= 2
cnn \’ \ University of Pennsylvania

"% | Libraries |

UNIVERSITY of PENNSYLVANIA ScholarlyCOm mons
Technical Reports (CIS) Department of Computer & Information Science
April 1971

Access Control and Retrieval Optimization Functions of the
Supervisor for an Extended Data Management Facility

Judith Irene Hirsch
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation

Judith Irene Hirsch, "Access Control and Retrieval Optimization Functions of the Supervisor for an
Extended Data Management Facility’, . April 1971.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-71-21.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/825
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/825
mailto:repository@pobox.upenn.edu

Access Control and Retrieval Optimization Functions of the Supervisor for an
Extended Data Management Facility

Abstract

The purpose of the Supervisor in an Extended Data Management Facility (EDMF) is to direct the Facility's
handling of a user's request for service. The Supervisor fulfills its task through the use of five main
functions: Access Control, Retrieval Initialization, File Searching, Record Validating and Record
Formatting. The major and most important component of the Retrieval Initialization phase is the Retrieval
Optimization subfunction. This report is concerned mainly with the design and implementation of the
Access Control and Retrieval Optimization functions. Macro instructions are the mechanism through
which a user's program can call upon the ECMF. The Authority Item check is the EDMF's security control
over file access while the Prime Keyword Search is the method used to optimize the retrieval strategy. The
Authority Iltem check and the Prime Keyword Search are two of the major concepts of the Extended Data
Management Facility.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-71-21.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/825

https://repository.upenn.edu/cis_reports/825

University of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING
Philedelphia, Pennsylvania

TECHNICAL REPORT

ACCESS CONTROL AND RETRIEVAL OPTIMIZATION
FUNCTIONS OF THE SUPERVISOR
FOR AN EXTENDED DATA MANAGEMENT FACILITY

by

Judith Irene Hirsch

April 1971

Submitted to the
Office of Naval Research
Information Systems Branch
Arlington, Virginia

under
Contract NOOOlL-67-A-0216-0014
Research Project NR 0L49-153

Reproduction in whole or in part is
permitted for any purpose of the
United States Government

Moore School Report No. 71-21

ACCESS CONTROL AND RETRIEVAL OPTIMIZATION
~ FUNCTIONS OF T™HE SUPERVISOR
FOR AN EXTENDED DATA MANAGEMENT FACILITY

Abstract

T™e purpose of the Supervisor in an Extended Data Management
Facility (EDMF) is to direct the Facility's handling of a user's request
for service. The Supervisor fulfills its task through the use of five
main functions: Access Control, Retrieval Initialization, File Search-
ing, Record Validating and Record Formatting. The major and most
important component of the Retrieval Initialization phase is the Retrieval
Optimization subfunction. This report is concerned mainly with the design
and implementation of the Access Control and Retrieval Optimization
functions. Macro instructions are the mechanism through which a user's
program can call upon the EDMF. The Authority Item check is the EDMF's
security control over file access while the Prime Keyword Search is the
method used to optimize the retrieval strategy. The Authority Item check
and the Prime Keyword Search are two of the major concepts of the Extended
Data Management Facility.

Security Classification

DOCUMENT CONTROL DATA - R & D ’P
(Security classification ol title, body of abstract and indexing annotation must be enteéred when the overall report is classilied)
1. ORIGINATING ACTIVITY (Corporate author) 28, REPORT SECURITY CLASSIFICATION
The Moore School of Electrical Engineering UNCLASSIFIED
University of Pennsylvanisa 2b, GROUP
Phila., Pa. 1910k

3. REPORT TITLE

ACCESS CONTROL AND RETRIEVAL OPTIMIZATION FUNCTIONS OF THE SUPERVISOR
FOR AN EXTENDED DATA MANAGEMENT FACILITY

2 DESCRIPTIVE NOTES (Type of report and,inclusive dates)

Technical Report

8. AU THOR(S) (First name, middle initial, last name)

Judith I. Hirsch

8. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
April 1971 118 11
8a. CONTRACT OR GRANT NO. 9a8. ORIGINATOR'S REPORT NUMBER(S)

NOOO1k4-67-A-0216-0014
b. PROJECT NO.

NR 049-153

Moore School Report No. 71-21

c. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for any purpose of the
U. S. Government.

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research
Information Systems Branch
Arlington, Virginia

13. ABSTRACT

The purpose of the Supervisor in an Extended Data Management Facility (EDMF)
is to direct the Facility's handling of a user's request for service. The
Supervisor fulfills its task through the use of five main functions: Access
Control, Retrieval Initialization, File Searching, Record Validating and Record
Formatting. The major and most ilmportant component of the Retrievael Initialization
phase is the Retrieval Optimization subfunction. This report is concerned mainly
with the design and implementation of the Access Control and Retrieval Optimization
functions. Macro instructions are the mechanism through which a user's program
can call upon the EDMF. The Authority Item check is the EDMF's security control
over file access while the Prime Keyword Search is the method used to optimize
the retrieval strategy. The Authority Item check and the Prime Keyword Search
are two of the major concepts of the Extended Data Management Facility

BD 1473 T —

' NOV 65
S/N 0101-807-6811

Security Classification

Security Classification

LINK A LINK B LINK C
KEY WORDS

ROLE WT ROLE wT ROLE wT

Access control
Control blocks
File directory
File search
File status
Generalized file
Input parameters
Optimization functions
Retrieval
Storage
Subroutines

DD 2M..1473 (sack)

S/N 0101-807-6821

tiagn

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1
1.2

1.3

CHAPTER
2.1

2.2

2.3

2.4

2.5

The Extended Data Management Facility

The Supervisor of the EDMF

The Scope of the Thesis

2 THE COPEN FUNCTION
Definitions
2.1.1 Attribute~Value Pair
2.1.2 Record
2.1.3 Keywords
2.1.4 Keyword Lists
2.1.5 File and Directory
2.1.6 Generalized File Structure
2.1.7 Request Description
2.1.8 Entering the EDMF
Purpose of the Open Function
Access Control
2.3.1 Introduction
2.3.2 File ievel Check
2.3.3 Partitioning the File
2.3.4 User's Authority Item
Control Blocks
2.4.1 Service Status Block

2.4.2 File Status Block

Return to User -

iv

Page

': O = o & & o= =

T
o F w

16
16
T
18

20

22

23
2k

TABLE OF CONTENTS (continued)

Page
2.6 The EDMF's OPN Macro 25
CHAPTER 3 THE RETRIEVAL INITTALIZATION FUNCTION | 26
3.1 Purpose 26
3.2 Control Blocks ‘ 26
3.2.1 DMS Open 26
3.3 Retrieval Optimization 27
3.3.1 Prime Keywords 28
3.4 ISAM Keys 29
3.5 Record Format Numbers 30
3.6 Control Passed to the File Searching Function 31
3.7 The EDMF's RETR Macro 31
CHAPTER 4 THE CLOSE FUNCTION 32
4.1 Purpose 32
4.2 Control Blocks 32
4.3 Return to User 33
4.4 The EDMF's CLSE Macro 33
CHAPTER 5 SUMMARY 34
BIBLIOGRAPHY 35
APPENDIX A MACROS A-1 .
A.1l Open Macro A-1
A.1.1 (enerated Parameter List A-2
A.2 Retrieval Macro A-k

L)

A.3

TABLE OF CONTENTS (continued)

A.2.1 Generated Parameter List
Close Macro

A.3.1 Generated Parameter List

APPENDIX B RQUTINES

B.1

B.2

Routine OPNPROC

B.1l.1 Entry Points

B.1.2 Exit Points |

B.1.3 External Subroutine Calls
B.1l.4 Input Parameter List
B.1l.5 Register Conventions
B.1.6 Internal Work Area

B.1l.7 Internal Codes

B.1.8 Return Codes

B.1.9 Flowchart

Routine FIFDIRS1

B.2.1 Entry Points

B.2.2 Exit Points

B.2.3 External Subroutine Calls
B.2.4 Input Parameter List
B.2.5 Register Conventions
B.2.6 Internal ﬁbrk Area

B.2.7 Internal Codes

B.2.8 Return Codes

B.2.9 Flowchart -

vi

Page
A-6
A-T

A-8

B-1
B-1
B-1
B-1
B-1
B-3
B-3
B-4
B-6
B-8
B-8
B-1h
B-1L
B-14
B-14
B-15
B-16
B-16
B-1T
B-17
B-18

TABLE OF CONTENTS (continued)

B.3 Routine MACPROC

B.L

B.5

B.3.1
B.3.2
B.3.3
B.3.k
B.3.5
B.3.6
B.3.7
B.3.8

Entry Points

Exit Points

External Subroutine Calls -
Input Parameter List
Register Conventions
Internal Work Area
Internal Codes

Flowchart

Routine RETRIEVE

B.bh.1
B.k.2
B.Lk.3
B.Lh.k
B.k.5
B.4.6
B.bk.7
B.k.8

Entry Points

Exit Points

External Subroutine Calls
Input Parameter List
Register Conventions
Internal Work Area
Internal Codes

Flowchart and Supplementary Diagrams

Routine FORPROG

B.5.1
B.5.2
B.5.3
B.5.h
B.5.5
B.5.6

Entry Points

Exit Points

Input Parameter List
Register Conventions
Internal Work Area

Internal Codes

vii

Page
B-21

B-21
B-21
B-22
B-2h
B-24
B-25
B-26
B-30
B-30
B-30
B-30
B-30
B-31
B-32

B-35
B-47
B-h7
B-U7
B-k7
B-48
B-49
B-49

B.6

TABLE OF CONTENTS (continued)

B.5.7 Flowchart

Routine CLSEPROC

B.6.1 Entry Points

B.6.2 Exit Points

B.6.3 External Subroutine Callé
B.6.4 Input Parameter List
B.6.5 Register Conventions
B.6.6 Internal Work Area

B.6.7 Internal Codes

B.6.8 Return Codes

B.6.9 Flowchart and Supplementary Diagram

APPENDIX C CONTROL BLOCKS

C.l

c.2

c.3

File Status Block
Service Status Block
C.2.1 User Description Block

Record Format Block

viii

Page
B-49
B-5k
B-5k
B-54
B-54
B-55
B-56
B-57
B-5T
B-58
B-58

Cc-1
Cc-1
c-2
c-2

C-3

CHAPTER 1
INTRODUCTION
Today, there is a rapid and ever increasing growth ir the total
volume of information. This huge volume threatens to make the informa-
tion useless unless ways can be found to manage it. The purpose of the
Extended Data Management Facility (EDMF) is to provide a flexible,
general purpose, time-shared file management system for the orderly
accumulation and dissemination of information [9].

1.1 The Extended Data Management Facility

The Extended Data Management Facility is an extension of the data
management system that presently exists at the Moore School on RCA's
Spectra 70/46 Time Sharing Operating System (TSOS). The EDMF makes use
of the services offergd under TSO0S, especially the Data Management
System's Indexed Sequential Access Method (ISAM), and it also incorporates
its own routines into the operating system.

In order to encourage the use of the EDMF, it must be reldtively
simple to use. The EDMF simplifies for the user the problem of designat-
ing those records that he wishes to see. The user does not need to know
the actual addresses of the desired records but he merely must express
as a logical expression the characteristic contents of the records. The
EDMF then takes on the responsibility of determining the actual record
addresses and uses these addresses to retrieve the records. The heart
of the Facility is the implementation of the generalized file structure
and its general retrieval algorithm as suggested by Hsiao and Harary

in [8]. For an overall description of the EDMF, the reader is referred

to [9].

1.2 The Supervisor of the EDMF

The purpose of the Supervisor in the EDMF is to direct the Facili-
ty's handling of a user's request for service. In this capac.ty, the
Supervisor assumes the roles of "doorman", "foreman", "administrator",
and "dispatcher". It is at first as a "doorman" who accepts the service
requests and initiates their request handling routines. Then as a
"foreman", the Supervisor regulates the use of the primitive storage
and retrieval routines [6] and system subroutines, and also optimizes
the storage and retrieval strategy for a time-éharing environment. In
its role as an "administrator", the Supervisor controls the user's access
to files and validates the systems output of records to the user. It
is also a "dispatcher" who returns the results of the service to the user.

In directing the bhandling of the user's requests, the Supervisor
performs five main functions: Access Control, Retrieval Initialization,
File Searching, Record Validating, and Record Formatting. The major and
most important component of the Retrieval Initialization phase is the
Retrieval Optimization subfunction. The five wain functions in
combination with each other satisfy the above roles which the Supervisor
mst assume.

1.3 The Scope of the Report

This report is concerned mainly with the Access Control and
Retrieval Initialization Functions of the Supervisor. These functions
fulfill the role of "doorman" and partially those of "foreman" and
"administrator". Macro instructions are the "doorman's" entrance into
the request handling routines. The Prime Keyword search is the "foreman's"
method of optimizing the retrieval strategy and the check of the user's

Authority Ttem is the "administrator's" security control over file access.

A discussion of the macro instructions and the user's Authority Item

can be found in Chapter Two, the Open Function; while Chapter Three,

The Retrieval Initialization Function, contains a discussion of the

retrieval strategy.

