- . o
cnn) \ University of Pennsylvania

Libraries ,_
O UNIVERSITY 0f PENNSYLVANIA 4 ScholarlyCommonS
Technical Reports (CIS) Department of Computer & Information Science
January 1974

Research on Automatic Program Generation

Jesus A. Ramirez
University of Pennsylvania

N. Adam Rin
University of Pennsylvania

Maxine Brown
University of Pennsylvania

Noah S. Prywes
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Jesus A. Ramirez, N. Adam Rin, Maxine Brown, and Noah S. Prywes, "Research on Automatic Program
Generation', . January 1974.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-74-05.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/682
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/682
mailto:repository@pobox.upenn.edu

Research on Automatic Program Generation

Abstract

Automatic Program Generation Research has been conducted under Contract N0O0014-67-A-0216-0014,
since 1971. The objective of the research has been to provide software generation directly from user
specifications.

Initially, the research concentrated on a specific application, of generating file conversion programs. A
first report on this subject was authored by Diane Pirog Smith, in December 1971, titled, "An Approach to
Data Description and Conversion". Subsequently, a software system for automating this function was
implemented by Jesus A. Ramirez and described by him in a report titled, "Automatic Generation of data
conversion-programs Using A Data Description Language (DIL)". Currently, the objective of the research
has been broadened to develop a user language and a software system for automatic generation of
business oriented programs.

This technical report contains a collection of three papers intended to summarize the results of past
research and the direction of current research. The first paper, by Ramirez, Rin and Prywes is a
summmary of Dr. Ramirez's report and dissertation cited above. The second paper, titled, "An Overview of
a System for Automatic Generation of File Conversion Programs " by. N. Adam Rin and Maxine Brown is
intended to provide a more user oriented view based on their experience in utilization of the system
developed by Ramirez.

There have been many research activities and a large number of papers in this area. The third paper,
"Automatic Generation of Software Systems: A Survey,' by N. Prywes serves to relate the research
underway at the University of Pennsylvania, to the many recent and current activities in this field. It also
aims to clearly define short and long term objectives and methodologies.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-74-05.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/682

https://repository.upenn.edu/cis_reports/682

e~ o

UNIVERSITY OF PENNSYLVANIA
The Moore School of Electrical Engineering
Department of Computer and Information Science

TEGINICAL REPORT
RESEARCH ON

AUTOMATIC PROGRAM GENERATICN

Project Supervisor
Noah S. Prywes

January 1974

ﬁr@ared for the
Office of Naval Research

Information Systems
Arlington, Va. 22217

under

Contract N00014-67-A-0216-0014
Project No. NR 049-153

DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for any purpose
of the United States Government

Moore School Report # 74-05

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilicstion of title, body of abetracl and indexing annoiation must be entered when the overall report iv classilied)
t. ORIGINATING ACTIVITY (Corporate auther) 20. AEPORT SECURITY CLASSIPICA TION
University of Pennsylvania UNCLASSIFIED
The Moore School of Electrical Engineering
Dept. of Camputer Information Sciences, Phila., Pa.

3 REPORT TITLE

2b. GROUP

4 DCSCRIPTIVE NOTES (Type of report and, inclusive dates)
Technical Report

S. AUTHOR(S) (Firat neave, middie initial, last name)

Jesus A. Ramirez, N. Adam Rin, Maxine Brown and Noah S. Prywes

6 MEPORTY DATE 78. TOTAL NO OF PAGES Td. NO. OF mETFS
January 1974 10%
8. CONTRACY OR GRANT NO. 98. ORIGINATOR'S REPORYT NUMBE R(S)

N00014-67-A~0216-0014 Moore School Report 74-05

b. PROJECT NO.

c. NR 049_153 ob. :;J:ccn :}uonv NO(S) (Any othet numbers that may be sesigned

10 DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for any purpose of the United
States Government

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research
Information Systems
Arlington, Virginia 22217

Automatic Program Generation Research has been conducted under contract
NO0014-67-A~0216-0014, since 1971. The dbjective of the research has been to
provide software generation directly from user specifications.

.
13. ABSTRACY

Initially, the research concentrated on a specific application, of
generating file conversion programs. A first report on this subject was authored
oy Diane Pirog Smith, in December 1971, titled, "An Approach to Data Description
and Conversion." Subsequently a software system for automating this function was
implemented by Jesus A. Ramirez and described by him in a report titled,
"Automatic Generation of Data Conversion-Programs Using A Data Description
Language (DOL)". Currently, -the dbjective of the research has been broadened to

develop a user language and a software system for automatic generation of business
oriented programs.

This technical report contains a collection of three papers intended to
summarize tne results of past research and the direction of current research. The
first paper, by Ramirez, Rin and Prywes is a summary of Dr. Ramirez's report and
dissertation cited above. The second paper, titled, "An Overview Of A System For
Automatic Generation of File Conversion Programs," by N. Adam Rin and Maxine Brown
is intended to provide a more user oriented view based on their experience in
utilization of tne system developed by Ramirez.

(Continued on next page)

DD °™..1473 (PaGE 1)

S/N 0101-807-6811

Security Classification A~31408

Security Classification

LINK A

LinNk B

XKEY WORDS
ROLE

wY ROLE w

“OoLE

Campilers, Generators, Prablem Oriented
Languages, Syntax Analysis, Lexical Analysis,
Data Description Languages, Data
Manipulation Language, Conversion Programs,
Automatic Programming, I1/0 Utility,
Automatic Program Generation

13. continued

1

1 . e

. Tnere have been many research activities and a large nurber of papers in
this area. The third paper, "Autamatic Generation of Software Systems - A
Survey," by N. Prywes serves to relate the research underway at the University
of Pem::sylvania, to the many recent and current activities in this field.
also aims to clearly define short and long term cbjectives and methodologies.

It

DD .".%™.1473 tsac>

S/N 010V -807-&A"1

Security Classilication

A-31 47

PREFACE

Automatic Program Generation Research has been conducted under
contract N00014-67-A-0216~0014, since 1371. The dbjective of the research
has been to provide software generation directly from user specifications.
Initially, the research concentrated on a specific application, of
generating file conversion programs. A first report on this subject was
authored by Diane Pirog Smith, in Decenber 1971, titled, "An Approach to Data
Description and Conversion." Subsequently a software system for automating
this function was implemented by Jesus A. Ramirez and described by him in a
report, titled, "Automatic Generation of Data Conversion-Programs Using A
Data Description Language (DDL)." Currently, the odbjective of the research has

been proadened to develop a user language and a software system for automatic

gene.ration' of business oriented programs.

This tecnnical report contains a collection of three papers intended to
summarize tne results of past research and the direction of current research.
The first paper, by Ramirez, Rin and Prywes is a summary of Dr. Ramirez's report
and dissertation cited above. The second paper, titled, "An Overview Of A
System For Automatic Generation Of File Conversion Programs,"” by N. Adam Rin and
Maxine Brown is intended to provide a more user oriented view based on their
experience in utilization of the system developed by Ramirez.

There have been many research activities and a large number of papers in
this area. The tnird paper, "Autamatic Generation of Software Systems - A Survey,".
by N. Prywes serves to relate the research underway at the University of
Pennsylvania, to the many recent and current activities in this field. It also

aims to clearly define short and long term abjectives and methodologies.

TABLE OF QONTENTS

Page
I. AUTOMATIC GENERATION OF DATA CONVERSION PROGRAMS USING A
DATA DESCRIPTION LANGUAGE, J.A. RAMIREZ, N.A. RIN AND
N.S. PRYWES
1. Introduction 2
2. Summary of Language Processing Facilities Of The
DIXL,/DML, Processor 4
3. Information Flow In The DIL/DML Processor 7
3.1 Introduction 7
3.2 Overview Of The DIL/DML Processor 7
3.3 The Syntax Analysis Program Generator (SAPG) 19
3.4 The DDL Compiler 13
3.5 Data Conversion Processor 18
4. Conclusion 21
IT. A\I.OVERVEW OF A SYSTEM FOR AUTOMATIC GENERATION OF FILE
CONVERSION PROGRAMS, N. Adam Rin and Maxine Brown
1. An Overview Of The DIL Processor System 1
A. Introduction 1
B. The DDL Language as a Data Description Language 3
C. Capabilities and Applications of DOL and Its Processor 5
2. Usage and Capabilities Of The ‘DDL Processor With An

3.

Illustrative Example
A. Usage and function of the DIOL Processor
B. Statement of Problem

C. Features and Capapilities of the DDL Language and
Processor

D. Evaluation

Current Research

36
39

41

II.

II1I,

TABLE OF CONTENTS

AN OVERVIEW OF A SYSTEM FOR AUTOMATIC GENERATION OF FILE
CONVERSION PROGRAMS, N. Adam Rin and Maxine Brown

4. Other Possible Future Work

AUTOMATIC GENERATION OF SOFIWARE SYSTEMS - A SURVEY, H.S. Prywes
1. Introduction

Part I Current Prablems In Software Development

2. Overview Of Historic and Ecoromic Considerations

3. Analysis Of The Software Development Process

Part II Future Advances In Autamation Of Software Development
4. Automatic Design and I.ttplarentétion Of Programs

5. Automatic Generation Of Non-Procedural Specifications

6. &;nclusions

Page

41

14
14
25

3l

UNIVERSITY OF PENNSYLVANIA
The Moore School of Electrical Engineering
Department of Computer and Information Science

TECGINICAL REPORT
RESEARCH ON

AUTOMATIC PROGRAM GENERATION

Project Supervisor
Noah S. Prywes

January 1974

Prepared for the
Office of Naval Research

Information Systems
Arlington, Va. 22217

under

Contract N00014~67-A-0216-0014
Project No. NR 049-153

DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for any purpose
of the United States Government

Moore School Report # 74-05

"AUTOMATIC GENERATION OF DATA CONVERSION PROGRAMS USING A DATA
DESCRIPTION LANGUAGE"

by:
J.A. Ramirez, N.A., Rin and N.S. Prywes

The Moore School of Electrical Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19174

ABSTRACT:

Costs and development times involved in computer software have
been exceedingly large. Programming and testing constitute the major
component of total software cost and account for most of the slippages
that have been widely experienced. It has also been found exceedingly
difficult for management to control the progress of programming and testing
of software. Therefore the research program described here aims initially
at reducing and controlling these components of the costs, particularly
in the Business Application Programming Area.

Historically it has been necessary to employ the computer itself to
reduce programming costs through use of high level programming languages,
such as COBOL or PL/I, or use of Data Base Management Systems. The
increasing costs indicate the need to employ even a higher level of
automation than employed so far, and automate the programming in high level
languages; namely automatically produce ad hoc programs in languages such
as COBOL or PL/I.

The paper describes a methodology to automatically generate programs
and the application of the methodology in a PFocessor for generating file
conversion programs. The Processor, accepts as input descriptions of
source and target files in a Data Description Language (DDL) and data
manipulation specifications in a Data Manipulation Language (DML). It
produces as an output a conversion program in PL/T capable of convertine

the source file and producing the target file.

1. INTRODUCTION:

The ultimate goal of the research reported in this paper is the

automatic generation of programs to perform data processing. The design

objectives have been as follows:

1. Input to the automatic programming system should be largely
(but not completely)} derived directly from the functiomal
specifications for the program to be developed. (A number of
languages for functional specifications are in use [1]).
2, Control, input/output and data definition code is to be generated
automatically.
3. Data manipulation not specified in the input to the system, can
be added in a modular manner without requiring concern with input/
output, or control or data definition code.
A methodology for debugging, test and proofing of program
components that is extensible to the entire end product program.
The paper describes a step toward this goal, a Processor which has
been developed to generate programs for the limited application of data

conversion. The Processor accepts as an input functional descriptions of

source and target files in a Data Description Language (DDL). To specify

validation criteria, data security, summaries and reports, the Processor

accepts inputs in a Data Manipulation Language (DML). It produces as an

output a conversion program in PL/1 capable of converting the source file

and producing the target file. The advantage of using the Processor over

programming directly in PL/1 are, briefly, the much simpler data definition
in DDL, especially for variable length fields and records, and the automatic

generation of JCL statements and ad-hoc PL/1 code for data declaration, input/

output control logic and for calls on the DML procedures when appropriate.

The Processor generates the top levels of the program, performing the g
program design and producing documentation and cross referencing.

The emphasis in this paper is on the methodology used in constructing
the DDL/DML Processor. The methodology is directed to implementing
processors for automatic generation of programs for specific areas of
data processing applications. It is also directed toward maximum ease
in modification of the functional specification input language, as such
languages are considered experimental until considerable experience has

been gained in their use. This direction of the work, reported in the

paper, is reflected in the discussion of languages used and information

flow in the DDL/DML Processor in Sections 2 and 3 below, respectively.
The DDL/DML Processor automatically produces conversion programs

in PL/1; i.e., PL/1l is used as an intermediate object/source language in

the compilation process of DDL statements into machine code. The main

reason for the use of PL/1 code is easier debugging and documenting of the

compiler and the respective applications.
The Processor itself has also been programmed in PL/1l, to facilitate
ease of programming and to allow for better documentation.

The processor

is programmed for IBM 360/370 computers. It has been used in several
applications to determine its computer usage, reliability and dependability.
A report on the Processor design and a User Guide to its applications

and use are available as part of the Ph'.D. Dissertation of the first

Author [2].

The application of DDL/DML and the Processor consist of the

following: (1) A Language for communication between humans about data

structures: For example, for an analyst to describe a data base to
an applications programmer. (2)

Pestructuring and conversion of
files: As a utility, the Processor enables the user to convert files.
(3) 1Interfacing files with different programs and programming languages:
The Processor, can convert files into a structure which can be processed
by another program. (4) Validating and editing of a file: By defining
a file in DDL, one can validate it according to user-provided criteria
written in DML. (5) Report generation: By defining the source file to

be a data base and defining the target file to be a report, the DDL/DML

Processor facilitates report generation. (6) Generally, single file to

single file processing with intermediate manipulation of data.

2. SUMMARY OF LANGUAGE PROCESSING FACILITIES OF THE DDL/DML PROCESSOR

The processor has external as well as internal languages. The
external user-oriented language used for input is DDL/DML. The internal
languages are used to specify the syntax of DDL and some of the semantics.
Based on these latter specifications various portions of the processor are

automatically generated. The main aspects of both types of languages

are summarized below.

-5-

DDL has extensive facilities for describing data files, covering

both logical and physical structures of the data. There are facilities

to describe such concepts as repeating fields, mandatory or optionél

fields, fixed or variable length fields. There are built-in functioms

to produce summaries, giving information on length of fields or the

number of repeating fields. Code for editing and reformatting is

generated automatically. The syntax of DDL is similar to the data
descriptive facilities of COBOL, PL/1 or the DDL designed by the CODASYL

Data Base Task Group [3]. The DDL used in the Processor is based on

a subset of the DDL design by Smith [4]. In the course of the implementation
and use it was found advantageous to make modifications to make DDL

easier to implement and use. A more detailed description of the facilities
of DDL accompanied by many illustrative examples of its use can be found

in the User Guide Appendix of [2].

DML is used for specifying validation criteria for the data, for
specifying complex conversions not built-in the Processor, for producing
summaries, and for producing reports. DML is, in fact, a subset of
PL/1, and therefore, has general manipulative capability. The Processor
may be also regarded as an adjunct to a PL/1 Compiler, adding, in fact,
the facilities of DDL to PL/1.

The syntax of DDL is easy to change. The specification of the syntax
of DDL itself and its internal encoding is used as an input to a portion
of the Processor, from which the Syntactic Analysis Program (SAP) for

DDL is generated. The language used to specify the syntax of DDL is

an Extended BNF (EBNF).

-6-

To convey some of the semantics, the specifying language was
extended further by allowing the specific -calling for subroutines. The

Extended BNF With Subroutine Calls is referred to in the following

as EBNF/WSC. It was used for specifying processing and encoding of

the DDL Statements into internal tables, and thus also to reduce the
work in programming the code generation.

The specification of DDL is used as an input to a program called
Syntactic Analysis Program Generator (SAPG). This program then
generates SAP, which is used to syntactically analyze and encode the
input DDL /DML statements. This aspect of the processor was considered
most important, as it was realized that the~DDL being used, as well as
other functional specification languages, are experimental and extensive
clianges may be necessary before even a near optimal language is
obtained. This facility was indeed used to change the language. For
instance, a change from the DDL designed by Smith [4] to a modified
DDL was accomplished in less than a week. Another advantage was the
ease in incorporating input error analysis, as experience was gained
with use of the DDL Processor. It was also found that automatic
generation of the SAP, via SAPG, greatly speeded and reduced the work
required to implement the processor.

Transition Matrices were used in Lexical Analysis of the DDL
as well as the EBNF/WSC statements following the ideas in [5], and [6].

It is, however, noteworthy that techniques for automatic
generation of the Processor's code generation routines were not used.

This was because the DDL ﬁrocessor is specially designed to generate

-7-

conversion programs and the research to date [7] on automatic
generation of code for generai purpose language compilers is not
applicable. Therefore, the code generation of the DDL/DML processor
was hand coded in PL/1l. Thereby, better efficiency was also achieved
in the generation of the conversion programs. All the hand codes, as
well as automatically generated parts of the system, including the
SAPG, were written in PL/1 for reasons of facilitating programming,
maintainability and limited machine independence.

3. INFORMATION FLOW IN THE DDL/DML PROCESSOR

3.1 INTRODUCTION

The information flow in the DDL/DML Processor is illustrated in
Figures 1 through 6. Figures 1 and 2 give a progressively somewhat
more detailed overview of the entire processor. The remaining four
Figures, give a further detailed information on the three major
components, the Syntax Analysis Program Generator, the DDL Compiler
and the ggnerated Conversion Program, respectively.

3.2 OVERVIEW OF THE DDL/DML PROCESSOR

The DDL/DML Processor is actually a set of three processors.
These are shown in Figure la as follows: The first is the Syntactic
Analysis Program Generator (SAPG). It accepts as an input the EBNF/WSC
syntax specifications of the DDL and produces the Syntax Analysis Pro-
gram (SAP) for the DDL. This product is then joined with inputs consisting
of routines providing additional semantics, code generation logic, etc.
to make the second processor, the DDL Compiler. The second processor

accepts the DDL/DML statements and its product is the third processor,

SYNTAX
DEFINITIONS OF DDL

IN EZBWF/WSC

SYNTACTIC ANALYSIS
PROGRAM
GENERATOR (SAPG)

LEXICAL & SYNTAX
ANAL. wOUTINES FOR

EBNF/WSC

Cubik. GENERATION
ROUTINE FOR
DDL

DATA DEFINITIONS

(DDL & DML ——u0
STMTS) .

DDL-COMPILER

'
SOURCE
DATA

{
{
t

DATA CONVERSION
PROCESSOR

l

TARGET DATA

la TLE DDL/DML PROCESSOR

SYNTAX DEFINLTIOM

SEMANTICS AND CODE
GENERATION RULES

USE—— |
COMPILER-COMPILER

USERS SOURCE
STATEMENTS

COMPILER

\

USERS PROGRAM

INPUT DATA

FIGULE 1

>

l

OUTPUT DATA

1b COMPILER-COMPILER SYSTEM

COMPARISON OF TDL/DML TPROCESSOR ARD COMPILFR-COMPILER

SYSTEMS DLSITIS

¢

_.8-

the Data Conversion Program, which is used to convert the source

data into the target data.

An analogy with existing computer programming language systems
is illustrated by comparing Figure la with Figure 1b. The SAPG
(in la) is analogous to a compiler-compiler's syntax analysis generation
module (in 1b) which is used to produce syntax analysis programs for
the specific language. The DDL Compiler (in la) is analogous to a
programming language processor, (in 1b) such as COBOL, FORTRAN or PL/1
compilers. The Data Conversion Processor (in la) is analogous to an
executeable user program (in 1b). The relationship between the use

of the three processors in the DDL system is readily seen from the

analogy.

The SAPG is a program used to create the syntax analysis program

which in turn, becomes part of the DDL Compiler. The ''‘generator'" is a

very valuable tool in the development of the DDL Compiler. Furthermore,

it could be a "stand- alond' valuable tool in writing any language syntax

analysis program.

