of f i l e name

F i le name (l e f t jus t i f ied with spaces)

Code for function requested

Address of logical expression

Length of logical expression

Logical expression i f included in the
macro. -.

B. 3.5 Register Conventions

The registers in MACPROC are assigned in the following manner:

Register Utilization

0 Not used

1 Address of parameter list given to called
subroutine. Miscellaneous use.

2 Miscellaneous use

3 Base for MACPROC

4 Miscellaneous use

5 Not used

6 Counter for number of characters in User
Id. Miscellaneous use.

7 Not used.

8 Length of requested file name. Miscellaneous
use. . .

9 Address and base of SSBTMT.

10 Address and base of MACPROC work area.

11 Address and base of input parameter list
(MACDS)

12 Address and base of input parameter list
(mm)

13 Address of MACPROC save area

14 Return address in MACPROC

15 Subroutine call address . Error codes.
B .3.6 Internal work Area

WORK is the name of the internal work area used by MACPROC and

it has the following format:

Name -
WORK

SAVE2

DPRM

QPPARM

CZPARAM

RA'IMODE

Bytes

DSECT

0 - 71

72 - 79

80 - 87

88 - 95
96 - 99

100 - 101

102 - 13

Content

Save area for MACPROC

Parameter area for error messages

Parameter area for 3MS open

Parameter area for DMS close

Address of axea for TMOIE macro

Length of area for !DIODE macro

Area for '1MODE macro

ADS'IIACK 132 - 135 Address of stack of SVC

TEMPF 136 - 139 !Cemporary area

'IIEMPH 140 - 141 Temporary area

CHXCODE 140 Code for errors in SSB routine

1 W m 141 msk number

147 - 242 r DM1
For re-entrant error message

DNOPDMS 243 - 244
245 - 247

TEMP 3 8 - 368 Temporary area

SW1 369 Code for macro entrance

B. 3.7 Internal Codes

!Be various internal codes in the MACPROC routine are listed

below by hexadecimal digits.

SSB exists and has been acquired

-

IVNCOIIE (Function code)

X ' 22' Code f o r r e t r i eva l

MFUNCODE (Function code)

Xt22' Code f o r r e t r i eva l

X 'FF'

SSBDrnIN

X'FF'

SW1 -
X'FF'

F i l e EDMF , closed

F i l e EDMF open

Code tha t indicates good pointer i n SSB
block

Code t h a t indicates user description
block present

Entrance from macro

B.3.8 Flowchart

Figures B.3.a - B.3.c contain the flowchart f o r the MACPROC

routine .

Establish
parameter area

(~ A R A)

Move parameter L.;."
Indicate entrance

from macro

-. -1
Establish

Get User Id

.--

. L

Get Task Number LT-. J
Figure B.3 .a : MACPROC Ini t ia l izat ion

Check
SSB en t r i e s
Call SSBACQR I

I 1

CHKCODE = x ' o ~ . ' ?

----......-.-.
.....

Length of \',

SSB block

'zequested file

(Has an
open been issued? -4
SSBCL-tl = X ' FF ' ?

-.---

----.-

----- --

Figure B.3.b: SSB Check and Translation of
Logical Ekpression

r-%?i~~l specified f i l e

Error Message:

accomplished?

-.----.--.

Error Message:
F i le not EXBW

opened

Return t o
calling program I

Figure B.3.c: DMS Open -

B. 4 Routine RETRIEVE

The routine RETRIEVE is the part of the Supervisor that implements

the Retrieval Optimization function by selecting the prime keywords

and also obtaining the ISAM keys that are Head of List Addresses.

~.4.1 Entry Points

mere are two entry points. The normal entrance is at TCETRIEVE.

The second entrance is at SPCENOl; this is an error message entrance

for other routines that cannot request memory.

B.4.2 -it Points .

RETRIEVE has three exit points. One is the normal exit point

and the other two are used when an error occurs. The normal exit point

begins at MARK and a call for the routine FORPROG is issued. The error

exits are at RCUTl and RUJT2.

