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1. Motivation and Background: 

The motivation for this paper is the observation that a static scene that 
contains more than one objectlpart most of the time cannot be segmented 
only by vision or in general by any non-contact sensing. Exception to this 
is only the case when the objects/parts are physically separated so that 
the non-contact sensor can measure this separation or one knows a great 
deal of a priori knowledge about the objects (their geometry, material, etc.). 
We assume no such knowledge is available. Instead, we assume that the 
scene is reachable with a manipulator. Hence the problem represents a class 
of problems of segmentation that occur on an assembly line, bin picking, 
organizing a desk top, and the like. What are the typical properties of this 
class of problems? 

1. The objects are rigid. Their size and weight is such that they are 
manipulable with an suitable end effector. Their numbers on the scene 
is such that in a reasonable time each piece can be examined and 
manipulated, i.e the complexity of the scene is bounded. 

2. The scene is accessible to the sensors, i.e the whole scene is visible, 
although some parts may be occluded, and reachable by the manipu- 
lator. 

3. There is a well defined goal which is detectable by the available sensors. 
Specifically the goal maybe: an empty scene, or an organized/ ordered 
scene. 



The segmentation problem as is specified above is a subclass of a more 
general problem of disassembly task that we wish to address in the future. 
The solution to this problem calls for more non-traditional approach, that is 
Active Sensing, [BAJCSY 851, as opposed to the traditional static analysis 
of passively sampled data. It should be axiomatic that perception is not 
passive, but active. Perceptual activity is exploratory, probing, searching. 

1.1 What is Active Sensing? 

In the robotics and computer vision literature, the term "active sensor" 
generally refers to a sensor that transmits (generally electromagnetic radi- 
ation, e.g., radar, sonar, ultrasound, microwaves and collimated light) into 
the environment and receives and measures the reflected signals. Here we 
use the term active not to denote a time-of-flight type sensor, but to denote 
a passive sensor employed in an active fashion, purposefully changing the 
senor's state parameters according to sensing strategies. Hence the problem 
of Active Sensing can be stated as a problem of intelligent control strategies 
applied to data acquisition process which will depend on the current state 
of the data interpretation including recognition. 

This approach is gaining more and more recognition in the Literature, 
see [ALOIMONOS 871, [BALLARD 881, [HUANG/AHUJA 871, [POGGIO 
et. al. 881. It is in the spirit of active sensing that we formulate the problem 
of segmentation via manipulation. 

In this paper we shall briefly review the literature related to this problem 
and show possible applications. Subsequently we shall outline the underlined 
theory or principles and suggest some possible strategies for segmentation 
which will demonstrate the scope and validity of the theory. Our aim is 
to cleanly separate the a priori build in knowledge from the poorly data 
driven parts. Last we will present the experimental setup and the actual 
experiments. 

1.2 Background 

Reading through the recent proceedings of the IEEE International Confer- 
ence on Robotics and Automation, the Proceedings of International Robotics 
Research, the IEEE Transaction on Robotics and Automation, one finds that 
most of the research on object description makes the following assumptions: 



1. Objects are rigid, i.e. made from solid materials. 

2. Objects have usually non-flexible parts. 

3. If two or more objects are attached to each other, the recognition 
whether they are one or more objects is guided by a priori information 
on the shape or possibly size of the object. 

People have been concentrating more on the assembly process than the 
disassembly process, which is a model driven, top down process. Yet if one 
wants to understand the structural composition of an object unless a priori 
given, one needs to decompose it. The closest to our thinking has come 
[YAMADA et. al. 871 in building an expert system which will generate 
all possible procedures of disassembling the object from the 3D models. 
This is important for example for repairs! Another application is the Post 
Office where mail pieces and other packages are thrown on the conveyor belt 
and in order to  sort them one needs to decompose the pile into singulated 
pieces [KAK et. al, 881, [COWAN et. al. 881, [McCLAIN/KENIG 881, and 
[TSIKO S/BAJCSY 881. 

Our problem however is to recognize how to take apart an object, explore 
complex scenes, composed of more than one object in arbitrary positions. 
That is to  say, data driven perception which results in discerning solid and 
rigid separable objects and/or their parts and describing them in terms of 
their structural and geometric properties. Our working hypothesis is that 
this cannot be done only by vision, that one needs some possibilities of 
manipulation and the use of haptic information processing. But by the 
same argument this cannot be done by haptic exploration alone either! 