CHAPTER 2

TE OPEN FUNCTION

2.1 Definitions

Before the Open Function can be discussed, the terms and concepts
which are basic to the EDMF must be given precise definitions. The
definitions used in this thesis are consistent with those in [7].
However, they will be found to be less formal and more descriptive.
2.1.1 Attribute-Value Pair

The most basic concept which must be defined is that of the
attribute-value pair. Let there be two sets, A and V. The elements
of A are those terms which are considered as "attributes", and the
element of V are those terms which are considered as "values". Let
a third set D be the subset of the Cartesian product A x 'V, whose
elcements are the ordered pairs of the elements of A and V. A single

element of D is called an attribute~value pair, and intuitively it

constitutes the basic element of information. Some examples of
attributes, values, and attribute-value pairs are shown in Example 1.
2.1.2 Record

A record R is a set of attribute-value pairs which collectively
convey some meaningful information. Often these attribute-value pairs
are referred to as the fields of the record. An example of R, a subset
of the set of all attribute-value pairs, is shown in Example 2. The
attribute-value pairs in this record convey to the reader information

about a book on the subject of public education.

la: A set of attributes
A = {author, year, topic, abstract, text}
1b: A set of values
V= {Lieberman, 1960, public education, [the compléte abstract
of a book], [the complete text of a book]}
lc: A set D of ordered pairs which are attribute-value pairs
A x V=D = {(author, Lieberman), (year, 1960), (topic,
public education), (abstract, [the complete abstract of a

paper]), (text, [the complete text of a paper])]

Example 1: Examples of attribute, values and
attribute~value pairs

R = {(author, Myron Lieberman),
(title, The Future of Public.Education),
(topic, public education),
(publisher, University of Chicago Press),
(year, 1960),
(abstract, [the complete abstract of the book]),
(text, [the complete text of the paper])}

Example 2: Record of a book on the subject
of public education

2.1.3 Keywords . -
A record can be characterized by any combination of the attribute-

value pairs which are in the record. Due to pragmatic considerations,

it would be desirable to have those attribute-value pairs which are

short and can be simply expressed, characterize the record. These

short attribute-value pairs are called ke 'ords, and will henceforth

be denoted symbolically by Ki’ i=12,...n. Thus we can refer to a

record R by referring only to the keywords in R. The record in Example

2 can be characterized'by the set of keywords shown in Example 3. In

general, the set of keywords of a record R is called an.igg§§ of the

record R and it is usually a proper subset of R.

The index of R = {(author, Myron Lieberman),
(title, The Future of Public Education),
(topic, public education),
(publisher, University of Chicago Press),
(year, 1960)}

Example 3: The keywords characterizing the
record in Example 2

At this point we would like to introduce a notational change
for the attribute-value pair. Hereafter an attribute-value pair will

be written in the following manner:

Attribute = Value

™is is the actual notation used in the EDMF for specifying

attribute~-value pairs.
2.1.4 Keyword Lists

Each record 1s also characterized by another parameter which is
not part of the actual information conteined in the record. This unique
number is the address of a record, which indicates the whereabouts

of the record in the computer storage.

Each keyword Ki in R may have associated with it the address of
another record R' which also contains the keyword Ki' Effectively
this address in R "points" to R' and for this reason it is called the
pointer of R with respect to Ki or the Ki-pointer of R. If tﬁe record

R!' is non-existent then the Ki pointer of R is known as the null pointer.

It will be assumed hereafter that every keyword has a pointer associated
with it. Thus we see that records containing a common ke&word Ki can
be linked by these pointers into a chain which is called a Ki-list.
Putting it more precisely, a Ki-list is a chain of records, each record
containing the keyword Ki’ satisfying the following five conditions:

1) Each of the pointers in the K,-1ist are distinct.

2) Each non-null pointer is the address of a record in the

K,-list only.

i
3) There is one record not pointed to by any other record in

the Ki-list. This is the beginning of the Ki-list.

4) There is one record which has the null pointer; this 18 the
end of the Ki-list.
5) For every record in the K;-1ist at the address a (n > 1),

there is a sequence of Ki-pointers

(al,ae, cees an)

Record
Address
001

001 is the \

HOLA - Beginning
of Ki—list

003

050

100

Ki 000 -« Null pointer
) indicates End of
. k i-list

Figure 1: An illustration of a Ki-list

such that:
i) a, i the address of the beginning of the Ki-list.
ii) the record at the address a, contains a K, -pointer

J i

aj+l for 3 =1, 2, .e., D=1,

This means that for a given Ki’ a record cannot be in more than
one Ki-list. The address of the first record in a Ki-list is known
as a Head-of-List Address or HOLA for short, and this term will be used
hereafter when referring to the beginning address of any Ki-list. In
Figure 1, a typical Ki-list is illustrated, showing the beginning and
the end of the list and the pointers which chain the records together.
2.1.5 File and Directory

A file is a set of records which completely contains all the
Ki-lists made up of those records. In other words, a file is a set;
whosg elements are records, which is the union of all the Ki-lists
which contain the records. The HOLA's of all the Ki-lists in a given
file must be carefully noted and kept separate from the HQOLA's of the
Ki-lists in another file because the same keyword, but with different
meanings, can occur in both these files.

Tis leads us to the concept of a directory for a fiie. The
directory associated with a file contains the HCLA's of all the Ki-lists

in that file. For each keyword K, used in the file, there is one entry

i
in tke directory, the form of the entry being shown in Example 4. More
precisely, a directory for a file is a sequence of m such entries where

m is the number of different keywords used in the file.

(Ki, 6, 2; olo:L,C}oz)

(K., 6, 2; 003, OOk)
4 y \

N\

The Directory

/“/?/

D

001 002 003 ook

K, 005 006 007
005 006 007 008 :

Ki 009 011 012
009 010 011 012

Ki 000 000 000 000

The File
Figure 2: Example of a Generalized File Structure

Showing the Logical Relationship Between
the Directory Entries and the Keyword Lists

-O'[-

(Ki’ D> By 805 855 ooy aihi)

Ki - the ith keyword in the file F.

n, - the number of records in F containing the
keywbrd Ki'

h; - the mmber of K ~1ists in F.

a;, - the HOLA of the s K,-1ist in F.

Exemple 4: Format of & directory entry

2.1.6 Generalized File Structure

We can now define a generalized file structure as a file with
its. directory. This file structure is called generalized because it can
be shown that many commonly used file structures such &s invérted, index-~
sequential, and multilist are actually special cases of the generalized
file structure [8]. An example of a generalized file structure is .
shown in Figure 2.

As was evident in the directory format, there may be more than

one list corresponding to a particular keyword K., but these lists are

17
mutually eXclusive because of the definition for lists presented
previously. In other words, & record containing the keyword K 'Y cannot
be in two different Ki'liStS-

However, since a record may have more than one keyword, it may be
in more than one keyword list. A record containing the keywords Ki and

Kj (with 1 ;é J), is a member of one Ki-list and one K,~1list simultaneously.

J
For example, if a record contains both the keywords AUTHOR = LIEBERMAN and
YEAR = 1960, then that record would be in both an AUTHOR = LIEBERMAN list

and in-a YEAR = 1960 list. This is illustrated in Figure 3, where the

- 12 -

020 AUTHOR = LIEBERMAN 080

080

080 AUTIOR = LIEBERMAN 110

YEAR = 1960 115

110 |[AUTHOR = LIEBERMAN 170

115

YEAR = 1960 000

170 |AUTHOR = LIEBERMAN 000

Figure 3: Example of intersecting Ki—list and K J-list
Ki: AUTHOR = LIEBERMAN

Kj: YEAR = 1960

-13 -

AUTHOR = LIEBERMAN list consists of records located at the addresses
020, 80, 110, and 170, and the YEAR = 1960 list consists of records
located at the addresses 030, 80, 115.
2.1.7 Request Description

When a person accesses a file, rarely does he want to See all
of the records in the file. Rather, he usually wants to see only that
part of the file which interests him. Such & partition can be accom-
plished by listing the addresses of the records which he wants. This,
however, is cumbersome and requires much research on the user's part
to find the addresses of the records in which he is interested. Another
way to partition the file would be to describe the records of interest
by listing thelr characterizing keywords in the form of a Boolean express-

ion. This expression is called a user's request description. Using

the propositional calculus, any Boolean expression can be uniquely written
as a disjunct of conjuncts, known as the Disjunctive Normal Form (DNF).

Some typical request descriptions could be

hba: AUTHOR = MYRON LIEBERMAN
4b: AUTHOR = MYRON LIEBERMAN A YEAR = 1960
Lc: (AUTHOR = MYRON LIEBERMAN A YEAR = 1960) V (AUTHOR = HIRSCH)

Example 4: Typical request descriptions

All the request descriptions used in the EDMF will be in Disjunctive

Normal Form.

- 14 -

A record satisfies a user's request description when all the
keywords in at least one of the conjuncts of the request description .
are in the record. A record containing only the keywords K, &.d K

3

satisfies the request description containing only one conjunct (Kl A K3),
but does not satisfy (K1 A K2 A K3). The problem of finding in a file,
" the addresses of records which satisfy a user's request description now
lies with the EDMF and not the user.
2.1.8 Entering the EDMF

There are two ways to enter the EDMF - either through & terminal
command or through a system macro. This thesis will discuss only the
aspect of the system macro. A discussion of the command entrance can
be found in [10].

It was decided that the best way for a non-conversational user
to enter the EDMF would be through the use of system macros. Each
macro instruction generates a group of assembly language statements.
One of the statements generated is a supervisor call. The supervisor
call instruction (SVC) enables the program to switch from any state
to the Interrupt Control State (P3), i.e., the SVC causes an interrupt.
It is in the state P3, through the use of the interrupt analyzer, that
the supervisor decodes the SVC number and determines which routine
should handle the interrupt. Statements that accompany the SVC in the
macro expansion supply the necessary parameters for the processing of
the user's request. Once the system knows how to respond to the interrupt,

it switches to state P2 where interrupt responses are handled. For a

diagramatic flow of the above process, see Figure .

-15 -

CONTROL
. STATE
OPEN
RAUTINE P
2
INTERRUPT ANALYZER
SVC 9
> SVC 10 —3y OPEN ROUTINE
SVC 11
—— P
= 3
USER PROGRAM USER PROGRAM
IN ASSEMBLY LANGUAGE WITH MACRO EXPANDED
OPEN MACRO > — P,
MACRO
— EXPANSION SVC 10
Figure 4: Diagram of Interrupt Handling

Process

-~ 16 -

Macro instructions are extremely useful since they are located
in a macro library accessible to all users. Each time a user writes a
macro instruction, the associated statements and the SVC are generated and
incorporated into his program. The only information the user needs to
know in using & macro is the proper way of calling it; all the other steps,
the generation of instructions and the SVC, are done by the assembler.

Necessary background material has now been discussed and the
remaining part of the chapter will devote itself to the open function.
2.2 Purpose of the Open Function

The purpose of the open function is to check the user's access
rights to a specified partition of a file, to set up the necessary control
blocks for processing the various service requests, and then to return
control to the user. ©Since the open function assembles the necessary
system control blocks for all the available service requests, it must
be the first function called upon by the user. There are two routines
that implement the open function. They are called OPNPROC and FIFDIRS1.
(Appendix B,l and B.2)

2.3 Access Control

2.3.1 Introduction

In any data management facility, the security and integrity of
the records are as important as the ease with which processing occurs.
A good system is one in which the security precautions are reliable
enough to insure file protection while simultaneocusly not encumbering
any of the processing mechanisms. Insuring the integrity of the files
encourages users to store their files in the data management facility,
and to enlarge the data base. Ease of using the system will encourage

frequent use of this data base, leading to an orderly and efficient

- 17 -

utilization of information storage and dissemination.
2.3.2 File Level Check
In the Extended Data Management Facility (EDMF), the protection
mechanism operates at three levels corresponding to the logical levels
in any file structure. These are the file level, the record level, and
the field level. This thesis will discuss only the file level check;
a discussion of the other two levels of protection can be found in [4].
In general, and as it presently exists under the TSOS Data
Management System (DMS), a file level check is concerned with the securi-
ty of the file as a whole, and controls anj access whatsoever to the
file. There are two possible types of file access -~ either the write,
or the read option. If a file has the write option, then & user can
update any or all of the existing file records, create new records,
and read from the entire file. If, however, the read option is in
effect, changes may not be made in the existing file, i.e., the user
may only see the records. The present TSOS DMS protection scheme is an
"all or none”" type of response; that is, either the entire file is accessi-
ble to the user, or access is completely denied and the user's request

is terminated. The important point here is that access is dependent on

the accessibility of the entire file.

But there certainly are cases when a user should have access to
certain portions of a file and not be entirely blocked out. For
exemple, let us suppose that we are dealing with a company's file, named
PRODUCTS IN PLANNING (PIP), which is a file of records consisting of
information on products currently in the planning stages. Possible

products could be televisions, radios, computers, etc. Let us also

‘suppose that a user (call him USER A) has the authority to read all

- 18 -

the records in this file except those pertaining to computers. Under
the current system, access to the file would be denied due to the

"all or none" phenomenon. Since USER a is not authorized to reference
any of the records pertaining to computers, he is denied access to the
entire file.

There are two possible ways to circumvent this problem. One would
be to set up a second file which would consist of a subset of the records
in the PIP FILE and would contain all the PIP records except those per-
taining to computers. Now, USER A would have a file that he could
access. But, what if there exists a USER B who is allowed to work with
all the records in the PIP file except those pertaining to televisions.
Do you set up another f£ile for him? This certainly would amount to a
duplication of information and a large waste of storage space.