B. 4.3 Bternal Subroutine Calls

Two external subroutines are called by RETRIEVE. The first is

HETRDIR which retrieves the requested file's highest level directory.

!l%e second subroutine called is DECODE [31. DECODE is used to decode the

directory to determine the prime keywords and it also passes the corres-

ponding HOZll' s to RETRIEVE.

B.4.4 Input Parameter List . .

The address of the input parameter list (WARA) must be in

Register 1 and Register 13 must contain the address of the calling

routine's save area.

Name - Bytes Content

m'ARA DSECT

AlpCB 0 - 3 Address of F i le Control Dlock (FCB)

Rli'13k 4 - 7 Address of Record Format Block (RFB)

USRID 8 - 15 User Identification

NECNO 16 - 17 Number of requested records t o be
retrieved

UUTS13EC 18 - 27 Output specification

l;ZNMLaN 28 - 29 Length of f i l e name

F I > W 30 - 83 Fi le name (l e f t jus t i f ied w i t h spaces)

FUNCODE 84 Code for function requested

CONTROL 85 Part of internal form of user 's descrip-
t ion

LII;EP 86 - 87 Length of DCB and K I B

LDCB 88 - 89 Length of DCB

UCB - - Actual Description Control Block (DCB)

KID - - Actual Key Information Buffer (KIB)

B .4.5 Register Conventions

Ihe registers i n RETRIEVE are assigned i n the following manner:

Regislier Uti l izat ion

0 Not used

1 Address of parameter l ist given t o
called subroutine. Miscellaneous use.

2 Miscellaneous use

3 Length of ent i re DCB

4 Pointer t o DCB

Register

5

6

Ut i l iza t ion

Base f o r RETRIEVE

Length of Dm segments (18)

Not used

Pointer t o PRIMEKEY stack

Address and base of input parameter
l i s t (RPAKA)

Pointer t o ADDRESS. Miscellaneous use.

Address and base of RETRIEVE work area

Pointer t o R&ADD. Miscellaneous use.

Address of RETRIEVE save area

Return address i n RETRIEVE

Subroutine c a l l address. Error codes.

B. 4.6 In terna l Work Area

The in terna l work area (SITP) used by RETKIEVE a l so contains the

parameter l i s t s f o r some of the routines cal led by RETEIEVE. LISW

i s passed on t o the RETRDIR and the DECODE routine while PUOR i s

passed t o DECODX and FORPROG. The work area has the following format:

Name - Bytes Content

SUP DSECT

5 - 59) For rehentrant e r ror message

DNOVAL 60 - 61
62 - 64

Not used

D P M 136 - lic3 Parameter area f o r e r ror messages

Name -
NLENG

N

LENGTH

! W I W

ARWN

!EJ3NG%II

ENDl'RIN

W D

PRIMEKEY

rnICO13E

PDCB

P'mREA

I r n I N D

PADDRSS

PIMM

PlIDIR

PU~'0II

PF'CB

PKII3

PPHMKY

Content

Smallest n* i n conjunct

Length of associated HOLA1 s

N of current keyword

Length of associated HOLA' s

Address of PRIMEKEY - 4

Pointers t o ISAM keys, length of keys

Pointers t o beginning of conjuncts and
prime keywords

Save area f o r RETRIEVE

Parameters f o r $M

Parameter l i s t passed t o DECODE and
RETRDIR

Error code

Pointer t o current locat ion i n DCG

Address of BlREA

Code f o r DECODE

Address of ADDRESS

Pointer t o area - where to put ISAM keys

Address of highest l eve l directory

Parameter l i s t passed t o DECODE and FORPROC

Address of FCB

Pointer t o KIB

Pointer ro PRIMEKEY Stack

Name - Bytes Content

RFBADD 684 - 687 Address of RFB

A W D 688 - 691 Pointer t o locat ion i n WT?

