
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

April 1988

Extensional Models for Polymorphism Extensional Models for Polymorphism

Val Tannen
University of Pennsylvania, val@cis.upenn.edu

Thierry Coquand
INRIA

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Val Tannen and Thierry Coquand, "Extensional Models for Polymorphism", . April 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-25.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/620
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/620
mailto:repository@pobox.upenn.edu

Extensional Models for Polymorphism Extensional Models for Polymorphism

Abstract Abstract
We present a general method for constructing extensional models for the Girard-Reynolds polymorphic
lambda calculus - the polymorphic extensional collapse. The method yields models that satisfy additional,
computationally motivated constraints like having only two polymorphic booleans and having only the
numerals as polymorphic integers. Moreover, the method can be used to show that any simply typed
lambda model can be fully and faithfully embedded into a model of the polymorphic lambda calculus.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-25.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/620

https://repository.upenn.edu/cis_reports/620

EXTENSIONAL MODELS
FOR POLYMORPHISM

Val Breazu-Tannen
Thierry Coquand

MS-CIS-88-25
LlNC LAB 109

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

April 1988

This is a slightly revised version of MS-CIS-87-75lLINC LAB 81

To appear in the special issue of THEORETICAL COMPUTER SCIENCE
dedicated to TAPSOFT'87 Conference

Acknowledgements: This research was supported in part by NSF-CER grant
MCS-8219196, U.S. Army grants DAA29-84-K-0061, DAA29-84-9-0027.

Extensional Models for Polymorphism

Val Breazu- Tannen

Department of Computer and Information Science
University of Pennsylvania

Thierry Coquand

INRLA
Domaine de Voluceau, 78150 Rocquencourt, France

April 8, 1988

This is a slightly revised version of MS-CIS-87-75/LINC LAB 81

Abstract .We present a general method for constructing extensional models for the Girard-
Reynolds polymorphic lambda calculus-the polymorphic extensional collapse. The method
yields models that satisfy additional, computationally motivated constraints like having
only two polymorphic booleans and having only the numerals as polymorphic integers.
Moreover, the method can be used to show that any simply typed lambda model can be
fully and faithfully embedded into a model of the polymorphic lambda calculus.

To appear in the special issue of THEORETICAL COMPUTER SCIENCE
dedicated to the TAPSOFT'87 conference

lSnpported in part by U.S. Army Research Office Grant DAAG29-84-K-0061, and, while at MIT, in
part by an IBM Graduate Fellowship and in part by NSF Grant DCR-8511190

1 Introduction

The design of functional and object-oriented programming languages has recently witnessed
the widespread adoption of polymorphic type systems. A list of examples that is by no
means exhaustive includes, in addition to the archetype ML [GMW79], such languages as
Miranda [Tur85], Poly [Mat85], Amber [Car85], polymorphic FQL [Nik84], Ponder [Fai82],
and Hope [BMS80], while an excellent survey of the field is provided by [CW85].

To study properties of such languages, we will adopt as a formal setting the Girard-Reynolds
polymorphic lambda calculus [Gir72, Rey741 (henceforth denoted A').

Our concern here will be with constructing models of XV that satisfy certain special con-
straints. In fact, the paper is built around the presentation of a general method for con-
structing such models, which we call the polymos.phic extensional collapse. The direct
motivation for these constructions is that they imply the consistency and/or conservativity
of certain extensions of X v . At their turn, these extensions are motivated by the study of
the interaction between the computational mechanism of the type discipline of XV and the
specification of the data types with which we compute, e.g., integers, booleans, etc., We
will explain this primary motivation in what follows.

Several researchers [Rey83, Lei83, BB851 have shown how to represent interesting data types
inside the pure polymorphic lambda calculus. This unusual programming style is illustrated
by Reynolds in [Rey85]. To make our point we will review here the representation of the
integers (the reader unfamiliar with the syntax of XV should take a detour through the next
section before continuing).

The numerals are taken to be the closed terms of type

def
polyint = V t . (t + t) + t + t .

The numeral corresponding to the integer n is

- def n = X t . X f : t + t . X x : t . f n x .

One can define, for example,

Add gf Xu:polyint. Xu: polyint. At. X f : t + t. Ax: t.ut f (v t f x) : polyint + polyint + polyint

and verify that Xv proves

(1) ~ d d i i i ~ = m T n .

The arithmetic functions that are numeralwise representable in the same way addition is
represented above are exactly the recursive functions which are provably total in second-
order Peano arithmetic [Gir72] (see also [StaBl, FL0831). To date, no "natural" examples
of total recursive functions that are not in this class are known and one can argue that
such computational power is adequate for most purposes [Lei83], [Rey85]. Therefore it

appears that Av can be regarded as a programming language already equipped with a type
of integers and, as it turns out, also with one of booleans:

def
polybool = Vt. t + t + t

True %! At. Ax:t. Ay:t. z

def False - At. Ax:t. Ay:t. y

as well as many other familiar data types [Rey85].

Now, if we were to adopt this paradigm, we would expect that the formal reasoning (in the
calculus) would allow us to treat any terms of type polyint as if they actually were integers.
However, the pure AV is not sufficient for that, as it cannot even prove, for example, that
the operation of addition is commutative:

(a) Adduv = Addvu

with arbitrary u, v : polyint is not provable in AV (by a simple Church-Rosser argument).

A possible remedy to this shortcoming would be to add to the pure A", as further axioms,
equations such as (2). But are such extensions consistent?

Notice that when u and v are numerals the equation (2) follows from (1). Thus, the
consistency of (2) follows from the existence of a non-trivial model in which the only elements
of type polyint, i.e., the only "polymorphic integers", are the (denotations of the) numerals.

Such a consistency question, (actually for an equation involving the conditional operation on
pobybool) was first asked by Meyer [Mey86], and was one of the main sources of motivation
for the model constructions presented here. Positive answers to Meyer's question, namely
constructions of models with exactly two "polymorphic booleans", were given by Moggi
[Mog86a] and the second author [Coq86] (for an account of Meyer7s question, see [MMMS87],
to which our presentation owes). Both constructions used partial equivalence relations
to interpret types, suggesting that there might be some relationship between them and,
indeed, a common generalization was found by the first author [Bre86]. All these model
constructions are particular instances of the polymorphic extensional collapse method.

We now turn to our other main source of motivation, illustrated in [BM87a, BM87b7 Bre87al.
The consistency question we asked above, or that asked in [Mey86], can be seen as a
particular form of a more general, albeit more vague, question: is it possible to have data
types with "classical" specifications, say, algebraic axiomatizations, live in a computational
framework? In [BM87a] it is remarked that unrestricted recursion is not consistent with
arbitrary algebraic data type specifications and computation done within the framework of
the type discipline of A" is then offered as an alternative. The approach differs from the one
we have discussed above, as one does not use the built-in representations of the integers,
booleans, etc., but instead one adds such data type specifications to AV as algebraic or simply
typed lambda theories. The advantage is that we can postulate for these added data types
whatever equations we wish, so that problems like the unprovability of the equation (2) do

not arise. The consistency question is therefore replaced by one of conservative extension:
is the theory of the resulting language (Xv plus data type specification) conservative over
that of the data type specification? A positive answer would assure us that we can continue
to reason about data type expressions "classica.lly", i.e., using the data type specification,
even when these expressions occur in the computational framework provided by Xv.