2. Segmentat ion v ia  Manipulat ion - T h e  Theory: 

The theory of segmentation has the following components: Models of sen- 
sors, models of actions, a tasklutility model, and the world/ scene model. 
The segmentation process is formulated in terms of graph-theoretic opera- 
tions which are mapped into corresponding manipulatory actions. 

Models of sensors: These include the characterization of the non-contact 
sensor such as the spatial resolution, signal to noise ratio, and their like, 
the physical parameters of the different end effectors, such as the vacuum 
suction cup, the size of the spatula for pushing objects, the span of the 
gripper, the maximum allowable weight and or force. Models of objects are 
specified in terms of their geometry, size and substance. 



The Model of our world for this paper is limited to arrangement of ob- 
jects thrown at random on a plane, called a heap. Then a scene is a (partial) 
view of a heap. The objects in the scene are represented as nodes in the di- 
graph and the arcs denote :on-top-of relation. It is important to emphasize 
that this digraph represents relations of only the visible surface segments, 
i.e. as they appear through the visual sensor which is not always the same 
as the physical objects and their surfaces segments. The true physical ar- 
rangements of objects on the scene as well as the part-whole relations of 
objects are not known. 

The scene can be classified based on the analysis of the digraph into the 
following categories: 

1. EMPTY, if there are no vertices in the digraph, 
i.e. an empty digraph; 

2. DISPERSED, if there no edges in the digraph, i.e. a 
null digraph; 

3. AMBIGUOUS, if there is one or more directed cycles 
in the digraph; 

4. OVERLAPPED, if there are at least two vertices con- 
nected with an edge; 

5. UNSTABLE, this category is not tested by the anal- 
ysis of the graph 

but through analysis of the contact 
point/line of the object with 

the support plane. If this contact is 
point or line it is classified as 

unstable. 

Task models which includes the final goal of the process. An example 
of a final goal can be the empty scene and the intermediate goals then can 
be those scenes that are simpler measured by a cost/benefit function. This 
cost /benefit function entails the cost of performing the particular manipu- 
lation, and the benefit is measured via the estimate of the outcome of the 



manipulation with respect to the final goal, i.e. emptying the scene. 
6. Models of Action that parametrizes the scene / object / manipulation 

interaction. In principle there are two kinds of Actions: 

1. Sensing Actions, i.e. data acquisition action (look and/or feel), 

2. Manipulatory Actions. 

The purpose of the manipulatory actions for this paper is to exert a 
physical disturbance, being either global (as shaking) or local (as pushing/ 
pulling). In view of our formulation of the segmentation problem as a graph 
generation/decomposition problem we classify the manipulatory action in 
relationship to the operation that apply on the digraph. There are two 
such operations: the node removal which means in terms of manipulation, 
removal of an object from the scene, the arc removal which in turn trans- 
lates into object displacement in the scene so that the on-top-of relationship 
does not hold any more between the two objects. Put it in other ways an 
isomorphism exists between the manipulation actions and graph decompo- 
sition operations [TSIKOS 871. Our approach is to close the loop between 
sensing and manipulation. The manipulator is used to simplify the scene by 
decomposing the scene into visually simpler scenes. The manipulator car- 
ries the contact sensors to the region of interest and performs the necessary 
exploratory movements that will determine the nature of the mechanical 
binding between objects in the region. 

3. Perception-Action Interact ion modeled by a 
Non-deterministic F in i te  S t a t e  Tur ing  Machine. 

The model of sensing, manipulation and control is a Non-deterministic Tur- 
ing Machine (NDTM) as we show in Figure 1. The physical world (scene) 
is the "tape" of the machine, the "readfrom-tape" actions are the sens- 
ing actions and the "write to-tape" actions are the manipulation actions. 
The model is a Turing machine because the manipulation actions constantly 
change the physical environment (tape) and hence its own input. The above 
model is non-deterministic because of the non predictable state of the scene 
after each manipulatory step. From this of course follows also the non- 
deterministic control of actions. In addition to the non-determinism of the 
control strategies, the automaton has finite states, which are determined by 



the finite numbers of recognizable scenes and the finite number of available 
actions. 

