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The dielectrophoresis of cylindrical and spherical particles submerged in
shells and in semi-infinite media

Abstract
The dielectrophoretic forces acting on and the resulting velocities of cylindrical and spherical particles
embedded in perfectly dielectric viscous fluids are calculated analytically. The fluids are confined in
cylindrical/spherical shells and in semi-infinite media with prescribed potential distributions along the
surfaces of the media. The forces are calculated by evaluating the Maxwell stress tensor. The velocities of the
particles are obtained by solving the Stokes equation for creeping flow. The range of validity of force
calculations based on the dipole-moment approximation is estimated.
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The dielectrophoresis of cylindrical and spherical particles submerged
in shells and in semi-infinite media

Hui Liu and Haim H. Baua)

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6315

~Received 13 August 2003; accepted 29 December 2003; published online 15 March 2004!

The dielectrophoretic forces acting on and the resulting velocities of cylindrical and spherical
particles embedded in perfectly dielectric viscous fluids are calculated analytically. The fluids are
confined in cylindrical/spherical shells and in semi-infinite media with prescribed potential
distributions along the surfaces of the media. The forces are calculated by evaluating the Maxwell
stress tensor. The velocities of the particles are obtained by solving the Stokes equation for creeping
flow. The range of validity of force calculations based on the dipole-moment approximation is
estimated. ©2004 American Institute of Physics.@DOI: 10.1063/1.1649237#

I. INTRODUCTION

Dielectrophoresis~DEP! is the motion of uncharged po-
larizable particles in a nonuniform electric field.1,2 The di-
electrophoretic forces result from the interaction of the elec-
tric field with the induced dipole moment. Depending on the
dielectric properties of the particle and the medium, the mo-
tion is directed either toward~positive DEP! or away from
~negative DEP! regions of high electric-field intensity. While
DEP occurs in both DC and AC electric fields, AC fields are
often preferred in order to suppress undesired electrochemi-
cal interactions at the surfaces of the electrodes, suppress
electrophoresis, and eliminate motion due to the electric
charge of the particles. In addition, the use of AC potential
allows for capacitive actuation of the electrodes, which pre-
vents the electrodes and particles from burning out when the
gap between two electrodes is bridged by conducting
particles.3 DEP is particularly well suited for microfluidic
applications and nanoassembly. One can readily control the
direction of the electric field by the judicious patterning of
the electrodes on the substrate, and high intensity electric
fields can be obtained with relatively low potential differ-
ences given the small gaps among the actuating electrodes.

DEP has been used for the separation of heterogeneous
populations of biological cells and particles into homoge-
neous subgroups and for the trapping of nanoparticles,4,5 na-
norods, nanofibers,6 deoxyribonucleic acid,7 and macromol-
ecules. More recently, DEP was used to separate metallic and
semiconducting single-walled nanotubes.8

Our interest in DEP is motivated by our work on the
transport of liquids through nanotubes. In this work, we trap
nanotubes and nanofibers in the gaps between pairs of elec-
trodes patterned on the surfaces of glass and silicon wafers.
In order to better design the layout and process conditions of
the electrodes, we attempt to simulate the trapping process.
We felt that it would be desirable to have a few canonical

solutions that can be used to verify the numerical codes—
hence this paper.

The dielectrophoretic force is usually approximated
through its first dipole moment contribution:2,9–11

F;l«0«mVp Re~ f CM!¹uErms
2 u, ~1!

whereE is the electric field;«0 and«m are, respectively, the
dielectric constant of free space and the relative dielectric
constant of the suspending liquid,Vp is the volume of the
particle, l is a numerical coefficient on the order of unity,
and Re(fCM) is the real part of the relative particle polariza-
tion ~i.e., the Clausius–Mossotti factor!. Both l and f CM de-
pend on the geometry of the particle. For example, in the
case of a spherical particle,f CM5(«p* 2«m* )/(«p* 12«m* ) and
l53/2, where«p* and«m* are the complex permittivities of
the particle and of the medium, respectively;«* 5«
2 j s/v; and s is the electric conductivity. The dipole mo-
ment approximation is valid only when the dimensions of the
particle are much smaller than the characteristic length scale
of the electric field. Unfortunately, this is not the case in our
application where the size of the tube is comparable to the
gap size between the electrodes. Instead, we must calculate
the DEP forces by evaluating the Maxwell stress tensor.12

There are just a few exact solutions available for the
dielectrophoretic motion of particles. In this paper, we ana-
lytically solve a few canonical problems. Our objectives are
to gain insights to the dielectrophoretic migration, develop a
set of benchmark problems that can be used to verify nu-
merical codes, and delineate the range of validity of the di-
pole moment approximation.

In the first part of this paper, we study the dielectro-
phoresis of two-dimensional cylindrical particles submerged
in cylindrical shells filled with viscous liquid. Since we em-
ploy bicylindrical coordinates, we obtain the case of a cylin-
drical particle submerged in a semi-infinite liquid medium as
a special case. In the second part of the paper, we focus on
spherical particles embedded in semi-infinite liquid media. In
all of these cases, we specify nonuniform potential distribu-
tions along the surfaces of the media, compute the polariza-

a!Author to whom correspondence should be addressed; electronic mail:
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tion forces, and compare the exact force values to the values
obtained with the dipole moment approximation. Addition-
ally, by equating the DEP forces with the viscous drag acting
on the particles, we obtain expressions for the instantaneous
velocities of the particles. These motion equations are subse-
quently integrated to obtain the trajectories of the particles.