We use our general method to show that arbitrary simply typed lambda models, and there-
fore arbitrary algebras, can be fully and faithfully embedded in models of Xv. The full and
faithful embeddings easily imply the desired conservative extension results [BM87a, BM87b,
Bre87al.

There are a number of differences between this paper and the preliminary version of this
work, presented at the conference [BC87]. We omit here the full and faithful embedding
of arbitrary algebras into models of Xv in which there is also a one-to-one correspondence
between the polymorphic integers and an arbitrary sequence of observables in the algebra.
We do so because we feel now that the result can be well motivated only in the context of the
conservative extension theorem that called for it, as explained in [BM87a]. On the other
hand, we include the full and faithful embedding of models of the simply typed lambda
calculus into models of Xv, which appeared in [BM87b]. Finally, we further generalize here
the polymorphic extensional collapse construction to use arbitrary logical p.e.r. collections,
while the construction in [BC87] was using only the logical p.e.r. collection consisting, at
each type, of all partial equivalence relations. (Warning: the name "polymorphic exten-
sional collapse" is used both here, for the general construction, and in [BC87], for the less
general version.) This makes the construction more flexible, allowing us to present a new
result (proving a conjecture from [BM87b]): full and faithful embedding of simply typed
lambda models with all type domains non-empty into models of Xv which also have all type
domains non-empty. In this more general form, the polymorphic extensional collapse also
covers Mitchell's class of PER models [Mit86b].

In Section 2 we review the syntax and semantics of the polymorphic lambda calculus, intro-
ducing polymorphic lambda theories and the concept of polymorphic lambda interpretation
and revisiting polymorphic logical relations. In Section 3 we show how to construct, out
of closed type expressions and closed terms, a polymorphic lambda interpretation for any
polymorphic lambda theory. In Section 4 we present the polymorphic extensional collapse
construction. In Section 5 we present several applications of the construction: models with
exactly two polymorphic booleans and other "minimality properties", "erase-types" models
and full and faithful embeddings. Some proofs that would have broken the stride of the
presentation, as well as a historical note, have been relegated to appendices.

2 The polymorphic lambda calculus

2.1 Syntax

Let K be a set of (ground or base) type constants. The K-polymorphic type expressions are
defined by

a : := k (t (a + a (V t . a

where k ranges over K and t ranges over an infinite set of type variables. The construction
Vt. a binds the occurrences of the type variable t in a. The set of free type variables of a
type expression r will be denoted f v(r).

Let C be a set of constants. By definition, each constant c E C comes equipped with its
type, Type(c) which must be a closed K-type expression. We also assume a separate infinite
set of (ordinary) variables. The (K,C)-mw terms are defined by

where c ranges over C and x ranges over ordinary variables. The set of free variables of M
will be denoted FV(M) while the set of free type variables of M will be denoted fv(M).

As in [Bar841 we identify the terms or type expressions that differ only in the names of
bound variables. We use the notation

for simultaneous substitution.

Not all raw terms are acceptable, only those that type-check. Type assumptions about the
free variables are needed to type-check an open term. Such assumptions are provided by
type assignments. A type assignment is a partial function with finite domain that maps
variables to type expressions. Alternatively, we will also regard type assignments as finite
sets of pairs x: a such that no x occurs twice. We will use A to range over type assignments.
We write A,x: a for A U {x:a} and, by convention, the use of this notation implies that
x $ domA. The empty type assignment is usually omitted in formulas.

A typing judgment has the form
A t - M : a .

The proof system for deriving typing judgments (i.e., type-checking) is the following:

(constants) A t- c:Type(c) c E C

(project ion) A I- x : A(x) x E domA

(+ elimination)

(+ introduction)

(V elimination)

(V introduction)
A t - M : a

t $ f v(ranA)
A I- At. M : Vt.a

Usually, instead of "A I- M : a is derivable (in the proof system)" we will write simply
"A I- M : a".

If A I- M : a, we say that M type-checks with type a under A. We say that the raw term
M type-checks under A if there exists o such that A I- M : a. Note that, when it exists,
a is uniquely determined by M and A. Note also that if M type-checks under A then it
type-checks with the same type under any type assignment that coincides with A on the
free variables of M. Finally, we say that the raw term M type-checks if there exist A and
a such that A t- M : a. Thus, if M is a closed term that type-checks then there exists a
unique closed w such that I- M : w in which case we say that M is of type w.

Note the inherent impredicativity allowed by the type discipline: polymorphic functions can
be applied to any type, in particular their own type. For example:

In order to define equational reasoning that is type-correct the usual equations M = N will
be tagged with a type assignment A and and a type expression a with the intention that
both M and N should type-check with type a under A. Moreover, it turns out that tagging
equations with lists of variables (that include the free variables of the equation) allows us to
isolate the proof rules that are sound in models in which some type domains may be empty
[GM82, MMMS871.

Equation judgments (or, simply, equations) have the form

We will use the following proof system for deriving equations (see however the discussion
on completeness and other proof systems in subsection 2.2):

(extend assign)

(reflexivity)

(symmetry)

(transitivity)

(congruence)

(type congruence)

A ; M = N ; a
A ' ; M = N ; a

A c A'

A ; M = M ; a

where A t- M : a

A ; AX:^. M) N = M [x : = N] ; T

where A , x : a l- M : T , A l- N : a

A ; X x : a . M x = M ; a - t ~

where A l- M : a -+ T , x 4' d o m A

A ; M = N ; a
t @ f v (r a n A)

A ; At. M = At. N ; Vt . a

where A l- M : a , t jZ fv(ranA)

(type 7) A ; At. Mt = M ; Vt.a

where A I- M : Vt. a , t pl fv(ranA) , t pl fv(M)

If E is a set of equations and e is a single equation, we write E kp e when e is derivable
in the above proof system using additional premises from E. An equation A ; M = N ; a

is type-correct if A I- M : a and A l- N : a. It is easy to see that if E kAv e and all the
equations in E are type-correct then e is type-correct.

The rule

(substitutivit y)

where A' I- P : T , A C A'

while not included in the proof system, can be safely used since it is a derived rule. Indeed,
we have

Lemma 2.1 (substitutivity)
I ~ A , x : T I- M : a, A,x:T l- N : a, A' I- P : T and A C A' then

(A,x :T ; M = N ; a) kp (A'; M[x:= PI = N[z:= PI; a) .

Equational reasoning can be analyzed with a reduction system. Our terminology and no-
R

tation follows [Bar84]. Given a notion of reduction R, we will use - for the multi-step
R-reduction relation.

We define AV-reduction on raw terms as the union of the four basic notions of reduction: P,
7, type p and type 7, obtained by orienting from left to right the axiom schemes with the

XV
same name. It is easy to show that if A l- M : a and M - N then A I- N : a. Thus,
type-checking is preserved under reduction, which justifies defining reduction on raw terms,
in an "untyped" manner.