The other and wore efficient way of avoiding the "all or none"
restriction is by devis.ng a method which would allow access only to.
those partitions of a file that a user is authorized to handle, and block
him out of those that are restricted to him. It is in this way that the
Extended Data Management Facility handles the problem of file protection.
In order to put this method into effect, there must be a way of validating
a user's author.zation and secondly, a way of partitioning a file. First,
we will discuss the method used to partition a file.

2.3.3 Partitioning the File

The expression used to partition a file for the open function 1is
the same type of expression that will be used in requesting the retrieval
of records. It is a logical expression in Disjunctive Normal Form (DNF)
where each element of a conjunct is a keyword of the file. This

partitioning method is very flexible since it can be used for any file in

- 19 -

RECORD 1 RECORD 2
AUTHOR = BROWN, CHRISTY AUTHOR = WEITZ, J '
TITLE = DOUN ALL THE DAYS TITLE = THE VAIUE OF NOTHING
PUBLISHER = STEIN AND DAY PUBLISHER = STEIN AND DAY
YEAR PUBLISHED = 1970 YEAR PUBLISHED = 1970

RECORD 3 ' : RECORD 4
AUTHOR = TRAVERS, MILTON AUTHOR = RAND, AYN
TITLE = EACH OTHER'S VICTIMS TITLE = WE THE LIVING

PUBLISHER = SCRIBNER PUBLISHER = RANDOM HOUSE, INC.

YEAR PUBLISHED = 1970 YFAR PUBLISHED = 1936

RECORD 5

AUTHOR = RAND, AYN
TITLE = ATLAS SHRUGGED

PUBLISHER = RANDOM HOUSE, INC.

YEAR PUBLISHED = 1957

Figure 5: Library Catalogue File

the system. In addition, it does not require that the user know the
actual addresses of those records that he is interested in.

For purposes of illustration, let us say we had a library catalogue
file with only the five records that appear in Figure 5. One partition
of this file would be those records which refer to books that were
publisued by Random House, Inc. in 1936. A DNF description would
appear as:

(PUBLISHER = RANDOM HOUSE, INC. A YEAR PUBLISHED = 1936)
Only record 4 satisfies this description.

A second partition would be those books published by Stein and Day
and those published by Random House, Inc.

(PUBLISHER = STEIN AND DAY A PUBLISHER = RANDOM HOUSE, INC.)
Recordé 1, 2, b, and 5 satisfy this description.
A third partition might be those books published by Stein and Day
in 1970 and books that were published in 1957 |
(PUBLISHER = STEIN AND DAY A YEAR PUBLISHED = 1970) V
(YEAR PUBLISHED = 1957)
The satisfactory records here are 1, 2, and 5.
2.3.h User;s Authority Item

In order to validate a user's authorization to access a file, the
system must obtain information concerning the user's access rights to
that particular file. This information could be stored in a record at
the head of each file. This type of security system would be file-
oriented. A

The EDMF does not take this approach but rather a user-oriented
one. The EDMF creates a system file which is known as the Authority

Item file. This file consists of a set 5f records with one record for

each user. Each record is an individual user's authority item (UAI).

The UAI's contain information pertaining to the user's access rights to
the files maintained by the system. Therefore, by exemining a specific
user's authority item the system can determine to what degree the user
is aliowed to utilize the existing files.

There are two advantages to this user-oriented type of protection.
First of all, since all authorizing information is stored in a system
file, it is better protected than if it were stored at the head of a
user file. 1In this case, only the system is allowed to handle the
information, thereby making the chance of user interventiop very slight.
T™e second advantage is that updating authority information is quite
routine. The user's authority information is all stored in one place =~
the User's Authority Item. Since the system file's internal format is
consistent with the internal format of the user files, the same retrieval
and updating routines may be used. Additional processing routines for
vhe authority items are unnecessary, consequently making the most
efficient use of the EDMF retrieval and updating routines.

Upon the issuance of a call to the open function, the user's
authority item is referenced. If access to the requested partition of
a file is granted, processing continues with the necessary system control
blocks being established; if access is denied, the system returns control
to the user with an explanatory message.

2.4 Control Blocks

When access to a file is granted, the open function makes entries
into two important system control blocks. One is the Service Status

Block and the other is the File Status Block.

-

2.4.1 Service Status Block

The Service Status Block (SSB) contains status information about

every file processed by a user during a TSOS session [9]J. 1t is user-
oriented, which means that each user of the system has his own SSB,
containing information relevant to only those files which he is using.
The SSB is created when a user logs on to TSOS, remains with the user's
task throughout its existence in TSO0S, gnd is destroyed when the user
logs off.

T™e purpose of the SSB is to eliminate duplicate retrievals of
control information about the user files. It is certainly more worth-
vhile to use a small amount of storage space to hold the control informa-
tion, than to spend processing time to re-retrieve it. The problem can
best be illustrated as follows. Suppose a user opens & file under the
system and then tries to retrieve some informationm. Due-to the structure
~of the TSOS system, the retrieve request, as far as the system is concerned,
is a separate entity from the previous open. This means that the pro-
cessing routine for the retrieval must be able to check that the requested
file has been previously opened. For security reasons, this information
is kept in the SSB in privileged system memory. The first file to be
opened by a user results in information being stored in the SSB section
created during logon. All subsequent file openings cause additional SSB
sections (one per each file partition) to be chained to the initial sec-
tion in a linked list. Thus, each user's SSB can grow as the number of
files or their partitions referenced during & session grows. Consequent-

ly, there is one SSB section for each file partition that is requested.

- 23 =

One important point to note is that a file need not be opened
to have an entry in the user's SSB. (See Chapter L4) What is relevant
is whether or not the file's control information is already in storage.
This could be the case if the file had been previously opened and then
closed. If the file's control information is in storage, then addresses
to this information can be found in the SSB. This procedure saves
unnecessary retrievals and the waste of éuplicate processing time.
2.4.2 File Status Block

The File Status Block (FSB) contains status information about every

file that is currently being processed by any user during a TSOS session.
It is file-oriented which means that an entry is made in the FSB each
time & user opens some partition of a file. This FSB entry is established
immediately after the SSB block is created. Each file referenced during
a TSOS session has its own linked 1list whose entries include the follow-
ing information: the user's Id, the type of open requested, and the
partition of the file that has been opened.

The purpose of the FSB is to establish priorities relative to the
use of the file. The problem can be illustrated as follows. Let us
suppose that two users, USER A and USER B, want to work with FILE 1.

USER A wants to read from the file while USER B wants to update it. Let
us also assume that USER A issued his open request first. Then the
system, by referencing the FSB, could establish that USER A has the
priority and permit him to read from the file, while blocking USER B from
updating it. Otherwise, USER A could possibly receive erroneous informa-

tion.

- 24 -

Now let us luok at an example where partitioning plays a part.

Going back to our library catalogue example (Figure 5), suppose that
USER A wvants to update that partition of the file which satisfies the
DNF description
PUBLISHER = RANDOM HOUSE, INC. A YEAR PUBLISHED = 1936
Recall that record 4 is the only member of this partition. ILet us
also suppose that USER B wants to read from the partition satisfying
(PUBLISHER = STEIN AND DAY) V (PUBLISHER = RANDOM HOUSE, INC.)

The satisfactory records are 1, 2, 4, and 5. Again, USER A issued his
open request first and therefore had priority. But, the only requested
record that USER A and USER B have in common is record 4. The system
refercnces the FSB chain for the library catalogue file to determine
the position of USER A's entry. USER A's entry precedes USER B's in
the chain and therefore, A has priority. USER A is allowed to update
record 4 while USER B is blocked out. But, USER B is allowed to read
records 1, 2, and 5.

Te individval FSB entries remain in the file list until the user
closes the file. It is at this time that the user no longer holds any
position in the priority list and therefore his FSB entry is removed.

2.5 Return to User

After both the SSB and FSB have been constructed, the system returns
control to the user. If the user entered the system via an SVC call
issued from a program, then control is returned to the instruction follow-
ing the SVC call. If, however, entry Qas from a command, then control
is returned to the Terminal Command Processor which returns control to
the user at the terminal. The user, now in control, is free to continue

the execution of his program or call upon any other functions of the EDMF.

- 25 -

2.6 The EDMF's OPN Macro

One way of initiating the open function (see Sect. 2.1.8) is
through the use of the EDMF macro named OPN. The OPN macro has three
required parameters. One 1s the requested file name. A second is the
type of open requested, i.e., either update or read. The third one
can be either the actual partitioning description or the address of
where this description can be found. For a more detailed discussion

of this macro, please see Appendix A.l .

CHAPTER 3

THE RETRTEVAL INITTALIZATION FUNCTION

3.1 Purpose

The main purpose of the Retrieval Initialization (RI) function

is to optimize the retrieval processing and to obtain necessary informe-
tion for the actual record retrieval. This information includes prime
keywords, ISAM keys and Record Format numbers. But, before this informa-
tion is obtained, the control blocks that were established by the open

function must be checked.

3.2 Control Blocks

In order for the processing of the actual retrieval mechanism to
start, the user must have previously 1ssued a satisfactory open request.
If this was the case, then there is an SSB entry for that partition of the
file that he wishes to reference. . As the first step in the processing
of the RI function, it checks the SSB entries. If the required entry
is found, then a TSOS DMS open macro is issued. If the SSB eﬁtry does
not exist, the processing of the retrieval initialization function is
terminated and an explanatory error message is returned to the user.
3.2.1 DMS Open

The TSOS DMS open must precede any call fﬁr the primitive storage
and retrieval routines. Without the DMS open, the primitive routines
cannot access the file. The primitive routines actually perform,
through the data management facilities provided by the operating system,
the input and output of records for other system- components. These
routines handle the actual reading and writing of the data records,
the manipulation of the files' directories, and the generation and

updating of the records and directories of the files.

- 26 -

In processing the retrieval optimization algorithm, the RI
function needs to reference the file's directory. In order to use
the directory routines, a DMS open must be issued. This brings us to
an important point relative to the issuance of the DMS open. There
are two possible times that the DMS opern macro could be issued: either
during the processing of the EDMF's open function or during the'RI function.
It was decided that the best time would 5e during the processing of the |
RI function. This decision was made for the following reason. Once a
DMS open is issued, entry into the opened file is blocked to- other users
until a DMS close is issued. The routines that actually require a DMS
open, that is, the primitive routines that handle the requested file's
directories and/or records, are not needed until the RI phase of the EDMF.
Therefore, the issuance of a DMS open during the EDMF's open function
would block the requested file from other users for a 1oﬂger period of
time than necessary.

3.3 Retrieval Optimization

In an attempt to make the retrieval system as efficient as possi-
ble, an optimizing retrieval method was needed to minimize the time re-
quired to process a retrieval request. The algorithm chosen for the
optimization phase was part of the General Retrieval Algorithm as suggested
by D. Hsiao and F. Harary in their paper titled "A Formal System for
Information Retrieval From Files" [8]. The first sﬁep of the algoritim
involves the selection of prime keywords from the user's DNF description

of requested records.

- 28 -

3.3.1 Prime Keywords
As you recall, each user's DNF request description consists of

one or more conjuncts whose elements are keywords of the file. For
example, a possible DNF description could be

(K; MK, AK3) vV K,
where the Ki are keywords of the file. For the purposes of this example
let us say that

K,: AUTHOR = SMITH

K,: YEAR = 1964
TOPIC = MATH

K): AUTHOR = CCHEN
Our description would then appear as follows:
(AUTHOR = SMITH A YEAR = 1964 A TOPIC = MATH) V (AUTHOR = COHEN)
Associated with each of the keywords. in the file's directory is the num-
ber of records in the file in which the keyword appears. The prime
keyword is defined as that keyword of the conjunct which appears in
the least number of records in the file. Going back to our example:
let N be the number of records in which a keyword appears, and let the

following correspondence be established:

Keyword N
Kl AUTHOR = SMITH 10
X, YEAR = 196k 15
K3 TOPIC = MATH 2
Kh AUTHOR = CCHEN 15

For the first conjunct (K1 ANK, A K3), K3 would be the prime keyword

since only 2 records exist in the file that contain TOPIC = MATH. The

-

prime keyword for the second conjunct mst be Kh since it is the sole

member of the conjunct.

Now, how does the designation of prime keywords relate to optimizing
the retrieval? First of all, we only want to retrieve those records
that satisfy each conjunct. Since a record can only satisfy a conjunct
by containing every keyword in the conjunct, all satisfactory records
must contain the prime keyword. Thus searching the file using the prime
keyword, i.e., actually retrieving the léast number of records that
could possibly satisfy the expression, minimizes the costly time of actual
retrieval and thereby results in an optimum retrieval scheme.

The selection of the prime keywords is accomplished in a routine
called RETRIEVE. The RETRIEVE routine also picks up the ISAM keys.
3.4 ISAM Keys

In order for the primitive routines to actually retrieve records,
they must know the locations of the requested records. The address of
the record location depends on the type of access method used to store
the records. The EDMF utilizes RCA's TSOS Data Management System Indexed

Sequential Access Method (ISAM) for device level input/output. In this

access method, each record of a file is assigned a key, a number from

0 to 99,999,999. This number allows one to refer to a record by a

logical address (its ISAM key) instead of a physical disk address [6].
Once the prime keyword for & conjunct is established, the RETRIEVE

routine must pick up the corresponding ISAM keys for the actual record

retrieval. Again, the RETRIEVE routine returns to the directory.

Associated with each keyword in the directory are the head of list

addresses (HOLA). These head of list addresses are ISAM keys whose records

contain that keyword [3]. The RETRIEVE routine then makes a list of all

HOLA's that correspond to the prime keywords of the description. Once

this is finished, corresponding record format numbers must be established.