We believe that this model is quite general providing that one can quan- 
tize the scene descriptions and/or the sensory outputs into unique and mu- 
tually exclusive states, and of course one has only a finite number of ma- 
nipulatory actions. There are several advantages to the formalism of the 
non-deterministic finite state Turing machine. 

The first advantage, [ALBUS et. al. 821, is that the sense-compute- 
act formalism allows the control problem to be partitioned in time and 
complexity. At any given time, the system deals only with present state and 
present input, produces an output which is a function of current state and 
current input and moves to a new state. Current state encodes information 
about past history of states and actions of the machine and its environment. 
Current sensory input is not deterministic (noise in sensory data). The next 
state of the NDTM is not deterministic because the machine modifies its 
tape via actions whose outcome cannot be known a priori (push and shake 
actions). 

The second advantage is that the theoretical tools needed to prove cor- 
rectness of the machine's behavior have long been established and tested. 
Path sensitization and graph de- cyclization algorithms exist, [HARTMA- 
NISI STEARNS 661, [KOHAVI 701, [DEO 741, to prove: 1) The goal state 
is reachable. 2) The state transition diagram does not contain deadlock 
states, or cycles. 

The third advantage is that it facilitates error handling. If additional 
states need to be defined to deal with non-anticipated error conditions, then 
these states can be simply inserted. The fourth advantage is that is modular 
and allows insertion of new sensors, actions and feedback conditions. The 
fifth advantage is that it makes debugging easy. The sixth advantage is that 
it allows a system to be developed incrementally. 

One disadvantage is that the number of states and transitions needed 
to  represent the machine and its environment increases as more sensors are 
added. Addition of more sensors implies increased complexity. 



Definition: An NDFSA, is a quadruple (I, 0, S, T)  where: 
I: Inputs from a variety of contact and non-contact 

sensors. 

0: Outputs are Actions, such as: Shake, Push, Pick, 
Look, Stop, etc. 

S: States 

T: State Transition Function, (I x Sc) --> Sn, 
where, the next state 

Sn: is a function of current state Sc and current input I. 

Figure 1. describes the sensing and manipulation interaction for segmen- 
tation. Relating this diagram to the NDFSA, we shall describe in subsec- 
tions the inputs, outputs, states and the transition function, i.e. the control, 
respectively. 

3.1 Inputs 

As indicated above, the inputs come from sensors. In our current implemen- 
tation the sensor is a laser range finder (non-contact sensor) and the sub- 
sequent processing of this data. The scene is segmented into what appears 
to be spatially-connected surface regions. For each region, we compute the 
position of the center of gravity, the orientation of the surface normal at  the 
center of gravity, an estimate of size of the smallest parallelepiped bounding 
the region, and an estimate of the maximum curvature . From these mea- 
surements, the objects are initially classified into one of three generic shapes 
such as: flat, box, and tube/roll. 

The On-Top-Of relation between all pairs of visible regions in the scene 
is computed and the directed graph representing this relation is constructed. 
Vertices represent visible, connected, surface regions. Directed edges repre- 
sent the spatial relations between the vertices. See Fig. 2, 3, 4, and 5. 

Top-most surface segments are important in physical scene segmentation 
because they may belong to top-most objects in the scene. Top-most objects 
are important because they usually have more surfaces exposed (more ways 
to be grasped). The forces required to extract them from the scene are less 
and therefore the chances of loosing positional information after the object 



is being grasped are minimized. Furthermore, manipulating the top-most 
object keeps scene disturbances to a minimum. 

A partially dispersed scene corresponds to a disconnected digraph. An 
efficient algorithm based on "fusion7' of adjacent vertices is given in [DEO 
741. A totally dispersed scene, (as well as a singulated scene), correspond 
to a null graph (a graph with vertices and no edges). Efficient graph the- 
oretic algorithms exist (testing the digraph's adjacency matrix for all zero 
entries) for singulation verification. Finding the top-most objects in the 
scene corresponds to topological sorting of the digraph. 