Theorem 2.2 (Girard)
A' is Church-Rosser on terms that type-check.

In fact, 7 and type 7 are not considered in [Gir72]. However, one can proceed as follows.
First prove that ,D is Church-Rosser using the method of Martin-Lof and Tait (see [Bar84],
pp. 59-62). Then, since each of type P, type 7 and 7 is also, by itself, Church-Rosser
(trivially), show that each two of the four notions of reduction commute and invoke the
Hindley-Rosen Lemma (see [Bar84], pp. 64-66). The restriction to terms that type-check
is used only for the commutativity of ,f3 and 7.

Reduction gives the following alternative characterization of derivable equations:

Proposit ion 2.3
txv A ; M = N ; u i f and only if A I- M : 0, A I- N : u and there ezists a term

xv xv
P such that M - P tt N .

The most important technical property enjoyed by the polymorphic type discipline is the
following:

Theorem 2.4 (Girard)
Xv is strongly normalizing on terms that type-check.

Again, T,I and type 7 are not considered in [Gir72], but, for example, the strong normalization
proof in [Mit86b] can be immediately extended to Xv-reduction. Together with the Church-
Rosser property, this result implies that any term M that type-checks has a unique Xv-
normal form, which we will denote by nf (M).

A polynaorphic lambda theory is completely specified by the following

a a polymorphic signature C = (K,C), where K is a set of (ground or base) type con-
stants and C is a set of constants, each with a closed K-polymorphic type;

a a set E of type-correct equations between C-terms to be used as additional axioms;

We will symbolize by Xv(C, E) the corresponding polymorphic lambda theory.

2.2 Interpretations and models

Fix a polymorphic signature C = (K, C).

A K-algebra of polymorphic types, 7, consists of the following:

a a non-empty set T of types;

a a binary operation -+ on T;

a a non-empty set [T IJ T] of functions from T to T;

a a map V from [T IJ TI to T;

a an interpretation 7(k) E T for each type constant k E K;

such that the following inductive definition of an assignment of meanings in T to K-type
expressions in type environments is possible (we define a type environment to be a map
from type variables to T and we will use T,I to range over type environments):

1. [k]q = I (k)

2. IItIlrl = q(t)

3. [a + = uanrl + U.rIrl

4. p t . a]q = V(Xa E T. [a]lq{t: = a))

By "the definition is possible" we understand that each inductive application of step 4 is
defined, i.e., Xa E T. [a]q{t: = a) E [T j TI. Here q{t: = a) is the type environment
equal to q everywhere except at t where it takes the value a.

Lemma 2.5 1. If for each t E f v(a) we have q(t) = ql(t) , then [a]q = [a]ql .

2. [a[t : = r]]q = [a]lq{t : = [r]q) .

A C-polymorphic lambda interpretation (p.l.i.), 1, consists of the following:

a K-algebra of polymorphic types, 7 ;

a set D, for each type a E T (the domain of a);

a binary operation .,b : D,, x D, - Db for each pair of types a, b E T (functional
application);

a binary operation -4 : DV(4) x T --+ U{D,) for each function 4 E [T + TI, such
that p -4 a E D4(,) (polymorphic application);

an interpretation Z(c) E U{D,) for each constant c E C such that Z(c) E DIType(c)l ;

Given a type assignment A and a type environment q, we define a Aq-environment to
be a function p that maps domA to U{D,) such that p(x) E DLa(,)l, for each variable
x E domA. As with type assignments, we will regard Aq-environments as finite sets of pairs
x: d, extending to them the notational convention p, x: d. With this, the final component of
the p.1.i. is

a meaning map that assigns to every typing judgment A I- M : a that is derivable
and every type environment q a function [A t- M : a]q from Aq-environments to
DIo1, such that (p ranges over Aq-environments)

2. [A I- x : A(x)jqp = p(x) where x E domA

def def where a = [a]q and b = [r]q

4. [A I- Ax: a. M : a + r]qp mab d = [A, 5: a I- M : r]qpt

def def where a = [a]q , b = [r]q , d E Do and p' gf p, x: d

5. [A I- MT : art: = r]]qp = [A I- M : Vt. a]qp -4 [r]q

where q5 gf Xa E T. [a]q{t: = a)

6. [A I- At. M : Vt. a]qp -4 a = [A I- M : a]q{t: = a} p

where a E T and q5 de' Xa E T. [a]q{t: = a}

7. if for each x E F V (M) we have p(x) = pt(x)
then [A I- Ad : a]qp = [A I- M : a] ~ ' .

8. if for each t E f v(ranA) U f v(M) we have q(t) = qf(t)
then [A t- M : a]q = [A t- M : a]q'

As opposed to the previous definition of meaning for type expressions, these clauses are
conditions to be satisfied by an a priori given meaning map and do not constitute an induc-
tive definition. An alternative definition of models in which meaning is defined inductively
is possible [BM84].

Note that the definition allows empty type domains. If for some x E domA, DIa(z)ls is
empty then the set of Aq-environments is empty and there is only one choice for [A t-
M : a]?the empty function. This case still fits in our definition since the clauses above
then hold vacuously.

A type-correct equation A ; M = N ; a is valid in Z, write

iff [A I- M : a]q = [A I- N : a]q for every type environment q. By convention,
all the equations we will talk about in the context of validity will be implicitly assumed
type-correct .
A p.1.i. is a quite general concept. For example, not even basic axioms like P are necessarily
valid in arbitrary p.1.i.'~. However, most of the p.1.i.k we will consider are instances of
the closed type/closed term construction of section 3 and P as well as all the equations
provable in Xv(~ ,O) are valid in any such p.1.i. We chose not to include these validities
among the conditions satisfied by p.l.i's because they are not needed for the construction

in section 4 to produce a model. In fact, Proposition 2.6 and the polymorphic extensional
collapse construction do not even need the meaning map to satisfy conditions 7 and 8. The
absence of these conditions, however, would burden the treatment of validities in p.1.i.'~.

A C-polymorphic lambda model is a C-p.1.i. in which functional and polymorphic application
are extensionak

This definition of model for Xv is equivalent and, in fact, very close to the one in [BM84]. (In
the presence of extensionality, conditions 7 and 8 are consequences of the other conditions
satisfied by the meaning map.)

A model is trivial when all its domains have at most one element. It is easy to see that a
model is trivial if and only if it equates True and Fabe (i.e., ; True = False ; polybool
is valid).

It is easy to see that the axioms and rules of the proof system are sound for this notion
of model. As was explained in [MMMS87], completeness is more complicated. One is, of
course, interested in the strong kind of completeness, i.e., completeness of reasoning from
additional premises. In [BM84] such a result is stated, but it amounts to completeness of
the proof system we gave here (call it "core"), extended with the rule:

(discharge var)

for the subclass of models with all type domains non-empty. (The rule discharge var is not
sound, in general, in models that can have empty type domains.)