II. MATHEMATICAL MODEL

Consider cylindrical and spherical particles located, re-
spectively, inside cylindrical and spherical shells. The radius
of the particle isr 2 and the radius of the shell isr 1 . The
center of the particle is displaced distancec from the center
of the shell. See Fig. 1 for a schematic description of the
mathematical model. In the limit ofr 1 and c approaching
infinity, we obtain the case of a particle embedded in a semi-
infinite medium. We denote the region between the shell and
the particle as domain 1, and the region inside the particle as
domain 2. The properties of regions 1 and 2 are denoted,
respectively, with subscripts 1 and 2. The electric potential
on the surface of the shell is specified, and it is assumed to be
piecewise continuous and expandable into a Fourier series.
The resulting potential fields in domains 1 and 2 are denoted,
respectively,f1 andf2 . To obtain the potential field in each
domain, we solve the Laplace equations:

¹2f i50 ~ i 51,2!. ~2!

The interfacial boundary conditions on the surface of the
particle are

f15f2 ~3!

and

«1¹f1"n5«2¹f2"n, ~4!

wheren is an outer unit vector normal to the surface of the
particle and« i is the relative permittivity of domaini. «0

58.8542310212 F/m is the permittivity of free space.
We define the length scale of the electric fieldLE

5uE0,c /¹E0,cu. E052¹f0 is the electric field in the ab-
sence of a particle, and subscriptc indicates that the various
quantities are evaluated at the location of the center of the
particle. In order to compare the characteristic length of the
electric field with the diameter of the particle, we define the
dimensionless parameterH5LE/2r 2 .

The geometry suggests the use of bicylindrical and bi-
spherical coordinates.13 These coordinates allow one to
specify the boundary conditions at fixed coordinate values.
Below, we separately consider the planar and three-
dimensional cases.

III. CYLINDRICAL PARTICLE EMBEDDED IN A
CYLINDRICAL SHELL

We first consider the planar case. The bicylindrical coor-
dinate system consists of two orthogonal families of circles
~Fig. 1!. One family of circles corresponds to constant value
a coordinates (0<a1<a<a2,`). The surfaces of the
shell and particle are, respectively, ata5a1 and a5a2 .
The second family of circles corresponds to constant
b (2p<b<p) coordinates. The case of the semi-infinite
medium is obtained by settinga150.

The relationship between the Cartesian coordinates~x, y!
transverse to the axis and the bicylindrical coordinates~a,b!
is given by

x1 iy5a cothS 1

2
~a2 ib! D , ~5!

FIG. 1. A schematic depiction of the mathematical model.

FIG. 2. The potential field~contour lines! whenr 2 /r 150.5, c/r 150.2, and
«2 /«1510.
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where a5(M22r 1
2)1/2, M5(r 1

22r 2
21c2)/2c, a1

51/2 ln@(M1a)/(M2a)#, and a251/2 ln@(M2c1a)/(M2c
2a)#. The Laplace equation in bicylindrical coordinates is

]2f i

]a2 1
]2f i

]b2 50, i 51,2. ~6!

The given potential distributionf (b) on the wall of the tube
is expanded into the Fourier series,

f ~b!5 (
n51

`

@an sinnb1bn cosnb#, ~7!

where an51/p*2p
p f (t)sin(nt)dt and bn51/p*2p

p f (t)
cos(nt)dt (n51,2,....). Without loss of generality, we scale
the average surface potential to zero. In practice, one could
approximate the surface potential distribution by patterning
individually controlled electrodes on the surface.

The electric potentials are

f15 (
n51

`

@~Anena1Bne2na!sinnb

1~Cnena1Dne2na!cosnb# ~8!

and

f25 (
n51

`

@Xne2na sinnb1Yne2na cosnb#. ~9!

In the above, An5xanena1/(xe2na11e2na2), Bn

5anen(a112a2)/(xe2na11e2na2), Cn5xbnena1/(xe2na1

1e2na2), Dn5bnen(a112a2)/(xe2na11e2na2), Xn5(1
1x)anen(a112a2)/(xe2na11e2na2), Yn5(1
1x)bnen(a112a2)/(xe2na11e2na2), and x5(«12«2)/(«1

1«2).
As an example of the potential field, Fig. 2 depicts con-

stant potential lines~contours! when r 2 /r 150.5, c/r 150.2,
«2 /«1510, andf (b)5cos(b).

A. Force calculation based on virtual work

We will use various methods to calculate the dielectro-
phoretic forces. Since the medium is a perfect dielectric, we
can use the method of virtual work. The total electric energy
per unit length of the system is14

U5
«0

2 S E E
R1

«1E1•E1dR11E E
R2

«2E2•E2dR2D ,

~10!

whereE1 and E2 are, respectively, the electric fields in do-
mains 1 and 2.R1 andR2 are, respectively, domains 1 and 2.
Upon substituting the electric potentials in~10!, we obtain

U5
1

2 (
n51

` p«0«1n~e2na2~«11«2!1e2na1~«22«1!!~an
21bn

2!

e2na1~«12«2!1e2na2~«11«2!
. ~11!