3.5 Record Format Numbers

One of the major design criteria used in determining the form of
the EDMF records and their control information is as follows. As much
information as possible should be removed from the record and stored
as file control information. This prevents duplication of information
appearing in many records, thus making files smaller. In other words,
general structural information is centralized into one file control
block rather than decentralized in the individual records.

When records are collected into a file, the usual case is that all
records have similar attributes, because they contain the same type of
information. For example, &ll records in & file of library books are
likely to contain the attribute "Author". Thus it is reasonable to
expect that there are only a limited number of different éttributes in
a file. In order to save space in the file, the attributes are removed
from the records and placed in a file control block called the Record
Format Block (RFB). Associated with each attribute in the RFB is a for-
mat number. It is this format number and not the entire attribute that
is stored in the record [9]. A detailed specification of the RFB can be
found in Appendix C.3 .

After a record has been retrieved from disk, if is necessary for
the record validating function [4] to determine if it satisfies the user's
description. In order to do this, it must check to see if all the key- |
words of a conjunct can be found in the record. Since only the format
numbers and not the actual attributes are stored in the record, it is
necessary to determine the corresponding format numbers before the record

validating function can operate. The program that performs this service

for the RI function is called FORPROG. It checks the attributes
in the user's request description against those in the RFB and then
makes a list of corresponding format numbers.

3.6 Control Passed to the File Searching Function

Once the lists of prime keywords, ISAM keys, and Record Format
numbers are established, the work of the Retrieval Initialization
function is finished. The lists and supervisor control is then passed
to the File Searching Function [4]. After the File Searching, Record
Validating and Record Formatting functions [4] have completely processed
the request, the system initiates a DMS close macro. The file can now
be actively accessed by other users subject to the priorities established
in the File Status Blocks.

3.7 The EDMF's RETR Macro

One entrance to the Retrieval Initialization function is through
the use of the EDMF's RETR macro. This macro has six possible parameters.
Of these six parameters at least three and not more than five may appear
in one macro call. Two of the required parameters are the file name and
the output specification. The third required parameter can be either the
user's retrieval request description or the address where this descrip-
tion can be found. The fourth parameter, which is optional, is the maxi-
mun number of satisfactory records that the user wants retrieved. If
this parameter is omitted, all the records satisfying the request descrip-
tion will be outputted to the user. The fifth parameter would be a label.

For a more detailed discussion of the RETR macro, see Appendix A.2.

CHAPTER L4

T™E CLOSE FUNCTION

4.1 Purpose

The purpose of the close function is to remove a user's priority
hold over a specified partition of a file. A user initiates the EDMF's
close function when he no longer desires to work with the partition of
a file that he had previously opened. The close function makes necessary
changes in the control blocks, the SSB and FSB, to indicate that the
user has finished all processing of the specified partition of the file.
Once this has been done, the user no longer has access to the partition.
If he wishes to work with it again, he must re-initiate the EDMF open
function. The close function is therefore the last EDMF function that a
user would call upon. The routine that implements the close function is

called CLSEPROC. (Appendix B.6)

k.2 Control Blocks

| During the processing of the open function, a Service Status Block
and a File Status Block were created (see Section 2.4). The FSB entry
established for the user a position in a priority 1ist relative to the
use of the specified file partition. Now that the user ﬁas finished
vorking with that partition, he should not maintain his position in the-
priority list. He no longer has the right to block out other users from
accessing the records of the partition. Therefore, the system removes
his FSB entry from the priority list and also indicates in the corres-
ponding SSB entry that the EDMF close function has been referenced and

that the partition is not open for his use.

-3 -

- 33 -

4.3 Return to User

After both the FSB and SSB have been updated, the system returns
control to the user. The user is now free to continue processing any
other files that he had opened, initiate the EDMF open function for

another file partition or terminate his session.

4,h The EDMF's CLSE Macro

One entrance to the close function is through the use of the EDMF's
CLSE macro. This macro has three possible parameters. Of these three

parameters at least one, and not more than two, may appear in one macro

call. The required parameter is the file name. The optional one can

be either the actual partitioning description or the address of where this

description can be found. If the optional parameter is omitted, the

system assumes that the user wants to close out all the partitions of the
specified file that he had opened. Otherwise, only the specified parti-

tion is closed. For a more detailed discussion of the CLSE macro, see

Appendix A.3 .

CHAPTER 5

SUMMARY

The Extended Data Management Facility (EDMF) was implemented to
provide a general purpose data management system for the orderly accumu-
lation and dissemination of information. The EDMF utilizes a generalized
file structure and an efficient retrieval-algorithm for efficient data
management.

It was the purpose of this thesis to discuss a portion of the
Supervisor's task in the EDMF. The task is to direct the Facility's
handling of a user's request and by so doiﬂg, the Supervisor assumes
the oles of "doorman", "foreman", "administrator", and "dispatcher".

In order for the Supervisor to fulfill its task and satisfy its roles,

it performs five main functions: Access Control, Retrieval Initializationm,
File Searching, Record Validating, and Record Formatting. The last three
functions, File Searching, Record Validating and Record Formatting, are
the functions which partially fulfill the roles of "foreman", "administra-
tor" and "dispatcher". They are discussed in detail in [4]. This thesis
has discussed the Access Control and Retrieval Initialization Functions
with special emphasis on the Retrieval Optimization subfunction.

These functions fulfill the role of "doorman" and partially those
of "foreman" and "administrator". As you remember, macro instructions
are used as the "doorman's" entrance into the request handling routines.
The Prime Keyword search (Retrieval Optimization subfunction) of the user's
DNF Boolean request expression is the "foreman's" method of optimizing the
retrieval strategy. The "administrator's" rble is fulfilled by the Access
Control function. It maintains the security control over file access by

checking the user's authority item before processing his request.

-~ 34 -

- 35 -

BIBLIOGRAPHY

Chen, T., et al., "An interim Report on the Tmplementation of the
Integrated Facility," Project Report, The Moore School of Electrical
Engineering, University of Pennsylvania, April, 1970.

Corwin, B., et al., "An Integrated Information Storage, Retrieval
and Dissemination Facility," Project Report, The Moore School of
Electrical Engineering, University of Pennsylvania, June, 1969.
Desiato, B., "Directory Constructing and Decoding in a Generalized

File Structure," M.Sc. Thesis, The Moore School of Electrical

Engineering, University of Pennsylvania, work in progress.
Ets, A. R., "The File Searching, Record Validating and Record For-
matting Functions of the Supervisor for an Extended Data Management

Facility," M.Sc. Thesis, The Moore School of Electrical Engineering,

University of Pennsylvania, August, 1970.
Gana, J., "A Command and Query Language Assembler for an Extended

Data Management System,” M.Sc. Thesis, The Moore School of Electrical

Engineering, University of Pennsylvania, work in progress.
Horton, M., "Reading, Writing, Creating and Updating Records and

Files in a Generalized File Structure," M.Sc. Thesis, The Moore

School of Electrical Engineering, University of Pennsylvania, work in
progress.
Hsiao, D. K., "A File System for a Problem Solving Facility,"

Ph.D. Dissertation, The Moore School of Electrical Engineering,

University of Pennsylvania, May 1968.
Hsiao, D. K. and Harary, F., "A Formal System for Information

Retrieval From Files," Communications of the ACM, Vol. 13, No. 2,

February, 1970.

- 36 -

9. Manola, F., "An Extended Data Management Facility for a General

Purpose Time Sharing System," M.Sc. Thesis, The Moore School of

Electrical Engineering, University of Pennsylvania, work in progress.
10. McDoneld, J., "A Command and Query Language Interpreter for an

Extended Data Management System," M.Sc. Thesis, The Moore School

of Electrical Engineering, University of Pennsylvania, August, 1970.
11. Wexelblat, R., "The Development and Mechanization of & Problem

Solving Facility," Ph.D. Dissertation, The Moore School of Electrical

Engineering, University of Pennsylvania, December, 1965.

APPENDIX A

MACROS

A.1 Open Macro

Name: OPN

Type: Keyword

Four possible keywords - maximum of three permissgble

at one time - minimum of two required.

Required

1) FILENAM - name of the file (up to 54 characters)

2)*(a) DESCRIP -

¥*(b) DESADIR -

the actual partitioning logical
expression in DNF form (up to 127
characters, due to the system's
restriction on the length of para-
meters). Single quotes must enclose
the expression and any internal quotes
or cmpersands must be doubled. See
the examples.

this parameter is mmemonic for
description address and it must be
used when the desired DNF partition—A
ing expression is longer than 127
characters. This necessitates the
placement of the logical expression
in an area external to the macro
and it is referenced by a symbolic

address.

Optional
1) TYPE - the type of open requested

(a) READ - can only read from the file.
befault case.

(b) UPDATE - can read and write to the file.

Examples of Macro Calls

1) OPN FILENAM=$HORTON MULTTES3, TYPE=READ,DESCRIP="'AUTHOR=
BENNET'

2) OPN FILENAM=MULTTES3, TYPE=UPDATE, DESADDR=LOGEXP1

. LI} .

LOGEXP1 DC C'MONTH=MAY && YEAR=1965 ''OR'' KEY PHRASES=INFORMATION
STORAGE AND RETRIEVAL && PUBLISHER=THE MOORE SCHOOL
OF ELECTRICAL ENGINEERING OF THE UNIVERSITY OF

PENNSYLVANIA'

Note: * - Only one of these may be used in one macro call.
A.1.1 Generated Parameter List

The OPN macro generates a parameter list whose address is placed
in Register 1 and which is passed on to a handling routine via an SVC

call. The generated parameter list has the following format:

Bytes Content
0-1 Length of file name
2-55 File name (left justified with spaces)
56 Code for type of open
X'42' -~ Read
X'43' -- Update

57T - 59 Address of partitioning logical expression

-

60 ~ 63 Length of partitioning logical expression
64 - 190 Partitioning logical expression if
included in macro
191 Code for presence of partitioning
description

X'00' =-- No description
X'FF' -- Description present

A.2 Retrieval Macro
Name: RETR

Type: Keyword

Six possible keywords - maximum of five permissable

at one time - minimum of three required.

Required

1) FILENAM - name of the file (up to 54 characters)

2) OUTSPEC - output specification (up to 10 characters)

(a) CORE - output is in special core format [4] in

core to be used by program

(b) COUNT - the system returns with the number of

satisfactory records and not the

actual records

(¢) PRINT - output is sent to the printer

(&) TTY - output sent to teletype. Default case.

3) *(a) DESCRIP -

*(b) DESADDR -

the actual partitioning logical
expression in DNF form (up to 127
characters, due to the system's
restriction on the length of param-
eters). Single quotes must enclose
the expression and any internal quotes
or ampersands must be doubled. See

the examples.

this parameter is mnemonic for

description address and it must be
used when the desired DNF partition-

ing expression is longer than 127

characters. This necessitates the

- placement of the loglcal expression

in an area external to tue macro and
it is referenced by a symbolic address.
Optional
1) RECNO - the number of desired records satisfying
the description. If this parameter is
omitted, all the records satisfying the
request will be presented to the user.
2) LABEL - name associated with RETR macro will be used
’ ' in a CONTINUE [97.
- Examples of Macro Calls
" 1) RETR FILENAM=MULTTES],RECNO=10,DESCRIP='AUTHOR=SMITH &%

=196l ''OR'*' TOPIC=LISP',CUTSPEC=PRINT

2) RETR FILENAM=MULTTES3, CUTSPEC=CORE, DESADDR=LOGEXP2, LABEL=
AGAIN
3) RETR FILENAM=MULTTES] , CUTSPEC=COUNT, DESADDR=LOGEXP2

LOGEXP2 DC C'AUTHOR=MANOLA &% YEAR=1970 &§& TOPIC=INFORMATION
STORAGE AND RETRIEVAL && PUBLISHER=THE MOORE SCHOOL
OF ELECTRICAL ENGINEERING OF THE UNIVERSITY OF

PENNSYLVANIA ''OR'' TOPIC=MATHEMATICS'

Note: ¥~ Only one of these may be used in one macro call.

A.2.1 Generated Parameter List
The RETR macro generates a parameter list whose address is placed
in Register 1 and which is passed on to a handling routine via an SVC

call. The generated parameter list has the following format:

Bytes Content
0-1 Number of requested records to be
retrieved

X'0000' -~ A1l records. Default case.

2 -6 Output specification. CORE, COUNT, PRINT
or TIY.

T7T-1 Label

12 - 13 Length of file name

14 - 67 File name (left justified with spaces)

68 Function code

X'22' -~ Retrieval code

69 - T1 Address of logical expreséion

T2 - 75 Length of logical expression

76 - 202 Logical expression if included in the macro

A.3 Close Macro
Name: CLSE
Type: Keyword
Three possible keywords - maximum of two permissable
at one time -~ one required.
Required
1) FILENAM - name of the file (up to 54 characters)
Optional
1)*(a) DESCRIP - the actual partitioning logical
expression in DNF form (up to 127
characters, due to the system's
restriction on the length of para-
meters). Single quotes must enclose
the expression and any internal quotes
or ampersands must be doubled. See
the examples.

*(b) DESADDR - this parameter is mnemonic for
description address and it must be
used when the desired DNF partition-
ing expression is longer than 127
characters. This necessitates the
placement of the logical expression
in an area external to the macro
and it is referenced by a symbolic

address.