In [MMMS87], Meyer et al., argue that models with empty types come naturally into
consideration. For example, the models that satisfy constraints like having exactly two
polymorphic booleans or having exactly the numerals as polymorphic integers must have
empty types. Furthermore, it is stated that the "core" proof system is not complete neither
for deriving semantic consequences over the class of all models (and thus) nor for deriving
semantic consequences over the class of all models with all types non-empty. However, as an
aside, we note that "core" is complete for the hyperdoctrine models of Seely [See86b, See86aI
and the topos models of Pitts [Pit87], which do not seem to fit into the framework of [BM84],
and that Mitchell and Moggi [MM87] have shown that the proof system for the simply typed
lambda calculus that corresponds to "core" is complete for their simply typed Kripke-style
models. Meyer et al., give an extension of the "core" proof system that is sound and
complete for all models [MMMS87]. This extension involves modifying the syntax of the
equations to allow "type emptiness" assertions to be added to the type assignments as well
as new axioms and inference rules.

However, as far as the model constructions described in the present paper are concerned,
we note that it does not matter which of the three proof systems we use to construct our

closed type/closed term interpretations. Indeed, by Church-Rosser arguments, discharge
var is a derived rule in the pure XV theory or in other theories axiomatized by additional
equations that can be analyzed, together with Xv, by Church-Rosser reduction. Thus, the
closed type/closed term constructions of subsections 5.1 and 5.3 are the same as the ones
that would be obtained using the extended proof system of [MMMS87] or the proof system
with discharge var.

2.3 Logical relations

Second-order logical relations were introduced in [MM85]. Here we will review only a
particular case of this concept, the case that we need for the polymorphic extensional
collapse.

Fix a polymorphic signature, C = (K, C), and a C-p.l.i., Z.

A logical relation on Z is a family R = {Ra)aET of binary relations on the type domains,
R , 5 D, x D, such that

f Ra+bg iff VdVe d R , e =j f .,bd Rb g.,be

and

P q iff Va P -4 a Rd(a) q -4 a *

We say that R relates the constants in C if

Proposition 2.6 (Fundamental property of logical relations)
If R is a logical relation on Z which relates the constants in C then, for any derivable typing
judgment A k M : a, any type environment q and any two Aq-environments p l and pz, if

then

!A k M : ~ B V P I RI,], [A I- M : ojqPz .

The proof is by a routine induction on A I- M : a.

We will make essential use of this property in the polymorphic extensional collapse and, in
fact, the definition of polymorphic lambda interpretations was engineered to consist of the
"minimum necessary" to make the proof of Proposition 2.6 work (almost; see the remark
about conditions 7 and 8 in the previous subsection).

3 The closed type/closed term construction

For any polymorphic theory, it is possible to construct a p.1.i. out of closed type expressions
and classes of closed terms equated in the theory. This p.1.i. is closely related to the theory
and, as we will see in the applications, the additional axioms of the theory can be used to
determine the content of its type domains. In this section we present the construction in
general.

Fix a polymorphic theory, Av(C, E), and construct a p.l.i., Z, as follows:

We start with the observation that the closed type expressions form an algebra of polymor-
phic types. Indeed, if we take T to be the set of closed K-polymorphic type expressions,
we can take

[T + TI !Ef {Aw E T. o[t : = w] I Vt. u closed) .
The rest of the definition of the algebra of types of 1 is straightforward. The meaning map
satisfies

[U]V = U[tl : = '$'(tl), . . . , tk : = V(tk)]

def where{tl, ..., tk) = fv(0).

Then, for each closed type expression w we define a relation G, on the set of closed C-terms
of type w:

P G w Q iff E E " ; P = Q ; ~ .

G, is an equivalence relation and even a congruence w.r.t. functional and polymorphic
application. Therefore, we take the domain of w in Z to consist of the congruence classes of
closed terms of type w, modulo G,, and we define application via representatives, as usual.

def
We denote by G,[P] the congruence class of P modulo G,. Take Z(c) = Gr,,,(,)[c].

The meaning map is defined via substitution:

def
[~ l : u l , . . . , X n : ~ n M : oITtlp = Gbln[QJ

where
def

Q = M[tl : = q(tl), . . . , tm : = ~(t,), x1 : = PI,. . . , xn : = Pn]

where {ti,. . . , t,} dCf f v(M) U f ~ (0 1) u . . U f v(on) and

By Lemma 2.1, the choice of the Pi's does not matter so meaning is well-defined. It is easy
to check that Z is a C-p.1.i. and that all the equations in E are valid in Z. In fact, more is
true:

Lemma 3.1
~f E t A v e thenZ C e .

The converse is not true, in general. Counterexample: K = {k) , C = {c : k , f , g : k + k) , E =
{ ; f c = g c ; k)and e = (x : k ; f x = g x ; k).

We will call Z the closed type/cbsed term polymorphic lambda interpretation of the given
theory.

In general, closed type/closed term p.1.i.'~ are not extensional (see subsection 5.1 for a
counterexample) and, therefore, are not models. The following section will describe a general
method for achieving extensionality.

4 Polymorphic extensional collapse

4.1 Preliminaries

The extensional collapse construction starts from an arbitrary p.1.i. and produces a model,
thus achieving extensionality of functional and polymorphic application. In doing so, the
construction makes heavy use of partial equivalence relations (p.e.r.'s), i.e., relations that
are symmetric and transitive but not necessarily reflexive.

If D is a set, let per(D) denote the set of partial equivalence relations on D. Note that the
empty relation is also a p.e.r. Let R E per(D). We denote by R[d] the p.e.r. class of d mod
R. Note that R[d] # Q) iff d R d. The quotient set D/R is the set of all non-empty p.e.r.
classes mod R. Clearly R is empty iff D/R is empty. Another way of looking at p.e.r.'s
is as pairs consisting of a subset of D and an equivalence relation on that subset. For this
reason, D/R is sometimes called a subquotient.

For the remainder of the section, fix a polymorphic signature, C = (K, C).

4.2 Factoring by a logical partial equivalence relation

Suppose that we have a C-p.l.i., Z, and a logical relation R on it, which is such that each R,
is a partial equivalence relation. We will call such an R a logical p.e.r. Suppose, moreover,
that R relates the constants in C. We construct a new C-p.l.i., denoted Z/R and called the
quotient of Z by R as follows:

The algebra of types will be the same. As domains we take the quotient sets D,/R,. Since
R is logical, it is also a congruence w.r.t. functional and polymorphic application therefore
we can define functional and polymorphic application on the quotient sets straightforwardly,
via representatives. Take

~ / R (C) d"' R[~pe(c),[Z(c)l
(which is non-empty because R relates the constants).

To show how to define the meaning function let us fix a derivable typing statement A I- M : a
and a type environment 7. For any Z/R-AT-environment j?, choose an Z-AT-environment
p such that

VX E doma, @(x) = R[A(Z)],[P(X)]

and then define
[A I- M : o]'IR3 RIoln[[A I- M : al'qp] .

Indeed, by Proposition 2.6 the definition does not depend on the- choice of p and also
[A I- M : ~ 1) ~ ~ is related to itself hence its p.e.r. class is nonempty. It is easy to check
that the meaning map defined this way satisfies the required conditions, thus 1/72 is a p.1.i.