Sincea2.a1 , as expected, we haveU.0. Thex-direction
dielectrophoretic~DEP! force per unit length of the particle
is14

Fx52
]U

]c
5

2p«0«1~«1
22«2

2!

a

3 (
n51

` n2e2n~a11a2!~an
21bn

2!

@~«12«2!e2na11~«11«2!e2na2#2 .

~12!

Since the problem is invariant to the rotation of the particle
about its axis, the torque must be equal to zero. The potential
can always be decomposed to a sum of symmetric and anti-
symmetric components. Since the dielectric forces are insen-
sitive to the sign of the polarization charge, there cannot be a
net force in they direction (Fy50). In the next section, we
will reproduce these latter results explicitly.

B. Force calculation based on the Maxwell tensor

Alternatively, the force can be calculated from the Max-
well stress tensor:12

T5«0«1S EE2
1

2
~E"E!I D , ~13!

where I is the unit tensor. The DEP force is obtained by
integratingT over any closed surface (Si) that surrounds the
particle:

F5 R
Si

~T"n!dSi . ~14!

On the surface of the particle,n52ea . The surface force
densities in thea andb directions are, respectively,

f a5
«0«1

2h2 F S ]f1

]a D 2

2S ]f1

]b D 2G ~15!

and

f b5
«0«1

h2 S ]f1

]a D S ]f1

]b D . ~16!

The electrostatic forces per unit length in thex andy direc-
tions are, respectively,

Fx52E
2p

p

~ f a cosu1 f b sinu!hdb ~17!

and
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Fy5E
2p

p

~ f b cosu2 f a sinu!hdb. ~18!

In the above,

h5
a

cosha2cosb
~19!

is the scale factor, andu is the angle between the unit vector
ea and the x direction. sinu5y/r2 and cosu5(x
2acotha)/r2. Not surprisingly, upon integrating Eq.~17!,
we obtain Eq.~12!, and Eq.~18! yields Fy50.

C. Conducting particles

The DEP forces that act on electrically conductive par-
ticles can be obtained from the expressions derived earlier in
the limit of «2 /«1→`. Alternatively, the potential field can
be calculated directly by taking into consideration the fact
that the potential of the particle is uniform and the particle is
electrically neutral. In other words, on the surface of the
particle, we havef25V5constant and

E
S2

«0«1¹f1•ndS250. ~20!

The corresponding solution of the Laplace equation for the
potential is

f15 (
n51

`
sinhn~a2a2!

sinhn~a12a2!
@an sinnb1bn cosnb#

1V
a2a1

a22a1
, ~21!

where V50. The x-direction force per unit length on the
particle calculated from the Maxwell stress tensor is

Fx52
p«0«1

2a (
n51

` n2~an
21bn

2!

sinh2 n~a12a2!
. ~22!

D. Force calculation based on the effective
dipole-moment approximation

One of our objectives is to compare the frequently used
dipole-moment approximation with the more accurate~and
tedious! calculation of the force presented in the previous
sections. According to the dipole-moment approximation, the
DEP force acting on the particle is2

F5peff•¹E0,c5pr 2
2«0«1

«22«1

«11«2
~¹~E"E!!0,c , ~23!

where the dipole momentpeff is defined as the moment of an
equivalent line dipole that produces the same electrostatic
potential when immersed in the same dielectric liquid and
positioned at the location of the center of the particle. In the
above,ac52a2 andbc50 are the bicylindrical coordinates
of the center of the particle. The dipole moment for the pla-
nar cylindrical particle ispeff52p«1 («22«1 )/(«11«2) r2

2Ec .15

The electric field in the absence of the particle is

E05
1

h (
n51

`

nen~a12a!@~an sin~nb!1bn cos~nb!!ea

2~an cos~nb!2bn sin~nb!!eb#. ~24!

The x, y components of the DEP force are

Fx5
8p«0«1~«22«1!sinh2 a2

r 2~«11«2!

3 (
n51

`

(
m51

`

nm~anam1bnbm!e~n1m!~a122a2!

3@~n1m!sinha222 cosha2# ~25!

and

Fy5
8p«0«1~«12«2!sinh3 a2

r 2~«11«2! (
n51

`

(
m51

`

nm~n2m!

3~ambn2anbm!e~n1m!~a122a2!. ~26!

For certain distributions of the surface potential, the dipole-
moment approximation predicts a nonzero force in they di-
rection. No such force exists, however.

E. The range of validity of the dipole-moment
approximation

To estimate the range of validity of the dipole-moment
approximation, we compare the force estimates of the dipole-
moment approximation with the exact values in the special
case of a semi-infinite medium and surface potentialf (b)
5F0 sin(b). Figure 3 depicts the exact@solid line, Eq.~12!#
and approximate@dashed line, Eq.~25!# x-direction normal-
ized DEP forces as functions ofr 2 /r 1 when c/r 150.2 and
«2 /«1510. The force per unit length of the particle was
normalized withF0

2«0«1 /r 2 . In this particular example, the
radius of the shellr 1 represents the length scale of the elec-
tric field. When the radii ratio (r 2 /r 1) is small, the presence

FIG. 3. The normalized exact~solid line! and approximate~dashed line!
x-direction DEP forces acting on a cylindrical particle submerged in a cy-
lindrical shell as functions ofr 2 /r 1 when c/r 150.2 «2 /«1510, and the
potential of the outer shellf5F0 sinb.
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of the cylindrical particle introduces only a small disturbance
in the electric field and the dipole-moment calculation pro-
vides an excellent approximation. When the radii ratio is
larger than 0.2, the dipole-moment approximation deviates
considerably from the exact value.