A-8

Examples of Macro Calls

1) CLSE FILENAM=$HORTON.MULTTES3
2) CLSE FILENAM=$HORTON.MULTTES3,DESCRIP="'AUTHOR=B"NNET"
3) CLSE FILENAM=MULTTES3,DESADDR=LOGEXP3

LOGEXP3 DC C'MONTH=MAY &% YEAR=1965 "'OR'' KEY PHRASES=INFORMATION
STORAGE AND RETRIEVAL &% PUBLISHER=THE MOORE SCHOOL
OF ELECTRICAL ENGINEERING OF THE UNIVERSITY OF

PENNSYLVANIA']

Note: * - Only one of these may be used in one macro call.
A.3.1 Generated Parameter List

The CLSE macro generates a parameter list whose address is placed
in Register 1 and which is passed on to a handling routine via an SVC

call. The generated parameter list has the following forwmat:

Bytes Content
0-~1 Length of file name
2 - 55 File name (left justified with spaces)
56 Code for type of close
X'48* -~ Close all partitions of the
file
X'49' -~ Close only the specified
partition
57 - 59 Address of partitioning logical expression
60 - 63 Length of partitioning logical expression
64 - 109 Partitioning logical expression if

included in the macro

APPENDIX B

ROUTINES

B.1l Routine OPNPROC

The OPNPROC routine is the first of two routinés that implement the
Open Function of the EDMF. This routine checks the user's access rights
to the specified partition of a file and sets up the SSB and FSB control
blocks.
B.1l.1 Entry Points

OPNPROC has three entry points. The entrance via an SVC call is at
OPNPROC while the command entrance is at COMDOPN. The FIFBLOCK entrance
is used when only the FCB for the File of Files (FIF) is needed.
B.1.2 Exit Points

There is only one exit point for this routine. It pegins at BRETURN
where control is returned to the calling program.
B.1.3 External Subroutine Calls

There are eight external subroutines that may be called upon by
OPNPROC. One is AIRETR which retrieves the user's authority item. A
second is AUTHCHK which checks the user's access rights to the specified
partition of a file. A third is to the location ESQCAT to obtain the
task number. A fourth external subroutine is FIFDIRS1. FIFDIRS1 is used
to retrieve the File Information Block (FIB) for the specified file. The
following three are entry points in the SSBOPTR routine [9]. SSBACQR is
used to obtain the SSB chain for a specified user. SSBLOGON is used to
establish the SSB chain if it has not already been done and SSBGTNU is

used to obtain a new SSB block to 1link to the user's SSB chain.

B-1 -

The eighth external subroutine is FSBOPTR. This subroutine is used

to establish the FSB entries.

The DSECTS that are associated with the

SSBOPTR and FSBOPTR routines are the following:

Name
SSB

SSBHDR
SSBUAI
SSBI'IF
SSBTXT

SSBFNAM

SSBCL

SSBIIB
SSBIFCB
SSBDTBIN
SSBDTAB
SSBCREC
SSBISB
SSBCTLG

SSBPTR

" FSBDSADR

Bytes
DSECT

0-1
0
u
8 -9l
8

6l

67
6l
65
66 - 67
68 - T1
72 - 75
76
r -9
80 - 83
84 - 87
88

89 - 91

DSECT
o0-1
8 - 11

12 - 15

Content

SSB Header

Address of User's Authority Item
Address of FCB for File Information File
SSB text

2 bytes - length of file name
54 bytes - file name

Control Information

Type of request

Indicator - EDMF open

Unuse&

Address of File Information Block (FIB)
Address of File Control Block (FCB)
Open description indicator

Address of user description block
Address of Core Format of the record
Address of File Status Block

Control Information for pointer

Pointer to next SSB block

User Identification -
Control Information

Address of user's partitioning description

Name Bytes Content

FSBLTBLK 16 - 19 Pointer to previous FSB block in chain
FSBCTRL 20 Control Information

FSBNTBLK 21 - 23 Pointer to next FSB block

B.l.4 Input Parameter List
The address of the input parsameter list (PARAMOP) must be in

Register 1 and Register 13 must contain the address of the calling

routine's save area.

Neme gzﬁggi antent

PARAMOP DSECT

FLNMLN 0-1 Length of file name

FLNAME 2 - 55 File name (left justified with spaces)

FUNCODE 56 Code for type of open requested

LOGEXPAD 57 - 59 Address of partitioning logical expression

LNLOGEXP 60 - 63 Length of partitioning loglcal expression

LOGEXP 64 - 190 Partitioning logical expressioﬁ if included
in OPN macro

DESCODE 191 Co%i for presence of partitioning descrip-

on

B.1l.5 Register Conventions

The registers in OPNPROC are assigned in the following menner:

Register Utilization
0 Not used
1 Address of parameter list given to

called subroutine. Miscellaneous use.
2 Miscellaneous use.
Base for_pPNPROC

4 Miscellaneous use

Register Utilization
5 Address and base of SSB
6 Counter for number of charactcrs in User

Id. Miscellaneous use.

T Miscellaneous use

8 Address of current SSB block

9 Address and base of SSBTEXT
10 Length of requested file name
11 Address and base of OPNPROC work area
12 Address and base of input parameter list

(PARAMOP)

13 Address of OPNPROC save area

1L Return address in OPNPROC

15 Subroutine call address. Error codes.

B.1.6 Internal Work Area
The internal work area (QEENRQ) used by OPNPROC also contains the
parameter lists for some of the routines called by OPNPROC. The DFLISTA

list is passed to AUTHCHK while PAROPEN is passed to FIFDIRSl. The work

area has the following format:

Name Bytes A Content

OPENRQ DSECT

DPARM o -17 Parameter area for error messages

RETAREA 8 - 11 Address of area to return to after call~
ing subroutine to check user's authority

DPLISTA 12 - 95 Parameter list passed to AUTHCHK

DADRAT 12 - 15 Address of User's Authority Item

DADREC 16 - 19 Address of record to be checked

DFNLEN 20 - 21 Length of file name

Name

DFTILNAM

DFDADEX

DFDADDR
DFDLEN

DSERREQ

DINCTL

DNADDR

DNAKIB

OPRQMPAR

OPSAVE

ATMODEAR

TMODEAR
USERID

' FCBFIF

FIFKYARG
PAROPEN
AFCBFIF

FILEFIB

Bytes
2 - 75
76
7-179
80 - 83
8L
85
86 - 87
88 - 91
92 - 95
96 - 99
100 - 103
104 - 107
108 - 111
112 - 183
184 - 187
188 - 189
190 - 219
220 - 227
228 - 739
ThOo - THT
T48 - 759
748 - 751
752 - 755

Content

File name of file whose access is to be
checked

Code for presence of partitioning
description

Address of partitioning logical exprescion
Length of partitioning logical expression
Code for service request
Code for checking level

Control information about limiting
description

Address of internal form of limiting
description

Address of Key Information Buffer (KIB)
for limiting description

Parameters for $REQM

Save area for OPNPROC

Addfess of area for TMODE macro
Length of area for TMODE macro
Ares for TMODE macro

User Identification

Area for File Control Block (FCBO of
File of Files (FIF)

Parameter in FCB of FIB
Parameter list passed to FIFDIRS1
Address of FCB of FIF

Address of File Information Block for
requested file

Name

FILEFCB
STACKADR

DNOACCES

DMESAGL
TSKNUM
CKCODE
SWl
TEMPA

Sw2

756 - 759
760 - 763

764 - 765
766 - 768

769 - 859
860
861
862

863 - 913

91k

B.1l.7 Internal Codes

Content
Address of FCB for requested file

Address of stack area of SVC

For re-entrant error message

Task number

Code for errors .

Code -~ found matching file name
Temporary area

Code for macro entrance

The various internal codes in the OPNPROC routine are listed below

by hexadecimal digits.

CKCODE

Return from AUTHCHK

Return from SSBACQR

Return from SSBGTNU

Return from SSBLOGON

X'00!

X'ol!

X'oo!

X'l

X'08"

X'10'

X'00!

Access granted

Access denied
SSB exists but has not been acquired

SSB exists and has been acquired

SSB does not exist

REQM error

SSB exists but has not been acquired

DESCODE (Description code)

X'00!'

X'FF'
DFDADEX

X'FF'
FSBCTRL

X'FF'

FUNCODE (Function code)

X'ha!

X'43
SSBCL

X'ho!

X'43
SSBCL+1

X'00*

X'FF!
SSBCTL6

X'FF'
SSBDTBIN

X'FF'
SWi

X'FF'
SWe

X'FF'

B-T

Partitioning logical expression not present

Partitioning logical expressinn present

Code that indicates partitioning logical
expression present

Code that indicates good pointer in FSB
block

Read type open

Update type open

Read type open

Update type open

File partition EDMF closed

File partition EDMF open

Code that indicates good pointer in SSB
block

Code that indicates user description block
present

Code that indicates matching file name
found on SSB

Entrance from a macro

B.1.8 Return Codes
A1l return codes can be found in the right-most byte of Register 15
and they are listed below by hexadecimal digits.
X'00' Everything 0.K.
Otherwise Error occurred
B.1.9 Flowchart

Figures B.l.a - B.l.d contain the flowchart for the OPNPROC routine.

Enter
OPNPROC

Y

Establish
Work Area

O—

User Id
Get
Task Number

Check SSB
entries
Call SSBACQR

-

GKCODE

Y

Yes

1

{N
Retrieve User's
CKCODE

]

Set up FCB
for FIF

o
X'OO;:\\YeS
d;/f"‘"" Authority Item [
-

Y N

Establish first
SSB block
Call SSBLOGON

LYeS . 1 No
__._CCKCODE = x'ooD__J Terminate

Figure B.l.a: OPNPROC Initialization.
Retrieve SSB Chain.

B-10

Set up
parameter list
for file
level check

Check user's
authority
Call AUTHCHK

|

Access granted? Yes Betirn 29
CKCODE = X'00'? — instruction:
. > after calling
/,// - instruction

Error Message:
Open request
denied for
specified file

T

l

Exit to
calling program

Figure B.l.b:

Authority Item Check

-

O i

B,
¢

Retrieve FIF
directory and
FCB for file
Call FIFDIRS1

1

e

" Retrieval '\ No
accomplished? ‘

Exit to
calling program

Yes

Put FIB and FCB
addresses
into SSB

g

¥
Put file name
and its length
into SSB
1

File name open
SSBCL+1 « X'FF'

y
Open descriptions \ Yes Establish aresa
present? - e to store
DESCODE = X'FF'? description
No v
~ Store
description
-]
Establish FSB block
Call FSBOPTR
Exit to
calling program
Figure B.l.c: Set up SSB.

Establish FSB.

-

B-12

Gel new
SSB block
Call SSBGTNU

REQM error?
CKCODE = X'10'?
N

L

Store address of
new SSB block
into pointer of
previous block

Terminate

SSBCTLG « X'FF!
of preceding
block

SW1 = X'FF'?

J No

Figure B.1l.d: Get New SSB

Put FIF and FCB
addresses from
previous SSB with
same file name into
new SSB block

Authority Item

B-13

v No
retrieved? /»-—,(D
SS&]AI = X'FF'?// ~
et
i Yes —
" Length of \E.

requested file name, No

= length of SSB
file name?

End of
SSB chain?

No Get next

SSB block

Requested_flle N\ No . a .}
! name =) - @
SSB file -] \5‘
name? i '
S A
y Yes Q/)
sw1 - XIFFI
, 1 *
(Open description - Yes ¥ N
present in / = €
\—____SSB?__.. S
'{ No
/ SSB entry Yes
(open updste? ;
SSBCL = X'k3'7 ,
% l\fo -
Request open \No ¥ End of
update? 1) SSB chain?
FUNCODE = X'43'2 y e
v Yes No f
(e) Get next
SSB block
Figure B.l.e: SSB Check

-

| B-14

B.2 Routine FIFDIRSL

The FIFDIRS1 routine is the second of two routines that implement
the EDMF's Open Function. This routine establishes the File Control
Block (FCB) for the File of Files (FIF), searches the FIF directory and
retrieves ‘he File Information Block (FIB) for the regquested file.
B.2.1 Entry Points i

FIFDIRS1 is the only entry point in this routine.

B.2.2 Exit Points

FIFDIRS1 has two exit points. The normal exit begins at QUT2 and
the error exit begins at OUTLl. In both cases, program control is returned
to the calling program.

B.2.3 External Subroutine Calls

RETRREC [6]} is the only external subroutiné called by FIFDIRS.
The first time RETRREC is called it retrieves the FIF directory; the
second time, it retrieves the FIB for the requested files. The DSECT's

that are associated with the FIF directory and the FIB are the following:

Name Bytes Content
DIRFIF DSECT

HEADERD 0 - 1k Header

LENGTHD 0-2 Length of FIF directory
COUNTD 3-4 Count of FIF directory
IKEYD 5+-9 Lowest key in directory
HKEYD 10 - 1h Highest key in directory
ENTRIES - Individual entries

FIB DSECT

0 - 92 Beginning of FIB

Name
FCB

RFB

B.2.4 Input Parameter Lists

Bytes

93 - 252
253 -

B-15

Content
File Control Block

Record Control Block

There are two necessary input parameter lists for the FIFDIRS1

routine.

The address of the PAROPEN input list must be in Register 1

while the address of the PARAMOP input list must be in Register 12.

Register 13 must contain the address of the calling routine's save area.