The DDL Compiler and the Data Conversion Processor are the only

components of the DDL Processor that most users will need. To produce

a Data Conversion Processor, a user writes a data definition, a series
of statements in DDL, for each of the source and target files. These
statements are basically descriptions of the formats of the source and

target files and of transformations from the former to the latter.

If data manipulation is needed, a series of routines are written in DML.

These statements are used as inputs to the DDL Compiler. The compiler in

-10-

turn produces a data conversion program. Just as it is not necessary
to compile a conventional program each time it is used, it is not
necessary, also, to create a new data conversion program, each time
it is used. The same object module could be re-used (either as PL/1
source or in object code form).

A somewhat more detailed view of the three major components of
the DDL Processor is given in Figure 2. 1In Figure 2-6, the three
processors are identified by being surrounded by broken lines. A
rectangle with the missing top represents an input, and with a missing
bottom an output. Outputs which are programs, are shown in trapezoids.
When the output is a program, double lines are used to show where it
is later used. Figure 2 shows an overview of the information flow
with seme additional detail. In particular, syntax and lexical analysis
programs -makes -up the DDL Compiler.

The discussion in the following three sub-sections (and in Figures 3
through 6) provides a more detailed view of the components, in the
order of top to bottom of Figure 2.

3.3 THE-SYNTAX ANALYSIS PROGRAM GENERATOR (SAPG)

The top left of Figure 2 is expanded in Figure 3. The SAPG is
a compiler in its own. It consists of Lexical Analysis (a) Syntak
Analysis (b) and Code Generation (c) modules, all hand coded in PL/1.
They are compiled into IBM/370 machine code using the PL/1 compiler,
and form the SAPG.

The input to SAPG is the DDL syntax specification, in EBNF/WSC

(d). The output (f) is a Syntax Analysis Program (SAP) - in PL/l, which

ROUTINES FOR LEXICAL CODE GENERATION
FOUTINES FOPR. DDL

ANALYSIS
SYNTAX ANALYSIS FOR
EBNF/WSC
pmmmmmm e e .
SYNTAX i SYNTAX ANALYSIS PROGRAM '
SPECIFICATION ' GENERATOR '
OF DDL IN - ;
EBNF/NSC || =——=—=-=-=====f--==—====-=--
y
DDL SYNTAX DDL CODE
ANALYSIS
PROGRAM
[
-
pommmmme e ieimeooaoo
DDL /DML |)
STATEMENTS -
e
DATA CONVERSION
PROGRAM
| et VU'"""“"'""“"‘“‘"""""““;
! '
SOURCE ' . TARGET
FILE - DATA CONVERSION PROCESSOR : FILE
]
b o e e e e e o . e o = e = e e - = = = ee e e e m e 4

FIGURE 2
HAJOR COMPOWENTS CF TIE
DDL-FRCCESSCR

o) Y ©

SYNTAX ANALYSIS PPOGRAM CODF GENFFATION PROCPAM
LEXICAL ANALYSIS PROGRAM
) ‘7S L 5
IN PL/1 FOR PROCESSING (szmgl‘/ 1 FOR ERNF/VSC zipPL/l FOP PRODUCING
EBNF/WSC '
IR SN AU I NP ISP \ B
!]
]
' PL/1 COMPILER |
U e e eemmmmmmceceeemmmmmm e mmmmm—— e = :
P e R T | ittt § A
[]
(@) .
.]
@ X LEXICAL ANALYSIS[® .ovv-..- ™ SYNTAX ANALYSIS i
DDL SYNTAX : > FOR EBHNF/WSC fIN ' PROGRAM FOR EBNF/WSC | L
SPECIFICATION ' voTg V ! S
IN EBNF/WSC : :T Ry N
‘) '
: | B CODE GENERATION T0 1
' . :/‘ PRODUCE. SAP i
] . 1
: T - '
)]
: T | P L. CU
I~ ©

SYNTAY. ANALYSI
PPNGRAM FOR
PDL TN PL/1

FIGURE 3
SYNTAX ANALYSIS TPOGRAM GENEPATOE
(SAPG)

-13-

can perform the syntax analysis on statements written in DDL.

The SAPG has all the components of a compiler. The lexical
analysis consists of processing the EBNF/WSC statements to form
tokens. The syntax analysis further processes the EBNF/WSC strings
of tokens to perform various checks, generate error comments and
organize the information in accordance with the internal tables.

Finally this information is analyzed and the SAP PL/1 code is

generated for processing subsequently (in Figure 4) the DDL Statements.

3.4 THE DDL COMPILER

Figure 4 shows the components that are used to make up the DDL
compiler. They are as follows:
(1) The Lexical Analysis Subroutine for DDL - hand coded in

PL/1.

(2) The Syntax Analysis Program (SAP) - produced by the SAPG
in PL/1.

(3) Supporting subroutines - written in PL/1, perform services
required by the SAP. Services include recognition of syntactic elements,
fGiagnostics of syntax errors, creation of Internal Tables (symbol and
data tables) and, if specified, a cross-reference table of the identifiers
used in the DDL program. These subroutines can be called in the
EBNF/WSC statements.

(4) Code Generation Program - written in PL/1, forming the
basis of the code generation phase of the DDL compiler. 1In it is
contained the logic required to interpret the information stored in
the internal tables and to generate PL/1 statements which will pe?form

the data conversion indicated by the analysis of DDL statements.

DDL & DML

O @ ©)

O

DDL COMPILER
(IBM/370 CODE)

STATEMENTSY

DATA CONVERSION @
PROGRAM (PL/1)

DATA CONVERSION
PROGRAM
(IBM 370 CODE)

LEXICAL SYNTAX ANALYSIS SYNTAX SUPPORTING
ROUTINE FOR PROGRAM FOR DDL IN ROUTINES, CROSS- GENERATION
DDL IN PL/1. REFERENCE ROUTINES PROGRAMS IN
PL/1 IN PL/1 /
4 y
I AP 5 Y .. -

SOURCE R it i
FILE i DATA CONVERSION PROCESSOR QBL
t]
e e e e e ;e e e e o e e = - —— 1

YIGURFE 4
Lbn LurPILek INPUL awb OUTPUT (G TOFNTS

1 A

—f]'[_

| TARGET

FILE

-15~

(5) & (6) The PL/1 Compiler (5) produces the DDL Compiler
(6) in IBM/370 machine code.

The remainder of the system is also summarized in Figure 4, as
follows:

(7) The DDL statements given by the user describe the structure
of his source and target files and mappings from the former to the
latter. The DML statements describe the file manipulations to be
performed on the source file, such as editing, complex specialized
cﬁnversion formulas, security testing, report generation and
statistical gathering of data.

(8) & (9) The Data Conversion Program, in PL/1l is the input to
the PL/1 compiler (9) this produces the Data Conversion Program (10)

In mactiine code for the IBM/370.

(10), (11) and (12) Finally the Data Conversion Program (10)
accepts as input the source file (11) and outputs the target file (12).

The compiling process is further expanded in Figure 5. It is per-
formed in ¢yo phases, as described below.

PHASE 1 OF THE DDL COMPILER

In phase 1, DDL statements are read by the Lexical Analysis Pro-
gram (LEX) that forms tokens which are in turn the input to the SAP.
The SAP examines the string of tokens to determine whether or not the
string obeys certain structural conventions explicit in the syntactic
definition of the language. Should an error be discovered, the error-
diagnostic routines will be called to output a message informing the user
of the location and nature of the misconstruction.

Concurrent with this error detection is the internal table generationm.

At this time, routines are called whose functions are the capturing of

DDL - ERROR DTAGNOSTICS
PHASE
SOURCE X igﬁ STMT ENCODING ROUTINES | & 3>
- N O JF 9
STMTS DDL DDL | b CROSS-REFERENCE 12QUTINES
| SYMBOL f CODE GENERATION
IDATA TABLES "——=] PROGRAM
!
Lo e ;
PHASE
Y
DATA CONVERSION
PROGRAM
(PL/1) A
T
DML SOURCE
STMTS
, {
pooTTETTTeT T TTTTTTTTTTT
!
'PL/1 COMPILER .
Lo mmmmmmeeem = { H
SOURCE DATA CONVERSION TARGET
FILE > PROCESSOR FILE
FIGURE 5

DDL. COMPILER PHASES

-17-

information contained in the DDL source statement and the building of
tables to preserve this data in coded form for use during code generation,
as well as in the detection of global syntax errors. The internal tables
that are formed are the Symbol and Data Tables. If no errors were detected
and if a "XREF" option was specified to the DDL Compiler, then the

cross-reference table is generated and output for the user's reference.

PHASE 2 OF THE DDL COMPILER

Phase 2 is code generation. The first part of Phase 2 is the execution
of a series of programs which steps through the Data Table and generates
PL/1 declare statements. When compiled, these will produce a Description
Table that contains the following for each field of the source record:
tl) data descriptor information, and (2) space for placing pointers to the
field at execution time.

After the compiler has produced the Descriptor Table, a call is made

to the Data Parsing Code generation routines. These routines generate the

code which will set the field pointers in the Descriptor Table entry to point
to the fields in the input buffer of the source file at run time.

The second part of Phase 2 is a program which uses the Data Table
entries for the target file and generates the data movement code, which moves
the source data into the target file. This completes Phase 2 of the
DDL compiler. At this point the DML statements are read by the DDL compiler
and they are merged with the code produced during the code generation phase.

The creation of the data conversion program in IBM/370 machine language,

is performed by the PL/1 compiler. The input to the PL/1 compiler is the

PL/1 text produced in Phase 2.

-18-

3.5 DATA CONVERSION PROCESSOR

The Data Conversion Processor is composed of the set of programs
and data which was produced by the DDL compiler and the DML routines
supplied by the user. This is illustrated in Figure 6, it is composed
of:

(a) a Data Conversion Program

(b) a Data Structure for the source file, and

(c) a set of DML subroutines

The Data Structure for the Source File, which was produced by
the DDL Compiler from the DDL statements, is used by the generated
Data Conversion Program to aid in parsing the source data. The other
componenﬁ of the Data Conversion Processor, the user-supplied DML sub-
routines, perform functions such as character set conversioh, extension
or truncation of fields, data type conversion, criteria testing, security
testing, report generators and gathering of statistical data.

The information flow in the Data Conversion Processor, shown in
Figure 6, in fact is a representation of a generalized strategy for data
conversion. In terms of a program this strategy is represented by two
parts. The first consists of the data definition and control code which
is required in a program to allocate buffers, input/output of blocks
and records, identify the location of data elements in accordance with a
specified data structure and finally perform standard conversion functions.
The “flow chart" for the gnerated code is illustrated in Fig 7. In a
Mtop-down" [8] concept of a pro gra®m the first part constitutes the "top."
The second part, which consists of data mnipulation routines in DML

constitutes the "bottorn'" level of a progarn This gneral strate gy has

SOURCE r '
FILE . : o| TARGET
, DATA CONVERSION PROGRAM . FILE

t

)

B e R e T T I T

® u ©

STRUCTURE DML
FOR ROUTINES

SOURCE FILE

FIGURE 6
DATA CONVERSION PROCESSOR

6'[

-20-

DDL GENERATED PROGRAM PROTCTYPE

'

Declare Internal "Housekeeping" Variables
Declare Input buffers for source file

Declare structure of pointers and lengths for
every field and group in the source file

Declare Output buffers for target file

= READ a user-defined record gn_d__o_g _fi_lg - ~p=call
call LOCK routine if any RAPUP
‘ procedure
if any

Set all pointers of source record

initially to null close files

r___..For each field in source record: STOP

1) Call criterion procedure, if any, to test existence
2) Determine starting position of field and set
pointer to it
3) Determine length of field as
(a) a given constant
(b) by scanning for a delimeter
(c) by calling a routine that computers length
(d) by referring to the value of another field
or (e) by using the length or count of another field

L— Y Any more source fields?

ln

— For each target field:

1) Find field in source record or constant to be moved to target
2) Call the appropriate conversion routine, if specified
3) Concatenate source field to the output buffer being built

l— Y Anymore target fields?

e WRITE Output Record

FIG. 3 ILLUSTRATION OF THE "FLOW CHART" OF
DIOL/DML. PROCESSOR GENERATED CONVERSION PROGRAM

-21~
been adopted from the beginning in the supporting and code generation
routines. It is this type of strategy that is envisaged to change from
one class of potential applications to another.
4. CONCLUSION

The Version 1.0 DDL/DML Processor has been found to be an
effective and efficient tool, by the users, in several applicatioms,
although it has limited functions and capabilities. Additions of
functions and use to gain additional experience are progressing. The
authors invite those interested to communicate with them regarding
receipt of the system for wider experimentation. Presently, the
subjective Impressions are that effectiveness in program development,
efficiency in processing and reliability are gratifying. However, there
have not been a systematic approach to measuring these aspects so far.

The authdrs however feel that in this study of development, an
equally important outcome is the availability of the system as a
research tool and backbone for expansion to accept other functional
specification languages and to perform for wider classes of data

processing applications.

ACKNOWLEDGEMENT

The authors acknowledge with thanks the participation in design
and programming by Messrs. H. Solow, P. Gross and A. French, and the

preparation of the documentation and this manuscript by Miss B. Weber.

REFERENCES :

(1]

[2]

[3]

[4]

5]

[6]

17]

(8]

-22-

Teichrow, D.: Survey Of Languages For Stating
Requirements For Computer Based Information

Systems, Proc. of the Fall Joint Computer Conference,
1972, pp. 1203-1244.

Ramirez, J.A.: Automatic Generation Of Data
Conversion~Programs Using A Data Description
Language (DDL), Ph.D. Dissertation, University of
Pennsylvania, 1973.

Conference On Data Systems Languages. Data Base
Task Group. Report to the CODASYL Programming Language
Committee. Association for Computing Machinery

Conference On Data Systems Languages. Data Base
Task Group. Report to the CODASYL Programming
Language Committee. Association for Computing
Machinery, New York, New York, April 1971.

Conference On Data Systems Languages, Systems Committee.
Feature Analysis of Generalized Data Base Management

Systems, Association for Computing Machinery, New York,
New York, May 1971. 511p.

Smith, D.P.: An Approach To Data Description and
Conversion, Ph.D. Dissertation, University of
Pennsylvania, 1971,

Floyd, R.W.: The Syntax Of A Programming Language -
A Survey, IEEE Trans., 1964,

Conway, M.E.: Design Of A Separable Transition -
Diagram Compiler. Comm. ACM., Vol. 6, No. 7, 1963.

Fang, Isu.: A Declarative Formal Language Definition

~System, Ph.D., Dissertation, Stanford University, 1972.

H.D. Mills, Top Down. Programming In Large Systems,
Debugging Techniques In Large Systems, R. Rustin, Editor,
Prentice Hall, 1971, pp. 41-55.

AN OVERVIEV OF A SYSTEM
FOR AUIOMATIC GENERATICN OF FILE CONVERSION PROGRAMS

N. Adam Rin and Maxine Brown

ABSTRACT

This paper describes a processor which automatically produces file
conversion programs based on non-procedural user specifications. The
Processor accepts, as input, descriptions of a source file and a desired
target file with same auxilliary descriptions of associations between the
two. Tnis is specified by a user in a Data Description Language (DOL).

To specify validation criteria, complex, conversions not built-in to the-
system, security criteria, or suwmnary processes, the system also accepts
specificaticns in a Data Manipulation Language (DML). It produces, as

an output, a conversion program in PL/1 capable of converting the described
source file into the desired target file. The paper describes the structure,
system design, capadbilities, and applications of the DIL/DML language and
processor, .including an illustrative exanple.

\ AN OVERVIEW OF A SYSTEM FOR
AUTOMATIC GENERATION OF DATA CONVERSION PROGRAMS

N. Adam Rin and Maxine Brown

I. AN OVERVIEW OF THE DDL PROCESSOR SYSTEM

A. Introduction

This paper is concerned with research done in the field of automatic
generation of data conversion programs; it providecs an overview of an existing
software system which produces file conversion programs from a user's
specification in a data definition language and it discusses possible future
work in this area. The system was designed and implemented with support from
the Office of Naval Research by a group of graduate students under the

supervision of Dr. N.S. Prywes at the Moore School of Electrical Engineering
at the University of Pennsylvania.l

The system developed is a step towards the auvicmatic generation of data
processing programs. The class of data processing programs which the existing
processor can automatically generate is file conversion programs; i.e., the
system is able to produce a procedural program based on non-procedural user
oriented specifications to translate an existing file of known structure into

a new desired format. Non-procedural specifications as used here are descriptive

statements defining the source and target files and what transformations are
to be performed between the two, but do not relate hov these transformations will

be constructed. The procedural program produced by the processor is

1 For detailed documentation of the system, its implementation and use, see
J.A. Ramirez, "Automatic Generation of Data Conversion Programs Using a
Data Description Language (DDL)," Ph.D. Dissertation, Moore School of

Electrical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania,
19174; 1973.

DDL

& LN DDL
DML PROCESSOR
STATEMENTS]
DATA CONVERSION
PROGRAM IN PL/I
PL/I COMPILER
A
SOURCE
FILE DATA CONVERSION

PROGRAM

FIGURE 1 THE DDL PROCESSOR BLOCK DIAGRAM

~3-

a PL/1 conversion program complete with input/output related instructions,
logical sequencing and control, and invocation of special manipulative routines
peculiar to the problem.

Figure 1 shows a block diagram of the processor which accepts, as input,
descriptions of a source file and a desired target file with same auxilliary
associations between the two specified in a Data Description Language (DDL) .

To specify validation criteria, complex conversions not built into the system,
security criteria, and summary processes, the system also accepts as input
prescriptive statements in a Data Manipulation Language (DML), a subset of
PL/1 with general manipulative capabilities. The processor produces, as
output, a procedural PL/1 program capable of converting the source file into
the desired target file. The generated program is then compiled into machine
language, yielding a tailored-to-need conversion program. The processor can
therefore be regarded as an adjunct and enhancement to the PL/1 campiler, adding
the facilities of DIL to it. .

B. The DDL Language as a Data Description Language

The DDL that has been developed contains all the data definition
facilities of QOBOL and PL/1 plus other unique capabilities for describing
data structures and organization not found in these languages. For example,
the DIL language and its processor have the ability to compute the length
of a data item at execution time and to accept a variable nurber of
occurrences of variable length data items.

The actual syntax of the DDL developed is not extremely crucial to
pinpoint; the way the processor was implemented makes it easy to change

the DDL syntax. Namely, the specification of the syntax of DDL is itself an

LANGUAGE

SPECIFICATION
OF DDL SYNTAX ANALYSIS
IN EBNF)1 PROGRAM GENERATOR
DDL, PROCESSOR
STATEMENTS >‘ SYNTAX ANALYSIS PROGRAM | MANUALLY WRITTEN
AND ENCODING ROUTINES COODE-GENERATTON MODULES
FOP DDI, STATEMENTS
\
PL/I DATA
CONVERSION PROGRAM
PL/I COMPILER
DATA CONVERSION
SOURCE N
FILE PROGRAM

5

FIGURE 2 BIOCK DIAGRAM OF SAPG AND THE DDL PROCESSOR SYSTEM

TAPGET
FILF

input to a meta-processor, developed by this project, which generates a
syntax analysis program for DL (or any other language specified to it). As
sean in the more refined block diagram of the DDL processor in Figure 2, this
meta-processor, called a Syntax Analysis Program Generator (SAPG), accepts
descriptions of a formal language such as DIL in a meta-language which is
essentially an extension of BNF. It generates a Syntax Analysis Program (SAP)
for that language (which, in our case, is DIL) and invokes manually-written
processing routines. The SAP for DIL together with manually written code
generation modules form the bulk of the DOL processor which, in turn, accepts
the DOL/DML statements and generates a PL/l1 program.

The implementation of the SAPG and its use to implement the DDL System
allows changes to the syntax of DOL to be made relatively easily and in a short
period of time. Thus, this processor could accomodate other Data Description
Languages with relatively little effort. This is a crucial fact, for such
languages are considered experimental until experience is gained on their
use and effectiveness.