Lemma 4.1
1/72 is actually a model, that is, functional and polymorphic application are extensional.

Indeed, for polymorphic application extensionality is immediate while for functional appli-
cation it can be seen that

if f f and g R a + b g and (vd f e a b d Rb g'abd) then f R a - r b g .

Moreover, from the way meaning is defined, it follows that any equation valid in Z is also
valid in 1/72. The converse is in general not true since, for example, there can be pairs
of closed terms whose meanings in 1 are distinct but related by R and therefore whose
meanings in 1/72 are the same p.e.r. class.

4.3 Tagging the types with partial equivalence relations

Suppose that we have a p.1.i. and we would like to construct a model out of it, by factoring
through a logical p.e.r., as explained in the previous subsection. How do we obtain such a
logical p .e.r .?

The difficulty comes from the inherent impredicativity of Xv. This prevents the condition

from being used as an inductive definition clause since it is possible that V(+) = +(a)
(e.g., take g5 to be the identity map and a to be V(+)). Thus, constructing a logical p.e.r. is
like solving a system of equations. It is therefore natural to enlarge the space in which we
search for solutions, in the hope of increasing the chances of finding one. Instead of logical
p.e.r.'s, which have one p.e.r. for each type, we will search for collections of several p.e.r.'s
at each type, satisfying "logicality" conditions. In extrernis, taking all p.e.r.'s at each type
will always work, but smaller collections will also be useful. Then, such a collection will
give an actual logical p.e.r., not on the original p.l.i., but on a modified one in which each
original type is split in as many copies as there are p.e.r.'s on it in the collection.

Fix a C-p.l.i., Z (with algebra of types I). A logical p.e..r. collection, P, on Z has two
components. The first component is a family {Pa}aET, of non-empty sets of p.e.r.'s, 0 #
Pa per(Da), satisfying the following closure conditions:

for any a, b E T, any R E Pa and any S E Pb, the binary relation R-+ S on Da+b
defined by

f R + S g iff VdVe d R e f . ,bdSg- ,be

(which is easily shown to be a p.e.r. too) is actually in P a + b ;

for any 4 E [T + T] and any family, 7-1 = {Ha)aE~, of maps Ha : Pa + Pd(,), the
binary relation V(7-1) on Dtl(4) defined by

p V(7-1) q iff Va,VR p -4 a Ha(R) q -4 a .

(which is, trivially, also a p.e.r.) is actually in PV(4);

The second component is a p.e.r.-interpretation P(k) E P7(kI for each type constant k E K.

d ~ f Any logical p.e.r. R trivially determines a logical p.e.r. collection, P, namely take Pa -
{R,) and P(k) def R q k) . At the other extreme, the collection that consists of all p.e.r.'s
at each type is also logical (since R -+ S and V(7-l) are always p.e.r.'s). See the proof of
Theorem 5.7 for an intermediate example.

Given such a logical p.e.r. collection, P, on 1, we construct a new C-p.l.i., Z(P). First, from
the algebra of types 7, construct I (P) as follows:

the new set of types is T(P) *' {<a, R> 1 a E T , R E Pa);

[T(P) + T(P)] consists of all the functions determined (one-to-one) by pairs <4,7-1>
where 4 E [T + T] and 7-1 = {Ha)aET is a family of maps Ha : Pa - Pd(,);

Lemma 4.2
I (P) is an algebra of polymorphic types. Moreover

The proof shows by simultaneous induction on a that the inductive definition of [a]17(') is
possible and that, when defined that way, satisfies, for all 7, the property stated in
the lemma.

The rest of the definition of Z(P) is by "taking the first projection of the types":

def
= Da ;

def f '<a,R><b,S> d = f 'ab d ;

Clearly, any equation valid in Z is valid in Z(P). The converse is also true since any T-type
environment is the first projection of some T(P)-type environment.

The benefit of all this is that now we have a family R (P) = { R (P) < ~ , s >) < ~ , s > ~ T (~) of
def p.e.r.'s, one at each new type, namely R(P)<a,s> = S such that

Lemma 4.3
R (P) is a logical p.e.r. on Z(P) .

As usual with logical relations, it does not follow in general that R (P) relates the constants
in C. This has to be checked for each particular construction.

4.4 Properties of the construction

Suppose we have a C-p.l.i., 1, and a logical p.e.r. collection, P, on it such that the resulting
logical p.e.r. R (P) relates the constants in C. Then, by the lemmas in the previous
subsections, Z(P) /R(P) is a C-model. We will call this model the polymorphic extensional
collapse of Z and P and denote it by cobl(Z, P) .

By the observations in the previous subsections, any equation valid in Z is also valid in
coll(Z, P) , while the converse fails, in general. On the other hand, it is important in appli-
cations to ensure that coll(Z,P) is non-trivial. The following result gives useful sufficient
conditions for this.

Proposition 4.4
Assume that Z {p, type P) and that P contains, at each type, the identity p.e.r. Then,
if Z does not equate (the meanings of) True and False, coll(Z,P) does not equate them
either.

Proof. Let tt ef rue]' and fl ef [~ a l s e p . Suppose coll(Z,P) equates True and
False. Then,

tt R(P)[p~lyb~~l17('J3 fl *

A straightforward computation gives

Thus, for any a E T and any R E Pa we have

(tt a) R+ R 4 R (fl a) .

Let bb %f bly6wl]7. Take a = bb and R = ID, the identity on Dbb. Since tt ID tt and
fl ID fl we obtain

(tt bb tt fl) ID (8 bb tt fl) .

Using the fact that Z + {P, type P} we obtain tt bb tt fl = tt and 8 bb tt fl = fl ,
hence Z equates True and False too. End of Proof.

If Z is a model to begin with, then, because of extensionality, the relation ZV consisting of
the identity on each type domain is actually logical and thus a logical p.e.r. on Z. Moreover,
as we have noted before, ZV trivially determines a logical p.e.r. collection on Z (call it ZD
too) such that R(ZD) turns out to be the identity logical p.e.r. on Z(Z2)) (and thus to relate
the constants). Clearly, we have the isomorphisms coll(Z,Z2)) e Z(ZV) = Z. Therefore,
the class of models obtained by polymorphic extensional collapse is as general as the class
of all models.

Finally, for any p.l.i., Z, and any p.e.r.-interpretation, n, for the type constants (i.e., n
maps each type constant k to a p.e.r. n(k) E p e ~ ' (D ~ (~)) consider the logical p.e.r. collection

ALL, consisting, at each type, of all p.e.r.'s (i.e., (ALL,)a sf per(Da)), and such that

AfL,(k) dCf n(k). Then, eoll(Z,ALL,) is the construction that we called 'polymorphic
extensional collapse" in [BC87]. Since the empty relation is a p.e.r., we have immediately

Proposition 4.5
The domain of the (meaning of the) type Vt. t in coll(Z,ALL,) is empty.