Name

PAROPEN
AFCBFIF
FILEFIB

FILEFCB

PARAMOP
FLNMLN
FLNAME
FUNCODE
LOGEXPAD
LNLOGEXP

LOGEXP

DESCODE

Bytes

DSECT
0-3
b-7

8 -11

DSECT
0-1
2 - 55
56
27 - 59
60 - 63
64 - 190

191

Content

Address of FCB of FIF
Address of FIB of the requested file

Address of FCB of the requested file

Length of file name

File name (left justified with spaces)
Code for type of open requested

Address of partitioning logical expression
Length of partitioning logical expression

Partitioning logical expression if included
in OPN macro

Code for presence of partitioning
description

B.2.5 Register Conventions

B-16

The registers in FIFDIRS1 are assigned in the following manner:

Register
0

1

10

11

12

13
1k

15

B.2.6 Internal Work Area

Utilization
Not used

Address of parameter list given to called
subroutine

Length of FIF directory
Length of requested file name

Address and base of DIRFIF. Address and
base of FIB.

Base for FIFDIRS1

Length-1 of file name in FIF directory.
Miscellaneous use.

‘Pointer to entry in FIF directory

=Hl7t
Address of last byte in FIF directory

Address and base of input parameter list
(PAROPEN)

Address and base of FIFDIRS1 work area

Address and base of input parameter
list (PARAMOP)

Address of FIFDIRS1 save area
Return address in FIFDIRS1

Subroutine call address. Error codes.

The internal work area (SUP1l) used by the FIFDIRS1 routine also

contains the parameter list (PLIST) to be passed to RETRREC [6]. The

work area has the following format:

B-17

Nane Bytes Content

SUP1 DSECT

SAVEl 0-T1 Save area for FIFDIRS1

WKAREA T2 - 75 Temporary work area

OPPARAM 76 - 83 Parameter area for DMS open

CLPARAM 84 - 91 Parameter area for DMS close

WFCB 92 - 603 File Control Block

KEYARG 604 - 611 Parameter in FCB

PLIST 612 - 627 Parameter ares passed to REmRﬁ:c
PFCBADDR 612 - 615 Address of FCB

PRECADDR 616 - 619 Address of area to place retrieved record
PISAM 620 - 624 ISAM key for requested record

PLREC 625 - 627 Length of area to place retrieved record

B.2.7 Internal Codes
The various internal codes in the FIFDIRS1 routine are listed
below by hexadecimal digits.

DESCODE (Description code)

Xto0! Partitioning logical expression not present
X'FF' Partitioning logical expression present

FUNCODE (Function code)

Xth2! Read type open
X'h3! Update type open
B.2.8 Return Codes
A1l return codes can be found in the right-most byte of Register
15 and they are listed below by hexadecimal digits.
X'00!' Everything 0.K.

X104 Unable to open FIF

X'08'

X'oc!

X'OF'

B.2.9 Flowchart

B-18

Unable to retrieve FIF or FIB of
requested file

Requested file does not exist in the
system

RFQM error

Figures B.2.a -~ B.2.b contain the flowchart for the FIFDIRS1

routine.

B-19

Enter
FIFDIRS1

1

Establish
Work Area

l

Establish area]
for FIF directory .
and FIB of file j

T
i

4
Set up parameter I
lists for DMS

open and ‘
i DMS close

N

DMS open
FIF

b - e raew

. —\No g Error Message: “' .
Open accomplished? /————————-b- Unable to ;——a’@
N | open FIF X
l Yes

Retrieve FIF
directory
Call RETRREC

FIF reigx::ieval» “ No Error Mes_;;.ge:
accomplished? e Unable to -—>®
retriexg_ records !

- .w...,...w? Yo

Figure B.2.a: FIFDIRS1 Initialization and FIF
Directory Retrieval

B-20

quested file name
= length -of file
name in FIF
directory
4 Yes

Requested file™\
name = file name
in FIF directory?

Yes

Advance pointer
B
to next entry

in FIF directory

End of
FIF directory?

No

Set up parameter
list for re-~
trieving FIB for
requested file

l

Retrieving FIB
Call RETRREC

L

FIB retrieval
accomplished?

#mYes

Set up
FCB

Error Message: |
File requested
not in FIF
directory

No

po Error Message:

Unable to
retrieve records

-
Y.

DMS close
FIF

O

Exit to

calling program

Figure B.2.b:

Retrieval of File FIB and FCB

B.3 Routine MACPROC

The MACPROC routine obtains necessary information before the
retrieval optimization phase is entered. The main function of this

routine is to check if an EDMF open has been issued and 1f so, issue

a DMS open. Also, if entry is non-conversational in nature, the routine

obtains the internal form of the user's request description. If entry

is conversational, the internal form has already been obtained.

B.3.1 Entry Points
There are three entry points. MACPROC is used when entry is from

a user program (non-conversational); COMENTER is the point a conversational

user enters. After the EDMF has processed a retrieval, it is necessary

to DMS close the specified file. This is accomplished at the CLFILE

entry point.
B.3.2 Exit Points
MACPROC has two exit points. One is the normal exit point and .

the other is used when an error occurs. The normal exit is to the

RETRIEVE routine. The error exit is at CHKEXIT.

B.3.3 External Subroutine Calls
Two external subroutines are called by MACPROC. The first is to

the location ESQCAT to obtain the task number. The second is to the

entry point SSBACQR of the SSBOPTR routine [9 J. ‘This is used to obtain

the SSB chain for a specific user. The DSECT that is associated with

the SSBOPTR routine is the following:

Name Bytes Content

S5B DSECT

SSBHDR 0-T7 SSB Header

SSBUAI 0-3 Address d} User's Authority Item

Nane

SSBFIF
SSBTXT

SSBFNAM

SSBCL

SSBFIB
SSBFCB
SSBDTBIN
SSBDTAB
SSBCREC
SSBFSB
SSBCTL6

SSBPTR

B.3.4 Input Parameter List

6L - 67
6k
65
66 - 67
68 - 71
72 - 75
76
77 - 79
80 - 83
8l - 87
88
89 - a1

B-22

Content
Address of FCB for File Information File
SSB text

2 bytes -~ length of file name
54 bytes - file nawme

Control Information

Type of request

Indicator - EDMF open

Unused

Address of File Information Block (FIB)
Address of File Control Block (FCB)
Open description indicator

Address of user description block
Address of Core Format of the record
Address of File Status Block

Control Information for pointer

Pointer to next SSB block

There are two possible input parameter lists for the MACPROC rou-~

tine. MACDS is the input list used when entrance is non-conversational.

RPARA is the conversational parameter list and it is also the list

that is passed to RETRIEVE.

The address of the input parameter list,

either MACDS or RPARA, must be in Register 1 and Register 13 must

contain the address of the calling routine's save area.

B-23

Name Bytes | Content

RPARA DSECT

AFCB 0-3 Address of File Control Block (FCB)

RFBA b -7 Address of Record Format Block (RFB)

. USRID 8 - 15 User Identification

RECNO 16 - 17 Number of requested records to be
retrieved.

QUTSPEC 18 - 27 Output specification

FLNMLN 28 - 29 Length of file name

FLNAME 30 - 83 File name (left justified with spaces)

FUNCODE gy Code for function requested

CONTROL 85 . Part of internal form of user's descrip-
tion

LILEP 86 - 87 Length of DCB and KIB

1.DCB 88 - 89 Length of DCB

DCB -- Actual Description Control Block (DCB)

KIB -- Actual Key Information Buffer (KIB)

MACDS DSECT

MRECNO 0-1 Number of reques.ted records to be
retrieved

MOUTSPEC 2-11 Output specification -

MFLNMLEN 12 - 13 Length of file name

MFLENAME i - 67 File name (left justified with spaces)

MFUNCODE 68 Code for function requested

MADLOGEP 69 - T1 Address of logical expression

MLENLEXP T2 - 15 Length of logical expression

MILOGEXP T6 - 202 Logical expression if included in the

macro. -

B.3.5 Register Conventions

B-2h

The registers in MACPROC are assigned in the following manner:

Register
0

1

= w

10

11

13
1k
15

B.3.6 Internal Work Area

Utilization
Not used

Address of parameier list given to called
subroutine. Miscellaneous use.

Miscellaneous use
Base for MACPROC
Miscellaneous use
Not used

Counter for number of characters in User
Id. Miscellaneous use.

Not used.

Iength of requested file name. Miscellaneous
use.

Address and base of SSBTEXT.
Address and base of MACPROC work area.

Address and base of input parameter list
(MACDS)

Address and base of input parameter list
(RPARA)

Address of MACPROC save area
Return address in MACPROC

Subroutine call address. Error codes.

WORK is the name of the internal work area used by MACPROC and

it has the following format:

B-25

Name Bytes Content
’_ WORK DSECT
SAVE2 0-1T1 Save area for MACPROC
DPRM T2 - 719 Parameter area for error messages
OPPARM 8o - 87 Parameter area for UMS open
CLPARAM 88 -~ 95 Parameter area for DMS close
RATMODE 96 - 99 Address of area for TMODE macro
100 - 101 Length of area for TMODE macro
RTMODE 102 - ;L31 Area for TMODE macro
ADSTACK 132 - 135 Address of stack of SVC
TEMPF 136 - 139 Temporary area
) TEMPH 140 - 141 Temporary area
- CHKCODE 140 : Code for errors in SSB routine
TA SKNUM 1 Task number
DNTMOPN b2 - 1437\
bk - 146
DML 1h7 - 242
For re-entrant error message
DNOPDMS 243 - 24k
245 - 247
DM2 28 - 317
TEMP 18 - 368 Temporary area
SW1 369 Code for macro entrance

B.3.7 Internal Codes
The various internal codes in the MACPROC routine are listed
below by hexadecimal digits.
" CHKCODE

. X'oh? SSB exists and has been acquired

FUNCODE (Function code)

X'22!

MFUNCODE (Function code)

X'22'
SSBCLA1

X'o0!

X'Fr!
SSBCTL6

X'FF'
SSBDTBIN

X'FF'
WL

X'FF'

B.3.8 Flowchart

B-26

Code for retrieval

Code for retrieval

File EDMF closed

File EDMF open

Code that Indicates good pointer in SSB
block

Code that indicates user description
block present

Entrance from macro

Figures B.3.a ~ B.3.c contain the flowchart for the MACPROC

routine.

Enter
* MACPROC

!

Establish
parameter area
(RPARA)

'

Move parameter
list into
RPARA

!

Indicate entrence
from wmacro

Figure B.3.a:

.i

Establish
Work Area

l

Get User Id

MACPROC

!

Get Task Number

Initialization

@
Check

SSB entries
Call SSBACQR

1

B-28

‘ Yes
CHKCODE = X'Olkr'¢ s{:::>
[0 _]

(requested file \No
.\name = Length of
“SSB file nggg;

S v

$ Yes

."Requested file \ No
name =)
SSB file name?

B % Yes

Has aﬁmﬁﬂﬁ5 No
open been issued?
SSBCIA+1 = X'FF'?

& Yes

Set up
perameter lists

T

ey

]

Entry from \\\N
o}
a command?

Yes

pome——gt

End of SSB
chain?

\

Get next
SSB block

— et

Get internal
form of logical
expression
SVC call

¥
Move

internal form

into RPARA

Figure B.3.b:

a

SSB Check and Translation of
Logical Expression

-

Issue a DMS
Open for
specified file

|

Open

accomplished?

No

Yes
y

Exit
Call RETRIEVE

Figure B.3.c:

B-29

Error Message:
File not EDMF
opened.

Error Message:
Unable to
DMS Open

I

-

Return to
calling program

DMS Open

B-30

B.4t Routine RETRIEVE

The routine RETRIEVE is the part of the Supervisor that implements
the Retrieval Optimization function by selecting the prime keywords
and also obtaining the ISAM keys that are Head of List Addresses.
B.4.1 Entry Points

There are two entry points. The normal entrance is at RETRIEVE.
The second entrance is at SPCENOl; this is an error message entrance
for other routines that cannot request memory.
B.4.2 Exit Points

RETRIEVE has three exit points. One is the normal exit point
and the other two are used when an error occurs. The normal exit point
begins at MARK and a call for the routine FORPROG is issued. The error
exits are at ROUTL and ROUT2.
B.4.3 External Subroutine Calls

Two external subroutines are called by RETRIEVE. The first is
RETRDIR which retrieves the requested file's highest level directory.
The second subroutine called is DECODE [31. DECODE is used to decode the
directory to determine the prime keywords and it also passes the corres-
ponding HOLA's to RETRIEVE.
B.h.4 Input Parameter List

The address of the input parameter list (RPARA) must be in
Register 1 and Register 13 must contain the address of the calling

routine's save area.

Name ‘ Bytes . Content

RPARA DSECT

AFCB 0-3 Address of File Control Block (FCB)

RIFBA L -7 Address of Record Format Block (RFB)

USRID 8 - 15 User Identification |

RECNO 16 - 17 Number of requested records to be
retrieved

(UTSPEC 18 - 27 Output specification

FLNMLN 28 - 29 Length of file name

FLNAME 30 - 83 File name (left justified with spaces)

FUNCODE 84 Code for function requested

CONTROL 85 Part of internal form of user's descrip-
tion

LILEP 86 - 87 Length of DCB and KIB

LDCB 88 - 89 Length of DCB

DCB - Actual Description Conirol Block (DCB)

KiB -- Actual Key Information Buffer (KIB)

B.4t.5 Register Conventions

The registers in RETRIEVE are assigned in the following manner:

Register Utilization
o Not used
1 Address of parameter list given to

called subroutine. Miscellaneous use.
2 Miscellaneous use
3 Length of entire DCB

L : Pointer to DCB

B.4.6 Internal Work Area

Register

v 0 N1 O

10
11
12
13
1L
15

B-32

Utilization
Base for RETRIEVE
Length of DCB segments (18)
Not used
Pointer to PRIMEKEY stack

Address and base of input parameter
list (RPARA)

Pointer to ADDRESS. Miscellaneous use.
Address and base of RETRIEVE Wérk area
Pointer to RQADD. Miscellaneous use.
Address of RETRIEVE save area

Return address in RETRIEVE

Subroutine call address. Error codes.