C. Capabilities and Applications of DDL and Its Processor

Actually, any application involving one input sequential file and one output
sequential file is a candidate for use in the present DIL System. Some examples
of tne uses of the DIL language and its processor are thz following:

(1) A Lanquage for Commmication Between Eumans About Data Structure

One important application of DOL is as a means of commmication between
humans about the structure of data. For example, using a DDL, a designer of

a data base can describe precisely to an application programmer the exact

structure of the data the programmer is to use. Furthermore, even non-technical

personnel could learn a DIL-like language to describe data.

(2) Restructuring and Conversion of Files

As a utility, the DIL processor in conjunction with DML enables the
user to re—define the structure of his file, reformat it and oonveﬁ it
accordingly. Furthermore, conversion of a file can be done selectively; i.e.,
those port:.ons of a file that meet a user's criteria can be selectively

converted or copied to a new file.

(3) Interfacing Files with Different Programs and Programming Languages

Frequently files created by one program cannot be processed by another
program or by another program in a different programming language or computer
facility. With the DIOL processor, filés can be converted into a structure or
format which can be processed by another program or machine. In this manner

files can be interfaced across programming languages and computing facilities.
(4) validation of a File

By defining a file in DOL, one can validate it according to user -

provided criteria written in DML.

-7-
II. USAGE AND CAPABILITIES OF THE DL PROCESSOR WITH AN ILLUSTRATIVE EXAMPLE
| A. Usage and function of the DIL processor
Figure 2A siows a block diagram of the usage and function of the

DL processor. A file conversion problem using the DOL system passes throuwgh
two states; the user is responsible for formulating and describing the data
definitions, mappings, and manipulations in the DOL/DML language, and the DOL
processor campiles and executes these descriptions to produce the desired file.
Enumerating this process, the user is respansible for producing the following:

(1) a DIL description of the source file,

(2) a DIL description of the target file with the associated mappings
from the source file, and

(3) the DML routines for specifying criteria, special computations, and
camplex conversions not built-in to the system.
The DOL processor, in tumn, will generate the following programs and listings:

(1) the desired generated PL/1 program that performs .the conversions
(this program declares appropriate variables, allocates and opens buffers for
the source and target files, issues input commands for reading the source file,
_issu&s output commands for writing the target file,
and invokes the user provided DML routines at the appropriate locations);

(2) a listing of the user's DIL/DML statements;

(3) diagnostics for user errors;

(4) a cross-reference table which has an alphabetical listing of all
the names which appear in the user's DOL description along with its attribute
(field, grouwp, record, etc.) an;i the line numbers of all the statements in which
it appears;

(5) a listing of the required Jab Control Language (JCL) cards which des-
cribes the input and output files and are needed to run the generated program

under the 0S 360/370 operating system.

USER’S FILE

CONVERSION
_PROSLEM

USER

DATA DEFINITION
AND MAPPING

DATA
MANIPULATION

DESCRIPTION
OF SOURCE
FILE

pa

DESCRIPTION
OF TARGET
FILE

N

.
‘.FWL ROUTINES

SOURCE
FILE

(ILLUSTRATED IN F1G. 4)

.

WILL BE
ILLUSTRATED
DDL PROCESSOR IN
DDL/DML
LISTING FIG, SA
COMPILATION
DIAGNoSTICs | FI6 B
CROSS—-REF
™™ TABLE FIG, 5¢
—
REQUIRED FIG, 5D
BRI
FL/1 FIG, BE
GENERATED
PROG.
EXECUTION
OF
GENERATED FIG, b
PROGRAM

FIGURE 2A: USAGE AWD FUICT IOV OF THE DDL LANGUASE AND PROCESSOR

The generated program, integrated with the user-provided DML routines, is
input into the PL/1 compiler, compiled into machine language, and executed
to produce the desired target file.

The above listings will be illustrated later in Figures 5a - Se.

B. Statement of Proolem

In order to present a brief discourse on how to use the DIL system,

a sample problem was devised, implemented, and reproduced in this section for
illustrative purposes.

It is desired to convert a given tape consisting of text of news articles
into cne whose records are of a more legible format. The format of the
source records nave the hierarchical structure as shown in Figure 3a.

The NUM field contains a 5 digit number which is the nunber of bytes
contained in the field IN_TEXT.

DOCUMENT is a 6-digit field which contains a serial nunber assigned
f.o the news article found in IN_TEXT. If the article is more than 1 record
in length, the same document number appears on all related records.

DATE is a 8-character field containing the date the news event took place.

TIME is a S5-character field containing the time of the event.

TITLE is a variable-length field whose length is to be computed by a user-
provided routine called TXXTLEN.

' IN_TEXT is a field which contains the actual news article. It has a
variable length of up to 4088 bytes and contains either the entire article or
a portion tnereof. 1In the latter case, the article is continued in the next
record, but J.n no case is there ever more than one article per record.

The desired program is to perform the following conversions:

(1) the beginning of each article is prefixed by a ocollection of fields,

IN_RECORD
NUM DOCUMENT INFORMATION IN_TEXT
MSGNO DATE TIME FBIS ZEM TITLE
FIGURE 3a SOURCE RECORD STRUCTURE
OUT_RECORD
OUT_INFO OUT_TEXT
DATE TIME TITLE

FIGURE 38 TARGET RECORD STRUCTURE

-11-

deroted as INFORBTIGN, from which we wish to extract DATE, TIME, and TITLE.
(2) The body of the news article contains special sequences of characters,
which shall be referred to as break characters, interspersed throughout the
news article. These are to be scanned for and eliminated.
(3) The desired target tape is to contain records with fields
DATE, TIME, and TITLE, if apropos, and an OUT_TEXT field, as depicted in
Figure 3b, which oconsists of the preserved text without the special break
characters and introduction. The target textual records are to output with
a maximum of 75 characters per line for the purpose of legibility when the
tape is printed at a later time. For efficiency considerations, however,
the 75-byte logical records are blocked to 7500 characters on the output tape.
Figure 4 shows the dump of the first few records of the original tape,
while Figures 5a through S5e show the listing produced by the DDL compilation
for this sample prablem. A dump of the first few records of the desired
target tape is given in Figure 6.

OPCN? = TP« T1/PE 1, = CHBOGo =12- L e
0407790001 (¢ NS0, in 1 2?77 206/08/T71% *09:15%

T) t bYS 47==_ CEi . UISIDEGYUURWKUS/OPIN=E, MAIUe HOST.==. TX
XT. SFCON0 AUD TA O(JEON A TEYFDWIEY) =S XXY COLSTRERATIONS OF SYMPAT
HY e==_ PACHERTSY JUSSTIGG: LPhAl TS THF SIGNIFICAMNCE OF THE ILTFENSIVE =
=. SHtpu.‘T< (o SONICT L 7O Cerrir?s AMSHEKRS FIRST OF ALLy
ThIS 13 PCTRING “ow, CUYIET PRLLICY WASs=_ “h&ib'ccnsrg?iﬂﬁ“iw THIS MATTE
R ST'ILE 1967. 1 ASslf Tulgzz_ IS ALSO A REACTION TO THE WELL=KNOYWH FAC
ST OTURT IseAgL YRR Ly ETEL T T STk DER . THE USSR FCERES 1TS INFLUFNCE Th E
GYPT TGHT RE VO b Oriz=_ 1T HES 0T WO GHREAT ACHIEVEMENTS FOGR ITS PRO
TCET~ ¢ ALLTES. 1 f==a TOAaeTION, COULY ASAT W nAT SURY OF ALLY AKE YO
U? it wkE AKE ==_ TEORCACHT.LE THE FLFTH YFAR. AML F'OT A SIMCLE SOLMIFR

HAS Sultdez=o TTRRITRE R YL ALE A0 TRYLUG Fe RELP USe OR YOUR HELP 1S OT

==_ FARTCli Jv 0 Y CFFEeCTIVE,

TLESTURS

Ak PROPAGLLY KFISIilb ALOULY THE==

TULARET SOvIET UL DNOIYT .“rngFUHE'TP;'UssN MUST ASK TTSELF HOW TT Caf==_
UL AL T e Tl 3TS I fLUE ¢ IT EGYPIE wlILL COMTINUE TO FE CCWSIDERALLE,
==_ TUE TST ¢ 7Y 1o 7 I s TU STRETNGTrr g 118 STATUS A6 PRESTIGE 10
THE==_ E3YPTTA ARSY OY SHIpPPING ARMSe 1 GELIEVE THERE IS ALSO==_
oA NESIRETTYT TSR, TV RO TP RSSOk I ARATLT AL THE DITITED STATESE=_ BY
SAYT' Gt WIF YCii J 0T T/vl 4 1072 InTO ACCUUNLTY WAR MAY EREAK== CUT,.
TWTYTRTLIEVE TRE T 1T A VERY PUVLYRUCY PERSISTERTSEC AAR UF KEFRVES HERE,
==_ Gl ST 8 AT T &S 1,ufR THESE CONDITIONS THAT YOU HAVE==_
CFECFIVED WEFL TS Tai 1 FIC=Z227%S ;aL 2B ING SERT TO THE LCYPTIaANS? == AN
SWEP: LF COURST, ALTHALSH T Al wOT CAPAELF OF DENYING==ASz==d I AM NOT C
TAPARME U COWFIn Tht: V@ A FACT~-=THAT PLANES OF THig ==_ TYPE HAVE ARRIVE

De=z=o CUCST ot e
TANSWERTT T TTEAITTNI

YOUui NCT CFPAULE

F!

INZ 3

IXia)

JSSESY TOCS 0T EWABLE ME TO==-

OF YOU L0 10T WANT TN?z==_

- SAY W
ITH CERTAINTY ¥HrTHER Oh 30T SUCLKH PLAKRES AAVE ARKIVED. LHAT == IS CLEAPR
IS TRRT FARY 71 Fi= ,UaldiTY L FUIS I'AVE RAREFIVED ARD THA Tht RATE OF
SHIP™ET IS HIGH, THLUSy WHETHEK A KEPORT ABOUT THI OR AMY OTHER TYP

TEOE PLAGE TS FGi TG 7@ ER TRJZ OCES NcT AU OR ==_ CETACT ARYTHING. THE
FACT TS THAT THrbE I8 & COPTINULIUS REINFORCEMEL T==o OF THE EGYPTIAN MIL
YTARY TFFC 11T 585, RS FEx THE RePIRTez=z_ T Am SURE THAT T4E
PROWT'W{.CE GIVE': 10 "7 15 LIWnEL 70 THE LFFURT ROTH==_ TO CALM EGYPT ABO
U7 © 7IT T ITTELT T ON: + v TU ., Loalnr ISRFLL==- A THE L ITLD QTATLS. H
ERE T ~UST SAY T AT 907 YT OTATE R ACTIUN==_ TO THEST R{FORTS BY Uesse O
EFENRT " SECRTTARY LRIV v i85 VLY GLWwcFICIFL==2 WE SRITD TilEst REPORTS ARC
A QNiLRCE OF J0P~Y o T bnd »TLL=F iDL AND ==_ THAT ThE UNITEL STATFS W

TEL "OT BUDCGE FRTITS TOLICY CF T OVETTI G==2

AT UFSET oF TSRAELYS rlanS
BALA Lk g==_ Gt STLleTr THE RUSSIANS BAVE PROVED MQOKF THAN ONCE THAT THF
Y UTYT =T U7 T 0T U Ter Ie Bt TIOSY wie ik PROLLTS THAN UM HAVIIG A Gy
UIinfF==_ meCYREE T POl Tk IR THREFTS IeTe PRACTICE, 4d£ﬂ THE ERLEXMY WTTHS
TADNR == T T T T T ITITUTNERT R Ty T ROSSTRTTETAR SUMETIMES TURIISTCUT TOTRPE A TAFE
R==_ BEAt e TF 1 GERT TO A<y YUUs SIPy HOW FAR CAf WE bo IM TriJS MATTEK.
TEE_ T TR AY WOl L YIS ROy LYT == ARSWERT U °0C TOT THirK KhISTORIATS
WILYL A5y OF ISHATL 1i, T TT3==_ mtAVES hoaveE DR JF AR DURING Thi LAST FEU
YETT<e AT Y - ATt v==o TT +HAVE .veh REAFPD SHCE: K COrPLAILT FRO., CITHE
RO PSP S Okhz=a '“H FRIEIC6. A5 FOr THE CHALLES OF oOVIET INVTERVENT
100, | ©0d==_ = COTET TRECTTEID T GAT WU TRROTTOURASELVES TIN A ALIC TOTTHE éi?"
EuT==. To:aT VT pibE wnwzu\?{t ARL IN EFFECT FURCEL TO S ITHURAW, THERF ==_
ATy TAFTER AU TSEVERALTOLSTACLES T THE pPATH OF SOVIETY INTERVENTION .;-.:'
- FIRT "¢ ~lb,y UK PCvth T THe A9t IS 6T I%Cor SII&RA«LE A ThE ==o .
USSH 'S L
o 02582007 5IF P CTH 15 70T U LTATITED. SECOLDe THE USSR ATTACHES wbIGHT=s T~
- To Vit e T ILITY OF GLeSe INTLRVIUTINN, I ThIWEFORE 10 NOT HELIEVL ==
- TUE O ARDOCS FLUTTLY ATALLO L. IT LOULLD HCT DY REALISTICe HOWFVFes Tu=s
- ASSUvE, 1{ 1T THD USSe v iLL Cr Anbb THE FULICY IT ADOPTED wWHEN IT==o

FIGURE U: SOURCE FILE LIST

-13-

TTEFFLED UP (710 IT.TVEREVLIT Y o Gl T &VE UF THUE CEASE-FIRE It THE

- -
-

SUFMER OF 1970, " ==_ FUESTIL: wHAT ABOUT OUR KECEMT ATTEMPTS 7O BRFAV
THE RING OF==." " 7 7 7RRAB I0STILITY BY MAXING OVERTURES TO ARAR STATES LESS==_
FAIATTCﬂL TR 75 alltikopa?z=l AWSWEKS NOT 0iLY TU THL LFSS

FArﬂTICAL STATFS, BT Fu= T3==-, QUK NEIGHEORS, WE_NEVER MINSS _NPPORTIMIT
TIES TO LXPFESS “Wh FLelit Fof=s PLACE AdD OUUR VUTLOOKe NITHOUT UDIVG
INTD DETAILSS T - Tli== \AY ' THAT N1 ONL Y Ik THE CASE _OF REMGTE A-AD COU.
NTRTFo BUT FVbiiz=o CLOL al,3 COLuThILS. vWE hAVE MALE ySE OF THFE GOOI SE
RYIfiZs uf ==. T RY s T e S wri GUO PO CATKY TO JERUISALES o n b 50
JERUSALL == TC AL e TU Picesbnl & CURKECT PICTURE OF OuR FOLICY 10 THE
==_ Ofu~ STii, THIS LD fpPLIES TO COUNTRIES -HICH ARE LESS I¢u0Lv(J=

Tl TTTT T T TATS dsPUThmen b COUNTRIES FURTHER AWAY FRQOM THE AREA. Ni'ks
EFFUKTS A & Clr<is tT.-__ GUESTION: WHAT ARQUT THE DEMALD an nUR

MIFAGESe whiCs i ‘T‘LL Iih FRAUCE?== ANSLERS THE NEmARUD 1
S STILL VALID Ann Ttk "l'nbrr e STILL lu=s FRANCE o == WUESTIO

NS "R EbAle UO vYIU FVFRE FEAL TRAT JHE POLITICAL OPTIUNS==_ AT OUR DISPO
SAL. LIMIT Us FRO: Tut OUTSET? 1iE ESYPTIANS SMILE==. SOMETIMCS ON MGSCO
W AT SORETIMES O WFSETWSTO0 Fiel GET RESPORNSES==_ FROM BUTH STDESe WHIL
E WE HAVE TG WOR' HAlL [EVYEN 1T OU'] FRIENDe==_ THE UMITED STATES.==

ANSHERT 1 ATURRLLYs Ti1iS GIFTELREWCE EXISTSs BUT TF T WERE THE==_ T
GYPYTA!l FORETGH +TGISTFR [oLl MOT BE GREATLY COMFORTED BY ITe==_ FOR

AFTE? AL THE PRAFLIT A0 THOdYy-o T CF THE GREAT OPTIOnNSe LHAT HAS=S=_ THE
RESUILT nCEMh? T v SLT (< ThA1 V¢ REMAIN eXACTLY WAERE==_ Wb WERE ON

THE NAY AFTER Tur WAk AN) WO ONE Hig SUCCEEDEU IN MOVING==_ A SI!GLE ISR
AELT SOLDIER FROw A SICLE PosINifi,==a JUESTION: KAVE wE EVEK TRIFD TO

OPEN A UIALOC WITH THF JSSP==o OR OTHER EAST EUROFEAN COUNTRIES?==_
AMGHERS YEge ni BAVE TRIED T 9AKE THE USSR REALIZF THAT==_ ISRAEL

DOES MOT REGAKI) Trls FUPTURC AS NFCESSARY. NRUR DO w BELIEVE THAT T
__HE TXISTE|CE OF ~IFPERHICES ,cCELSSITATES BREAKIMG OFF==_ RELATIONS, WE
HAVF BtEh USTNG ARY CHATIELS LLCE .TLY TU CONVEY TO THE== USSR THE KhOW

LEDSRE THAT IF IT wARTS £ DIALLE WITH USy ==_ SEPARATELY FROM AUD PRIOK T

0 RESUMETION OF LlaTirl.Sy <t ART OPt.d 10==_ THIS,==_ (FORE)==_
17 AFR 103507 L A==_ SN ES o NN

FIGURE 4: CONTINUED

DDLU

1

PROGRAM I ISTING -14-

SONVERT(SFILT INTD T=IL=)S

L) FR I R O R Y Y R IR T L/

/= x/
/= ! SOSCATATIAY T SnyeCs FILT */
/= “/

R D L R e R R T L L S Y 4

2 SFILE IS FILZ(IN_TEZRN (ST ARI =G _TiPT)
3. LLJINCRECDED TS 2 T30 (UM /= THEOLSNGTH OF VIN_TEXTY #/
3 g DDCYMENT e T T AL MDY, O AQSTIANTY TD ASTYT(CLE
3 g ITNMEARMATION(Q2]1) L=0F_fQTT=¢INTRNY
/s INTEZOYITIAN T TEXT </
3 y TH_TOXT /% ACTUAL T=XT %/
3 yS$I72=VETT2RLE(4NRS))
IR _LNUM TS FTEL(NYM_DTIAT g2 S QR2Cq)
S TOCUNZIMT IS SITIN(THAR(6))
.6 CVINFNRMATION IS SINUP (0 J'1tik0l
6 s MSGMNO
. & y JUINMKD2
6 e DATE
e O ——— e y JUMKO3
6 y TIM=
6 _ - - s JUNKOI4
6 s FRIS
e 6 .-), I=M
6 y TITLE)S
e e CJUNKDL IS FICLD (CHAR(G)) - — -
8 MSGND IS FISLD (CHAF(1I1)):
e 9. . e JJUNKD2 IS FIELD (CHAR(23)):
10 DATE (S FIZLD (CH2AR(8))3
Ao 0 JUNKO3 IS =IELD (CHAA(3))
12 TI¥E 1S FIELDP (CHAR(5))3
e Y3 e O JUNKOS IS FIELO(CHAR(24)) .
14 RIS IS FIZLD (CHAZ('=BISLENY)) S
XS o L ZRMTS FTIELD (CHES(YZEIWLANY))
16 TITLZ IS STZLD (CH2Q(YTXXTLEMY))
17 . IN_TEXT IS =ISLN(LHAG(IDRNC30))3
18 VAL _TAPT IS TAPF(VARIABLI(4966) HVOL_NeME=X00273);
e VAR L1 g2 b Ll Mt b M D A e h L bt S A L TR A it A A A A e a4
/* ' */
A NDESCRIPTIDON NF TARGET FILS =/
/* . x/
o /**t***txt** deded mirdoedem kL kb et Rk R RS R A Ry ke Yok S
19 TFILE IS FILI{TUT_RITIRD HSTOSAGE=MAGLZTNT) 4
20.. .. DUT_RECORD 15 RECARN(CUT_INEY (D:1) FFE_rolT=otpcanzas
20 o« CUT_T=XT
20 s STZ7=Virf T3 -(4750)) ¢
/% CSACH *QT_RECIARDY IS AT MAST 4750 THASS LANG. THE ATTU2L
§ LEMGTH T3 OFTIIMIMTN ATTEE AN 2CSTSMMIMT 4rg Qu ot MANS T2 TH7
| FISLDS '2JT_INTJ' ALD QUT_TEXT
.t e .=/ .
21 JUT_INFED TS GRIyr{ NUT_PATTS_LAFRTL
21 y MY _"2TC
21 y MIT_TIMT_LARTL .
21 y DUT_TT WX
21 s JUT_TITL=_LABCL
21 v TOT_TITLZY S
22

JUTDATZ_LABFL IS FIFLD(CHLR(IO)K='(CLTC)) -
FIGURE 5A: DDL/DML LISTING

c-—

©

- DOL ‘PRIGRAM LISTING -15-

23 T " DUT_DATZ IS FIELD(CHAR(65)<=*DATE")] T
24

o CAUT_TTME_LA3TL TS EITLO(CHAR(L0)C=0 (TTUZ))

T T2s SUT_TIHT IS STELN(CHED (65)K='TIME) T
26 OUT_TITLT_1LA3=1 TS FTEL A a2 (T)<=0(TTITL=))
27 DUT_TITLE IS ETELD(CHAR(¥)IC=ITITLEY ,C MY =1PR LA)
28 AUT_TEXT IS CISLN(THAD (%)<= TR_TEXTY ,CANV='PROG4Y)
29 MAGAZINE IS TAPE(EIXEN(T750), 75) oVCL_“A¥E=35354¢
29) o o ZCENSTITY=109) N
29 yTAPT _LABIL=TAM_STN ,INT_M“4T=583549)
30 TND;
FIGURE DA: CONTINUED

DAL PROGEAN LISTTLC -16-

TEET 384 -

NI ’ o ’ -

1 TIUS 18 4 VLT CI\lT. AIA ROUTILL WO ICH DETORMINES WIETHER THE s0ouerco”
i

i i

'CL 17, “TLueTyy Chid 1011 Daerlil FXTLF
")

BT CIE

NS T T G Y S DN TR A Y TIUS It T arCors, i

- "oPTR) S

FTESY v Chak CToonS ur Th Ge
S ¥/

[}
O VINFORMATIONY ADE T T R

TCITS =0 (L CSEEOY ThET SRIT_WSiLT=TRUFS 7
:L:;C‘ (‘FIT QLQ'“LT r"\lSF:

CC LD Lt e Lol I U YT CALCULATES TAE TENGTH OF T TiE T 0

R QOUPCT F3FLr eFRIRe, -) _ o i

TEETUKS

L F3Y

/¥ Tt
(LIS RN

- e ————-- B L Lt T Ry

sl Crar(a0) CASET (FeIS.PT?)