PHECNO 692 - 693 Number of requested recor6s

FNCODE 694 Code f o r function requested

A!JxKLEV 695 Code f o r l eve l of Authority Item Check

YHCODE 696 Code f o r output

*n = number of records i n f i l e containing a specif ied keyword

B.4.7 In terna l Codes

%ne various in te rna l codes i n the RETRI%VE routine axe l i s t e d

below by hexadecimal d i g i t s .

X ' 00000000 ' No records within range of GT, GE, LT,
LE or FROM-TO re la t ions

X'FDFFFFFF' Attr ibute of specified keyword does not
e x i s t i n the f i l e

X ' FEFFFFW ' Error i n range of FROM-TO r e l a t i o n

X ' FFFFFFFF ' Value of specified keyword does not exist
i n the f i l e

Other

~ ' 0 4 '

X 'OC '

X'OO'

X'FF'

Number of records i n f i l e containing
specified keyword

Par t of directory unretrievable

Hardware er ror

Code f o r DECODE t o re turn only n*

Code f o r DECODE t o re turn n* and HOLA' s

PNCODE (li'unction code)

Xt22' Code f o r r e t r i eva l

PRCODE (pr in t code i n d i c a t i q method of output)

XIOO' Output on Low Speed Terminal (LST)

~ ' 0 2 ' Output on high speed terminal

~ ' 0 4 ' Output t o program i n core format

~ ' 8 0 ' No output of ac tua l records. Only output
number of sat isfactory records.

B .)I .8 Plowciiart and Supplementary Diagrams

Figures B .&.a - B. 4 .g contain the flowchart f o r the RETRIEVE

routine. Figures B .4. h - B. 4. j contain supplementary diagrams.

Establish
Work Area

I Initialize P R C ~ ~ I PRCODE + XI00 ' 1

.... . '7 ---
/,,PEC = C,? -\ Yes
(want core format)-- -& PRCODE + ~ ' 0 4 ' h
\ of record? L.- --I I

-,--.--

Only want count PRCODE + ~ 1 8 0 '
of records?

CUTSPEC = PRINT? (Outp~t to PRCODE * X'O*' I 4
\ printer? 1 I S 1

Figure B .4 .a: RETRIEVE Initialization

-

Set up
parameter
lists

- -7- --

ares for hi&csk
level

directory 1

Figure ~ . 4 . b: Retrieve Highest Level Directory

-

---.- - i
call REGIRT
Retrieving
highest level
directory ------ ---- - --- - - I

Return to
Hardware error calling routine

t

No
1"
I

,- ERRCODE = X ' +

No

4

ErrorMessage:
Highest level
directory

unretrievable

--!k------
I n i t i a l i z e N

X'FFFFl?FF.F1 1
I

Store addr of
beginning of
conjunct i n

n
I \

I

Determine n -
number of records
associated. with

keyword
Call DECODE I

i

DECODE returns
n i n AREAN

--- --.--- - - - - -- 7
ERHCODE = X'OC'? Error Message: I (15 ----...

rS Hardware er ror fl Y

Figure B .4. c : Prime Keyword Select ion

J directory pointer t o
unretrievable next entry

L .. - - .

I NO
L - - - - - - .d - ..-...-- 1--

- .L . - - - - .

A t t r does not
exist i n f i l e

,. - , . . .- --

/..,. ,.-. 3 -.-,-... ..-..

AqMN =
X ' E'FrnFFFF ' ? i Value does not

\- -' 1 !

1 ---- _ ---. e .,....- -, ; Error Message:

I

F

ARmY =
No records

X1OOOOOOOO' within range of
/ Gl', GE, LT, LE

\ .-- - A .---. - >t: I o r FRCXI-TO
re-&Lion -.- I NO

t

-.--- -.- -- --.--A- - 1 i
Error Message: i ' r-

Figure B. 4 .d: Prime Keyword Selection

-

No

(*"" X ' E'XFFE'F'FF = ' ? 7;: Ekror i n a I
FROM- 1Y) r e 4

re la t ion
! -."

i. -. ...----- 4.1 t

I

1 h t address of
current primekey

i n t o p R m Y

L-- k;

P . . - i".