In general, it is more convenient to useH as the measure
of the length scale of the electric field relative to the size of
the particle. Figure 4 depicts the relative differencek be-
tween the exact and the dipole-moment calculation of thex
component of the DEP force as a function ofH for the same
conditions as in Fig. 3. WhenH.10, the dipole moment
approximation is accurate within better than 3%. More dis-
turbingly, the dipole-moment approximation predicts a force
in the y direction when none exists.

F. A particle in a semi-infinite medium with surface
potential f „b…ÄF0 sin „b…

In this section, we consider a semi-infinite medium with
the surface potentialf (b)5F0 sin(b) at (a5a150). This
potential distribution is a crude approximation of the poten-
tial used in our experimental setup, where we maintain
a potential difference across two electrodes with a gap be-
tween them. In Cartesian coordinates, cos(b)
5@A(x21y22a2)2/Aa422a2(x22y2)1(x21y2)2#.

The distance of the center of the cylinder from the wall
is denoted asd ~see Fig. 1!, a5Ad22r 2

2, and a25 ln@(d
1Ad22r 2

2)/r 2#. Thex-direction DEP force reduces to

Fx,exact5
p«0«1~«1

22«2
2!r 2

2~2d22r 2
212dAd22r 2

2!F0
2

2Ad22r 2
2@~«11«2!~d21dAd22r 2

2!2«2r 2
2#2

.

~27!

The corresponding dipole-moment approximation gives

Fx,DM5
16ṗ«0«1~«22«1!r 2

2~d22r 2
2!F0

2

~«11«2!~d1Ad22r 2
2!5

~28!

andFy50. When the cylinder is conducting, the exact force
expression simplifies to

Fx52
«1«0pF0

2r 2
2

2~d22r 2
2!3/2. ~29!

In the limit of r 2→0, the exact force and dipole-moment
approximation can be expanded into the corresponding Tay-
lor series in terms ofr 2

Fx,exact;pr 2
2 «0«1~«12«2!

2~«11«2!d3 F0
2

1pr 2
4 «0«1~«12«2!~«113«2!

4~«11«2!2d5 F0
21O~d27!

~30!

and

Fx,DM;pr 2
2 «0«1~«12«2!

2~«11«2!d3 F0
21pr 2

4 «0«1~«12«2!

8~«11«2!d5 F0
2

1O~d27!. ~31!

Witness that the leading-order terms are identical in both
cases. The second-order terms are different, however.

When the particle is far from the wall, the dielectro-
phoretic force scales likeO(d23). When the particle is close
to the wall (d2r 2!r 2) and«2!`, we have

Fx,exact;2A2

r 2

p«0~«2
22«1

2!F0
2

4«1
~d2r 2!21/2

1
p«0«2~«2

22«1
2!F0

2

«1
2r 2

1O~~d2r 2!1/2!. ~32!

In other words, the dielectrophoretic force scales liked21/2,
whered5d2r 2 . The singularity depends on potential dis-
tribution on the surface and on the dielectric properties of the
particle. When the particle is conducting, the singularity is
even stronger.

FIG. 5. The exact~solid lines! and approximate~dashed lines!, dimension-
less electrostatic forces acting on a cylindrical particle embedded in a semi-
infinite medium as functions of the dimensionless distance from the center
of the particle to the plane~X! when«2 /«152 and«2 /«15100.

FIG. 4. The relative difference~k! between the exact and approximate val-
ues of thex-direction DEP force on the cylindrical particle as a function of
H for the same conditions as in Fig. 3.
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G. The migration of a particle in a semi-infinite viscous
medium

Next, we consider a cylindrical particle embedded in a
semi-infinite, viscous~with viscositym!, perfectly dielectric
medium. A nonuniform potential is specified on the surface
of the medium. Figure 5 depicts the dimensionless electro-
static force acting on the particle as a function of its dimen-
sionless distance (X5d/r 2) from the plane when«2 /«152
and«2 /«15100. The solid and dashed lines in Fig. 5 corre-
spond, respectively, to the exact force and the dipole-moment
approximation. Since«2.«1 , the force is directed toward
the wall ~positive dielectrophoresis!. As the particle ap-
proaches the surface, the magnitude of the force increases
rapidly.

The electrostatic force causes the particle to migrate.
Since typically the resulting motion is quite slow, we assume
that inertial effects can be neglected and the fluid motion can

be described with the Stokes equation. The instantaneous
distance of the center of the particle from the wall is denoted
asX ~see Fig. 1!, and the instantaneous velocity of the par-
ticle in the x direction is denotedẊ, where the superscript
dot indicates a time derivative. Since there are no forces in
the y direction, the motion is confined to thex axis (y50).

For concreteness, we consider the case off (b)
5F0 sinb. The x direction DEP force is given in Eq.~27!.
Jeffery and Onishi16 computed the expressions for the drag
force on the cylinder translating perpendicular to a plane,

Dx5
24pmḋ

a22tanha2
5

24pmḋ

ln@~d1Ad22r 2
2!/r 2#2Ad22r 2

2/d
.

~33!