FIel Y ornISY TS CiL LATTES BY YTHE CHARACTER *'=', =/ 77

»E\'?[FodT

Z7EML P

TR

VoS0

S S

/% TAT

cCi 1<
TREY nag
fv - 2eT

VAL RS
e 1
1 o

el TR

LTI JEX(FSIS_FLO Y=t) +55

SLEE

Lo L8 o o o T TTeerm T T/ T T o T

- g e we TR D A T e - e Gl o e G IO W W A e

8 L TFRIFLD Lotaye ROUTLIRE WHICH CALCULATES TTwE UERGYH TE THE ¢
SU S TR 4 T

_ev D Cean(89) TasbkES(ZE N WPTF)Y

IR v ae et 1@ ELTHITES RY THE CHARACTER Y=, %y 7 7T

f‘!l]-i -)(7*“ PL”."')+4'

IR
: ". } L, C : - o o ToTT R ° T : TTrTT T v mm e T e s e e

NP i LT pOUTTOT VT Ca COUAT O S TTRE T DAGTH UF T T

croR Ty YTYTLR Y,

LY CaaR(Pnn) DASED(TITVELFTR)
EVERITRIAC UF Tu Tin LZSEL o(rXCETFTRIY Ok v (IL..T)Y 4/

LT el e (TITLEF LU (L) e (o EX(TITLE CFLU (T))=y

Pymols OG0 0 ST DY STy LT T T TRE RN Y ITE L gy Y=V TN/ 0T
Pl T TEDD Cll eT b S U T2 (8 (TYTL UMy v==_") 311
[

FIGURE 5A - CONTINUED

-17-

Forale 1S o FAFLD L YR o RSUTIOE U ICH CALCULATERTTHE | CMGYHTCGF "THE T

1 ScilcE FITLE YINoTExT*. (

T e e o o o T e o T e Y - e e --------_--------;-;:;Qi
LCL L i b el RPICTY M vawangy SaSEGrpr PR § '

7% IF VT FCORYATTONY EXTSTSY TaL LERETH OF vIR_TEXTY 1S FOURC TG THE -

COLTLIYS CF Y (i 317U ThE LT I6GTH uF -I%FOQHATIOF': OTherTQEo THE

TTTTTLEI OTA oF YIHOYEXTY ISTSIMPLY ThE ConTENTS GF CTiuve, ¥y T T
1F CRIT r\E'bLLT THEN CTCi STLRESHH T=MU, u Ek -(3(‘+Fr$IS LE"I+ZEP JLEM+
LT T T T VI TLE L iy - Tt T —
FELSE COLSToESULT="IUMRER S
FETIPTS -

'EF[‘PR“CS.

‘““‘HEIDEQ‘PWUCf“"_—_”""-'w T T T

‘—"T‘“’hIR“T<"T'PFF‘CYT*FPIK“TOUTTNL WHICH OCTLRMITES WAETFCR ORT.OT THLC 1
1 TARCELT Crnuv *ouUTL IuFU' EXIS TS FaR A PARTI(‘ULAq RLCOPD. i

D o e o a0 o or o e TS e e or - O s O EE am B YE A T Gn g B W T A T U wr e e e e T e e G e Gm e S S -——— - :T.T.’“.:Iy"
/* 'F Tut SCURcF bf’C‘”P 'Itr0~>'uT1ﬂI' EXISTS THFN THE TARGFT FIELD
TFCUTLT FeY TP XTRTS A/ - T
ChlT_Ric lL1—’F]T RFaﬂlT.

TTTTRETURLY - ’ Tt T Tt -

FMD HEADEPS

FIGURE 5A - CONTINUED

-1 8-

ol i T NTen TELLTES SPECTAL M Far ChitACTE oy
VRS e e LB F LR e AT GRRCRETIT IS MARPED T TATY THET T GET T

POL 71 07 (Ao ndd) ™ el (v . T oo e e
POl Se o7 O T 0y o
POLTLL 0 T e (7) ’ - T T -

(VY F Do v Ve o ’) T T e

/» !\~“I'.- TE CTERTS OF e TH_TEXTY T0 THD LOCAL VAF‘IABlE 'TE)«T' */
TERAT=SU ST (3T ~Teler v ¥ielrmindsd i) T oo ToT T e

/7% LTl [.' (..l’l: " ('1»,\ IE_Y AsT OF THE FORMS
TR g e e e
1o= LI or
v=_ ‘. 4/ T e - _—
LOCP: JsTi L X (TERT =) 3

Flice IF JU=o THE o s s s e -)

208

LI E=TEXT:

CO‘V-FL._CHAn=CCWV rLC CP‘“Illlir

RETUH 18 T T T T T T T T TS T e s e e e
SN

I AT B

'
4 -

Foou aa™ i (iFxT 4202030
(LTos Tl (P audlagi=e= "0 ToTTT T T s T s e e
(TN T 0%t D) =00 0) THED

Vg
ll;.E:Sui-‘ST'r-:(T('\T Teu=1)3
CuyVorl vati eV aFeuaCHA I e
F S SR GRRCE I SRS L STRIUTEXTAJIY DY) T TEYT=RtK lST"(Tf- T'u+11) H
’ ’ ST T T ELSE RETURK g 7 Tt Tmrm T

L
Clostg, G - - - B Tt
LI LooSo T (Ve TuJ+1)-'-')'
- 1T Y=g Y WU o s T T e T -
J=Us
oo To Fris) - -
b0l
Lyt o
J=1+4J:
me I TR 10y T T T T Tt -
e
t { e

TV s UGN T gD mr) Tty TR LT aTY (TEXT)= THeld RETURYS
ELRE
ToXT= Ql‘"STI (1L\Tv ‘).

—rr TS § e S S i A —
T

FIGURE 5A - CONTINUED

.......

Teill §iS p COWERSIGT FOUTINC UHICH TELETFS SPITTAU REFAR CHATRACTEDST
Foud. Tt SCu-clE FTHELD *TITLEY REFOKE IT IS MAFPED INTO THE TARGET
V' FIELY 'CuT_17TLFY, - - T e

- T a wn W e e e - - --—--o---—-—---—-----------———---—-------*/

LY P S T a ’ T T

[CL "7l G gesr) SASED(T)

TUOTTTTCUIM CHITl Ry VEETT o - -

TTTTIF O (SURSTEUTTL v ¥l 2Yz vy T - T -

[N N U B o A S LS

FCL Toeos o R o T T T Tt T T T
((_‘~’ \I-Ffé (] , T
J¥OASSTOTT (.

TFITROCE CTITLE' T3 THE LOCAL VARTARLE *TTL",. #/ — 7~
ST = o e ne e TTIR N L) . e — :
TR DLLTTE bR R AT OHA LT e R ST T TATE O THT FORT S T -
rz=_ ',
t - TTTT vy OR - st /T - T ottt T e
o *e */
e id=1 "t (TTLeY =)y 7 T T TTTTTTeT YT T T T T T e T e
FIi ¢ IF g=¢ Togn

LI =TT ‘

(oo RUCYIES 20 FRSE o SRR of G P =4 U il o 20 I 1 B S i i -
1F (RUL ST (O FLULCHAF 1 7S TYXT. ') THEN

COM Y FLD_CHAFRSSUSISTRICOUVUFLOLCHARSY) ~ 7 7 === —

HETLD 8

—— g e O R e

S

Iheslaotuaks

(SUESTEATTL ,y+122)='= ") i

(STETI (TTLsu+le21= 7y THEN
RO

LD F=SteSTi (TTU 10 a=0)5
CO WPl UaCHARZCO WoFLG CHARII Ty
IF (I T SuE ST TTL YY) ID1L) Tuft: TTL=CURSTRITTL v J+11) s
Ly s

T Ty T T T R T N CA R L T = XY T Y THE
COl Vb LdeChor=SURS TRUCOANVAFLELCHAR (O Y 3
TEANe g
Chas
£ i
CLST g
IS TN AN IR R ISAVES SR LA R T T, T
1F 1=¢ 180 0% o e B ~
JTHi S
GU T3 FIng
Lo,)
[N Gl
N T _:):.]-0-‘, :' . - ’ -
~C ML IneERLOUPS
IR -
| S
PEC 0 T (1T 19102) THES IF LEL LOTUATTLIST Toif i
FE GO0 T (i var DTNy e 7Y TN,) THEY T
Co b L 0y LSS ST RGOV F LU CHr R o 1) 5
SN0 BT
i'. ! R
N A

' Cr Sl (THLe) S
GO T [N ‘ . r — R —
T e FIGUE SA - CONTINGED

~

"DDL COMPILTZR NIAGNASTICS

NO ERRIRS 92 WAINTINGS DITTCT=EH

- < e et s e —— -
- o as —————. - = ——— - - —
L

FIGURE 5B:

=20~

DDL COMPILER DIAGNOSTICS

CSTMT_\D
1
10

14

17

.-

11
- 13
PR

29

29

" 28

v r———

CIN_TEXT

" JUNKD3

MEG_TAPE

MEGND

IDENTIFIZ?

m

DAT
DACUMENT
FaIs

IN_RECIRD

INFORMATION
JUNKO 1

JUNKO2

JUNK 04

MAGAZINE

NUM

AUT_DATE
AUT_DATS_LAREL
AUT_INED
AUT_RECDRD

TUT_TEXT

o e aeamae e s a s e e me mr e

-2]-

FTELD

ATTRIRUTE AND
CONVERT

FIFLD
&y 23

FIFLN
3

FI=LD
by

RECDIO
2

FIELD

3, 28,

GROUP
3y

FIELD
6y

FIELD
6,
&y

FIeLwn
6y

TAPE
2y

TrPT
19,

CetELn

6y

F1=LnD
3,

FIFLND
21,

Frsin
21y

GP Ao
20,

rROCOED
1<,

FIELN

FIGURE 5C: CROSS-REFERENCE TABLE

STMT_N2

25
24
27

26

19
12

16

-ES -

IDENTIFIZR

AUT_TT4=

TUT_TTMI_LABSL

NUT_TITLc

-22-

NIT_TITLI_LARIL

SFILS
TEILF
TTME

TITLE

ZEM

FIGURE DC: CONTINUED

ATT2I]YTF
20,

FIELD

FTZLD
6, 25,

FIELD
6y 27,

CFIELD

J»

L]
1

n
x)
)
~Z
.n

REQUTRED DD-CARDS NEEDED TO RUN

THE OBJECT (PL/1) PROGRAM: —23-

/7/70DLSRC DD DSN=DUMMY+VOL=SER=X00279+DISP=0LD.,

Figure.Sd.

77 UNIT=NINETRK.LABEL=(1.NL)s
/7 DCR=(RECFM=V,LRECL=0,BLKSIZE=4094+DEN=2)
//NDLTAR DD DSN=SS3548.:VOL=SER=SS3548+DISP=0LD,
T 7/ UNIT=NINETRK.LABEL=(1eSLDy» o
/7 DCB=(RECFM=FBJLRECL=75,BLKSIZE=7500¢DEN=3)

Required jEL Needed to Run
the Generated Program.

ONLLSTT WA90Hd 103r€0 1/1d 6 I

Cu®) lial Nl
L]

$AH0_ AT N Gaan et
$Udt Il LA L
AR IR I

*(d0 LIl :~¢ UKL 4 A D
LSRR S SN Y E R N

s [T ke
AURAY O SSLR AR B S|
TR0 LT WY HART S by
. LR L R NN U PR AR B I 70
) S .w IR IETEDS IS PR P |

CUHU DT T NI BSal4 270 by

sy ALY Ly bu
LN TR |
. . N - ‘NI ;L\a* 4 2
M) Te L 4
.&_h.u
17)

.

b

3

L]

SUSMINGASY A (TIUHYADI S Pun) B 11 1y

$IVLVIS MUA(RIh DMvii) st 1)

S ST 0d LaTa T Ly)
.:c.h—tm ITAVLS WT:d uIxXId :_V>‘; VRS N

S50 LT DLLVAS #I agg<p ! ot
(HaULINL DTAVES QNS TIY .P.»h; RS

J

1

-t
-
54

N(ESWD

a.OJvﬁzz

i 4
Slue (o)LIiD JILVLS OJ3NOTTIV LT Jrigld
.»np

CLUG) IS (VU UIASAVN S (UM ansNT s (nokI I L 15)
b dltvas :~:¢_4<:ﬁm-~c 1N~ _
¢DLLVAS GGNSEIY (o) Lad L syt

d 17

-
~
(XN

Sttge0e)l1ief DIAVLS GUINDITV (T)L1G DY~ m
S lv)eNaTLde Ju ity 3

FRE Y|

T3AIT 1.2

CANIND 5 P

T4 laa4 ol co (2215 g Jat i §0 { -l T
$DTLVLS (0GHR D) A ”,:f: 1) i [[
T oo TV 4NulNOTRASI0ISYY (6L Ty uyit) SURTEN OTSAY 1y, T T T T LT
e SCU0ITHE DTLVLS mTw 4X1d c:..:tu. INR | 91
T TITO AL BIUd 1) T Tl
SCHILAO I ANL ALY yhIT g Ty 1 -
T N N Y I IS TR S ST 2t U RO A S) ‘ vy T T T
o o SALLVLS MYA (QUURY) Q1T ay)y d 6l ") [24
) $ILIVAS YWA (pousi) 1T ™1 _l..._.l i e . W _
.)) $OILVLS Mup (000w d MUHITO YT { i
S (445 45V (000Y) dvid DLOMdT 0 14 00 o
e e . ST A T e
- , i COOU) LTOT HTM DAXTA 41 B
. OMAL YL L by
) B) T TS EY
i L s g NIy GIXL) Wb e L I,
LRI RO PRI R R L Y
:f e v *..r b L
- SUHO D LLWE NIW Y AXad a1 o
: NETRIO RN PURAL
) s 272 H
o Mo D pIng MIa U3KE4 Y s L e
I Lo et GU
o LR T N 2 T . e
o . T N30 1T MIY WA) L0 oL
Syal il il LU
T - , - o.:u BH :_J e
AR T IS CRCIERS I NIt B U e
T) Y SV ¥ WAV SO Y YR Ay
s ““ .—h L R i e
T T Y T T I B R LY R RN &
sl ibet L1t
i T CRAN BRI AN Y
o~ s Y LTHL NI sHdal b e L .
- o) T SMILLu CdE GO
[SN .;..I.\l i o

e) R I TGN T N 1 kY S
PR ERATCSOANAN TN LA Ng T L) TR [O
1 SOOI NG D) Aad V=0l d e 20 ANAR S M TI VWO 4 L2 i T L s T {
sttt + 4 1 Za
T . I Y VR R RN w......:_m:..:._,s.t,_ SRR R
SO+ 40D) AINL) e J IV SHL A OHOSH WD TR 4O 41 L "0y 1 ta
ur“ L TR 1 ¢ =
b =il :x.,_:.,.z.\;»c.;_o‘:.» YR BB REN T Y
o COCHLY AU St D) QU ER LA TOAIAT MO T LAY g0 4 L s I 5 T -
LouMN3 OL 09 .h..;. 1 _:/. fer T L T ty
- _ e e vlifia dil 99 1:4rid . L R B
POYT+AD) 40u) o=y [L
A VAU BIVHENE B Y B i | T T
R I [an
S - . A I I L I YT O o S S o T —
CLULH)D) AN T) UY=L L 1D g Igoa g™ 1 vy
) ’ . S CATIRVE TR A 1DV XS K T g T 1 ¢n T T
R P 4= D T 1§/
~ X% =T T T T un
: SCCALA YUY 400D) HGQUEIN LA 1 §® 1ao I] 1 Ly
T T WIEMLAC LY LT It s el T T iy T -
.._::L; IRV EREED S & RESEIITI S S IPALN 1o ¥t : I Ly
o T N I ENI A N AZ W T AN gy s T T T T T T gy, T T
.._._:__n..:a STO4*P VLRV S L 0D S~ .: 1 Gy
P TIN=E d S UNANE o T LY 903 1T o) n-nl T ™
. PP EH A LATLC LT LV T e i I vy
) s _;:En_,_» el e 1g e =g T T T T T gy T
]) LN R e ¥ I R T VA Rl e) § QUL .::.._.,._,u:..:; 1 lx
T _:: I mc r:,..?.. unh.:,:;%:‘., ;:C L) .;.1-136 T [::w
LRUER P A R RN S A B | :..:,Eu‘:.u_.: ¢ B¢
' .._:z.n.,:,...Zx:.:ﬁ_ AT L) JIT . DV =] 1 ve
: $AINAZTAN AL 3% 0T t l¢
’ B o T T H .—d:l:b;- gv...m._ow, /_L.: uh o o .ni .:.\.ilsl|-
Si=la) 7 i LYo
T ’ T T ’ o Tt T T T tvs=ladens 7T T U T we T T
- PUSHUD LA dUIX VAT VOGS ;._ :w AT L Ve
. (SIENOIOLNT OIS g 3103 Jv 3 :,; TN T e
s (> ﬁ PIL) oov=engg T Le