The internal work area (SUP) used by RETRIEVE also contains the

parameter lists for some of the routines called by RETRIEVE. LISTP

is passed on to the RETRDIR and the DECODE routine while PLFOR is

passed to DECODE and FORFROG.

Name

SUP

DNQOAT

DMSG1

DNOVAL

DMSG2

DPARAM

Bytes
DSECT
0-1
2 -4
5-59
60 - 61
62 - 6k4
65 - 132
133 - 135

136 - 143

The work area has the following format:

Content

For re~entrant error message

Not used

Parameter-area for error messages

B-33

Name Bytes Content

NLENG 14k - 151

N iuy - b7 Smallest n* in conjunct

LENGTI 148 « 151 Length of associated HOLA's

TAREA 152 - 159

ARFAN 152 - 155 N of current keyword

TLENGTII 156 - 159 Length of associated HOLA's

ENDPRKY 160 - 163 Address of PRIMEKEY - L4

RQADD 164 - 327 Pointers to ISAM keys, length of keys

PRIMEKEY 328 - 4ol Pointers to beginning of conjuncts and
prime keywords

SAVE kg2 - 635 Save area for RETRIEVE

REQMPAR 636 - 639

gzg i gﬁ% Parameters for $REQM
647 - 651 ‘

LISTP 652 - 671 Parameter list passed to DECODE and
RETRDIR

ERRCODE 652 Error code

PDCB 652 - 655 Pointer to current location in DCG

PTAREA 656 - 659 Address of TAREA

ISAMIND 660 Code for DECODE

PADDRSS 660 - 663 Address of ADDRESS

PISAM 664 - 667 Pointer to area - where to put ISAM keys

PHDIR 668 - 671 Address of highest level directory

PLFOR 672 - 696 Parameter list passed to DECODE and FORPROC

PFCB 672 - 675 Address of FCB

PKIB 676 - 679 Pointer to KIB

PPRMKY 680 -~ 683 Pointer to PRIMEKEY Stack

B-34

Name Bytes Content

RFBADD 684 - 687 Address of RFB

ARQADD 688 - 691 Pointer to location in RQADD

PRECNO 692 - 693 Number of requested recorés

FNCODE 694 Code for function requested

ATCKLEV 695 Code for level of Authority Item Check
PRCODE 696 Code for output

*n = number of records in file containing a specified keyword

B.4.7 Internal Codes
The various internal codes in the RETRIEVE routine are listed

below by hexadecimal digits.

ARFAN
X '00000000" No records within range of GT, GE, LT,
LE or FROM~TO relations
X'FDFFFFFF'! Attribute of specified keyword does not
exist in the file
X'FEFFFFFF' Error in range of FROM-TO relation
X'FFFFFFFF' Value of specified keyword does not exist
in the file
Other Number of records in file containing
specified keyword
ERRCODE
X'oh! Part of directory unretrievable
xX'ocC’' Hardware error
ISAMIND
X'00! Code for DECODE to return only n¥*

X'FF! Code for DECODE to return n* and HOLA's

B-35

FNCODE (Function code)

X122 Code for rétrieval

PRCODE (Print code indicating method of output)

X'00" Output on Low Speed Terminal (LsT)

Xto2! Output on high speed terminal

X0k Output to program in core format

X80 No output of actual records. Only output

number of satisfactory records.

B.4.8 Flowchart and Supplementary Diagrams
Figures B.4.a - B.h4.g contain the flowchart for the RETRIEVE

routine. Figures B.k.h - B.L.j contain supplementary diagrams.

B-36

Enter
RETRIEVE

;

Establish
Work Area

$

Initialize PRCODE
PRCODE « X'00'!

o+ S eee e I 8 s vt ot s ed

v o

ke i mn

OUTSPEC = CORE? Yes
Want core format ———— B PRCODE +« X'OL!
of record?

‘ No

//EQISPEC = COUNT? \ Yes
Only want count J PRCODE + X'80!

of records? A’//

No

QUTSPEC = PRINT? Yes

printer?

Figure B.h.a: RETRIEVE Initialization

Set up
parameter
lists

l

Istablish
arca for highest
level
directory

‘

Call RETRDIR |

Retrieving :

highest level
directory

!
™~

ERRCODE = X'0C'?

s
No

v
[

Figure B.k4.b:

Yes Error Message:
—& Hardware error

Return to
calling routine

Error Message:
Highest level
directory
unretrievable

Retrieve Highest Level Directory

Initialize N
N < X'FFFFIFFF’

i

Store addr of
beginning of
conjunct in

PRIMEKEY

N

End of congunct;\\\\h
DCB entry = X' AE'?

[

Determine n -
number of records
associated with

keyword
Call DECODE

1

DECODE returns
n in ARFAN

!

(ERRCODE = x'oc'?\f_lﬁ_
//"

No

B-38

Yes

—

Error Message:
Hardware error

r

Figure B.4.c: Prime Keyword Selection

-

B-39

e e Ul e
\Ye s Er;ortMezsage: Update DCB
ERRCODE = X'O4'? }-pd rart o »+ pointer to
directory ﬁl | next ent
unretrievable 1 i
R L
JNO l
H s o WL
o Error Message: ‘!
AREAN = Y85 pttr does not { End of DCB yes
(X'FDFFFFYF'? j ¢ exist in file TN’\ stack? j""‘" o
lNo No
A "]
T T T Yes . \
4 AREAN = [Error Message: l Fnd of conjunct?’»-Yes' S
(X'FFFFFFFF'y |- Jolue does nob .4 | pop entry = j—#d 1
! exist in file | !\ X'4E! 7
. |] N— :
No : No
B
"""""" Error Message: | ‘!
AREAN = Tes| Error in |
X'FEFFFFFF'? FROM-~TO d
relation ,: :
_L 1-1-——-—————'
S S , Error Message: |
' ! No records
AREAN = Yes :
. . within range of |,
X ' 00000000 oT, GE, LT, LE
“ | or FROM-TO
Ty ____relation |
No

v

®

Figure B.k.d: Prime Keyword Selection

B-kO

AREAN < N? Yes .| mENne ~ mrm
,/
No

X

' Put address of
i current primekey
] into PRIMEKEY
i

B s .u-.x]r T e e S

r
!
j

2
¥

Update DCB
pointer

Y
End of DCB
stack?

Yes

Figure B.lk.e: Prime Keyword Selection

B-k1

Establish area
for HOIA's -~
ISAM keys

!
|
v

.+ - A e o]

ISAMIND « X'FF' l

)

)

g

—) 4
Pick up n and
I1SAM keys for
i prime keyword

|__.Cell DECODE
t

ot

Y
Put address and
length of ISAM
keys into
RQADD

e 2w

t
3
+
]
I

ISAMIND « X'00'

©

Figure B.h.f:

w2

& o

Error Message:
Relations can't
all be NE

Obtaining ISAM Keys

B-42

('
e

A

Yes (~ : l
ERRCODE = X'0C'? o Error Message: |
Hardware error ,

e

!
i No
X
/ Yes Error Message: l

! ERRCODE = X'O4'? Rl Part of ‘
! directory l
~ e ..unretrievable |

Update pointer
to PRIMEKEY

|

Update DCB
pointer to next
entry

T I T Epa——" |

|

wr

/"7 Bnd of DB N\ Yes
stack? I -

PPV l.,

(o) -
\°/ W
Put delimeters .
(X'FF') at end of i
RQADD and
PRIMEKEY

— ek eran Ee e —— -

i
'

No

-

; 1. -
Set up

‘ parat_qeter lists
Exit
Call FORPROG

Figure B.Lk.g: Return to Process Next Conjunct
and the Exit

-

B-43

Key Information Buffer

Attribute Val
| | e —,,___
ue | Attribute &7 N\
A) Description Control Block
,~
Value ¢ Attribu N :
I TR B el 1 L F.'
—— : Bl ,f:.L | 1 8, fv:L i lvl 1
te | Value 1 ceee 3
I ST NP RN A C L L L F.!
i _—_“‘ 2 2 32 : fve t_. 1V2 2
t f 1
. Bl Ag |- | - . . Ty
v i
N ~
B A f- . . . F !
Pointer to ///// O L T B I I S
Beginning of - ;_
Conjunct - »B 'ia . . . P, '
e S // /"-//“ B2 5 ; . . L FS
B, 4 B, Bytes 4 1 2 3 3 5 /
! R ’ /
-+ Pointer .
B By ko g
o e ey ieemee o =} Prime . L
Keyword //‘
. . Fl F2 . . e
B] -
L] L] L] /V//.'
. . : * Fa Fn+l
Prime Keyword Stack
. Fn+2 Fn_+3{ ¢] ¢ '

Format Number Stack

Figure B.hk.h: Important Areas Used in the
RETRIEVE and FORPROG Routines

~

B-lh

Description of Control Block Areas for Figure B.h.h .

A,
i

is a pointer to the beginning of thé ith keyword that is stored

in the Key Information Buffer. The attribute and value(s) are
stored in their entirety, i.e. exactly the way-the user specified
them.

is the control code that indicates the relation between the attri-
bute and the value.

is the length of the ith attribute.

is the length of the first value of the ith keyword.

is the length of the last value of the ith keyword.

is the pointer to the beginning of a list of format numbers
associated with the attribute.

Keyword Stack Areas:

is the pointer to the beginning of the ith conjunct in the

Description Control Block.

is the pointer to the prime keyword in the ith conjunct in the

Description Control Block.

Fi‘ will appear as follows:

Address of beginning # of elements
of list in list

4 bytes 1 byte

B-h5

PRIMEKEY

Bytes L y

where Bi : Pointer to beginning of conjunct in DCB

B,': Pointer to prime keyword of conjunct beginning with Bi

Note: X'FF' on a Bi boundary indicates the end of the stack.

Figure B.k.i: Prime Keyword Stack

B-46

RRADD

A.:L Ll

Ag Lo
, . .
kb e *
L Ai Li
|
'L FP

Bytes h L

where A,: Address of HOLA's (ISAM keys) that correspond to T
prime keyword

L.: Total length of ISAM keys

Note: X'FF' on an Ai boundary indicates the end of the stack.

Figure B.4.j: RQADD Area

-

B-47

B.5 Routine FORPROG

The FORPROG routine determines and lists the record format numbers
for each attribute in the user's request description. The address of
each list is placed in the 1lith - 17th bytes of the DCB entry for the
corresponding attribute. The number of associated format numbers is
placed in the last byte of the DCB entry (see Figure B.k.h).

B.5.1 Entry Points

FORPROG is the only entry point in the routine.
B.5.2 ¥xit Points

FORPROG has three exit points. One is the normal exit point and
the other two are used when an error occurs. The normal exit point begins
at DONE where a call for the ESTAB entry of RETALG is issued [4]. The
error exits are at FSPCEN1 and FSPCENZ2.

B.5.3 Input Parameter List
The address of the input paramétér list (PLFOR) must be in Register

1 and Register 13 must contain the address of the calling routine's save

ares.

Name Bytes Content

PLFOR DSECT

PFCB 0-3 Address of FCB

PKIB ' y -7 Pointer to KIB

INDAT 8 Code for Authority Item Checking routine

PDPRKY 8 - 11 Pointer to PRIMEKEY Stack for Authority
Item Checking routine

PPRMKY 8 -1 Pointer to PRIMEKEY Stack

RFBADD 12 - 15 Address of RFB

ARQADD 16 - 19 Pointer to RRADD

-

PRECNO 20 - 21 Number of requested records

Name Bytes
FNCODE 22
ATCKLEV 23
PRCODE 2L

B.5.4 Register Conventions
The registers in FORPROG
Register
o

1

o\ = w

oc]

10

11

12

13

1L

15

Content
Code for function requested
Code for level of Authority Item Check

Code for output

are assigned in the following manner:
Utilization
Number of possible format entries (125)

Address of parameter list given to called
subroutine.

Address of KIB

Base for FORPROG
Pointer to RFB
Counter for RFB
Length of attribute
Pointer to KIB
Pointer to PRIMEKEY
Pointer to FORMATNO
Pointer to DCB

Address and base of input parameter list
(PLFOR)

Address and base of FORPROG work area (SUP2)
Address of FORPROG save area. Number of
format numbers associated with a specific

attribute

Return address in FORPROG. Miscellaneous
use

Subroutine call address

-

B-L9

B.5%.5% 1nternal Work Area

The internal work area used by FORPROG is called SUP2.

Name Bytes Content

suUp2 DSECT

ALFULL 0-3 Temporary storage

PLFRST h -7 Current address in FORMATNO

SAVE 8 - 79 Save area for FORPROG

ALHALF 80 - 81 Temporary storage

TFORNUM 82 - 83 Format number that is being checked
FORMATNO 84 - 331 List of satisfactory format numbers

B.5.6 Internal Codes
The various internal codes in the FORPROG routine are listed below
by hexadecimal digits.