When inertia is negligible; the DEP force is balanced by the
viscous drag. Equating the electrostatic and viscous forces,
we obtain a first-order differential equation for the instanta-
neous velocity,

dX

dt
5

~«1
22«2

2!~X1AX221!2@ ln~X1AX221!2A12X22#

AX221@~«11«2!X~X1AX221!2«2#2
, ~34!

with the initial conditionX(0)5X0 , whereX0 is the position
of the particle at timet50. t is the dimensionless time. In
the above, we use 8mr 2

2/(F0
2«0«1) as the time scale.

We integrated Eq.~34! numerically using a fourth-order
Runge–Kutta algorithm. Figure 6 depictsX as a function of
the dimensionless time~t! when X(0)55. Figure 7 depicts

the dimensionless velocityẊ as a function of the particle’s
positionX. Witness that as the particle approaches the wall,
the absolute value of the velocity increases, achieves a maxi-
mum, and then decreases to zero. The dimensionless total
migration time depends on the initial position of the particle

and the dielectric constants of the particle and the suspending
medium.

When the particle is far from the wall (d/r 2→`), the
viscous drag scales like

Dx;pmḋS 4

12 ln~2d/r 2!
1

r 2
2

d2~12 ln~2d/r 2!!2D
1O~d24!, ~35!

and the particle velocity is on the order ofd3 ln(d).
When the particle is close to the wall (d2r 2!r 2),

FIG. 6. The dimensionless distanceX of the center of the cylindrical particle
from the plane as a function of the dimensionless time whenX(0)55,
«2 /«1510, and the surface potential isf5F0 sinb.

FIG. 7. The dimensionless velocityẊ of the cylindrical particle as a func-
tion of its distanceX from the plane whenX(0)55, «2 /«1510, and the
surface potential isf5F0 sinb.
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Dx;2&pmḋ~3r 2
3/2~d2r 2!23/2

121/20r 2
1/2~d2r 2!21/2!1O~~d2r 2!1/2!, ~36!

and the velocity of the particle scales like (d2r 2). In other
words, when the particle is close to the surface, its velocity is
proportional to the gap size between the particle and the
surface.

IV. SPHERICAL PARTICLE EMBEDDED IN A
SPHERICAL SHELL

We consider a sphere of radiusr 2 and relative dielectric
permittivity «2 submerged in a second sphere of radiusr 1 .
The distance between the centers of the two spheres isc. The
domain between the spheres is filled with a dielectric, vis-
cous fluid with permittivity«1 and viscositym.

It is convenient to use bispherical coordinates.13 The re-
lationships between the bispherical and Cartesian coordi-
nates are given below:

x5a sina/~cosha2cosb!,
y5a sinb cosg/~cosha2cosb!,
z5a sinb sing/~cosha2cosb!,

S 2`,a,`
0<b<p
0<g<2p

D .

~37!

Surfaces of constanta correspond to spheres of radius
a/sinha:

~x2a cotha!21y21z25a2/sinh2 a. ~38!

The surfaces of the outer and inner spheres correspond, re-
spectively, toa5a1 and a5a2 (a1<a<a2). Constantb
coordinates represent a second family of spheres that are
orthogonal to the constanta surfaces.g represents the angu-
lar direction.

The Laplace equation for the electrical potential in the
bispherical coordinates has the form

¹2f5
~cosha2cosb!2

a2 sinb Fsinb
]

]a S 1

cosha2cosb

]f

]a D
1

]

]b S sinb

cosha2cosb

]f

]b D
1

1

sinb~cosha2cosb!

]2f

]g2G50. ~39!

The Laplace equation admits a general solution of the form17

f5Acosha2cosb

3 (
n50

`

(
m52n

n

~Ane~n11/2!a1Bne2~n11/2!a!

3~An8 sinmg1Bn8 cosmg!Pn
m~cosb!, ~40!

where Pn
m is the associated Legendre function of the first

kind. The associated Legendre function of the second kind,
Qn

m , does not appear because it diverges atb5p/2. As we
shall shortly see, the presence of the factorAcosha2cosb in
~40! precludes us from obtaining explicit expressions for the
Fourier coefficients in the series. To simplify matters, we will

focus only on the case of a spherical particle embedded in a
semi-infinite medium (a150). This case is of interest for
particle trapping.

A. The potential field in the axisymmetric case
„f is independent of g…

When the electrical potential has cylindrical symmetry
about thex axis, m50 and the electrical potentials in do-
mains 1 and 2 are, respectively,

f15Acosha2cosb

3 (
n50

`

~Ane~n11/2!a1Bne2~n11/2!a!Pn~cosb! ~41!

and

f25Acosha2cosb (
n50

`

Cne2~n11/2!aPn~cosb!. ~42!