MNLND 3 I

|

$AUIXY IV ez dG) { lo
o sduorve :...a:r SAIMI XV S T AVAET L U v

SLTIISUMNTAN IO I+ AUDT AN i Dy

S NSTATLISII=II L gL T AL s e i Uy

LAV 1 SR TS S e FUM [ly
o] $OCIL+07))) _.: 1LV vQUYSNLat LX3E T NP oAty | S S

S JUIXYR T .::.:.,,5 IY¥V =g .7.:. T ¢ l Gd

B o e ,‘..—x..:.:. 1 tou

.hq:Ju_ ~J“Vu+.“ua., 1 ¢y

RIS ASHUIEHST A T LU LW O Lty 1D T 4 cd

| S PVEL D T lu
S POOe+u) A0l Dy JUVEnid e VILT A o TLv oA L U™y b

! LSS0)+ Cn,:.u,ll Ty T T ke -
L HLNSTRTLSNOIZHT I WAL NOTLYHHO ML)T .t 9L
EEIR I V4 ... v i) U e

S U+ ddd) il dauv = Ld W I2 N0 T LYW A0 g)) 38T g L AL

SLTMIS AT LD+ 4, 0=0100) 1 Ge

SLINLATASHUIS A I STHA 0L LvWd0 A Lo G 4nTp) 1 YL
T o PS4 T3 1 vl T

: “A.;:;_.:...:E.Z..,_,_”._a..n..:&.v.:: ::._.<g_ot__.__._.:x (AL [L

. e L T N RN R R . T e

o __tha l:u_.:px:;?.29—+<£¢3u2—.;_a&*,uhrini‘) [Ji

o SO L+d 1) 4 La) VAL BOARND MO T IVEHO 1Ly 1)o7 L 6Y

th +401)=140D ! 9

e T = B L T S K SR L Ll R AR RN L 1 L9

SCCULH 000 1) HIUY =L T L NI T LYWHe 341 * 60D T l 29

'Y +4UI= 10D [LYy

I

Rk N AU RN GG S TR T E LT BTN G RR IR}

T T TR d 1) NG D HIVET LG SN T RO TLVANO AN L S kT
sy +‘_L =dG)

.
!
{
t

e ZHAT ALY RO TAVIHd0 44 G0 IR TR

LB o M o)

$OOUE+ 10D G D) V=g d® AV HOLLVHIOINT *GHIIANTNT

IO 35 294
N i TN b T Ta b
YL G T Vi oL g | let
) , $ iy 1 [Yl - -
L S Ta YRR SO R EYR RATY R RYN B TR B B W R . L e b
TTRUVIGGI I NI ITSAS JHVOoT PO tie b R
o o toL At UL UL =gl g L b b
H T ce b
- _ o . A LW AX3LTNT O AG4TA g A Ty sty S S 54 *
H R ' L ue b
o SCUVHITGATANOD Y L9 d Lo a=dt g) i e b
DUVEITO NITALUIZ (VD TLTIATANC O HLONT 1 T+ AU LNO Y A0 00) Dy Oy . 1 vel
L . SlytdeLnitTer Y wdpid WO T X
$00 MIHL TV INNEeHLAT LY JT Y t Gelt
. S VU S - A I UL 0 S S 1T 3
SCaLTL AT A LAWY 1YY 387 L el
_ feny 0 I el
SCUHVHITOTATANIUD Y O YT+ D L= e b . 1 lct
ey PHVHITOATANCDZ CCUVHIT NS TANODD HAONG T nO s Aty S b e —
¥ . LCALg*IUTL) VED TV ' i “ut
e . ; e S 3 LRI 13 S B ¥ Lo B R U R SR SRPOR S S
s L + VD PN0=010100 9 RS
$aJTILIL) y=(2 CSTH+A0DLNOC ALY GIS 1S c L St
$Cadll X HATALAUTIH MY 8] 1 ull
o B) e o CRNT I B O S N S o
Gy + 0 A= 0 G L [244
oA T Lt OLuNdTU T 3008 I LA SUHINS= (GY CTHdO U Ly sids s, b 1L
UL G 0L =aa8 ([UL
...... OO WL ety 1 d gt I wu b
LY I N BN N KT T lut
L e tadl L) o =(0T . 1440000 dncbimyiesans. L sy .
$CoHLVA o)ANITALANTY 1YY daT1) { wut
e o L N b S S SRS 1 ' 2
L4y +dL D L= 100 L1010 { [tul
$UHIA 51 4@ L CLOHATAOVIT A0S L LS NS (4,9 M EN ARG REKIIRNTTRE IR S S A { culb
SMLa® 4 =48 i [fut
i e A i o . 200 HAHL INMESNLgt J0ve 94T I S 111 _
(0t +A L = 1D L0 { to
o) St (3IVUY o =0T tTedaaran s Al 2SS 1 e _
$COUGHY 0L 09 N3 L We T Linde 4y { Lo
, ~ S odadg i Muy 1 Lo
$LULT4dAd) UNUNL) MKW EHLA ™G VAT AR i 1 ¢o
' !

¢ =40

Lijd

@NIIND ‘36 3M9H

L 30 HAOdA L i

\b - > TP e e W e G B e MM SR G O T A ES e W WS g WGP S B @ Gn e G en M T W e -

SILVINI WD HILHM ANTLG0d 1L9N3T ‘d1Lld 7 S

T o TrTrmem e e o o rm e e e : _ 37 ..wy.

SadZe HOTO

- .- - -

h) B o TR TP S A T ¢ aat
HERAE] M LTS
— T T She (o= YU TN I asTES v < vul
Zv e =a N3LIVYNVHD JHL An JALTWLTIIN S1 elade uttant gul o e/
i) S (uld*HIZIUISVY (00 Y 1) QTGS V) T e T st T

sivd {

|l.|.lh“llllll.ul'llII-|ll.lll'll'll.!.llll.lllll|‘||||||'|ll|‘|l-I||‘|||l|||oc *\

IR ET R
JHL UL e

Jouanes

S CHLATG " I3t aasva LTI avin FHOrOaalYINT T

0 10 T - L TH 3

\¢||oarc||||||u|||t||:u||||||||||||'|v||||l||||t'||||||nvnnnnnclnllnuua

$30:dd TR 1 tui
- T T T T T STt d w1 R A S
”_,:.r.; < ohl
- 1o+ (e e VUV ST NDx U =Tt s Ism00) ¢ “nl
& /x Ca=e LIVHVID 3HL Ay CILEATITI0 ST o STv3e wdpd il s/
N S UL STUD DASVY (D9 uVtio 4™V e 0 e Lab T
Y T et bttt bttt
' e S (1 R TR R L G I R LN 1T T T T
A4 ug HASN 3 2L SALYINDIVI 1d1dA INTLNCGY HIYNIT Q1) v s Sl
-- --------huu-un--nﬂur|-----::------------------»---------u-----:-----x\
u.*:.;u I i
’ R W SRS 75 R 1T I R - ST T T T
SENEENL b nl
"umJQuu»J:muqlwhmu 353 P Th 1
MLIZLINS ANTLIYID WHL suN9S .v.nzzpn q0a1T 1 41 é lult
- . T T T T e T STy T T
3V .:chp<aao“:h. Jdioaa L 40 SUHLIVAVHD pw Lyaad dhi #/

i |\|||||"I.'|'|l-||||'.l‘l‘.l-.ll.l|||l-||||||I.'||||I-'||'-Ia|l-'ln||l-|'l-.l|'|||||.l9\

[N IPRL - RO S

JITWT STl T 3o 0 Sguddiv O 11voditse JoGla i
SAWLAN L0 HILHM IR0 vINAE DT v S Sl b

bivt’

RN B

h¢4»wxh

: . . T O@INIINGD TG FWOI T aun an, 2 vit
L i o A T 4 ‘ot
B) NI AR NI Y c Tet
/v SHEuTa R R U T
) LT Laoave abld atidd *olui X .9..;hb..<n..:.cu__,._—. dNoMg d0nnne Lnd 4t e/ - T - - e — -
*-u--------;-------n-u-n:u-u-;uu------------'-uynnu------n---u-;u|,---
[0046 AV MDTdaYa v w04 SISIYT s0F i IAGs diens Laudsd Y I o
1 JHL Lo ,:wewrm.».d_~ SAIEYAL AU HILHM JNT LN wv.ub T REERI R T LTS
puenpuiy g peipui A ey gtp sy L et R D L R
) i N R P e O T L et
- ‘) T T T Tt T s daga gy T T
LRI T OO | é vt
. - ST ST 1LSG0) UsT1d e 91
SRR REEN ’
- FLAY e 3Z 0 1S Tug v 0R) =d JUHNS L NS INTLSed it Lsde et K oL T T T
% Za Ceaitiae 40 LLGILIND ML ATTdWT 51 edxdUVT T 4 bl g
B Jbed S S N4 P el lviiiude be J06 LRI it W eiitae 1y L oatgs T T T T ~
Jiad aa WEAGS K1 e < gLTHLe 30 HLYPYT L CSESIAI etPLvatod Le 21 e/
T YTGTa IO ISVE 460665 aLAT)T 2V 137 v not
/kmm e m o m e e et e e eeceemeema-e-SSs—eso-—e-so-soa-
| T I S O R S N L D T TEN T Th s
U it J0 1a0a4 Al SALYIND VI 1M wrinand Hla3y gndld oS sl
e e e o e e e e e = im i i e d i mmacimm—— e ——————————n /] S
o LI W NTEREE SRS I RO [Y9t
WERIRY eyl T T
1 1vi N
- ”ﬁ.*...nu..:_&:*awpp,xp_;»ww;;mursmmssulq;_F B 1 LS 1T o, nub
/% *.Tz=, A GdarTo i1 Ju JTLLL il LY 184K Lo 9d 21 dedn AL 2o/
T TR LA st NAT LI ALY G J) T *_PHP.>Ld;~v1<;u..;vu;s»r.c; ¢ b
AR AT Y SIS Juzgg JHL 0L A0 9aTubAIad da et 10 o/ _ o e
(UL T ILTLI IS (oR2IUv) uaT Tl D v Ll
2 et it b ettt DU B S
Y T T B [N T R B P AR TS R S L
b 34 40 4931 Foa SV INI VY NN JNTLA0Y HLD.40h B i 4 50 1t
e oA EE SRR PP L PP SR
L g9l

' . -] ' H < éic
g% |.H gwﬂm -t ul._» Tt T T ot W < mw - MCC - - T T
HETIE I . 4 Joe
o S QS UVHI=UTITANDD I MY S, _.,.u..m.,::.D.h? (Eah P < oL b i T
ddtil G SEXXLe= (LT UVHITUTIT AL INLY ._u. it ¢ c ot
SRR N v C Lot
SULTAP s L MLISHNS= WL .._Z.; (T1<¢ :,..._:»T;J.:U..C.. ERL u.: i 4 e b
CTTEANTINuVEDT AN TANDI= VST 10T B T g2 i T
) (- ...;.._:?;J (A O i é fotb
S | S P4 ") T
MEHL G Tas(20TH0 L) b) . L

Ple ==L+ Lty it 1)
AT A AR XA DA U RV RAT IR RN B I,

LR RGN et Y 14 [en b
e tar i J 4 Uy b
s DBHE I 1 e St
— o) AU S AVHITONATARO D) Yl oy ;,. HVHOT N A QY e € e
.ﬂ NItL (e TLIXXLa= (20 LA YVHITO 14T AN0D) : s) 4T A Tuen
e b - Lo s 1MIausevH2Zan. .i:.,o,uu AT) Y e ek
“Jphhu.HJ l é by b
i 4 he
N LY R T AR & A 4 Cut
R oo L MamstMIKypilEQiago e el
/& s =
e e } - e MQ 8, EZe R, e
L “=z.
L8044 Al 40 4V ANt CQUILIVIVID M 1 U e/
AR RN TRV N N KN R BT I NTSE- S TN S e fut
/% o Mlbe 3WVIYVA W00 AWl G4 W 30LTLe 4o SINILHCD il PSSV e/ R _
Co ez uTl T 19 14 Vul
S R R el 1l ¢ Lt
YA RO R RN ¢ vl
SUVYA (Uhe) il L L 10 [4 Lo
A ASYY (0hS) vy T L T 14 b
o L) Sty Loy M Gt o
\#.Llll||.l|lllll0lIl'I.l.lll||l-|l|'l'llll|l"-lI'llll.l.l-"lIilllllllllltll - -
|) CJAVNET0ye gty o0

171350V L 0Ll Uddavd si LT Pud3a 4301114 J0314 3000us gl wotg !
,.N.,...Ue.v:,tu My 4y IV _.:: m..:.u-_u; HATHM NI LAQY QTS ANTD M SR IS I

- o - - o > D T W - W B e e e P e T P e He T P e o TR R e e o, e T T /

ARSI RDEY .e.,:,_: | hil _

. AN RPRR T P PO P 1 Lo
- - : @NIM) % MBI sy ¢ ee
o) Vel b 4 vee
I RS B LRV I S
i ax.:.&>02 106y SV Ly~ ud™ 300 =T VTG 1 s IER IR C LY
»nc-..;k ".(u
) : Could ALdnd Hiv JAOW QL rm.,?ﬁ»_. TR L T N R N O SR R A < e e
S) dvit) VAT TG b < Iy
o . L —..u..\x..__:_l;.__ .:_,_: f.:_ ts 3147 Ao by 1 N e
- . L0t Nl < M
i L FO TR PO AN BOED < tuc
t(ce) YOI UASUnuEI oL 14 ¢ve
15714 i i < v o
SRl dd bl TSOLXAL) HLIUAT 4T HAHL (e ez (L0 TPLgl) sihunt) Al < vy
- .) i o L I N S Lo
DZL [‘G.) B ‘,ln\‘, -
. 00T IUNT 0L 09 ¢ Z Luc
3 fr+i=p 2 g 10
! o B i _fou 1873 LG e
S o < < UISY9
~) N 111 - LV S L N T L L
Lo=1" o Z dae i
sy) =1 | t ¢ dsc
S U= (THLYIXTFIINLSONSI X il T =1 L 4 bBue
IR YRR e B | 2 e
R I T T T T e G Touwe T T T T
o o St bl A8 o e e
STV s Ladl)al =X dd udiid (Le<(epsLadtdatsuns SYiLs) 1 N p e ——
AT VMY HI TG HATANQ =Y 4 T P AT ity T < e
POI=0Y T IXALYHISIISE T i < P
S0y 14 it
-) T AL (s ,._...".ﬂ.c. e (T wis sy ~~ T T T T
)) L s == SolHr Lrdt) aludinS)
’ T .,|.-:u||.i....,mw4+.:». ALy s ::..w.,l.b. T T
_— - - S UL I P} 4 ite
i1 S e Gy e T
L L HELRHEE S L e HLc
CIHTINNVEITINATARAI= VT T T T T 1 e e T
s14)l 11 1 4 ‘pC
S < tec
e N N PO : e < Yre
s ez, AXAIX =0 tea0Y ¢ vee T

ANIIND

/ & L Tz
T B -) A P T == oo Tt T
LI T==
TTUOTNT Gnk 39 A0V AdRL 0 tSalloNittend N g T e o/
IR LEE &) KR N RN PR YRR BN < ceCe
T eLA3Le G IVEeyA WI0T JRL UL G L0ILTHIe 40 S1HAITu) Ll S denl /o
S eI)T AT 1) P iy
B | T Tom T -7 YR S e T T el T T
Sy gy b oo < LG C
- T TAUA (OoL) g Tasl 1 ¢ Tec
S USVY (0gnS ey a1, < o
} ta bt 4; N < Tyl -
\..llll!lllllllllllllIlllllll!l!l'lllllllllllIlllllllllllilllllllc.llln.ll
| - SuINALTE e e T - o T
LMY L 1L DLEL Odadv S AL 3ud gy G iXF1TeLe 13T A0 s i g b
T3V) T A Tv) s STIETIIOOT 0 B0 NOTSWIATO0 S Y
P e e e e e e et cmc—emeccmccccememrermAar e emmec Cam—e— o e o — =" e, e a e ——-

. - Sla)dueed THU) { Ged T
h]] B
™
) TSN i I DY PR R B < hee

T T h T e (L) ¢ s

N AT IR RN RN I TS0 U O AR O ¢ cee
HERLE L < teec T —
R AN B i 4 e e
’ St aVHITONAT AU D 3z Vi s T T ey T ¢ e T
L L SLAaAle (20 Lo U™ O AT a0) sy 8 . I -
e e L RIS = - o
WL b= CTLL L0347 M3EL e (T L dit)y Lt 1) 51 ¢ e
HEHE L < hic -
. z Y b
) ECIRTSIOR T TSTR G i 9 ¢ v T
tr " < ile
- -t T B [FRE P 2z Jic
« h Lo
trld o < we o
N < R
) ’ T P2y o=to4 . < Lut - -
TR RETALE FUE I LS IO B - L Zl e C
- - - e e e T < P

{DATE) 06708771

(TImF J2:15 -34-
(TITLE)SZIONMD ADD 32 (4224 TIN ITMTRRYTITY)

XXX CONSID=ATIONS JF SYMDLTHY,

ATXCSRPTS) QUESTIAN: WHIT TS THT STIAMTISICAMCE OF THE TNTONST VE
SHIPVMIEIVTS NE SNVYTET ARMS TN FRYDT?

LNSWEFR? EIXST 2F RALL,y TUHIT DS 3T THIMA M, SOVI=T 217y uwig
REER COMSTISTENT IM THTS 92770 SIIMNCE 1267, T £SSUMF THICQ

TS ALSD A RTEATIIN T Tdl TLL=-KNTWM FASCT THAT 1QDFT| HYS RECOMF
STEONGIF, TH= 13583 F5 073 I7S TNRL)SMNIS IM ERYPT MIOHT 2T WEAKEM=ED
17 HAS NDT WON GRTEAT L7HT
'

TVIMTATS S0 ITS PROTTATS 0P ALLISC, THI
FGYPTIAHS C2ULY 2SK: M i44T 2737 SC ALY 5T YAU? HInI WE aRc
AOPRAACHING THE FISTH ¥y 17, 40N .1 £ SIVGLT SPLNTSE HAS wnyEn,

EITHIR YL 225 MIT TEYTUL T HIOLD US, OF YOUR MILP I3 MOT

PARTICJLAILY TEF7CTIVI LM TIUSIINT 43T PRORARLY SISTHS 130yT TH-

La2GE SIVIST PRESENEF. THI TFITE Twe US3® WHST Sk 1TSTLF HIW 1T CAN
GUAPANTFS THAT 17§ [*SLJiNT3 I8 TOYPT WILL FOMTINJE TD 3T COVSIOE2A8L7,

THE BFEIT @AY T2 N2 THIS IS T STEINGTHIN ITS STATHS AmD PIESTIST [N TH:
EGYPTIAN 224Y RY SHIPOING ARMS, 1 RFELIFVE THERZ 1S ALS)

& DESIRT T THEEATEN 447 PRISCYST TSRAFL LND THT YNITSD STATES

RY SAYING: WIF y0J 02 21T TaKZ gS %707 TNTH ACFAUNT,
AUT." T BFLIEVE THIRS IS A VERY PAWERFUL, P RSISTENT
WAR OF MERVSS H7TRZ, : -

QUESTIAN: AND IT IS UNDTR THESE CINSTTIONS THAT YOU HAVE

RECETVEN REPORTS THAT “15-23'S AFT RFING SENT TO THF SGYPTIANS?
ENSWER: OF COYRST, ALTHOUAH T A4 NNT CADLBLE OF DENVING==AS

1 AM NOT CAPABLS OF CONEIRMING AS A FACT=-THAT PLANES 0F THTS

TYPE HAVE ARRIVED,

NUSSTIIN: Y2 SRE NOT CAPARLE, OR YOU DT NOT WANT TO? ,

ANSWER: 1 MEAN THE INECRMATINN 1 PRSSESS PAFS 4T EYARLE MZ TO

SAY WITH CIRTATNTY WHITHIR IR KAT SUCH PLANES HAVE ASRIVED. WHAT

1S CLZAR IS THAT MANY HIGH-QUALITY WEAPANS HIVE ARFIVED AND THAT

THE RATE OF SHIPMENT 1S 4154, THUS, WHETHEP A 2€PC2T #30UT THIS

AR ANY 2THZO TYPE T PLANS 1§ FAUND T 8T TRYF NASS MAT ADD OR
DETACT ANYTHING. THE €/CT IS THAT THERE IS 4 CONTINUDIS PEINEDRIIMENT
OF THE SGYPTIAN MILITARY DIPLOY*INT By THE (USS&, AS €92 THT RIPIRT,
TOAM SURE THAT THE PSS uINTMCT SIYTN T2 IT TS LINKTD TR THE SFFORT ANTH
TO CALM EGYPT ABOUT SOVIIT INTINTIONS AND TR PRESSURT TS28FL

AND THI UNITEN STATES. H4F2% 1 MUST SAY THAT THE TWMINTATS RTACTION

TN THISEZ 2E2JRTS RY U. S, DSSINST STIR0TARY L4180 WAS yucy RENSFISIAL.
HE SAID THESE R3PQ2TS ATZ & SCURCE IF WARPY ANMD AT NELL-FOUNDED AND
THET T43 UMITED STATES HILL 2T 8UNGE £27% ITS POLICY OF PRAVEJTING

AN UPSTT OF ISEAZL'S 4R4S BALANCT.
QUFSTICN: THE RUSSTANMS HeVE PRIVED MART THANM ONIE THAT TWFY AFTEN
COMNT MIRT 2N THTIZ FHSH{TS! WwIAK PITNTS THINM AN HAVING & GENUITNE
DESIPE TQ PUT THETR THRIATS INTA PRACTICS, WHEV THE ENIMY W THSTANDS
THT PPISSURI, THE RUSSTAM 37TAL SOMTTIMIC TUSHS TYT T RS 4 PADTR
BrA?. IF I WFIT TA £SK Yy SI3, HAM Fi2 CANM WI 672 TN THIS ¥2TTIR,
WHET WOULD YOU PEPLY?