Visual information may be sufficient to accurately describe simple ob- 
jects and non-overlapping scenes. However, it is not sufficient to distinguish 
between overlaps caused by two different objects in the scene and overlaps 
caused by a single, self-occluding object. For example, a thin flat object 
supported by and totally occluding a smaller box-shaped object can be mis- 
taken as a large box-shaped object. Therefore, machine vision alone is not 
enough. 

3.2 Outputs 

Are indeed actions both sensing (LOOK) and manipulatory actions (SHAKE, 
PUSH, PICK, STOP). The sensing action (LOOK) in this implementation 
is only a command to take data. Naturally, it can be and in the next imple- 
mentation it will be more complex, i.e choosing its view point, sampling rate 
and resolution and other data acquisition parameters. The cost associated 
with the data acquisition process must be included into the overall control 
schema. 

The manipulation actions are composed hierarchically from simpler ac- 
tions. SHAKE is the simplest action, it provides global disturbance and dis- 
placement to the work place. On the other hand PUSH and PICK exert local 
disturbance and causes local displacement of an object. In fact in our im- 
plementation, both PUSH and PICK action have two forms: PUSH-WITH- 
SPATULA, PUSH-WITH-SUCTION-TOOL, PICK-WITH-GRIPPER, PICK- 
WITH- SUCTION-TOOL, see Figure 12 for an example of a PICK-WITH- 
SUCTION-TOOL Action. In addition, each of these manipulatory actions 
is associated with an ERROR- RECOVERY action. 

The hierarchy of actions is in terms of composition of complex actions 
from simpler actions and does not apply to the execution of these actions. 
The hierarchy of action composition is given in [TSIKOS 871. An exam- 
ple of such hierarchy is shown for the action: PICK-WITH-GRIPPER in 



Figure 6. Each node in the graph in Figure 6. is an manipulatory ac- 
tion. Some of these actions are modeled as deterministic finite state au- 
tomata (FSA), while others are modeled as non-deterministic, finite state 
automata (NDFSA). The lowest level in the hierarchy of actions consists 
of very simple actions, such as: Robot-Move-To (RMT), Robot-Move-To- 
while-Sensing (RMTS), Gripper-Move-To (GMT), Gripper-Move-To-while- 
Sensing (GMTS), and their like. 

The advantages of hierarchical construction are modularity, testability, 
and incremental growth. These actions (as expected) use additional informa- 
tion from contact sensors. Some of the contact sensors are: Two force/torque 
sensors (mounted on the gripper jaws) are used in closed loop feedback dur- 
ing manipulation. Force feedback is used to provide force servoing to the 
gripper, to sense collisions, to measure the weight of objects, and to deter- 
mine if an object or tool is properly grasped. A finger position sensor is used 
in a closed-loop feedback manner during manipulation. Position feedback is 
used to provide basic position servoing to a gripper, and to refine size esti- 
mates of objects (computed from vision). A vacuum sensor is used to verify 
proper grasp, to differentiate between small size, non- penetrating cavities, 
from holes which penetrate an object. Note that all the contact sensory 
feedback is carried out in a local, reflexive mode rather than in a planned 
mode with one exception, that is when a pathological state is detected. 

3.3 The States 

In Figure 1.) the states of the environment as perceived by the sensors are: 
Empty, Dispersed (Figure 2.)) Overlapped (Figure 3.)) Ambiguous (Figure 
4.)) and Unstable (Figure 5.) This is a finite set of states describing the 
environment of the Turing machine as perceived by the sensors. If new 
sensors are added, the set of states is partitioned to describe the scene as 
perceived by the additional sensors. For example, if a sensor capable of 
determining the "touch" relations of objects in the scene is added, then the 
set of the above five states can be partitioned (a  finer partition) to describe 
both the "touch" and "on-top-of' relations. 

The goal of scene segmentation is the EMPTY state. This state must 
be not only reachable but also measurable with the current sensors. In 
other words, for the machine to halt the system must have sensors to sense 
that the goal state has been entered. In this work the empty state is both 
reachable (see section on strategies), and easily measurable (all range values 



in the scene are zero, which means that no surface segments and thereby no 
objects exist in the scene). 