Consequently, the models obtained as coll(Z, ALL,) from arbitrary p.l.i.'s, Z, are not arbi-
trary at all. For example, Proposition 4.5 implies that the non-trivial equation

is valid in all such models. It is an open question to characterize the theory of this class of
models.

5 Applications

5.1 A minimal(?) model

We will present here the model, call it C, with exactly two polymorphic booleans that was
given in [Coq86] (see the discussion in the introduction). It turns out that the model has also
exactly the numerals as polymorphic integers as well as an entire class of such "rninimality"
properties.

Consider To, the closed type/closed term p.1.i. of the pure polymorphic lambda calculus
(the polymorphic theory with K = C = E = 0). In Zo, we can think of the domain
of each closed type w as consisting of all closed normal forms of type w. In particular,
the interpretation does not equate True and False. Moreover, by Lemma 3.1, all the
equations that are provable in the pure AV are valid in To. However, this p.1.i. is not
yet a model because extensionality fails. For example, there are two distinct elements of
type (Vt. t) -+(Vt. t) -+(Vt. t) namely (the equivalence classes of) Xx:Vt. t. Xy:Vt. t. x and
Ax: Vt. t. Xy:Vt. t . y while by extensionality there should be at most one since there are no
elements of type Vt. t.

Hence the idea of [Coq86] of combining the closed type/closed term construction with
factoring by p.e.r.'s and thus achieving extensionality. This amounts to constructing the
model

def C = coll(Zo,ALLQ) .
(since K = 0, the p.e.r.-interpretation can only be the empty map). By Proposition 4.4, C
is non-trivial.

The model C has a very interesting property: by construction, all the elements of C are
denotable by pure closed terms. Therefore, since C is non-trivial, it must have exactly two
polymorphic booleans. The idea used in the proof of Proposition 4.4 can be adapted (see
[BC87]) to show that C does not equate distinct numerals either, thus has only the numerals
as polymorphic integers. However, it has been pointed out to us by Meyer that this, and
more, should already follow from the non-triviality of C and a general result of Statman
[Sta83]. Notice that polybool and polyint are quite special types. More precisely, let us
define an ML-polymorphic type to be a closed type expression of the form Vtl . . .Vt,. o
where a is V-free. (These types correspond to the limited kind of polymorphism allowed
in the language ML [GMW79].) As expected, the "combinatorics" of pure terms of ML-
polymorphic type is essentially that of simply typed terms. The following is a result about
simply typed lambda terms from [Sta83], rephrased for ML-polymorphic terms.

Theorem 5.1 (Stat man's Typical Ambiguity Theorem)
Let w be an ML-polymorphic type and M, N two pure closed terms of type w. If

then there exists a pure closed term L : w +polybool such that

tAv ; L M = True ; polybool and tp ; L N = False ; polybool .

Therefore, while a lot of additional equations are expected to hold in C, no such closed
equations will hold at ML-polymorphic types. To summarize, we introduce the following
definition. Let w be a closed type. A model of AV is said to be canonical at w if the meaning
map establishes a bijection between the closed normal forms of type w and the elements of
the domain of w.

Proposition 5.2
The model C is canonical at all ML-polymorphic types.

This proves, and strengthens, the first half of Conjecture 1.3 of [MMMS87], which that
for each ML-polymorphic type w, there exists a non-trivial model (with empty types) that
is canonical at w. In [Bre87b] it is shown that the second half of this conjecture, which
states that a non-trivial model that has all types non-empty cannot be canonical a t any
ML-polymorphic type, also holds.

A very interesting open problem is to characterize the theory of C. A possibility, suggested
by Statman [Mog86b], is that the theory of C is the maximal consistent polymorphic theory
whose existence was proved by Moggi [Mog86b]. This would completely justify calling C a
minimal model.

5.2 "Erase-types" models

These models are obtained by applying the polymorphic extensional collapse to "erase-
types" p.1.i.'~ in which the terms are interpreted by first erasing the type information and
then interpreting the resulting untyped terms in, say, some combinatory algebra (via the
usual translation into combinatory terms; see [Bar84]).

Fix a polymorphic signature C = (K,C). We consider untyped lambda terms built from
the same variables used for the polymorphic lambda terms and from constants in C. Again,
we identify terms that differ only in the name of the bound variables.

A C-untyped lambda interpretation (called pseudo-X-structum in [HL80]), U, consists of the
following:

a a non-empty set D;

a a binary operation . on D (application);

a an interpretation U(c) E D for each constant c E C;

a a "meaning" map that assigns to every untyped lambda term M and every D-
environment n an element [M]n of D (we define a D-environment to be a map from
variables to D and we will use n to range over D-environments) such that:

4. [Ax. MIJT . d = [M]n{x: = d) where d E D

5. if Vx E F V (M) , nl(x) = n2(x) then IIM]?rl = [M]n2

If application is also extensional we get the usual concept of model of the untyped APq-
calculus [HL80, Mey82, Bar841.

Any combinatory algebra yields an untyped lambda interpretation. Namely, the meaning
map [M]T is defined by first translating M into a combinatory term [Bar841 and then
interpreting the result in the algebra.

Now, starting from an arbitrary K-algebra of polymorphic types 7 and an arbitrary C-
untyped lambda interpretation U, we construct an emse-types C-p.l.i., emse(T,U), as fol-
lows.

The algebra of types is, of course, I. The domain of each type is a copy of D, the domain of
U. Functional application is given by the application in U. Polymorphic application simply
erases the type:

d&
P.ba - P -

Finally, the meaning map is defined by

where T is some D-environment that takes the same values as p on F V (M) (by (4) above,
only these values matter) and where Erase(Ax:o. M) = Ax. Erase(M), Erase(Mo) =
Erase(M), Erase(At. M) = Erase(M), etc., .
An emse-types model is a model obtained by polymorphic extensional collapse from an
erase-types p.l.i., i.e., has the form coll(emse(7, U), P).

Moggi's ingenious construction [Mog86a] having exactly two elements of type polybol
amounts t o the erase-types model

def M = coll(emse(1, Term), ALLe)

where 1 is the algebra of polymorphic types consisting of just one type (the rest of the
definition is forced) and Term is the pq open term model of the untyped lambda calculus
(see [Bar841 p. 96). In what follows we generalize the argument about M that Moggi
gave for polybool to a certain class of ML-polymorphic types. Define the mnk of an ML-
polymorphic type by induction on the Q-free part: mnk(t) = 0 for any type variable t and
mnk(a + r) = max{rnnk(a) + 1, mnk(r)}. Thus, Vt. t has rank 0, polybol has rank 1 and
polyint has rank 2.

Proposition 5.3 (Moggi)
The model M is canonical cat all ML-polymorphic types of mnk 5 2.

Proof. We will give the proof for a complicated enough type of rank 2, say

From this, it should be clear to the reader how to proceed in general. The closed normal
forms of type w are

Xr. As. Ax: r. Xg: s + r. Xy: T. X f : T + s. Xz: s. X

where X is one of the terms in

Define also the set

def
Q = j.7 f (9.4, f (s(f (9.>>>, - - .)u

U{f Y? f (s(f Y)), f (s(f (9(f Y)))), . - .) u
~ (f x , f (g(fx)), f (g(f (dfx)))) , -1

Let [MI denote the equivalence class of the untyped term M mod pq-conversion. Let

A l(ALLI), i.e., the logical p.e.r. constructed on emse(l,lerm)(ALL1). We claim
that, for any untyped terms M, N, if

then there exists a closed normal form of type w, Q, such that both M and N pq-convert
to Erase(Q). It is easy to see that the claim implies that M is canonical at w.