ANSWER: 1 DN NAT TATAK HISTIPTAMS wTLL SAY °F I1S2a7 TueT ITS

NEOVES HIVE RIIN WIAK DUTING THT LAST F:w YTARS, AT Ny &aT3,

WAR MAY BREAK

WE HAVE NTVER HEAPD SUCH & COMPLATNT FROM ETTHER NUR EN-MISS O3
JUF FRITYNS. &S FN2 THE SUANCIS O SOVIET IRTERVOATION, 1A

NOT RECONMYIND THAT W7 THOOW IWAIILVAS 18 & BAMIA TR TuT xTENT
THST WI £3C PARALYZID AND [y TEEECT FARCED TR WITHLD tw, TH:=2"

ARE, AFTE3 ALL, SEVISAL TESTACLIS IN THT FATH OF SOVIAT TNTHIVTNTION,
FIRST 2F ALL, "J° PWEZ TN THE APCA IS \IT INCONSINFIARLF AN Tz
1SR 1S §

TRENGTH IS NIT UNLIMITIO. 520087, THT USSFE ATTATHES WIIGHT

S LSS

FIGURE 6: TARGET FILE LISTING

-35-

TN THE POSSIABILITY NF U.S,. TMTEIVENTION, T THEPEERPCS DO NAT BSLIgZve
WROARS TAMPLITELY ASANNINTN, TT WOULN NIT BE REX| TSTIC, HAWTYEID, TA
ASSUME THAT THE JSS2 WILL CHANGE T4 90LTCY IT APQPTEAN wH™N IT
STEPPIY UYL TS INTERVINTIIN DY THT 1yS (5 THE FUATTLETRE Ty T

SuMM =2 AF 1370,

OUESTION: wHAT ABDIT 2U° RTTENT ATTEMPTS TC BRTAK THE RING OF

£2£23 YIKTILTITY SY 43KTMI Ay ITE=3 T A2 3\R STATES [=38
FAMATIZAL THAN CUR NTIA4P02 372

FMSWII: LT ONLY T UOTHE LIC3 EANATIAAL STATES, R’NT fyTy Ta
NE NTTGHSARS, GE YTYII MTSS MPRPARTUNITIFS TC SXPPTSS UL DRSIRE FAR

PLACT MO »JJ OUTLINK o W TTHTT SIS TNTO O DITAILS, IowTLL

SAY THAT POT TNLY 1Y THS CRA3F OF RITMIITE MRAR CQUMTRITS AT cyey
CLNSE &R ZAYNTIITS, 07 HAy7T wabT ygs 2 TS GNON CTRYICES AF
TMPEERTANT PERSONS WHD 50 FIDM £ATD T TP g=cysiL ey, OF FR% groyssL s
T2 AMMAN, TN PRICENT A4 CORRECY OILTUED 75 FPUR POLTCY TN THS
DTHSR SI0Es THIS 1S ADTLISS T COUNTRISS WHITH 225 LTSS INVALVED
TN THIS DISOUYTC=<RAPR CTYNTAICS FIRITHER LJAY FROM THE p2Fs, AYR
EFFORTS 4RT CANSTANT,
QUESTITMN: WHAT AS8OYT THE DEMEND FIF QIR MIRAGES, WHIMCH ARE STILL
TN FRANCE?
ANSW=2: THE NDIZMANTD TS STILL VALID AMD TWHEe MIRAAFS ARZ STILL 1IN
DENCE,
QUESTION: MR EBAN, DI YOU EVER FEAR THAT THF PGLITTIZAL NPTINNS
AT TUR DISPJISAL LIMIT US FRDPM THE= "UTSET? THE ZGYPTITAMS SMILE
SOMTTIMES M MOSCOA AND SOMSTIMES 0N WASHINMGTON 2MND GFT RESPIMSES
FRCM RITH SICFSy WHILT W2 HMAVE TO WORK HARD FVYEN WITH 2JR FRIIND,
THE UNITFED STATES,

ANSWERS: NATURALLY, THIS DIF=ERCMCE EXTSTS, RUT IF I WERE THE
FGYPTIAN FC2ZIGN MINISTZR T WAULD NJT BR® GRTATLY CTMFCRTED BRY T,
COR AFTFR ALL THT BEDFEIT AND =ENJNYVENT 35 THE GRFEAT QOTIDONS, WHAT HAS
THE RFESULT REGEN? THE FISULT IS THRAT Wf SEMAIM EXACTLY WHTRT
Wl WET DM TYE DAY AFTEI O THT W2 AR NN NE WS SUCCT=IEN 1IN MOvING

5 SIMNAGLE ISPATLY SOLDITRY EPAY A SINGLE PASITION,

QUESTIING HAVE W ZVIP TRITN T7 Aapst A DIALOG WITH THE y<sse
A& NTHZR ZAST SYRADCAYN ZOYNTPT=S?

AMSHWERS YES, WS HAVE TEIED TO 1A S THT 1YSST SFALTZT THAT
TSRATL DJNTS NOT DIZS5ARD) THIS RUPTUR A€ mTreCs ey, NAOR DN ™
BRI IZVE THAT THE ZXTET=NTT 98 DTEFr I MIZQ NPOSSSTTET=S R2: 2 ‘ ;
FFLﬁTIDMS. WZ HAVE R7TSY USINF MANMY CHINMPLC PECENTLY TN JONVEY T T4E
1883 TAT IIWLTIST THAT TF TT WAMTS & Niafrn wITH 115,
St DHAHTCLY FQON IND PRITR T 'TSUWPTIQN 38 RTLATIPNS, W= ACE OPEN TO
THiIS.

{ANRT)

17 P2 10307 «A

MANNN

NAD D

H \N
]
)

FIGURE O: CONTINUED

\
\

-36-

C. Features and Capabilities of the DIOL Language and Processor

(1) DIOL language - data definition

A descriptive statement is of tne form

name IS attribute (description);

where name is an identifier given to a particular attribute,

attribute can be a FILE, REQORD, GROUP, FIELD, TAPE, DISK, or CARD, and

description is a statement of the characteristics peculiar to that

particular attribute name.

To categorize and illustrate these points, examine the following table:

ATTRIBUTE

FILE
RECORD

GROUP
FIELD

STORAGE MEDIA

e
v

DESCRIPTION

STATES THE NAME OF THE
STORAGE MEDIUM ON WHICH
$HE FILE IS FOUND

STATES THE NAME OF THE
RECORDS WHICH COMPRISE
THE FILE,

LISTS THE NAMES OF THE
COMPONENT MEMBERS OF
THE RECORD,

GIVES THE LENGTH. IN
BYTES OF A LOGICAL (USER)
RECORD,

L1sTS ALL THE SUB-GROUPS
AND FIELDS WHICH COMPRISE IT.

DESCRIBES THE ATTRIBUTES
OF THE FIELD.

THESE STATEMENTS GIVE A
DESCRIPTION OF THE STORAGE
MEDIUM AND THE PHYSICAL
CHARACTERISTICS OF THE FILE,

"~ SUCH AS BLOCK SIZE., RECORD

LENGTH, LABELS, EXTERRAL
NAMES, ETC.

[LLUSTRATION (see F13. 5A)

SFILE (LINE 2) IS THE

on T i&i I 3 15 covriseD

IN_RECORD (LWE 3 IS COM-'
POSED OF FIELDS CALL
UM, DOCUMENT, anp TH TE\(T

“Q‘Bo%W&fR?¥"H§§"kED

OGICAL RECORD LENGTH OF
)88 BYTES.

INFORMATION (LINE B) 1S A
GROUP COMPOSED OF 10 FIELDS.

MG (LINE & 15 A FIELD 11
CHARACTERS LONG,

MAG_TAPE (LINEL®) 1S THE NAME
OF A DESCRIPTION OF A TAPE
WITH_VARIABLE BLOCK LENGTH
oF 4796 BYTES AND EXTERNAL
NAME OF X0J279. ALL OTHER
ATTRIBUTES FOR THIS TAPE ARE
DEFAULT TO THE SYSTEM:

-37=

(2) DOL language - data mappings

SYBaL
<~

MEAIING
MAPS A CONSTANT
INTO A TARGET FIELD

MAPS A SOURCE FIELD
INTO A TARGET FIELD

LLUSTRATION
ESEE FIGURE 5A)

OUT-DATE_LABEL (LINE 22)
IS A TARGET FIELD IN')'O WHICH 1S
MAPPED THE CONSTANT ' (DATE)'

ouT_DATE (LINE Z23) IS A TARGET
FIECD INTO WHICH IS MAPPED
THE CONTENTS OF THE SOURCE

FIELD DATE

NOTE: THE DDL PROCESSOR MAKES IT VERY EASY TO ELIMINATE FIELDS FOUND IN THE
SOURCE FILES WHEN CONSTRUCTING THE TARGET FILE, SEVERAL OF THE SOURCE

/b) AND FB]S-, HAVE BEEN EXTRACTED BUT ARE NOT COPIED ONTO
THE TARGET FILE, AS SEEN IN THE TARGET FILE DESCRIPTION IN FIGURE SA

FIELDS, SUCH AS

38

(3) DML routines - data manipulation

e

LOCK

LENGTH

CRITERIA

CONVERSION

T

THIS TYPE PROCEDURE DETERMINES
WHETHER OR NOT A PARTICULAR
RECORD IS TO BE PROCESSED

THIS TYPE ROUTINE PERMITS VARYING
FIELD LENGTHS FROM ONE RECORD

TO THE NEXT BY COMPUTING THE
LENGTAS AT RUN-TIME

THIS TYPE ROUTINE ALLOWS A
GROUP OR FIELD TO HAVE A
VARIABLE NUMBER OF MEMBERS
BY CHECKING THE EXISTENCE OF
EACH SUCCEEDING MEMBER.

SPECIAL ROUTINES WAICH WILL
MODIFY THE CONTENTS OF A FIELD

USTRATICN
{|§!EE FIGURE 5n)

THE LENGTH OF FBIS
(LINE 1) 1S COMPUTED
DYNAMICALLY BY THE
DML ROUTINES FBISLEN,

INFORMATION (LINE 3)
IS DECLARED TO
APPEAR J TO | TIMES
IN THE SOURCE RECORD
DEPENDING ON CERTAIN
CRITERIA CONSIDERED
IN THE USER PROVIDED
DML ROUTINE INTRO,
THE TARGET GROUP
OUT_INFO (LINE 27)
APPEARS IF AND ONLY
IF INFORMATION DOES,

PrROC U4 (LINE 28) SCANS
FOR AND ELIMINATES
SPECIAL BREAK
CHARACTERS IN IN_TEXT.
BEFORE THE SOURCE
FIELD IS STORED IN
OUT_TEXT,

(4) The example shows the specification of a tape to tape copying

and conversion of a file (MAG_TAPE (line 18)

MAGAZINE (line 29));

conversion between files on other storage media can be handled as well.

-39-

D. Evaluation

Same interesting statistics regarding the lines of code, core
requirements, and time requirements during the various phases of processing
for this sample run are given in Figure 7. The statistics regarding the
nunber of records processed and the time it took to transfer and manipulate
the data reveal that the efficiency of the generated program is comparable
to one written by the conventional manual manner. At the same time, however,
it took a person a lot less time and lines of DDL statements than required
in oxder to write the program by hand.

- 40_

STORAGE AND TIME REQUIREMENIS:

. NUMBER OF
OORE CPU SECONDS I/0 SECONDS STATEMENTS
OF CODE
DD COMPILATION 190K 2.82 14 306 DDL
125 DML
IRRELEVANT SINCE
PL/I COMPILATION |PL/1 COMPILER USES 2.15 4
AS MXH CORE AS 272
AVATIABLE FOR
EFFICTENCY
3222 BYTES
EXECUTION 104x 33.9 27 OF MACHINE
1ANGUAGE
INSTRUCTION
OTHER EXECUTION-TIME STATISTICS:
NUMBER OF ! NUMBER OF BIOCK
BLOCKS LOGICAL RECORDS
TRANSFERRED PER BLOCK LENGTH IN BYTES
INPUT
FILE 143 1 4096
OUTPUT -
FIIE 427 ! 100 7500

MISCELILANEOUS FIGURES:
CPU seconds to produce each logical output record — .0011
Channel seconds to produce each logical output record — .0006
Minutes for trained human to write DDL/DML statements - 40
Nunber of Runs for trained humans to get a

bug-free program 3
NOTE: All the above figures are based on a run of the example made on an IBM/168
Conputing Facility

Figure 7 QUANTITATIVE STATISTICS

-4]-

I1I. CURRENT RESEARCH

Current research is concentrated on developing a Processor whose principle
is similar to DDL's, but wnich will be ablé to produce programs of a much
wider class. The current processor is limited to generating programs which accept
a single sequential file and produce a single target sequential file, The processor
is currently being extended to enable it to accept descriptions of multiple files

whose structure is not necessarily sequential. Such a processor would then generate

programs which would accept and process any number of files and produce as output
any number of desired files.

The processor would involve new techniques and procedures not present
in the current processor. These techniques would have to be capable of producing
programs which would input the files and sequence their reading in the most efficient
manner and transform them into a set of desired output files, all this from non-
procedural user specifications describing his source and target files. This would
involve construction of networks of all involved data elements interacting with
routines that process them, followed by designing and structuring the object pro-
gram that will process the data most efficiently. The generated program would

consist of all the I/0 related instructions, the logical sequencing and control,

and invocations of DML routines. Thus, generated modules would again be the top-

level of the desired program with the low level data manipulation to be provided
by the user's DML routines. Such a processor would be another step towards

the automatic generation of data processing programs and would obviously cover
a much wider class of applicatioms.

IV, OTHER POSSIBLE FUTURE WORK

Other possible future extensions to the system might include the following
areas in order to maké the processor of wider use:

(a) If automatic generation of COBOL rather than PL/1 programs is desired,
this could be effected by rewriting the output modules of our processor.

(b) As we have mentioned above, we could accept another specification
language other than our DDL with the aid of our SAPG.

(¢) Research could be carried out to deQelop modules to generate reports
logically. That is, a processor which accepts non-procedural and logical
description of desired reports could be developed to design and produce programs

for report writing much in the same way that the DDL Processor generates files.

~42-

Complete automation of generating programs is, of course, a long way
off, but the above-described system is a small step in that direction. For a
more complete analysis of the role of automatic program generation in software

development, see [2].

2. N.S. Prywes, "The Role of Automatic Program Generation in Software
Development,'" Moore School of Electrical Engineering, University of
Pennsylvania.

The author would like to thank Dr. N.S. Prywes, the project
supervisar, for his direction and supervision of the project.
Acknowledgement should be made to Dr. J.A. Ramirez who, as a graduate

student, was system designer and original project leader of the team

that implemented the first version of the DIL processor.

AUTOMATIC GENERATION OF SOFTWARE SYSTEMS ~ A SURVEY
N. PRYWES

Department of Computer and Information Sciences, University of Pemnsylvania
ABSTRACT

Research and development on autamatic programming has been underway
for nearly twenty-five years, and will continue for many years. An ultimate
abjective is the development of methods and facilities to produce software
automatically, on demand, for the businessman, industrialist or scientist.
This paper considers this proposition and examines a number of related
questions: what is a plausible sequence of developments?, what is the social-
economic need for such automatic programming advances?, what is the extent of
the potential impact of such advances?, what are the envisaged methodologies?
how will they be employed? and what are the open research questions? The
paper is intended to provide motivation for, and critique of, research toward

the above ultimate goal of autamatic programming.

AUTOMATIC GENERATION OF SOFTWARE SYSTEMS - A SURVEY *
Noah S. Prywes

Department of Computer and Information Sciences, University of Pennsylvania
Philadelphia, Pa., 19174

1. INTRODUCTION:

Research and development on automatic programming has been undexrway
since early applications of digital computers, for nearly twenty-five years,
and will continue for many years. It has started with the use of the computer
to relieve the programmer of miscellaneous detaill. Its ultimate dbjective is

envisaged as a situation where software would be automatically generated for the

businessman, industrialist or scientist, on demand. The computer would have to

access the combined knowledge of the respective field of the application and of
computer system design and programming in order to generate automatically the
needed software, ready for use. This ultimate cbjective of automatic
programming is the main subject of this paper.

The paper is organized in two parts. The first part discusses the wide
spread concern that cost and effectiveness of software development threaten the
continued growth of use of computers. This is offered as a motivation for
acceleration of the research on automatic programming to achieve the above cited
ultimate objective. The second part of the paper attempts an assessment of the
methods of achieving the ultimate objective of all automatic software generation.

The first part of tnis paper is divided into two sections. Historic and
economic contexts of advances in automatic programming are discussed briefly
in the next section, as a basis for evaluation and projection of progress.

1. For instance, early development of mathematical routines at Harvard University,
University of Pennsylvania and Cambridge University.

*ork supported by ONR Information Systems Program, Contract #N00014-67-A-0216-0014
-1-

From midway vintage point between the beginning and ultimate goal, it is
possible to see that progress on automatic programming has followed a natural
sequence where earlier work established foundations for later advances. Also,
that rate of progress has been a function of the economic pressures of demand
and costs for programming in employment of computers in society.

Then, in the section that follows, the software development cycle is
analyzed ,to identify the components that need to be automated and to assess the
benefits fram their autamation.

Subsequent two sections constitute the second part of the paper, which
discusses future advances in autamatic generation of sof-ware. The advances
described in the first of the two sections are currently underway, and are
believed to be capable of replacing the human programmers who are engaged in
translating non-procedural specifications into computer programs for processing

data. This is referred to in the following as automatic design and implementation

of program modules. It is required that a computer engaged in performing

this function, have access to knowledge on camputer system design and programming,
but that it may be independent of knowledge in the field of a specific application.

The second part, automatic generation of overall problem requirements, is based

on computer access also to knowledge in respective specific application fields.