A specific place must be given to Error states. They are prioritized in 
order of severity (most severe first). For more details see [TSIKOS 871. 
The pathological states are: Sensor damaged, Unable to get tool, Tool and 
object lost, Lost tool, Lost object above the workspace, Lost object away 
from the workspace, Unable reach object, Unable to Pick, and Unable to  
Push. As more sensors and actions are added into the system, more yet 
finite pathological states must be defined. These states envoke the ERROR- 
RECOVERY actions. 

3.4 The State Transition Function 

The control problem is transformed into the problem of topological sorting of 
object arrangements. The manipulation actions of object acquisition (pick) 
and local displacement (push) are defined as decomposition operations on 
digraphs representing the on-top-of relation of objects in the arrangement. 
The pick action is used to break the vertex connectivity of the digraph by 
removing vertices. Several tools may be used to implement this action. An 
object may be picked and removed from the scene using the gripper, or 
it may be picked by selecting a tool (i.e. suction tool). The push action 
is used to break the edge connectivity of the digraph representing the on- 
top-of relation. Several tools may be used to implement this action. An 
object may be pushed using the gripper, or it may be pushed by selecting 
a push tool (such as a spatula or the suction tool). Complete planning of 
the push actions is very complicated, [LOZANO-PEREZ 801, [LOZANO- 
PEREZ 811, [MASON 821, [MASON 861, and requires knowledge of the 
friction coefficients of all objects in the scene as well as knowledge of the 
spatial relations of all objects in the scene to decide where and how far to 
push. 



4. Segmentation Strategies 

In the previous section we have described a Non-deterministic finite state 
Turing machine as a model for relating sensing, manipulation for segmenta- 
tion purposes. The question is: is this model sufficient? Let us recall that 
"read-from -tapew are the sensing actions, "write-to-tape" are the manipula- 
tory and error recovery actions, and the states are scene descriptions. Even 
with the restriction that one can categorize every scene into distinct classes 
(discrete states) we had to add the following rules: 

1. No action is allowed to  be repeated on the same object, consecutively, 
more than x number of times. 

2. If local displacement action is called for, the PICK action has the 
highest priority. 

3. Non-graspable objects are PUSHED. 

4. Ambiguous scenes are first displaced globally (shaken) and then locally 

5. Unstable scenes are displaced globally. 

6. Partially visible objects must be displaced. Displacement proceeds in 
an outermost first, order. 

7. Flat objects are picked with a suction tool, applied at the center of 
gravity of the visible surface segment. 

8. Box-shaped objects and tubes/rolls are picked either with the gripper 
or a suction tool. If this process fails then they are pushed at the 
edges. 

With these above rules and the theory described in sections 2 and 3, we 
can compose several different strategies to examine the validity and gener- 
ality of our theory for physical segmentation purposes. 



4.1 Strategy 1: (Look, Pick, Look, ...) 

The control structure is shown in Fig. 7. The strategy does not use local 
displacement (push). The general idea is to look, pick the top-most object, 
and look again. If the scene is ambiguous or unstable, it shakes the heap. If 
shaking fails, it continues with the pick action. This strategy is simple and 
very effective in dealing with scenes where all objects are graspable with the 
set of acquisition tools. The strategy eliminates ambiguities via the shake 
and pick actions. If the shake action fails to  remove the ambiguity then 
non-topmost objects are picked up. This causes objects to be lost during 
acquisition. For the strategy to succeed the sensor thresholds must be raised 
to enable the system to tolerate higher torques caused by picking objects 
off the center of gravity. When the threshold is raised, the probability 
of tool losses increases as well as the probability of damaging the sensors. 
Therefore, the probability of entering the fatal error state is increased. If 
the weight of the objects is low, the probability of damaging the sensors 
(even if the system picks objects supporting other objects) is low, and the 
strategy converges, see [TSIKOS 871. 

4.2 Strategy 2: (Look, Push-until-Dispersed, Pick, Look, ... ) 
The control structure is shown in Fig. 8. This strategy allows no interaction 
between the pick and push actions. The only interaction allowed is when the 
push action cannot reduce the number of edges in the associated graph any 
further. The strategy enforces a rather strong partition on the manipulation 
actions. This shows up as a serial plan where a single action is triggered 
from one state and the automaton iterates until the "look" action brings the 
automaton to another state. This strategy is very effective in dealing with 
heaps of few, small-sized objects relative to the workspace. As object size 
and number increases so does the number of objects pushed out of the scene 
and never picked up. For a proof of convergence see [TSIKOS 871. 