! Update DCB
i pointer
I

C End of DCB ;ies <-..
stack?

\ --.
I
i No

Figure B .4. e : Prime Keyword Selection

-

Error Message:

all be NE

I No
I

' 6

I
I-- -------

ISAMIND * X'FF'

i
i

I.--..-' .---. '.-A

I-
i-. *

Pick up n and t

ISAM keys f o r
prime keyword

L-. Call-.DJ3COX?E --..-
I

-- ---

length of ISAM f
keys in to
R&ADD

Figure B. 4. f : Obtaining ISAM Keys

-

-.-- --...--

ERRCODE = X'OC'? T Y : 8 ... 4 Error Message:
Hardware error

- - I -- .

'ERRCODE = X'OII~? Part of

'. - - - - -- - - - -

Update pointer ;
I

I
1 i
I - - J I

... 04- ----- ---
- T

P

pointer 'to next
entry ? i

.-A ---1

i +i __ --_r . .- -. *. --
End of DCB -, Yes

stack?
....

.-- --- . -.-- ' No -
\?

............. --.-- .--. __I(

Put delimeters
! (x'FF') at end of

W D D and I

PRIMEKEY 1
--.. .---- 1- -11-1.- -....

1 Set up 7
parameter lists

-:I _ . l .&~~." . - . . -.---__I\

1
.. . f . - .

Dci t
Call FORPROG

------- -. ---.---- 1
Figure ~ . 4 . g: Return to Process Next Conjunct

and the Exit

Figure ~ . 4 . h : Important Areas Used i n the
RE'WIEVE and FORPROG Routines -

Description of Control Block Areas fo r Figure ~ . 4 . h ,

Ai
is a pointer t o the beginning of the ith keyword t h a t i s stored

i n the Key Information Buffer. The a t t r ibu te and valuejs) are

stored i n the i r ent irety, i . e . exactly the way the user specified

them.

'i
i s the control code tha t indicates the re la t ion between the a t t r i -

bute and the value.

L i s the length of the ith a t t r ibu te .
8,
I

=fv
i s the length of the f i r s t value of the ith keyword.

i
L is the length of the l a s t value of the ith keyword.
lv;

Fit i s the pointer t o the beginning of a l i s t of format numbers

associated with the a t t r ibu te ,

Prime Keyword Stack Areas:

Bi
is the pointer t o the beginning of the ith conjunct i n t h e

Description Control Block.

Bi
i s the pointer t o the prime keyword i n the ith conjunct i n the

Description Control Block.

Fi
w i l l appeaz as follows:

Address of beginning
of l i s t i n l i s t

4 bytes 1 byte

where Bi : Pobnter to beglnn5ng of conjunct in DCB

Bin: Pointer to prime keyword of conjunct beginning with Bi

Note: Xtl?F" on a Bi boundary indicates the end of the stack. -

Piexre B.4.i: Prime Keyword Stack
-

Bytes 4 4

where Ai: Address of HOLA' s (IW keys) tha t correspond t o i
t h

prime keyword

Li:
Total length of ISAM keys

Note: XIFF' on an A. boundary indicates the end of the stack. - 1

Figure B.4. j : EQADD Area

d

B.5 Routine FQTSHOG

The FORPROG routine determines and l ists the record format numbere

for each a t t r ibute i n the user 's request description. The address of

each l i s t i s placed i n the 14th - 17th bytes of the DCB entry fo r the

corresponding a t t r ibute . The number of associated format numbers i s

placed. i n the l a s t byte of the DCB entry (see Figure ~ . 4 . h) .

B.5.l Entry Points

FORPROG f s the only entry point i n the routine.

R.5.2 Ekit Points

FORPROG has three ex i t points. One is the normal ex i t point and

the other two are used when an error occurs. The normal ex i t point begins

a t DONE where a call. f o r the ESTAB entry of RE'WLG i s issued [4 1. The

error ex i t s are a t FSPCEN1 and FSPCEN2.