PART T CURRENT PROBLEMS IN SOFTWARE DEVELOPMENT
2, OVERVIEW OF HISTORIC AND EQONOMIC CONSIDERATIONS

The total process of development and use of data processing systems has
been pictured as consisting of many layers. Figure 1 illustrates such a
multi-layer structure by showing thirteen such layers. The examination of
this structure is interesting in that it provides information on future areas
of progress of automatic programming. The layers in Figure 1 are named to

indicate their general function. A reader desirous of mnre specific definitions

-2-

AUTOMATION DEMAND
EVALUATION OF ALTERNATIVE AUTOMATION PLANS
FUNCTIONAL SPECIFICATIONS OF COMPUTER SYSTEM

EVALUATION OF FILE STRUCTURE ALTERNATIVES
PROGRAM MODULE IDENTIFICATION

PROGRAM MODULE INPUT/OUTPUT LOGICAL SPECIFICATIONS
PROGRAM DESIGN

HIGH LEVEL (COMPILER, JCLSDM) LANGUAGE PROGRAMMING

HIGH LEVEL TO ASSEMBLY LANGUAGE
ASSEMBLY LANGUAGE TO MACHINE CODE

PROBLEM AND SUPERVISOR MACROS
PROBLEM INSTRUCTION SEQUENCES
MICRO INSTRUCTION PROCESSING OF DATA

W OVERALL
~PROBLEM
REQUIREMENTS

PROGRAM
-DESIGN AND
IMPLEMENTATION

PROGRAM
TRANSLATION
AND OPTIMIZATION

EXECUTION

FIG, I TRAISLATION/DEVELOPMENT LAYERS IN DATA

PRICESSING SYSTEMS AND IN THEIR APPLICATIONS

for the layers may have to add additional layers. The top three layers

in Figure 1 are associated with the process of determining automation
requirements, which sometimes requires definition of the problem. Note also
that typically, a problem environment includes several other components beside
the computer. The next five layers concern the design and implementation of
software, in a language convenient for tne problem. The two layers below, are
concerned with tne translation and optimization of the programs. Finally,

the three lowest levels are concerned with the execution of the programs to
perform the desired automation functions.

One way of regarding these layers is as a bottomup sequence, in the sense
that the automation of a bottom layer is utilized in building the layer above
it. Historically, a bottomup approach has been taken in autamating these
layers. The first layers to be automated were those associated with program
execution. This was followed by the layers associated with language translation
and program optimization. To date, a great emphasis has also been placed on the
efficiency and utility of programming languagesz. Improved facilities were
quickly put to a test in a variety of applications. Relatively, little automation
has been applied to the top seven layers in Figure 1 and the translations from
one layer to the one below it have been done manually by appropriate software
specialists.

Anothef, top~down view of Figure 1, pictures the layers as a series of
transducers - translators, where the flow is dowrward so that output of a top
layer is used as an input to the layer below it. (A feedoack flow is used for
corrections and modifications)

While improvements in hardware, system software and programming languages

2 Jean E. Sammet, "Programming Languages: History and Future," Camm. of the
ACM, July 1972, Vol. 15, Number 7, pp. 607-610.

-4

continue to make programming more effective, they are not sufficient to
compensate for the dramatic projected increases in demand for software. One
approach to projection of .demand of software is as follows: The ratio

of cost of software to hardware, which in 1970 was 2:1, is projected

to increase by 1985 to 10:13. The U.S. Bureau of Labor Statistics 1970
estimates show a work force of 360,000 engaged in software development in
the United States. Of these 137,000 were classified as business programmers,
97,000 as business systems analysts and the remainder were employed in
systems and scientific softwa.re4. These estimates are on the low side as
they exclude some segments of the U.S. economy and were registered at a

low economic point of 1970. In spite of the decreasing costs of computer
equipment, total U.S. revenues fram computing hardware have been increasing
since 1970 at a real rate that may be averaged at 10% annually. Though costs
of computers have been decreasing, considering the large numbers of

potential users and new areas of industrial applications, this rate of
increase is projected to continue for the period of 1970 to 1985. It will
amount to guadrupling the real annual cost of new computer equipment by

1985. Wnen this is coupled with the 1985 projection of 10:1 ratio of cost

of programming to the cost of hardware, this would amount to 20 fold increase
in programming manpower by 1985 (a 22% annual growth rate). Obviously

such a requirement would constitute not only a financial dbstacle to

advances in use of camputers, but also such a labor force cannot be recruited,
trained, or controlled effectively. In order to keep software manpower

3 Barry W. Boehn, "Software and Its Impact: A Quantitative Assessment,"
Datamation, May 1373, pp. 48-59.

4 B Gilchrist and R.E. Weber, "Employment of Trained Computer Personnel-
A Quantitative Survey," AFIPS Conference Proceedings, Vol. 40, May 1972,
pp. 641-648.

-5

increases at a pace with increases of total hardware costs (10% annual increase),
the manpower requirements will have to be reduced by 80% by 1985, as compared
with present (mostly manual) methods.

Oontinuing the bottom-up sequence of development, there are considerable
efforts underway on the complete autamation of the five layers in Figqure 1
that constitute program design and implementation. The bottom two of the five
layers, will provide automatic generation of programs, based on program module
logical specifications; namely, the automatic production of Ad Hoc programs
in compiler languages such as (OBOL or PL/1. This will reduce, particularly,
the reguirements for business programmers. As indicated, these programmers
represent 60% of those employed in business programming. Subsequently, work
of business system analysts, who are engaged in the top three of the five
layers mentioned, will be reduced as well.

The manpower associated with the top four layers in Figure 1, of determination
of overall problems reguirements, represents currently a relatively small amount
of manpower, which is primarily trained in the respective applications rather
than in computer systems. Most probably the bottom-up sequence of developments
will continue and will gradually effect the top layers in Figure 1. However,
the automation of determining overall problems requirements may be delayed
until automatic program design and generation methodology (in lower layers)

has been well established. The methods under development are described in Part II

below.

3. ANALYSIS OF THE SOFTNARE DEVELOPMENT PROCESS

Advances in autamation of programming are needed in large scale software
develomment projects, particularily in the business data processing area
wnich employs the majority of programmers and where there is likely to be
the most growtn in demand for such services. Examples of such systems are a
new financial system required by top management to provide new reporting for
improved financial control and planning, or systems to support new products
such as reservations services, medical services or a new insurance plan. Large
scale projects are not the creation of a single or a small group of managers.
Such systems have an impact on top management, business specialists in areas
such as accounting or finance, operational staff of the organization, and
finally the public that interact with the organization such as customers,
vendors, etc. This is one of the reasons why large scale software development
projects span several years of development time and involve activities of
various groups within an organization. The objective below is to put programming
automation in the context of such projects, to determine the requirements of
research in greater detail. Figure 2 gives an overview of the software
development process, indicating the respective phases, by wham they are performed,
the end products and the languages used in the documentation.

Data on distribution of labor and costs in software development phases
is difficult to obtain for two reasons. First, phase classification in
accounting of development costs is rarely adhered to systenaticallys. Second,
costs of software dévelopment projects vary greatly, depending on the quality
of planning and execution. Costs frequently vary in the ratio of 2:1 for similar
project and in some instances the ratio is much higher (20:1). Therefore, the

estimates that are made below indicate widely accepted typical values.

5 Nelson, E.A., "Management Handbook For The Estimation of Computer Programming
Costs," SDCIM 3224, 1966.

-7~

SOFTWARE SYSTEM PERFORMED END PRODUCTS LANGUAGES

DEVELOPMENT PHASES BY
OVERALL PROBLEM i TOP MANAGEMENT
'*] REQUIREMENTS AND ANALYSIS STAFF
1. OVERALL DESCRIPTION
— : OF SYSTEM. AD HOC
j 2. QOST/BENEFIT ANALYSIS
SYSTEM BUSINESS (ACOOUNTING,
] FUNCTIONAL FINANCE, ETC.)
SPECIFICATIONS SPECIALISTS
¥ 1. INFORMATION FLOW, FORMAL
— FOUTING AND SEQUENCING SYSTEM
ig:gﬁ&ﬁ'}g&mn COMPUTER SPECTALISTS: 2. TDESCRIPTION OF COMPUTER FUNCTIONAL
_ INPUTS AND OUTPUTS SPECIFICATION
IDENTIFICATION OF CHIEF PROGRAMMER 3. DESCRIPTION OF DATA
QUIRED PROGRAM MANTPULATION
ODULES & FILE
STRUCTURE
DESCRIPTION OF INPUT-OUTPUT FORMAL PRO-
| AND DATA MANTPULATION OF EACH GRAM
MODULE FUNCTIONAL
DESIGN, CODE,
DEBUG AND PROGRAMMERS / SPECIFICATION
" IDOCUMENT ANALYSTS
PROGRAM MODULE
QOMPLETED PROGRAMS PROGRAMMING
] °"| & DOCUMENTATION
SYSTEM INTEGRATION
& INSTALLATION QOMPUIER/BUSINESS
) TEAM
_ I 1. OPERATIONAL SOFTWARE AD HOC
© ' 2. USER DOCUMENTATION
MAINTENANCE
| MODIFICATIONS AND PROGRAMMERS/
ADDITIONS BUSINESS SPECIALISTS

FIG. 2 OVERVIEW OF SOFTWARE SYSTEMS
DEVELOPMENT PROJECTS

-8-

3,6,7,18
These estimates that are based on published reports *, and discussions with

colleages. The estimates are made to illustrate an approadu to the projection
of the possible impacts of autamating software development. A reader whose
experience indicates different estimates can substitute his own estimates and
verify the validity of the conclusions. The estimates below are to be
considered as averages for all business data processing projects. Similar
analysis can be performed for other areas of programming applications.

In the discussion below, reference is made to the phases in Figure 2.

Overall Prablem Reguirements - This is a project kick-off phase concerned

primarily with determining what information management needs and indications
of the resources needed for the development. The initiation of large scale
software development projects is usually prompted by important needs
determined by top management. The phase includes preparing preliminary
estimates supported by cost/benefits analysis. This activity requires expertise
in the application area, as well as sizing computer requirements. The written
description of such activity together with the indication of required

resources and the decision to proceed are then communicated to individuals
charged with carrying out the decision. To give a relative weight, this phase
is estimated at 8% of total project cost.

System Functional Specifications - These specifications describe the
information flow inwolving humans, communications and computers. They define
the transactions that would be involved as well as management reports necessary

for control of the activities in the system.

6 F.T. Baker, "Chief Programmer Team Management of Production Programming,”
IBM Systems Journal, Vol. II, I, 1972, pp. 57-73.

J.D. Aron, "Estimating Resources For Large Programming Systems," 2nd NATO

Conference, Software Engineering Report, Rome 1969, pp. 68-79, NATO,
Brussels.

—9_

The computer is envisaged as a black box where the functional specifications
describe all the transactions that are entered into the computer system, and
the management reports and user information produced by the system. The group
that prepares the specifications need not include computer specialists.

However, as will be related further in Part II, it has been found useful to
employ a formal functional specification language in documenting the system,
which can be processed autcmatically to indicate incompleteness or inconsistency.
Ineffectiveness and waste result where the functional specifications are
incomplete or ambiguous thus causing redesign and reprogramming. The discipline
imposed by the use of such specification languages has been considered as
peneficial to reducing total development costs, especially in controlling the
progress and flow of work during a development project. 22% of the total

costs of software development projects is estimated for this phase.

The remaining 70% of the cost of a software development project is
estimated to be for development of program modules that perform in accordance
with tiie functional specification. If the functional specifications are
complete, the work in this phase requires only computer oriented skills.

Once the total environment and hardware requirements have been preliminarily
determined the software development in this phase may be suwbdivided into three
steps.

File Structure and Module Design - The first step in this phase is the

specification of file structures and program modules. The functional
specifications written by the business specialists in the previous step are now
broken down into distinct logical specifications for each program module.

Furthermore, the data structures on which the modules act can now be specified.

A program nmodule is typically associated with a transaction, an updating

or a reporting function. In a typical $1,000,000 project there would be 50 to
100 program modules each consisting of 1000 to 2000 lines of high level
language code. The objective of this step is to cbtain a sequence of input-
output operations and data organization that minimize the cost of data processing.
The product of the design activity is the generation of file structure
specifications and program module logical specifications which incorporate the
system functional specification on a per-module basis. 15% of project cost

is estimated to go into creating this specification. (In many projects this
step is integrated with program design, described below, and it is not possible
then to estimate costs separately).

Program Design, Code and Debug - The next step is the design of each
program module, its coding, debugging and documentation. The difficulties
encountered currently in this step are due to having to supervise large
nunbers of programmers, and the low management visibility of progress or lack
thereof. Therefore, problems are discovered late during the debugging of
individual program modules, even later or during installation, resulting in
delays and costs beyond original estimates. This step is estimated to require
currently 25% of the total project cost.

System Integration and Installation - ‘The last step in the programming

phase consists of integration of individual program modules into the total system,
testing and sometimes parallel 'operation of the system. It is during this phase
that problems that have not been previously visible to management came to light.
They may appear as malfunctions that must be corrected. If difficulties are
discovered.in user operation and control of the system, the indicated changes
must be commmnicated to modify the functional specification of either the

entire system or specific program modules and only then can modifications be
ll

TABLE 1T SUMMARY JOF cSTIMATES OF PERCENTAGES OF SOFTWARE DEVELOPMENT CISTS
ATTRIBUTABLE TO PHASES, AND ENVISAGED REDUCTIONS DUE TO AUTOMATION

PHASE DESCRIPTION

ESTIMATED 70 ESTIMATE OF POTENTIAL
OF TOTAL COST REDUCTIONS (IN % OF QOST)
DUE TO:
TRADI TIONAL
PROGRAMMING
APPROACH 4 =
=z
" 5 .
| o w
=] 5 Q@ o
g (<] O -
a g & %;’..
o Q)
5 BF g i
[8
2 2 o5 Bs g:
08 o oFf oI &g
== =~ =& == B
H1E
=8 2K 2 2R 2=
DETERMINATION OF
PROBLEM REQUIREMENTS 8 -6 2
GENERATION OF SYSTEM
FUNCTIONAL SPECS 22 +5 -2 -5 2
PROGRAMMING:
FILE AND MODULE DESIGN I5 -I0 -2
CODE, TEST, DEBUG AND
DOCUMENT 25 -17 -5
INTEGRATION & INSTALLATION 3 -2 1D
TOTAL [0 -2 -I5 -2 -l 20

-12~

made. Depending on the quality of testing prior to installation this last
sub-phase may account for 30% of the total costs of the project.

Maintenance - After the system has been in operation, it will require
maintenance to correct errors not determined during the installation process.
But even more so it will require maintenance to modify and add facilities.

This is a post-software-development phase which must be facilitated during the
developgment itself. The softwars development should provide a method by which
modifications can be orderly entered in the specifications, the program modules,
tne documentations and tne operational system itself.

The autamation of any one phase imposes a discipline on the entire process
which brings savings in the adja‘cent phases of the process as well. For
instance, the discipline provided by a requirement to specify program modules
in a formal functional specification language and an automatic generation of
programs would assure that relatively bug free programs be provided to the
system integration phase.

Taple 1 summarizes the estimates of distribution of costs over the phases
of the software development process as indicated previously. These estimates
are necessarily subjective as indicated previously. A bottom up sequence
of development is assumed in Table 1, with automatic program design and
generation accomplished first followed by éutomtic file and module design,

automatic functional specification and finally automation of the determination

* The estimates of savings due to automation of program generation are inclusive

of savings due to improved operating systems and language facilities shown in
the five bottom layers of Figure 1.

-13-

problem requirements. The dbjective of such a succession of developments

is to reduwe the cost of software development by 80% over a period lasting to
1985, as illustrated in Fig. 3. The estimates of savings of cost due to the
four envisaged increments in autcmation of programming, represent a guess of
the autnor, after extensive discussions with co-workers in this field. The
estimates of potential contributions of automation of software development
pnases are also based on considering the potential methodologies as described

below. Therefore, more will be said on these estimates, at the end of Part II.

PART II FUTURE ADVANCES IN AUTOMATION OF SOFIWARE DEVELOPMENT
4 AUTOMATIC LESIGN AND IMPLEMENTATION OF PFOGRAMS

This section examines the automation of the five layers in Figure 1
shown as constituting program design and implementation. This activity requires
only camputer related knowledge. The automation activities of the higher
layers in Figure 1 that reguire knowledge of specific applications are discussed
in a subsequent section. The "pure" camputer art dependent structures are
on a higher abstraction level than the business functions of a specific type
of industry. The automating of the generation of these structures can serve
as a foundation, and can be used in a variety of businesses and industry
applications.

The discussions in this section involve only logical-abstract descriptions
of the. automation. The translations fram the logical-abstract models to
physical devices are perfoimed in the control programs in lower five layers
of Figure 1, such as Data and Teleprocessing Access Methods, etc.

However, it's important to note at this point that approaches to

automating software development, where application and camputer related knowledge

-14-

ESTIMATE OF POTENTIAL
CONTRIBUTION TO

' COST REDUCTION
20“: MU ;t R . T
SRS STATE OF T SOFTWARE MANPOWER /325 AUTOMATIC PROGRAM
; ! | ; ; b : 1 ;LRR‘ET-[A *-‘{ m ANNLN_ lma . . ,‘% GENERATION
SEREREES e :
EEERRERER RN v : | : »
T I B s / - [5% AUTOMATIC FILE &
NI f ?_x_ MODULE DESIGN
SR ERSEESEREENARE D U S A ‘ 22% AUTOMATIC FUNCTION
SPECIFICATION
SN NSRS N TARGET SOFTWARE 112 AUTOMATIC PROBLEM
R R . COST, REDUCTIONS REQUIREMENTS
gl | 1
| % TOTAL
3 e S
ST REVENUES
3 beivig
' ; : 137 ANNUAL INCREASE
[

0 5’ 7 7 2 &
1370 HARDWARE (U,S., DOMESTIC REVENUES)* $5 BILLION

[370 soFwARE BUSINESS PROGRAMMERS 137330

BUSINESS ANALYSTS
SYSTEM & SCIENTIFIC

TOTAL 361,20
*AFIPS, “THE STATE OF THE COMPUTER INDUSTRY IN THE U.S.” MonTvaLE, N.J. 1973
FIG. 3. SUMARY OF SOFTWARE/HARDWARE COSTS AND POTENTIAL CONTRIBUTIONS TD
COST REDUCTIONS
-15-

were integrated, are being pursued as well. One such approach consists of
using prefabricated program components oriented to a specific type of

business or industry. The ocomponents are appropriately parametrized so that
they can be adapted to use by many organizations. Typiﬁally a potential user
selects functional components tiat are required in ais operation. Questicnnaires
and cneck-lists are provided to facilitate gathering the user requirements.
Also an Editor and a Report Generator are provided to enter user parameters

and report formats. Such systems are used by service organizations and
computer manufacturers to install small business systems for wholesale and
distribution industriesg. There are snortcomings with this approach on two
levels. First tnere is a continuing requirement for programmer skills for
selecting components and determining the values of the parameters. Also
frequently, necessary functions cannot be performed by previously prefabricated
components and additional special purpose programs are required. On another
level, use of such packages requires molding the needs for automation of a
business into the structure of the prefabricated software packages. No
provisions are made to determine management's critical decisions regarding
efficient operation and whether data for decision making is indeed made
available to management. This approach can be based on a more general and
powerful program generation method described below instead on prefabricated

couponentsg, and will be discussed further in the next section.

Following the bottom-up sequence (Figure 1), automatic program module
generation is discussed below first, and is followed by the automatic file

8 Examples are IBM Customizing Service for users of IBM System 3 and the
proprietary services of Keydata and others for the distribution industry.

9 A.C. Hax and W.A. Martin, "Automatic Generation of Customized, Model
Based Information Systems For Operations Management," Proc. of the
Wharton Conference on Research on Computers in Organizations, Philadelphia,
Pennsylvania, Octaoer 1975, H.L. Morgan, Editor, pp. 117-121.

16~

structure and module selection methodology.
Automatic program module generation: This methodology is based on

the use of processors capable of generating broad classes of programs.

Figure 4 illustrates this methodology. Box (1) at the bottom of Figure g4
illustrates a broad class of programs, characterized as intended for business
applications where they have to process a nunber of input data [or message]
files and to produce a number of output files [or reports]. Box (2) illustrates
a processor which can generate the program module for (1). The Program

Module Generator (2) consists of two parts, for processing the input formal
non-procedural functional specification of the desired program module, and

for performing design and cdde generation.