The boundary condition ata50 is

f15 f ~cosb!A12cosb, ~43!

where f (cosb)5(n50
` FnPn(cosb) and Fn5(2n

11)/n *21
1 f (t)Pn(t)dt. When we apply the interfacial

boundary conditions@Eqs.~3! and ~4!# at a5a2 , we obtain
an infinite set of recurrence equations for the coefficients
An :

e2a2~n11!un11An111ea2nun21An211nnAn5Mn ,

~n51,2, . . .!, ~44!

where un5(«2 /«121)e(2n11)a12(«2 /«111)e(2n11)a2,
nn52 sinha2e

(2n11)a22(e2a212ncosha2)un , and Mn

5(12«2 / «1 ) @e(n11/2)a1 ( e2a2 1 2n cosha2 ) Fn2 (n1 1 )
e(n13/2)a12a2Fn112ne(n21/2)a11a2Fn21#. For additional de-
tails of the derivation of Eq.~44!, see, among other places,
Bau.18

The above set of equations cannot be solved in a closed
form since anyN equations involve (N11) unknowns. As-
suming that the surface potential obeys certain regularity
conditions, series~41! will converge, andAn will form a
decaying sequence. Hence, we truncate the equations at some
n5N. By settingAN1150, we solve~44!. When the particle
is far from the surface, the rate of convergence is rapid and
only a few terms in the series are needed to obtain accurate
solutions. For example,A0529.44931025, A355.524
310210, and A553.339310215 when d/r 2510, and
«2 /«1510. The rate of convergence deteriorates as the dis-
tance between the center of the particle and the plane de-
creases.

OnceAn has been calculated, the coefficientsBn andCn

are readily determined from

Bn5Fne~n11/2!a12Ane~2n11!a1 ~45!

and

Cn5Fne~n11/2!a11Anbe~2n11!a22e~2n11!a1c. ~46!
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B. The potential field in the asymmetric case „f
dependence on g…

To simplify matters, we consider only the case when the
surface potential varies like sin(g). In other words,m51 in
Eq. ~40!. Higher modes can be treated in an analogous man-
ner. The potentials are

f15Acosha2cosb (
n51

`

~Dne~n11/2!a

1Ene2~n11/2!a!Pn
1~cosb!sing ~47!

and

f25Acosha2cosb (
n51

`

Hne2~n11/2!aPn
1~cosb!sing

~48!

with the boundary condition ata50:

f15g~cosb!A12cosb sing, ~49!

whereg(cosb)5(n51
` GnPn

1(cosb) and Gn5(2n11)/2/n/(n
11) *21

1 g(t)Pn
1(t)dt. The coefficientsDn , En , and Hn

satisfy

e2a2~n11!un11Dn111ea2nun21Dn211nnDn5Zn ,

~n51,2,.....!, ~50!

En5Gne~n11/2!a12Dne~2n11!a1, ~51!

and

Hn5Gne~n11/2!a11Dnbe~2n11!a22e~2n11!a1c, ~52!

where Zn5(12«2 /«1) be(n11/2)a1(e2a212n cosha2)Gn2(n
11)e(n13/2)a12a2Gn112ne(n21/2)a11a2Gn21c andD050.

C. Dielectrophoretic force in the axisymmetric case
„f is independent of g…

The calculation of the dielectrophoretic forces proceeds
along similar lines as in the planar case. As before, we de-
note the distance between the center of the sphere and the
wall as d. a5Ad22r 2

2 and a25 ln @(d1Ad22r 2
2)/r 2 #. It is

convenient to carry out the necessary integrations on the pla-
nar surface (a50) rather than on the surface of the particle.
On the plane (a50), we haveea5ex .

In the axisymmetric case, thex-direction force is given
by the integral:

Fx5«0«1E
0

2pE
0

p sinb

2 F S ]f1

]b D 2

2S ]f1

]a D 2G
a50

dbdg.

~53!

Due to symmetry, the other two force components and the
torque are identically equal to zero. In other words,

Fy5«0«1E
0

2pE
0

p

sinbF]f1

]a

]f1

]b G
a50

singdbdg50.

~54!

Likewise,

Fz5«0«1E
0

2pE
0

p

sinbF]f1

]a

]f1

]b G
a50

cosgdbdg50.

~55!

Next, we obtain explicit expressions for thex-direction
force in the special case off (cosb)5F0:

Fx522p«0«1F0
2FA0

22A0~112A1!

1A1~113A122A2!14(
n52

`

An@~2n11!An

2~n11!An112nAn21#G . ~56!

The effective dipole moment of a dielectric sphere is2

peff54p«1«0

«22«1

«212«1
r 2

3E0,c , ~57!

whereE0,c is the electric field at the location of the center of
the sphere in its absence. The potential field in the absence of
the sphere is

f05Acosha2cosb (
n50

`

Fne2~n11/2!aPn~cosb!. ~58!

Applying boundary conditionf (cosb)5F0 yields

f05F0Acosha2cosbe21/2a. ~59!

Therefore, thex-direction dipole-moment approximation of
the DEP force is

Fx5
16p«0«1~«12«2!F0

2r 2
3~d22r 2

2!

~«212«1!~d1Ad22r 2
2!5

. ~60!

For the particular surface potential distribution used here, the
dipole-moment approximation predicts zero DEP forces in
the y andz directions.

D. Dielectrophoretic force in the asymmetric case
„f is a function of g…

The expression for the electrostatic force in thex direc-
tion is

Fx5«0«1E
0

2pE
0

p sinb

2 F S ]f1

]b D 2

2S ]f1

]a D 2

1
1

sin2 b S ]f1

]g D 2G
a50

dbdg. ~61!