INDAT

X'FF' Indicates entrance is from the Authority
Jtem Checking routine

FNCODE (Function code)

Xr22! Code for retrieval
MARKER
X'FFFF* Placed in the 6th and Tth bytes of the
DCB entry to indicate a no attribute
case

B.5.7 Flowchart
Figures B.5.a - B.5.d contain the flowchart for the FORPROG

routine.

B-50

Enter
FORPROG

i Establish
[Work Area

]

o

& - -
e 3

]

End of Y Yes Set up
PRIMEKEY stack? f““‘“““ parameter list

-

/e |

|

Update pointer Exit

to PRIMEKEY Call ESTAB

/" End of conjunct? \\ Yes

DCB entry = -
X'hE'? /
lNo

{ Set format number i
counter to zero |
Reg 13 < O J

iy
(¢

Figure B.5.a: FORPROG Initialization

-

B-51

Put addr of
bute
End of RFB7)., MO 8ttridute —e-w| format list
Marker in DCB? 4 in DCB entry
s

No Ye

Y

End of
attribute

Put length of !
format list in i

list? DCB entry
Y _ 7 .]]
Put format : [Put zeros in ; i '
number into ! DCB place !] Update DCB ;
inter i
temp area ! MARKER was in l o i
J

Y

e
Length of att;\\Yes - User's No
in user's deser =} _s. descrlptlon attr *(::)
length of i

, y RFB attr1bute9,f
RFB attr? . .

No '] Yes

NG Y

Pick up next
attr in list

Figure B.5.b: Obtaining Format Numbers

B-52

Processing a‘\\\ Yes
no attribute
case?

' No

Beginning of a Yes Put MARKER
no attribute) in DCB

K

case?

No +

Length of
attribute in
RFB > 10°?

Yes

RFB attr =
list attr?

i

l

! ‘ Yes

| R .
|

|

Difference =
(10-1ength of
RFB attr)

BN

i T~
l Difference \XYei
composed of ,**“\E/
zeros? :

L.

RFB att;\\\

list attr?

Update RFB
pointer to new
format number

®

Figure B.5.c: Processing No Attribute Case

-

C)

B-53

©

End of g : ﬁbgrﬁto
£ t ?
ormat area 1ist -
FORMATNO
. Yes
X
Establish Update
additional area counter for
for FORMATNO format number
Any format Update
number already pointer in
found for current FORMATNO
attr?
! Yes l
R !l
; Move all format Update RFB
numbers for pointer to new
current attr into format number
new area

Figure B.5.4: Establishing Additional Area
for Format Numbers

-

B-54

B.6 Routine CI.SEPROC

The CLSEPROC routine is the one that implements the Close Function
of the EDMF. It indicates in the SSB chain that the specified partition(s)
have been closed and also removes the corresponding FSB entries.

B.6.1 Entry Points

CLSEPROC has two entry points. CLSEPROC is the SVC entrance while
the command entrance is at COMDCLSE.
B.6.2 FExit Points

There is only one exit point for this routine. It begins at CKEXIT
where control is returned to the calling program.
B.6.3 External Subroutine Calls

Three external subroutines are called by CLSEPROC. The first is
to the location ESQCAT to obtain the task number. The second is to the
entry point SSBACQR of the SSBOPTIR routine [9]. This is used to obtain
the SSB chain for the specified user. The third external subroutine that
is called upon is FSBOPTR [9]. It is through the use of the FSBOPTR rou-
tine that FSB entries are removed. The DSECT's that are associated with

the SSBOPTR and the FSBOPTR routines are the following:

Name Bytes Content

SSB DSECT

SSBHDR 0 -1 SSB Header

SSBUAT 0-3 Address of User's Authority Item

SSBFIF L -7 Address of FCB for File Information File
SSBTXT 8 - 91 SSB text

SSBFNAM 8 - 63 2 bytes - length of file name

54 bytes - file name
SSBCL 64 ~ 67 Control Information

64 Type of request

Name

SSBFIB
SSBFCB
SSBDTBIN
SSBDTAB
SSBCREC
SSBFSB
SSBCTL6

SSBPTR

FSB
FSBUSRID
FSBCL
FSBDSADR
FSBLTBLK
FSBCTRL

FSBNTBLK

B.6.4 Input Parameter List

Bytes
65

66 - 67

68 - 71

T2 - 75
76

T - 19

80 - 83

8l - 87
88.

89 - 91

DSECT
0-7
8 -11
12 - 15
16 - 19
20

21 - 23

B~55

Content
Indicator - EDMF open
Unused
Address of File Information Block (FIB)
Address of File Control Block (FCB) '
Open description indicator |
Address of user description block
Address of Core Format of the record
Address of File Status Block
Control Information for pointer

Pointer to next SSB block

User Identification

Control Information

Address of user's partitioning description

Pointer to previous FSB block in chain

Control Information

Pointer to next FSB block

-

The address of the input parameter list (CLSEPARM) must be in

Register 1 and Register 13 must contain the address of the calling

routine's save area.

Name

CLSEPARM

FLNMLN

FLNAME

Byte

DSECT
0-1

2-55

Content

Length of file name

File name (left justified with spaces)

B-56

Name Bytes Content

FUNCODE 56 Code for type of close requested

LOGEXPAD 57T - 59 Address of partitioning logical expression
LNLOGEXP 60 - 63 Length of partitioning logical expression

LOGEXP 64 - 190 Partitioning logical expression
B.6.5 Register Conventions .

The registers in CLSEPROC are assigned in the following manner:

Register Utilization
o Not used
1 Address of parameter list given to called
subroutine. Miscellaneous use.
2 Miscellaneous use
3 Base for CLSEPROC
L Miscellaneous use
5 Address of partitioning description in SSB
6 Counter for number of characters in User
Id
Length of description in SSB
8 Length of requested file name
9 Address and base of SSBTEXT
10 Pointer to FSBLIST
11 Address and base of CLSEPROC work area
12 Address and base of input parameter list
(CLSEPARM)
13 Address of CLSEPROC save area
14 Return address in CLSEPROC

15 Subroutine call address

B-5T

B.6.6 Internal Work Area
CLSEWORK is the internal work area used by the CLSEPROC routine.

It contains the parameter list (FSBLIST) that is passed to the FSBOPTR

routine. The work area has the following format:

Name Bytes Content
CLSEWORK DSECT
DPRM2 oO-17 Parameter érea for error messages
CLSAVE 8 ~ 79 Save ares for CLSEPROC
ATMODEAR 80 - 83 Address of area for TODE macro

84 -~ 85 Length of area for TMODE macro
TMODEAR 86 - 115 Area for TMODE macro
USERID 116 - 123 User Identification
FSBLIST 124 - 207 List of addresses of FSB blocks to be

removed .

ADRSTACK 208 - 211 Address of stack area of SVC
TEMPA 212 - 262 Temporary ares
TSKNUM 263 Task number
SW1 264 Code -~ found appropriate SSB block
CHKCODE 265 Code for errors
DNTMOPN2 266 - 267

268 - 270 For re-entrant error message
DMESS1 271 - 366
sw2 367 Code for macro entrance

B.6.7 Internal Codes

The various internal codes in the CLSEPROC routine are listed
below by hexadecimal digits.
CHKCODE

X'oh! SSB exists and bas been acquired

B-58

FSBCTRL

X'FF! Code that indicates good pointer in FSB
block

FUNCODE (Function code)

X'u8! Close all partitions
X'hgt Close specified partition
SSBCL+1
X'00! File partition EDMF closed
X'FF'! File partition EDMF open
SSBCTLG
X'FF' Code that indicates good pointer in SSB
block
SSBDTBIN
X'FF! Code that indicates user description
block present
SWl
X'FF' Code that indicates found appropriate
SSB block
Swa
X'FF' Entrance from macro

B.6.8 Return Codes
All return codes can be found in the right-most byte of Register
15 and they are listed below by hexadecimal digits.
X'00" Everything 0.X.
X'0Oh! Appropriate SSB block does not exist
B.6.9 Flowchart and Supplementary Diagram
Figures B.6.a - B.6.c contain the flowchart for the CLSEPROC

routine while Figure B.6.d contains a supplementary diagram.

-

Enter
CLSEPROC

l

TS S

Establish
Work Area

R e T

T

s sy

t
Get |
User Id i

e e e e

SE— |

Get
Task Number

e X

Check SSB
entries.
Call SSBACQR

i
1

S A

CHKCODE = X'OLk'?

- e = e n.—./{

iYes
Y
Lo

\
~

Figure B.6.a:

B-59

No
e

Error Message:

EDMF open not
issued for
file

Exit to
calling program

CLSEPROC Initialization

ngth of requested

file name = Yes
length of SSB

file ndme?

Y
Yes
<::£nd of SSB chal?i::}_p{::)

s e e e

i

No

v
Get next

SSB block

Yes //,
{ QUNCODE -

Requested file No
name =

SSB file name? 4///

Yes

File EDMF opened?
SSBCL+1 = X'FF'?]'(J

Yes

Close all
partitions?

X489

No

/

'\
Partitioning " No
description

. /
t
|
i

‘ Yes

Length of
partitioning desc.
in SSB = length of
part. desc. in
CLSE request?

Figure B.6.b:

-8 Yes

SSB Check

-

]

B-61

' Y

Appropriate SSB
found
SW1l « X'FF'

Y

Put addr of
FSB to

be removed i

in FSBLIST

¥,
Advance

FSBLIST
pointer

=

Indicate file

partition EDMF i
closed i

- SSBCL+1 w-X'OO' }

R -._«J’
-//ﬂ Close all
" ’ Yes -

partitions? EH
FUNCODE = X'48'?

o

N
O :
' ¥ N Error Message:
0
{/, SW1l = X'FF'? ;‘-”—-*-~D> EDMF qpen not
5 ;
N L issued ?8? file
4 Yes

Put delimiter
(X'FF') at
end of FSBLIST

{ Y

Remove‘FSB Exit to
entries 5 .
Call FSBOPTR calling program

Figure B.6.c: Closing SSB, Setting Up FSBLIST
. and Exit

B-62

FSBLIST

—— g

where Ai: Pointer to a File Status Block

Note: X'FF' on a boundary indicates the end

Figure B.6.d

-

of the

stack.

APPENDIX C

CONTROL BLOCKS

C.1 7File Status Block

8 bytes User Identification

4 bytes Control Information

4 bytes Control--Address of user description block

4 bytes Control--Pointer to previous FSB block

4 bytes Control--Pointer to next FSB block
00~~null pointer FF--good pointer

© v —————r r—— -

Notes on the File Status Block
1. Unless stated explicitly, all control information is 1 byte, all

addresses are 3 bytes.

C.2 Service Status Block (SSB)

00--null pointer

4 bytes Control--Address of User's Authority
Iten

I bytes Control--Address of FCB for FIF

2 bytes Length of Filename

5L bytes Filename

4 vytes Control Information

4 bytes Control--Address of FIB for filename

4 bytes Control-~~Address of FCB for filename

L bytes Control--Address of user description
block

4 bytes Control--Address of core format record

4 bytes Control--Address of corresponding FSB
block

L bytes Control--Pointer to next SSB entry

FF-~good pointer

Notes on the Service Status Block

1. Unless stated explicitly, all control information is 1 byte,

all addresses are 3 bytes.

' HEADER

TEXT

2. The header appears on the first SSB block only--all subsequent SSB

entries contain only the text.

1st SSB block = 8 + 84 bytes = 92 bytes

all subsequent SSB blocks = 84 bytes

C.2.1 User Description Block

4 bytes Length of partitioning description
n bytes Partitioning description

c-3

HEADER

TABLE OF

CONTENTS

FORMAT
ENTRY

C.3 Record Format Block (RFB)
4 bytes Control Information
2 bytes Pointer to first format
relative to first byte of RFB
2 bytes Last format number assigned
2 bytes Format number
2 bytes Control information
2 bytes Relative address of first format
2 bytes Format number
2 bytes Control information
2 bytes Relative address of second format |
2 bytes Format number
4 bytes Type of format
2 bytes Level number
2 bytes Repetition number
3 bytes Size of value
1 byte Control information
2 bytes blank
L bytes Field protection data
2 bytes Length of attribute
n bytes Full attribute name
Notes on the Record Format Block
1. All relative addresses in the Table of Contents are relative to

the first byte in the first format, hence a pointer to the first

format is placed in the header.

This arrangement obviates the

need for changing relative addresses in the Table of Contents if

new formats are added to the block.

Format numbers appear in the Table of Contents in order of their

appearance in file records.

The Type of Format field may be used to indicate a program which

-

processes the format.

Like the size of value entry, the repetition number will not appear
in the format if the format may repeat a variable number of times.
Variable repetition is indicated by a bit in the control information.
Control information in the format entry is one byte long with the
following specification:
abcd ee00
a: O Repetition number is variable
1 Repetition number is fixed
b: O Value size-is variable
1 Value size is fixed
c: O Attribute is not in the directory
1 Attribute is in the directory
d: O Attribute optionally appears in a record
1 Attribute appears in every record
ee;: 00 Velue is packed decimal
10 Value is alphabetic
01 Unassigned
11 Unassigned

	Access Control and Retrieval Optimization Functions of the Supervisor for an Extended Data Management Facility
	Recommended Citation

	Access Control and Retrieval Optimization Functions of the Supervisor for an Extended Data Management Facility
	Abstract
	Comments

	tmp.1200594758.pdf.LrX3Z