B.5.3 Input Parameter L is t

The address of the input parameter list (PLFOR) must be i n Register

1 and Register 13 must contain the address of the cal l ing routine 's save

area.

Name Bytes Content

=FOR DSECT

PFCB 0 - 3 Address of FCB

PKIB 4 - 7 Pointer t o KIB

INDAI 8 Code for Authority Item Checking routine

PDPRKY 8 - 11 Pointer t o PRIMEKEY Stack f ~ r Authority
Item Checking routine

PPHMKY 8 - 11 Pointer t o PRDBKEY Stack

RFBADD 12 - 15 Address of RFB

AIQADD 1G - 19 Pointer t o RQADD
d

13RECN0 20 - 21 Number of requested records

Name Bytes

FNCODE 22

Content

Code for function requested

ATCKLEV 23 Code for level of Authority Item Check

PRCODE 24 Code for output

B. 5.4 Register Conventions

The registers in FORPROG are assigned in the following manner:

Register Utilization

0 Number of possible format entries (125)

1 ' Address of parameter list given to called
subroutine

2 Address of KIB

3 Base for FOFPROG

4 Pointer to RFB

5 Counter for RFB

6 Length of attribute

7 Pointer to K I B

8 Pointer to PRlMEKEY

9 Pointer to FORMELTNO

10 Pointer to DCB

Address and base of input parameter list
(PLFOR)

12 Address and base of FORPROG work area SUP^)

13 Address of FORPROG save area. Number of
format numbers associated with a specific
attribute

Return address in FORPROG. Miscellaneous
use

Subroutine call address

5 . 5 l n t e r ~ l a l Work Area

Tile internal work area used by FORPROG i s called WP2.

Name - Bytes Content

SUP2 DSECT

ALFITL;L 0 - 3 Tkmporary storage

PLFRST 4 - 7 Current address i n FORMATNO

SAVE 8 - 79 Save area f o r FORPROG

ALHAIJF 80 - 81 Ilemporary storage

TFORNUhI 82 - 83 Format number that i s being checked

FOW-TNO 84 - 331 Lis t of sat isfactory format numbers

B .5.6 Internal Codes

The various in ternal codes i n the FORPROG routine a r e l i s t e d below

by hexadecimal d i g i t s .

X'FF' Indicates entrance i s f r m the Authority
Item Checking routine

FNCODE (Function code)

X122' Code f o r r e t r i eva l

X'FFZT" Placed i n the 6 th and 7 th bytes of the
DCB entry t o indicate a no a t t r i b u t e
case

B.5.7 Flowchart

Figures B.5.a - B.5.d contain the flowchart f o r the FORPROG

I
Enter
FORPROG

+,

. t ----.--.,- -
I Es tabl ish

Work Area

- - ----

End of '. \ Yes Set up
PRIMEKEY stack? parameter l ist

Update pointer
t o PRIMEKEY

.---" "-

C a l l E S W

,! End of conjunct? "\ Yes
1 DCB en t ry = I *.-. -

1

Set format number
counter t o zero

Reg 13 0

Figure B.5.a: FORPROG I n i t i a l i z a t i o n

case? -.--+

f

Yes

t 1 - - .
/ ' f o r o l a t put zeros in :

number into i !
DCB place

(temp area
I

t -.--

RFB attr?,. - I_---.

No Yes - 1

Put addr of

in CCB entry

Put length of
format list in

DcB entry j

! i Update DCB .

I pointer
i

i
!

Pick up next

attr in list

Figure B.5.b: Obtaining Fonnat Numbers

-

Yes
no attribute

No

i n DCB
case?

No J

attribute in

i RF'B > lo? list attr?

i

i

I list attr?