The expressions for they- and z-direction forces and the
torque are

Fy5«0«1E
0

2pE
0

pH sinbF]f1

]a

]f1

]b G
a50

sing

1F]f1

]a

]f1

]g G
a50

cosgJ dbdg, ~62!
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Fz5«0«1E
0

2pE
0

pH sinbF]f1

]a

]f1

]b G
a50

cosg

2F]f1

]a

]f1

]g G
a50

singJ dbdg, ~63!

and

Tx5«0«1E
0

2pE
0

pF]f1

]a

]f1

]g G
a50

Ay21z2dbdg. ~64!

Expressions~62! and ~63! contain integrals of the form,

E
0

2pS sin2 ng
cos2 ng

sinng cosng
D S sing

cosg Ddg, ~65!

wheren is an integer. Not surprisingly, all these integrals are
identically equal to zero. Hence, we conclude that for any
continuous surface potential distribution,Fy5Fz50. Based
on symmetry, we argue that alsoTx50.

Next, we calculate thex-direction force for the special
case ofg(cosb)5F0P1

1(cosb)5F0A12cos2 b. Upon substi-
tuting Eqs.~47! and~50! into ~61! and applying the boundary
condition, we have

Fx5F0
2 p«1«0

2 F323~2D121!~2D124D221!

2 (
n52

`

2n~n11!Dn@~2n11!Dn2~2n14!Dn11#G .

~66!

Finally, we use the dipole-moment approximation to cal-
culate the forces. The electric potential in the absence of the
sphere is

f05Acosha2cosb (
n51

`

Gne2~n11/2!aPn
1~cosb!sing.

~67!

Applying boundary condition g(cosb)5F0A12cos2 b
yields

f05F0Acosha2cosbA12cos2 be23/2 a sing. ~68!

Therefore, thex-direction dipole-moment approximation for
the DEP force is

Fx5
96p«1«0F0

2~«22«1!sinh4 a2~cosh 7a22sinh 7a2!

~«212«1!
.

~69!

For the particular surface potential distribution used here, the
dipole-moment approximation predictsFy5Fz5Tx50.

E. The range of validity of the dipole-moment
approximation

In this section, we compare the exact values of the force
with the predictions of the dipole-moment approximation.
Figure 8 depicts the normalizedx-direction exact~solid
line! and approximate ~dashed line! DEP forces
(Fx* 5Fx /«1«0F0

2) as functions of the normalized distance

X (5d/r 2) from the plane when«2 /«1510 and f
5F0A12cosb on the plane. We also calculated the forces
using finite elements~FEMLAB!.19 The finite element calcula-
tions are shown as solid circles in Fig. 8 and are in excellent
agreement with the exact solution. Witness that the dipole-
moment approximation works well whenX.5. When X
51.2, 5, and 10, the relative differences between the dipole
moment approximation and the exact solution are, respec-
tively, 63.3%, 2.0%, and 0.4%.

Our results are consistent with the results of other re-
searchers. For example, Taoet al.20 used finite elements to
calculate the interparticle forces in a chain of uniformly
spaced particles. They found the dipole-moment approxima-
tion to grossly underestimate the dielectrophoretic forces
when the ratio between the dielectric constants of the particle
and the surrounding medium was large and when the relative
distances between the particles were small. These circum-
stances correspond to the length scale associated with the
electric field being relatively small compared to the size of
the particle~small values of our dimensionless parameterH!.

To further explore the range of validity of the dipole-
moment approximation, we depict in Fig. 9 the relative dif-
ference between the exact force value and the dipole moment
approximation as a function ofH. WhenH.2, the relative
error is within 3%.

It is interesting to compare the Taylor series expansions
of the exact expression for the force and the dipole-moment
approximation. In the limitd/r 2→`,

Fx,exact;
3«0«1~«12«2!pF0

2

8~2«11«2!
F 4r 2

3

3d3 1
r 2

5

d5G1O~d27!

~70!

and

FIG. 8. The normalizedx-direction exact~solid line! and approximate
~dashed line! DEP forcesFx* acting on a spherical particle as functions of
the normalized distanceX from the plane when«2 /«1510 and the surface
potential isf5F0A12cosb. The solid circles correspond to finite element
calculations («2 /«1510). The symbols1 correspond to an exact force for
a conducting sphere.
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Fx,DM;
3«0«1~«12«2!pF0

2

8~2«11«2!
F 4r 2

3

3d3 1
r 2

5

3d5G1O~d27!.

~71!

As in the planar case, the leading order termsO((r 2 /d)3) in
both the exact expression and the dipole-moment approxima-
tion are the same. The higher-order terms are, however, dif-
ferent.

We were not able to analytically obtain an approxima-
tion for the dielectrophoretic force when the particle is in
close proximity to the wall. Instead, we solved the Fourier
series. Since the convergence rate of the series deteriorates as
the distance of the particle from the wall decreases, we ex-
ercised care to assure that a sufficient number of terms are
retained in the series to assure appropriate precision of the
results. Figure 10 depicts the normalized dielectrophoretic

force as a function of (X21)1/2. The data points appear to
neatly lie on a straight line indicating asymptotic behavior of
the form Fx;C01C1(d2r 2)1/2, where C0'155.51 and
C1'22.603103. The constantC0 can be estimated by ex-
trapolating the straight line to (X21)50. In contrast to the
planar case, the polarization force approaches a constant
value as the distance between the particle and the surface
decreases.