4.3 Strategy 3: (Look, Pick/Push, Look, ...) The control structure 
is shown in Fig. 9. The central idea is to allow immediate interaction 
between the two manipulation actions. Since pick is more effective than 
push, priority is given to pick. Only if an object cannot be picked up after 
several unsuccessful attempts, then the next immediate action is to  push 
that object, and immediately return to pick the next object (if one exists), 
or to  the look action. This strategy is most effective in dealing with heaps 



containing a 
other. These 
of collisions. 

small number of top-most objects located far away from each 
types of heaps can be decomposed with the minimum number 

4.4 Strategy 4: (Look, Push-Partially-Visible, Pick, Push, 
Look, ...) 
The control structure is shown in Fig. 10. The central idea is to interleave 
the interaction between the pick and push actions. In other words, the strat- 
egy is to look, then execute a series of push actions and displace partially 
visible objects out of the scene, then to pick d l  topmost objects, then push 
all objects that the pick action failed to remove after several attempts, and 
finally, to look again. This strategy segments the heap from both the top 
and the sides. The partially visible objects are first pushed out of the scene. 
This creates free space for future push actions and minimizes the likelihood 
of collisions towards the borders of the scene. By ordering the sequence of 
actions we achieved minimum interference between the manipulation actions 
and we sequenced the execution of the look action to occur when it is needed 
the most, (after a series of local displacements). If all the objects targeted 
for pick are graspable, they are removed one by one, following the topo- 
logical ordering of the graph. This strategy is the most effective. It keeps 
action interference to a minimum. It uses the most expensive action (look) 
only when it is necessary, (after a shake, or a series of push actions). This 
grouping and sequencing of actions has performed very well for the majority 
of heaps and objects. The strategy keeps the number of tool changes to a 
minimum. 

5. Implementation and Experimental Results 

The system block diagram is shown in Fig. 11. It  consists of a range imag- 
ing system, a linear stage, a PUMA 560 robot, a LORD Corp. servoed 
instrumented gripper, a micro-VAX-I1 computer, a support structure, sev- 
eral tools, tool fixtures, and accessories. 

All experiments run on the real system. No simulation results are re- 
ported. The domain was mostly objects found in the mail stream, such as: 
parcels, flats, tubes and rolls. A number of additional experiments were 
conducted with objects containing holes, cavities, and some porous objects. 
The heaps were created by stacking these objects at random to an average of 



five object layers per heap. The weight of every object was under one pound. 
During all experiments the heap was observed to transform and to enter all 
five states: ambiguous, unstable, overlapped, dispersed, and empty[. 

5.1 Experiment 1 

The purpose of this group of experiments was to evaluate strategy 1. The 
strategy performed well on unstable, overlapped, and dispersed heaps. Diffi- 
culties were observed with ambiguous configurations. The shake action was 
not very effective in removing ambiguities. One reason is that the action 
was implemented using the linear stage in a vibration mode at maximum 
speed and acceleration. These speeds and accelerations were not enough to  
produce a significant change in the scene. Using the pick action to remove 
ambiguities resulted in an increased number of tool and object losses. The 
shake action failed to eliminate the ambiguities caused by configurations 
of flats. This is because flats form stable configurations. However, because 
flats are rather lightweight and flexible, it was possible to  use the pick action 
to  break-up cyclic object configurations without many tool or object losses. 
Strategy 1 failed to converge when the heap contained porous objects. 

5.2 Experiment 2 

For the strategy to  work efficiently, very large work space is required. This is 
because all overlaps must be removed and the scene must become dispersed 
before any pick action. In many unstable scenes containing a mix of flats, 
boxes and tubes, the shake action forced the tubes to fall into the cavities 
of the heap. This stabilized the heap and created more overlaps. The shake 
action was very effective in dispersing heaps of cylindrical objects. In scenes 
containing only tubes/rolls the shake action removed all overlaps. Strategy 
2 performed well in heaps of few, small-sized objects. As the object size and 
number increased, so did the number of objects that were pushed out of the 
scene and never picked up. 