To prove the claim, note that (3) implies that for any R, S, p.e.r.'s on the set of equivalence
classes of untyped lambda terms

[MI (R+(S+R) - .R+(R- tS)+S- tR) [N] .

Let x, y, z, f , g be fresh variables. Take

R ef {< [X],[X] > IX E a) and S kf {< [Z],[Z] > 1.2 E 9) ,
with the notations defined above. Clearly, [XI R[x], [y] R[y] and [z]S[z], and, it is easy to see
that [f](R + S)[f] and [g](S -t R)[g]. It follows that [Mxgy f z]R[Nxgy f z] therefore there
exists an X E 9 such that both Mxgy f z and Nxgy f z pq-convert to it, thus both M and
N convert to Xxgy fz. X . End of Proof.

We don't know what happens at ML-polymorphic types of rank 3 or more.

Note that if U is actually an untyped lambda model (untyped application is already exten-
sional) then emse(T,U) is already a model: functional application is extensional because

the untyped application is while polymorphic application is always (trivially) extensional!
However, such a model is much too coarse: all elements have all types! The point of
continuing with a polymorphic extensional collapse-as suggested by Moggi7s idea-seems
therefore to be the "pruning" of the model, while preserving extensionality.

Finally, we show that the class of erase-types models is (up to isomorphism) the same as
Mitchell's class of PER models [Mit86b]. Such models are determined by three parame-
ters: an algebra of polymorphic types 7, an untyped lambda interpretation U (actually,
Mitchell requires U to be an untyped lambda model but the construction goes through for
interpretations) and (what amounts to) a logical p.e.r. that relates the constants, R, on
erase(7,U). The model is then defined as the quotient emse(7,U)lR.

Given a PER model determined by 7, U and R, as we have remarked before, R triv-
ially determines a logical p.e.r. collection, call it R too, and erase(7,U)lR is isomor-
phic to the erase-types model coll(emse(7,U), R). Conversely, any erase-types model,
coll(erase(T,U),P), is isomorphic to the PER model determined by T(P), U and R(P) .

5.3 Full and faithful embedding of simply typed models

We begin by reviewing the simply typed lambda calculus, seen as a fragment of A". Let
K be a set of (base) type constants. The K-simple type expressions are built out of base
types from K and the -t constructor, thus are always closed. Let C be a set of constants
of simple type. The (K, C)-simple mw terms are defined by:

From what we described for the polymorphic calculus, it is straightforward to define simple
type-checking and simply typed equational reasoning. Simply typed models are like in [Fri75].
The definition, as well as that of simply typed lambda interpretations, can also be extracted
from our definitions of polymorphic interpretations and models, by ignoring the algebra
of polymorphic types, taking the meanings of simple types to be the types themselves,
ignoring type environments and polymorphic application and keeping only the relevant
meaning clauses.

Fix a simply typed signature C = (K, C), i.e., a polymorphic signature in which the types
of the constants are simple. Let & be a C-polymorphic model. There is an obvious way
to extract a C-simply typed model, s(&), out of & by selecting only the domains (of the
meanings) of the simple types. Given a E-simply typed model 2) and a polymorphic model
C we say that 2, is fully and faithfully embedded in C if 2) is isomorphic to s(E). (Here, an
isomorphism is a bijection that preserves types and meaning; hence, in particular, it will
also preserve application and the interpretation of constants.) The crucial property of full
and faithful embeddings, used in proofs of conservative extension, is that for any simple
equation e, 2) + e iff & + e.

Theorem 5.4 ([BM87b])
Any simply typed lambda model can be fully and faithfully embedded in a polymorphic lambda
model.

Proof. Let 2) be a (K,C)-simply typed model. For each element d of V we introduce a
1 def

new constant qd of the same type. Let C' sf C U {qd I d E 2)) and C = (K, C'). D is also
a C'-model, in an obvious manner. For each simple type a and for each closed C'-simply
typed term M of type a that is not a q d , we introduce an equation

We will denote by H the set formed by these equations.

The first step is to construct the closed type/closed term C'-p.l.i., Z, of the theory XV(C', H).
We claim that, as a C'- simply typed interpretation, 2) is fully and faithfully embedded in
Z via the map that takes d E D, to the congruence class G,[qd]. In particular, in Z, the
restriction of functional application to simple types is extensional (because application in
D is extensional).

Indeed, note that for any closed C'-polymorphic term M of simple type, nf (M) is simple
(see Lemma A.2 in Appendix A) hence M is provably equal in XV(C', H) to q ~ ~ f (~)] . This
proves the fullness of the embedding. For faithfulness, we show

Lemma 5.5
If P and Q are closed polymorphic terms of simple type a and ; P = Q ; a is provable i n
XV(z', H) , then [nf (p)BV = [nf (Q)jv.

Indeed, this implies that if H kAV qd = qdl then d = dl.

Proof of Lemma. In view of the well-known equivalence between provability using an
equational proof system like the one we defined, and provability by chains of replacements
of equals by equals (see, for example, [BM87b]), we can prove the result by induction on
the length of such chains of replacements.

The induction is trivial except for the base case of a replacement using one of the axioms in
H . Suppose Q is obtained from P by replacing an occurrence of a closed and simply typed
subterm M of P by q[w. Let T be the type of M and z a fresh variable of type T. Then,
there exists a polymorphic term Z with FV(Z) = {z} and with exactly one occurrence of
a, such that P = Z[z: = MI and Q = Z[z: = qIW]. We have

I-*' ; P = (Xz: r. nf (Z))M ; a and kp ; Q = (Xz: T. n f (Z))q[w ; a .

But, by Lemma A.2, nf (2) is a simply typed term too, so we calculate

[n f (PI] = 1.f ((X.: 7. n f (-vM)1 =
[(Xz: T. nf (Z))M] = [Xz: T. n f (Z)][M] =

1x2: 7. nf (z)] [q [~ ~ j = - - - = Bnf (&)I

where all the meanings are in D and where we use the fact that Xv-reductions from a simply
typed term are in fact simply typed reductions, hence sound in 2). End of Proof.

While it is true that 2) is fully and faithfully embedded in Z, Z is not extensional and
hence not a model. We will therefore continue with a polymorphic extensional collapse,
and show that the full and faithful embedding "survives" it. More precisely, we construct

& sf coll(Z,ALL,) where, for each k, r(k) is the identity p.e.r. on the domain of (the
meaning of) k in 2.

Recall that Z(ALL,) is the notation for the p.1.i. obtained by tagging the types of Z with
p.e.r.'s from ALL,, that T(ALL,) is the notation for the algebra of polymorphic types of
2(ALL,), that R(ALL,) is the notation for the resulting logical p.e.r. on Z(ALL,), and,

finally, that coll(Z, ALL,) sf Z(ALL,)/R(ALL,).