1 --- --..--

I
Yes

I Difference = I (10-length of
i I attr)
I 1- -- - 1

--7----- '- '

-- -- f -
I ---\

Difference \yes
composed of C -c!3

w
zeros? -- --- r - - NO-

----*-----

pointer to new
format number

Figure B.5.c: Processing No Attribute Case

-

.,J--

End of
format area?

i Yes

f Establish I

I additional area I
for FORMATNO I

found for current

Yes

.- I. .-..--.- -.
t

9
Move all format
numbers for

current attr into
new area

-- 1

Update
counter for
format number

pointer in

format number

Figure B. 5 . d: Establishing Additional Area
for Formst Numbers -

B. 6 Routine CLSETPROC 1

The CLEXPROC routine i s the one tha t implements the Close Function - I

of the EDMF. It indicates i n the SSB chain tha t the specif i td part i t ion(s)

have been closed and a l so removes the corresponding FSB entr ies .

B .6.1 Entry Points

CLSEPROC has two entry points. CLSEPROC i s the SVC entrance while

the command entrance i s a t COMDCZSE. ,

~ . 6 . 2 &it points I

There i s only one e x i t point f o r t h i s routine. It begins a t CKEXIT

where control i s returned t o the cal l ing program.

B .6.3 External Subroutine C a l l s

&ree external subroutines are called by CLSEPROC. The first i s

t o the location ESQCAT t o obtain the task number. m e second i s t o the

entry point SSBACQR of the SSBOPTR routine [9] . This i s used t o obtain

the SSB chain f o r the specified user. The th i rd external subroutine tha t

i s called upon i s FSBOPTR [93. It i s through the use of the FSBOP'PR rou-

t i n e t h a t FSB ent r ies a r e removed. The DSECT1s tha t are associated with

the SSBOPTR and the FSBOPm routines w e the following:

Name - Bytes Content

SSB DSECT

SSBHDR 0 - 7 SSB Header

SSBUAI 0 - 3 Address of User's Authority Item

SSBli'IF 4 - 7 Address of FCB f o r F i l e Information Fi le

SSB'XT 8 - 91 ,533~ t ex t

SSBFNAM 8 - 63 2 bytes - length of f i l e name
54 bytes - f i l e name

SSBCL 64 - 67 Control rnf ormat ion

64 m e of request

Name -

SSBFIB

SSBFCB

SSBDTnIf3

SSBDTAB

SSBCREC

SSBFSB

SSBCTL~

SSBPTR

Bytes

65

66 - 67

Content

Indicator - EX#@ open

Unused

Address of Fi le Inf'orrnation Block (FIB)

Address of F i le Contlrol Block (FCB)

Open description indicator

Address of user description block

Address of Core Format of the record

Address of F i le Status Block

Control Information for pointer

Pointer t o next SSB block

FSB DSECT

FSBUSRID 0 - 7 User Identification

FSBCL 8 - 11 Control Infarmation

FSBDSADR 12 - 15 Address of user ' s partitioning description

FSBLTBLK 16 - 19 Pointer t o previous FSB block i n chain

FSBCTRL 20 Control Informtion

FSBN TBLK 2 - 23 Pointer t o next FSB block

~ . 6 . 4 Input Parameter L i s t

m e address of the input parameter l ist (cLsEPARM) must be i n

Register 1 and Register 13 mst contain the address of the 'calling

routine's save area.

Name - Bytes Content

CLSEPARM DSECT

l?LNMLN 0 - 1 Length of f i l e name

E m 2 - 55 Fi le name (l e f t jus t i f ied with spaces)

Name - Bytes Content

FUNCODE 56 Code for type of close requested

LOGMPAD 57 - 59 Address of partitioning logical expression

LNLOGEXP 60 - 63 Length of partitioning lc~gical expression

LOGEXP 64 - 1g0 Partitioning logical expression

B. 6.5 Register Conventions

'Phe registers in CLSEPROC are assigned in the following manner:

Register

0 Not used

1 Address of parameter list given to called
subroutine. Miscellaneous use.

2 Miscellaneous use

3 Base for CLSEPROC

4 Miscellaneous use

5 Address of partitioning description in SSB

6 Counter for number of characters in User
Id

7 Length of description in SSB

8 Length of requested f ile name

9 Address and base of SSBTEXT

10 Pointer to FSBLIST

11 Address and base of CLSEPROC work area

12 A d d r e s s and base of input parameter list
(CLswARM)

13 Address of CLSEPROC save area

14 Return address in CZSEPROC

15 Subroutine call address

~.6.6 Internal Work Area

CLSENORK is the internal work area used by the CLSEPROC routine.