5.3 Experiment 3 

The strategy has the tendency to produce additional overlaps when an object 
being pushed falls on other objects in the next layer of the heap. This was 



not catastrophic because this overlap was detected during the next look 
action. We have observed that if the objects cannot be picked up by any 
tool, then the strategy degrades into a sequence of unsuccessful pick, followed 
by push actions. The system picked all objects with cavities and pushed all 
large objects containing holes, as well as all porous objects. The major 
drawback of this strategy is that if push actions are interleaved with pick 
actions then the push action may displace other objects targeted for the 
pick action. Therefore, the next pick action will most likely fail. Although 
this is not catastrophic, it makes it necessary to trigger another look action. 
Better planning of the push actions may help to eliminate some of these 
problems. However, one has to keep in mind, that even better planning will 
not solve the problem, unless assumptions about the heap and knowledge of 
the surface properties of all objects composing the heap is introduced. 

5.4 Exper iment  4 

This strategy is the most effective and capable of handling a variety of ob- 
jects and heaps. One reason for its success, is the way it manipulates the 
heap; from the top and sides. Another reason is that the actions are or- 
dered and vision is applied when needed the most, after global displacement 
(shake), or a series of local displacements (a series of push actions). 

6. Conclusions 

We introduced the paradigm of iterative, interactive scene segmentation and 
simplification via vision, manipulation, force/torque and other sensory in- 
put. The scene simplification is based on graph decomposition operations of 
vertex and edge removal. These operations are in turn defined isomorphic 
to  the pick and push manipulation actions. We have shown that the sensors 
can be used as the partial graph generators, and the manipulator as the de- 
composing mechanism of this partial graph. The actions and strategies are 
modeled as non-deterministic, finite state Turing Machines that decompose 
these graphs under sensor supervision. The strategies converge (for theoret- 
ical proof, see [TSIKOS 871). If pathological states are detected then error 
recovery actions are invoked. 

We have integrated a vision system, a nianipulator, force/torque and 
other sensory input into an experimental robot work cell and conducted 
experiments to test convergence, error recovery and graceful degradation of 



four different strategies. We have found that many of these strategies can 
recover from pathological states, tolerate errors in the sensory data, recover 
from un- successful actions, and converge. What we have learned during 
this work is: 

1. In an unstructured environment, where there is uncertainty and in- 
complete information, a detailed, sophisticated plan is not enough. 
The plan must constantly change and adapt to the sensory input. 

2. Redundancy of Actions (in addition to  redundant sensors, tools, etc.) 
is needed for exploration of unstructured environments. 

3. In the domain of heap segmentation, it is possible to  reach the goal 
state via iteration and interaction of a few sensors, tools and a few 
simple, short-range manipulation actions. 
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REQUEST TO REPEAT 

Figure 1. Sensing and Manipulation Interaction for Segmentation 



Figure 2. Range Image of a DISPERSED Scene and the corresponding graph. 
- 



Figure 3. Intensity Image of an OVERLAPPED Scene and the corresponding graph 
- - - .  - - - -- 



Figure 4. Range Image of an AMBIGUOUS Scene and the corresponding graph. 
. . - - .  



Figure  5.  Range Image of an UNSTABLE Scene and t h e  corresponding graph.  
... 



PICK - WITH-GRIPPER 

Where: RMT = Robot Move-To Action. 
RMTS = ~obotI~ove-TO-while-sensing Action. 
GMT = Gripper-Move-To Action. 
GMTS = Gripper-Move-To-While-Sensing Action. 

Figure 6. An example of the Action Hierarchy 



Figure 7. Strategy-1 Action Automaton 
(Look, Pick, Look, ... ) 



Figure 8. Strategy-2 Action Automaton 
(Look, Push-untilDispersed, Pick, Look, ... ) 



* 
Error Recovery Actions not shown. 

Figure 9. Strategy-3 Action Automaton 
(Look, Pick/Push, Look, . . . ) 



* 
Erro  r Recovery Act ions  n o t  Shown. 

Figure 10. Strategy-4 Action Automaton 
(Look, Push - Partially-Visible, Pick, Push, Look, . . . ) 



Figure 11. Experimental System Block Diagram. 



Figure 12. An Example of the "PICK" Action. 
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