F. The dielectrophoresis of a spherical particle
toward a plane wall

Finally, we examine the dielectrophoresis of a sphere in
the vicinity of a plane wall. Happel and Brenner21 provide an
expression for the drag force acting on a sphere moving
slowly perpendicular to a plane wall:

Dx526pmḋr 2l, ~72!

FIG. 11. The dimensionless positionX of a sphere as a function of the
dimensionless time whenX(0)55, «2 /«1510, and the potential of the
planef5F0A12cosb.

FIG. 12. The dimensionless velocityẊ of a sphere as a function ofX when
X(0)55, «2 /«1510, and the potential of the planef5F0A12cosb.

FIG. 9. The relative difference between the exact and the dipole moment
approximation of thex-direction DEP force acting on a spherical particle as
a function of H when «2 /«1510 and the potential of the plane isf
5F0A12cosb.

FIG. 10. The normalized DEP force on the sphere as a function of (X
21)1/2 when«2 /«1510 and the surface potential isf5F0A12cosb. The
circles correspond to the numerical calculations.
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where

l5
4

3
sinhw (

n51

`
n~n11!

~2n21!~2n13!

3F 2 sinh~2n11!w1~2n11!sinh 2w

4 sinh2~n11/2!w2~2n11!2 sinh2 w
21G ~73!

andw5cosh21(d/r2). When the sphere is far from the wall,
l→1. Neglecting inertia and equating the viscous and elec-
trostatic forces, we obtain the instantaneous velocity of the
sphere in thex direction. The resulting ordinary differential
equation is integrated numerically using a fourth-order
Runge–Kutta algorithm.

Figure 11 depicts the dimensionless positionX(5d/r 2)
of the sphere as a function of the dimensionless time~t!. The
time scale is 8mr 2

2/(F0
2«0«1). The wall potential isf

5F0A12cosb and «2 /«1510. Figure 12 depicts the di-
mensionless instantaneous velocity as a function of the dis-
tance from the plane under the same conditions as in Fig. 11.
Similar to the planar case, the velocity of the particle in-
creases as it approaches the wall, attains a maximum, and
then slows down to zero upon contact.

When the particle is far from the wall21 (d/r 2→`), the
drag force is independent ofd,

Dx;6pmr 2ḋS 11
9r 2

8d D , ~74!

and the velocity scales liked23.
In close proximity to the wall (d2r 2!r 2),22

Dx;
6pmr 2

2ḋ

~d2r 2!
, ~75!

and, as in the planar case, the velocity scales like (d2r 2).

G. Conducting sphere next to an infinite wall

The case of the conducting sphere can be obtained as the
limiting case of«2 /«1→` in the derivation described in the
previous subsection. Alternatively, one can proceed directly
and develop somewhat simplified expressions. When the
sphere is conducting, its potential is uniform. The electrical
potential in the medium when the sphere conducts is

f15Acosha2cosb (
n50

` F2& sin~n1 1
2!a

e~2n11!a221
V

1Fn

e~2n11!a22e~2n11!a

e~2n11!a221
e2~n11/2!aGPn~cosb!.

~76!

The uniform electrical potential (V) of the sphere is deter-
mined from the condition of its electrical neutrality. When
f5F0A12cosb,

V5

2F0 cosh
a2

2
~Acosha2112Acosha221!

112& sinha2E
21

1 1

Acosha22t
S (n50

` S n1
1

2D cosh~n1 1
2!a2

e~2n11!a221
Pn~ t !D dt

. ~77!

The x-direction electrostatic force using the Maxwell stress tensor method is given by

Fx5
2&p«0«1VF0ea2~ea211!2

~ea221!~e3a221!
2

2p«0«1F0
2ea2

~ea221!2

14p«0«1V2(
n50

` F ~e2a221!e~2n11!a2@~11n!~e2a22e~2n11!a2!1n~e~2n13!a221!#

~e~2n11!a221!2~e~2n21!a221!~e~2n13!a221!
G . ~78!

The forces calculated with Eq.~78! are depicted with the
plus symbol in Fig. 8, and they are nearly identical to the
force values obtained when«2 /«15100 ~not shown!.

V. CONCLUSIONS

The dielectrophoretic forces acting on cylindrical and
spherical particles embedded in perfectly dielectric viscous
fluids confined in cylindrical/spherical shells and in semi-
infinite media were calculated analytically as functions of the
locations of the particles. The forces were exactly calculated
using the Maxwell stress tensor and the concept of virtual
work and approximately using the dipole-moment approxi-
mation. When the characteristic length of the electric field

was larger than ten times the diameter of the cylindrical par-
ticles ~twice the diameter of the spherical particles!, the
dipole-moment approximation estimated the dielectro-
phoretic force in the direction that is parallel to the line con-
necting the centers of the cylinders/spheres with better than
3% accuracy. As the characteristic length of the electric field
increased, the accuracy of the dipole-moment approximation
improved. Disturbingly, the dipole-moment approximation
estimated nonzero forces in the other directions when no
such forces existed.

The dielectrophoretic velocities of the particles were cal-
culated under creeping flow conditions. As the particle ap-
proached the plane wall, its velocity increased, achieved a
maximum, and then decayed to zero. The maximum velocity
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occurred when the center of the particle was about distance
1.2r 2 from the planar wall. In close proximity to the wall, the
velocity was proportional to the gap thickness (d2r 2) be-
tween the particle and the wall. The expressions derived here
can also be used to estimate the migration time of the par-
ticles.
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