It contains the parameter list (FSBLIST) that is passed to the FSBOPTR

routine. The work area has the following format:

Content

CLSEWORK DSECT

DPRM2 0 - 7 Parameter area for error messages

CLSAVE 8 - 79 Save area for CZSEPROC

A'IMODEAR 80 - 83 Address of area for TMODE macro

84 - 85 Length of area for TMODE macro

~ O D M 86 - 115 Area for ODE macro

USERID 116 - 123 User Identification

FSBLIST 124 - 207 List of addresses of FSB blocks to be
removed

ADRSrBCK 208 - 211 Address of stack area of SVC

TEMPA 212 - 262 Temporary area

T S m 263 Task number

SW1 264 Code - found appropriate SSB block
CHKCODE 265 Code for errors

DNIMOPN2
268 - 270 For re-entrant error message

DMESS~ 271 - 366
SW2 367 Code for macro entrance

~.6.7 Internal Codes

The various internal codes in the CLSEPROC routine are listed

below by hexadecimal digits.

. CHKCODE -
~ ' 0 4 ' SSB exists and has been acquired

X'FF'

FlTFJCODE (hnct ion code)

x148'

~'49'

X'OO'

X'FF'

X'FF'

X'FF'

Code that indicates good pointer in FSB
block

Close all partitions

Close specified partition

File partition EDMF closed .
File partition EDMF open

Code that indicates good pointer in SSB
block

Code that indicates user description
block present

Code that indicates found appropriate
SSB block

SW2 -
XfFF' Entrance from macro

B.6.8 Return Codes

All return codes can be found in the right-most byte of Register

15 and they are listed below by hexadecimal digits.

X'OO' Everything 0. K .
~'04' Appropriate SSB block does not exist

B .6.9 Flowchart and Supplementary Diagram

Figures B.6.a - B.6. c contain the flowchart for the CLSEPROC

routine while Figure B. 6. d contains a supplementary diagram.
-

---?

Enter

CLSEPROC

---I-------
--...-.....--. e-..-..-,

Establish
Work Area

__1_- -... -.-.-*

I
i ~ e t I
I
I User Id
I
L-.

......-.....,,., V

Task Number

.- -- -. -- -

! entries . !

calling program

--
Y Yes

Figure B. 6.a: CLSEPROC Initialization

Requested f i l e

length of SSB SSB f i l e name? f i l e name?
/--

j 8 'i------p~
NO j Yes

Get next I SSB bloc* i

Yes j Close a l l
._I pa r t i t i ons?

descr ipt ion
present

1 (yes
I
I

pa r t i t ion ing desc.
i n SSB = length of

pa r t . desc. i n
CLSE request?

Descriptions equal?

+%- Yes

Figure ~ . 6 . b : SSB Check

4

-- A
Appropriate SSB

found

I

I Put addr of
F3B to 1

be removed
-in FSBLIST -.-------.- -.--. 2

I

Advance I
1 I FSBLIST

pointer

Indicate file
partition EDMF

.. - -- . . -

Close all \
partitions? (N B C O ~ = x ~ P B I ? p t x

\

Error Message:

SW1 = X'FF'?
issued for file

Put delimiter
(~ ' m ') at

end of FSBLIST

1

lieaove FSB
entries B i t to

Call FSBOP'IIR
---C

calling program
\

Figure B. 6. c: Closing SSB, Setting Up FSBLIST
and Bit'

FSBLIST

! . ..-. .. --,...-----.-.. - - . - . - . -- ..I
B y t e s 4

where Ai: Pointer t o a F i l e Status Block

Note: X1l?F" on a boundary indicates the end of the stack.