The design and code generation programs in box (2), embody a mathematical
model of a program design process. They check the consistency and the
campleteness of input specifications by tracing each value in the output
data to its sources. From these traces as well as from requirements imposed
by file structures of the respective files [e.g. sequential or indexed] they
determine the seqpencing of the input commands, computation and output commands
to attain program module efficiency.

The program module specifications used as input in this process are a
swset of the overall problem non-procedural functional specifications.

Several formal languages for stating non-procedural functional specifications

have been developed and same have been in uselo (see also ref. 2, 18 and 19).

10 D. Teichrow, "Surwvey of Languages For Stating Requirements for Computer
Based Information Systems," AFIPS Conference Proc., Vol. 42,
Fall 1372, pp. 1203-1244.

-17-

L‘gﬁﬂ‘io CED INPUTS AND OUTPUT | LANGUAGE DESIGN AND
. URAL DATA ANALYSTS CODE
CTIONAL MANIPUTLATION PROGRAM GENERATION
SPECIFICATION OF DATA PROGRAM
BUSINESS

LANGUAGE
SYNTAX —

SEMANTICS —wmi

LANGUAGE
ANALYSIS
PROGRAM
GENERATOR

FIG L]

DESIGN
METHOD ———ppmeet

CODE
GENERATION
SPEC o

DESIGN AND C
GENERATION
PROGRAM

GENERATOR

BUSINESS PROGRAM
MODULE GENERATO 2

N’

PROGRAM MODULE

EXECUTION

+-PROGRAM LISTING -
AND DOCUMENTATION

N

3 INTERACTIONS IN AUTOMATIC GENERATION OF A PROGRAM MODULE

m OUTPUT
FILES

Because of the empnasis in these languages on facilities to describe data,
they are very similar to languages used to describe data basesll’ 12. It is
important to be able to process program module specifications that are given

in any compbination of several forms, such as in a formal language, table
format or in a question-answer format. Also, these languages are still in
an experimental phase and little usage experience is available for their
evaluation. In order to have a capability to accept several selected languages
or formats, and to modify them, it is desireable to generate automatically
the language analysis programs. This capability is indicated in Figure 4 by
a higher level language analysis program generator processor box (3) which
automatically generates the module specification analysis programs based on
specifications of language syntax and semantics.

The specification of a desired program module that is input to the
program module generator comes in two parts which can be related to top

and pottom level parts of program code, in a top-down program structure.

11 QOODASYL Data Base Task Group Report, Report to the CODASYL Programming
Languages Committee, AOM, New York, 1971.

12 N.S. Prywes and D. Pirog Smith, "Organization of Information," in

Annual Review of Information Science and Technology, Vol. 7,
C-Ao clmdra, Ed-, ASIS, WaShlng'ton, D-Co' 1972, ppo 103-158-

~19-

The quotation pelow from H. Millsl3 explains the top-down programming

structure:
"We can begin a process which we can repeat over and over until
we get the whole program defined. This process is to formulate
a one page skeleton program which represents that hundred page
program. We do this by selecting some of the most important lines
of code in the original program and then filling in what lies
between those lines by names. Each new name will refer to a new
segment to be stored in a library and called by a macro facility.
In this way, we produce a program segment with something under
50 lines, so that it will fit on one page. This program segment
will be a mixture of control statements and macro calls with

possibly a few initializing, file, or assigmment statements as
well."

In a similar approach, two levels are defined below. The top level

of the program is defined to consist of all the data definitions, input/output

commands and control logic statements. This part constitues also macro level

documentation, dispensing with the need for flow-chart documentation. In the
bottom-level would be routines that provide the more detailed documentation of
data manipulation. These two levels have been identified because they can be
related to two parts of the module specification. The top level macro design
'activity is largely based on the module input-output data specification. The
bottom level of the program is based entirely on the data manipulation
specification (except where input and output data items, records or files are
associated by common names and the direct relationship of input to output is
implicit). This relationship is summarized in Table 2.

A system of the type described in Figure 4, with a restriction of only

one input and one output file for a program module (n=m=l), has been

developed at the University of Pemnsylvania by Ramirez“. Expansion of the
13 Harlen Mills, "Top down Programming In Large System," Courant Computer

Science Symposium I, July 1970. Debugging Techniques In Large Systems,
Randall Rustin Ed., Prentice Hall, 1971, pp. 41-55.

14 J. Ramirez, "Automatic Generation of Data Conversion Programs Using A

Data Description Language," Ph.D. Dissertation, Univ. of Pennsylvania,
1973.

~2)-

NON PROCEDURAL PROCEDURAL
INPUT LANGUAGE TODE LEVEL CODE STATEMENTS

GENERATED AUTOMATICALLY

oL TOP DEFINITIONS

CONTROL LOGIC
1/0

DML BOTTOM MANTPULATI ON-COMPUTATION
CONVERSION

EVA&UATI ON
DML MODULES

TABLE 2: SUMMARY OF RELATIGN OF DDL/DML TO COLE IN THE
AUTOMATICALLY GENERATED PROGRAM

-21-

system for handling multiple input and output files is currently underway.
The Ramirez system includes automatic capability for generating language
analysis programs based on an extended BNF syntax specification and sub-
routine calls that express same of the semantics (other semantics are in
hand coded code generation programs). A non-procedural specification
language is used for input to the program generator. It is similar in
structure to that developed by CDDASYL]'Z. It is also a modified subset c;f
a language developed by Smithls. The data manipulation language [DML] used
is a swset of PL/l. The generated program module code is in PL/1, requiring
a subsequent compilation to produce a load module. The Ramirez system
produces also tiie necessary JCL statements and a variety of documentation,
in addition to-tie PL/1 program module listing.

The design process in the Program Module Generator [box 2 in Figure 4]
required a painstaking analysis to specify an acceptable human program design
process and to state it in terms of a mathematical model, which has been
programmed to constitute a part of the Module Generator. While there exist
extensive work on automatically generating language analysis programs16 there
nas been only very limited research on automatic production of code generation
which is one of the most laborous tasks in constructing program generators.
Artificial intelligence research in the area of automatic problem solvingt’
appears applicable to the automatic generation of programs to perform design

in accordance with specified methods.

15 D. Pirog Smith, "An Approach to Data Description and Conversion,"
Ph.D. Dissertation, University of Pennsylvania, 1971.

16 W.N. McKeeman, et.al., "A Compiler Generator," Prentice Hall, 1970.

17 For instance, G.S. Sussman and D. McDermott, "why Conniving is Better
Than Planning," AFIPS Conference Proceeding, Fall 1972.

-22-

The methodology to generate automatically design and code generation programs
is the least developed part of the technology that is necessary to produce
program module generators efficiently. Until such technology is developed and
applied it is possible only to proceed slowly and laborously by manually
producing design and code generation programs. As will be further discussed
below, this inability to easily "teach" a computer how to employ a method,
that a human can easily learn is an extremely difficult dbstacle to surmount
on the way toward all-automatic programming.

File Structure and Program Module Definitions: This activity is based

on functional specification of the total computer system, consisting of
a non-procedural functional specification of the total input and output data
and a preliminary determination of the system hardware and software that
is required. The outcome of this process are the non-procedural functional
specifications of the respective modules. This is a more glabal software
design activity then the module design. Refinements are presently carried out
iteratively, where a human designer relies on automatic simulation for
evaluation. Recent developments of automation of this are reviewed below]‘8.
The first step of the process is to analyze the overall system non-
procedural functional specifications to determine completeness and consistency.
An example of this capability is an analyzer developed for functional

specifications expressed in the ADS languagelg. Analysis reports include indices

18 J. Daniel Couger, "Ewolution of 3usiness System Analysis Techniques,"
Computing Surveys, Vol. 5, No. 3, September 1973, pp. 167-198.

19 J.F. Nunmaker, et.al., "A Non Procedural High Level Language For Automated
Design of Application Systems," Computer Science Dept., Purdue University,
W. Lafayette, Indiana 47906.

See also, J.F. Nunmaker, Jr., "A Methodology for the Design and Optimization of
Information Processing System," AFIPS Proc., 1971, SJCC, pp. 283-294.

-23-

of data elements, and cross referencing of data manipulation routines and

the respective source (input) and target (output) data elements. Groups

of data elements that are connected through hierarchial relationship are
identified. Next these groups are also cross referenced with the routines
that process the data elements in respective groups. A network can be
generated where groups of data elements that interact in computations would
be connected. Closely connected groups of data element, constitute candidate
files. The related processing functions represent candidate program modules.
Attempts are then made to consolidate or partition modules and files to
increase efficiency. For instance, if two processing functions occur in the
same processing cycle and if the preliminarily selected data files overlap
greatly in having common data elements, the respective processing functions
and files may be consolidated. To make such decisions it 1s necessary to
refer not only to the logical structure of the data and the data manipulation
rules but also to the freguencies and cycles of the processing functions.
Partitioning of the processing files, as well as use of intermediate files
saretimes improve efficiency. For instance, effect of pre or post sorting

to order the data may be an important consideration for efficiency. A third
type of consideration is to evaluate impact of alternative file organizations.
For example, whether the data is accessible seguentially or on a random access

basis has impact on efficiency of processing. Such alternatives may be
evaluated through similation20,

20 A.F. Cardenas, "Evaluation and Selection of File Organization-A Model
and System," Comm. AQM 16,9, Sept., 1973, pp. 540-548.

-24-

The analysis, synthesis and evaluations of alternatives can be performed
piecewise with the aid of automatic simulation and evaluaticn.21 The
integration of these functions requires human guidance. An all-autamatic
process will require a data base of global computer design knowledge
accessible to a computer. It will be necessary to research first how to
formalize such knowledge or how to input it to a computer in a natural
language ad-hoc manner. Until such capability is developed, it will be very
costly to enter such information through manual modelling and programming.
Therefore, the achievement of an all automatic process with no human

participation will be necessarily delayed for same time.

5 AUTOMATIC GENERATION OF NON-PROCEDURAL SPECTFICATIONS

The top-level system design activity discussed in this section corresponds
to the top three layers in Figure 1. The top layer, named in Figure 1
"automation demand”, is concerned with determining what information would
management need to evaluate economic and business alternatives and to make
decisions for their overall organizational progress and effectiveness. The
second and third layers are concerned with developing an autamatic system that
would collect and make the indicated information available to management. The
second layer consists of generating candidate operational concepts and computer
configurations and the evaluation of these computer configurations to
establish ocost/benefits of alternative proposed information systems. The
third layer consists of specifying the selected system in a formal manner to
be directly applicable in lower layers. Simulation technology for performing
such evaluations is highly developed18'21.
21 J. Yeh and J. Minker, "Key Word In Context Index and Bibliography on

Camputer Systems Evaluation Techniques, University of Maryland, Computer
Science Center, (bllege Park, Maryland, TR-246, June 1973.

=25.-

Performing tue top layer activity in an automatic fashion presents the
greatest difficulty. It is the most complex and imaginative part of the
total process. It nas little to do, if any, with computer methodology,
wilicn oecomes important only in lower layers. Traditionally this process
involves interacting with many participants, with expertise in different
disciplines: with top management, staff specialists, operational staff and
somatimes with outside the organization such as customers, vendors financial
and government organizations. Presumably, a future computer system that could
perform this activity automatically would need access to the caombined knowledge
of the present participants in this process. Current techniques for entering
into a computer knowledge on iow to evaluate complex economic or business
situations consists of coding the knowledge in program form, which requires an
enormous anount of manual analysis and structuring. This is the major prdblem
in automating this activity. Two reported approaches to this prablem, by
dax and Martin® and by Balzer?? are summarized and reviewed below.

Tne Hax and Martin approach has already been briefly described previously,
in connection witn use of prefabricated program components for the operational
side of a business. Otner features of their approach are: 1) specialize in
a relatively narrow application field, reportedly in Inventory Control.

2) Incorporate simulation models for evaluating economics and business questions
or operational methods. 3) use artificial intelligence techniques for
communicating with the computer interactively in English language for the entry
of additionally needed information into the computer.

Two areas of concern in this approach are discussed below. First, whether
due to tne prefabricated programs feature, the structure may be too confining
22 R.M. Balzer, “"A Global View of Automatic Programming,” Also memorandum on

'Automatic Programming,' September 1972, USC Information Sciences
Institute 4676 Admiralty Way, Marina Del Ray, California, 90291.

-26-

and restrictive to be used in situations where technology, or business and
economic conditions cnange rapidly. Second, since the area of application
is highly spécialized and relatively narrow, the cost of the software
generation system development may not be justified by potential utilization
opportunities. Both the usefulness and end value of such a generalized
Inventory Control system could have been tested, for instance, during the
situation of major snortages in essential materials that arose at the end of
1973. Could the system for instance, have generated an inventory control
system for oil products that would be effective for conserving oil and for
planning utilization of oil products to minimize impact of shortages on the
econamy? Thne almost instantaneous availability of such a system would have
demonstrated its value as surely being sufficiently great to justify the costs
of develomment.

As indicated previously, existing systems of prefabricated program
camponents have editors and question—answer facilities to collect and enter
user requirements. It is not clear how the use of cited artificial intelligence
techniques!’’23/2% yould materially enhance such facilities.

Balzer?? proposes the construction of a computer system which will have
a generalized learning capability that could be utilized to enter applications
related knowledge into the computer. The quotation below summarizes the

functions of the computer system in his proposed concept of its operation:

23 T. Winograd, "Understanding Natural Languages," Academic Press, 1972.

24 C. Hewitt, "PLANNER: A Language For Proving Theorems In Robots," Proc.
of Intl. Joint Conference on Artificial Intelligence, Mitre Corp.,
1969, pp. 245-301.

-27-

"l. Proolem statement in natural language in terms of the problem
damain '

2. Knowledge about the domain acquired interactively in natural
language in terms of the complete model of the problem domain.

3. Resulting programs which are optimized with respect to data
representations, control structure, and code.

This approach requires significant advances in Artificial
Intelligence techniques, in such areas as knowledge representation,
inference systems, learning, and problem solving, and in the
codification of programming knowledge in the areas of data
representations, algorithm selection, and optimization techniques."

Item 1 and 2 in the above quotation refer to the top level design

activities addressed in this section. Item 3 refers to program generation

and optimization activities similar to those discussed in the previous section.
The reference to "domain" is similar to the use of the word “"application"
apove. The starting knowledge in the computer is assumed to be confined to
that of camputer system analysis and design. As stated, in items 1 and 2, the
description of the problem that needs to be solved, together with the

knowledge tnhat is needed to solve the problem would be imparted to the computer
system through interactive user-computer questian-answer sessions conducted

in natural English language. The computer would then learn fram the user about
nis business to be able to determine the information needed for business
decisions and system requirements. The dependence of this type of activity

on artificial intelligence metidology is stated in the second paragraph in

the above quotation.

Balzer admits that his proposed system concept is conjectural. There are
guestions in regard to both effectiveness of the process and feasibility. In
regard to effectiveness, the approach implies, for instance, that a president
of a company would find it beneficial to teach his prdblem and his business

to a camputer that is equipped with only computer oriented knowledge, so that
-28-

|

the camputer could integrate the two types of knowledge to provide an

effective solution to the president's problems. Additionally, some
of the information would have to be dbtained from the vice-presidents for
operations, marketing and finance. Consider the prablem of all these
participants entering information in a consistent manner so that it all can
be integrated. If the artificial intelligence techniques, cited by Balzer,
are to be used, the humans interacting with the computer would be required
to have knowledge about how the camputer acquires knowledge.

A basic assumption of this approach is that interactive communication
in English is an effective way to teach knowledge to a computer, although this
is a relatively slow process in teaching humans. Note also, that when humans
are taught by interactive communication, they already have a basic knowledge
of word meanings and relatianships, which would not be true for the computer
system. This problem is discussed further below. It seems that it would have
been less conjectural if it was proposed that the computer could accept text-
books as input materials and incorporate the respective knowledge into the
system. The text material would than also constitute a base line of the
knowledge in the computer on which further knowledge incorporation may be based.
Also, suwh a system ocould be continwusly tested as the information was entered.

For instance, at the end of entry of a Chapter fram an Introductory Econcmics

.textbook, the problems at the end of the Chapter would be submitted as well,

and the computer would be required to use the knowledge in the Chapter to

produce answers for the prablems.
Another problem area is the need to enter into the computers large
vocabularies and the inadequacy of present artificial intelligence techniques

cited by Balzer for handling volumous English language commmications with the

—29~

17,23,24
computer. The systems cited by Balzer to demonstrate

that the technology is available , have wvocabularies t
of few hundred words. To commmicate applications knowledge

would reéui.re vocabularies of tens of thousands of words. The problem is

not simply in the larger number of words needed for English language communication
of application knowledge, but in the amount of work that it takes to enter
multiple word meanings and relationships. Development of methodology to

tabulate multiple meanings and relationships of words has been reported25

It estimates that there are 8000 high usage words which have acquired many
meanings and usages. These words, as well as many other words, of lesser

usage, will have to be integrated within detailed models of particular
applications. To enter all this information, word by word, in an interactive
process would require a long time. Other techniques, by which a computer may
acquire knowledge of words purely from the usage in text, must be developed

to enable rapid entry of an application oriented knowledge base into a

computer system. This would eliminate the need to tabulate meaning and
relatianships in vocabularies. Processes of this type have been considered

and developed by workers in the areas of information storage and retrieval,
content analysis and text proo&ssingzs.

All the questions that have been raised above seem to be open research
questions that snould be the subject of future research. It appears, therefore,
that the adeé;uacy of artificial intelligence techniques for implementing the
25 Louis L. Earl, "Use of Word Government in Resolving Syntactic and Semantics

Anbiguities," Conference Proc. Computer Text Processing and Scientific

Researcn, Office of Naval Research, Pasadena, California, 15 March 1973,
pp. 55-96.

26 N. Prywes, A. Lang and S. Zagorsky, "A Posteriori Indexing Classification

and Retrieval of Textual Data," to be published in Information Storage
and Retrieval.

-30- Y

type of system envisaged by Balzer is far from proven and feasibility of
such a system will still need to be demonstrated. Therefore, also an
effective automation of this generalized high level analysis and design

process cannot be forseen with confidence.

6. QONCLUSINS

Predictions or projections of technological developments are always
hazardous, especially wihen made for a prolonged period such as the period
lasting to the year 1985. Therefore, it is in order to comment on reasons for
confidence, or lack of, in the projections.

The projections of growth of software manpower requirements are not
reliable. They are based on a study of future U.S. Airforce software
requirements which have been applied to the total U.S. economy. New industrial
uses of computers through 1985, that should figure prominently in such
projections, have not been considered. The dbjective in making the growth
projection was for estimating a target for manpower savings from advances in
autamatic programming. Even if the growth projectiaons are 50% too high, there
would still be need for the advances described in the paper.

One assumption made in the paper was that software development will
continue in a bottam-up fashion indicated by the layers in Figure 1. The
alternative would be same major breakthroughs which would upset the past order
of progress. For instance, breaktiiroughs in the field of artificial intelligence,
by which computers ocould quickly "learn" methods could have such an impact.
But as indicated in Section 5, there are important research questions that

need to be answered before such breakthroughs can be predicted.

=31~

Large and extensive research and development activities in the areas of
automatic program generation and systems and files design and evaluation are
underway. These efforts are indicated in the references in this paper, and
especially in the survey paperl8 and b;i.bliog'rapl'xy21 that have been cited.

This, as well as examination of proposed methods, form the main basis for
confidence that the autamation of program design and implementation would be
successfully developed and receive wide industrial and business use by 1985.
This will take place in a number of increments as discussed in Secticn 4.

Finally, the present prospect is that determination of system requirements,
leading to a system functional specification would be performed semi~automatically,
with business specialists serving as system innovators and integrators, and
that tiey will be aided by various evaluation and language processing systems.
The automatic integration of these systems would have to await advances in

lower layers of Figure 1 and probably also great advances in artificial
intelligence methods.

-32-

	Research on Automatic Program Generation
	Recommended Citation

	Research on Automatic Program Generation
	Abstract
	Comments

	tmp.1193862040.pdf.5T2oD