Figure ~ . 6 . d

d

APPENDIX C

CONlROL BLOCKS

C.l File Status Block

8 bytes User Identification
4 bytes Control Information

, 4 bytes Control--Address of user description block
Ic bytes Control--Pointer to previous FSB block
4 bytes Control--Pointer to next FSB block

00--null pointer FF--good pointer
L - . . " -----.- ...--I__.I. _ _. . . _ _ _ . _ _. _.-_

Notes on the File Status Block

1. Unless stated explicitly, all control information is 1 byte, all

addresses are 3 bytes.

C.2 Service Status Block (SSB)

4 bytes Control--Address of User's Authority
Item HEADER

lt bytes Control--Address of FCB ----- --- -
----.

2 bytes Length of Filename
54 bytes Filename
4 bytes Control Information
4 bytes Control--Address of FIB for filename
4 bytes Control--Address of FCB for filename TEXT
4 bytes Control--Address of user description

block
4 bytes Control--Address of core f o m t record
4 bytes Control--Address of corresponding FSB

block
4 bytes Control--Pointer to next SSB entry

00--null pointer FF--good pointer

Motes on the Service Status Block

1. Unless stated explicitly, all control information is 1 byte,

all addresses are 3 bytes.

2. The header appears on the first SSB block only--all subsequent SSB

entries contain only the text.

1st SSB block = 8 + 84 bytes = 92 bytes

all subsequent SSB blocks = 84 bytes

C.2.1 User Description Block

4 bytes Length of partitioning description
Partitioning description --

C. 3 Record Format Block (m)
.------ -----
Control Information

2 bytes Pointer t o f i r s t format
r e l a t ive t o first byte of RFB

2 bytes Last f0rtua.t number assigned --- -.--. ------.---
2 bytes Format number
2 bytes Control information
2 bytes Relative address of f i r s t format ----

---...

OF
----.-. . --.. CONTENTS

2 bytes Format number
2 bytes Control i.nf ormat ion
2 bytes Relative address of second

I . * -..-.------- -. --.-..-*. -..I--" ...---...

..-.- -..---

2 bytes ~ o m % n&ber
4 bytes Tyge of format
2 bytes Level number
2 bykes Repetition number
3 bytes Size of value FORMAT
1 byte Control information ENTRY
2 bytes blank
4 bytes Field protection data
2 bytes Length of a t t r i b u t e
n bytes Nl a t t r i b u t e name

- .-..*.-- --.- -.----- ..- -." .-...... . ---,--. >--"-.- ---..

Notes on the Record Format Block

1. A l l r e l a t ive addresses i n the Table of Contents a re r e l a t ive t o

the f irst byte i n the f i r s t format, hence a pointer t o the first

format is placed i n the header. This arrangement obviates the

need f o r changing re la t ive addresses i n the Table of Contents if

new formats a r e added t o the block.

2. Format numbers appear i n t h e Tbble of Contents i n order of t h e i r

appearance i n f i l e records.

3. The Type of Format f i e l d may be used t o indicate a program which
-

processes the fom-t;.

4. Like the s i ze of value entry, t he repe t i t ion number w i l l not appear
.

i n the format i f the format may repeat a variable number of times.

Variable repe t i t ion i s indicated by a b i t i n the control iniormation.

5 . Control information i n the format entry i s one byte long with the

following specification:

abcd eeOO

a: 0 Repetition number i s variable

1 Repetition number i s f ixed

b: 0 Value s i z e . i s variable

1 Value s i ze i s f ixed

c: 0 Attr ibute i s not i n the directory

1 Attr ibute is i n the directory

d: 0 Attr ibute optionally appears i n a record

1 Attr ibute appears i n every record

ee: 00 Value i s packed decimal

10 Value i s alphabetic

01 Unassigned

11 Unassigned

	Access Control and Retrieval Optimization Functions of the Supervisor for an Extended Data Management Facility
	Recommended Citation

	Access Control and Retrieval Optimization Functions of the Supervisor for an Extended Data Management Facility
	Abstract
	Comments

	tmp.1200594758.pdf.LrX3Z