Lemma 5.6
For any simple type a, the component of R(ALL,) which corresponds to the meaning of a
in T(ALL,) is also the identity p.e.r.

This follows by induction on simple types using the fact that functional application in Z is
extensional at simple types.

One consequence of the lemma is that R(ALL,) relates the constants in C' since they are
all of simple type. Thus, & is a E'-polymorphic model. Another consequence is that the
extensional collapse leaves the domains of simple types unchanged, which was exactly the
part of 2 onto which 2) was fully and faithfully embedded. Thus, 2) is also fully and faithfully
embedded in &. The desired C-model is obtained by "forgetting" about the interpretation
of the qd7s. End of Proof.

As we mentioned in the introduction, this result serves to prove that simply typed theories
are conservatively extended by polymorphic constructs and axioms [Bre87a, BM87bl. Of
course, a conservative extension result depends on the proof sytems that are considered.
As explained in [MMMS87] (see also our discussion in subsection 2.2), for both A' and the
simply typed lambda calculus, there are at least two proof systems of interest: one that is
complete for deriving semantic consequences over all models, call it "all", and one that is
complete for deriving semantic consequences over all models with all types non-empty, call
it "non-empty". By Proposition 4.5, the previous full and faithful embedding construction
always produces polymorphic models that have some empty types, even if the embedded
simple model had all types non-empty. Therefore, Theorem 5.4, will imply only conservative
extension for the "all" proof systems. For "non-empty", we need our next result (there is
also a purely syntactic proof [BM87b]).

Theorem 5.7
Any simply typed lambda model with all type domains non-empty can be fully and faithfully
embedded in a polymorphic lambda model with all type domains non-empty.

Proof. The proof uses and extends both ideas from the previous embedding and an idea
of Mitchell and Moggi on how to fully and faithfully embed arbitrary non-empty one-
sorted algebras in erase-types models with all types non-empty [Mit86a]. Remember that
a polymorphic model has all types non-empty iff the domain of [Vt. t] is non-empty.

Let 2) be a (K,C)-simply typed model with all types non-empty. For each base type
k E K , choose an element 4 E Dk. For each element d of D we introduce a new constant
qd of the same type. Moreover, we introduce another new constant E of type Vt. t . Let

c ' % ~ C U { ~ ~ I ~ E D } ~ ~ X I Y (K , C ~) . ~ e t c " d e ' C'U{E} a n d X " % (~ , C ") . For
each simple type a and for each closed C1-simply typed term M of type u that is not a qd,
we introduce an equation

; M = q [j q ; a .

We will denote by H the set formed by these equations. We also introduce the equations

where a, T range over closed polymorphic type expressions,

; E(Vt. a) = Xt.EU ; vt. u

where a ranges over polymorphic type expressions such that Vt. a is closed and

where k ranges over K. We will denote by E, the set formed by these three kinds of
equations.

We construct again the closed type/closed term El1-p.l.i., Z, of the theory XV(Cf1, E, U H)
and, again, we claim that, as a C1- simply typed interpretation, D is fully and faithfully
embedded in Z via the map that takes d E D, to the congruence class G, [qd]. To see this,
consider the reduction system X'E consisting of the usual reductions of AV plus the notion
of reduction E defined as the union of a l l the equations of E, oriented from left to right.
It is easy to show that A'& is Church-Rosser on terms that type-check (use the Hindley-
Rosen Lemma; see our comments to the proof of Theorem 2.2). Moreover, in Lemma A.l
(Appendix A), we show that any polymorphic term of simple type and with free variables of
simple type has an X'E-normal form which is actually a simply typed term. With this, the
fullness and faithfulness of the embedding are shown just like in the proof of the previous
theorem.

By abuse of notation, let us denote the meaning of the constant E in Z also by E . Let 7
be the algebra of polymorphic types of Z and {Ia}aGT be the type domains of Z. For any
a E T there is an element E a E I, (we omit the dot for polymorphic application) and we
have

(E (a -+ b)) i = E b where a, b E T , i E I,

(~V(q5)) -4 a = E 4(a); where 4 E [T + TI , a E T .
This will insure that the p.e.r. collection P, on Z, defined by

Pa gf {RI R E per(&) and (E a) R (E a)}

and by taking P(k) to be the identity p.e.r. on the domain of (the meaning of) k, is logical.
def Thus, we can construct the model & = col l (Z,P) . It is easy to see that

thus E will survive the polymorphic extensional collapse. It follows that & has all types
non-empty. The rest of the proof, which checks that D is also fully and faithfully embedded
in & is just like in the proof of the previous theorem. End of Proof.

5.4 Full and faithful embedding of algebras

It is well-known that any many-sorted algebra can be fully and faithfully embedded into
a simply typed lambda model. Indeed, the simply typed model will have as base type
domains the carriers of the algebra and, at higher types, the domain of a -+ T will consist
of all functions from the domain of a to the domain of T . Moreover, if the carriers of
the algebra are all non-empty then the type domains of the simply typed model are all
non-empty too. From this and Theorems 5.4 and 5.7 we deduce:

Theorem 5.8
Any many-sorted algebra can be fully and faithfully embedded in a polymorphic lambda
model. Any many-sorted algebra with all sort carriers non-empty can be fully and faithfully
embedded in a polymorphic lambda model with all type domains non-empty.

This will imply some of the desired conservative extension results about adding Xv to arbi-
trary algebraic theories [BM87a, Bre87al.

It can be argued that that the full and faithful embedding of algebras into simply typed
models described above, while conceptually very simple, is too "lavish", that is, the resulting
simply typed model has much "more" elements than what is needed for the embedding.
Indeed, a better construction uses the simply typed version of the extensional collapse (see
[Tro73] or [Bar84], p. 565). It is also possible to give a direct and "lean" constructions for the
proof of Theorem 5.8. The constructions are similar to those of Theorem 5.4 Theorem 5.7
and the first one is sketched in [BC87]. Most likely, this direct constructions produces
models that are isomorphic to the ones produced by the simply typed extensional collapse
embeddings followed by the embeddings of Theorem 5.4 and Theorem 5.7.

In [Mit86b] it is stated that PER models can be used to obtain faithful but not full embed-
dings of algebras into models of the polymorphic lambda calculus. Next, we obtained full
and faithful embeddings of many-sorted algebras into models of Xv, but the resulting mod-
els had always empty types (work described in [BC87]). Subsequently, Mitchell and Moggi
independently discovered how to do faithful and full embeddings of many-sorted algebras
into PER models that have empty types and full and faithful embeddings of non-empty one-
sorted algebras into PER models with all types non-empty [Mit86a]. Theorem 5.8 finally
provides a completely satisfactory answer to the question.

Acknowledgments

We are grateful to John Mitchell for reading an earlier version of the conference paper on
which this paper is based, and for suggesting some corrections and improvements. Any
remaining errors are, of course, our responsibility. A portion of this work grew out of the
first author's PhD thesis, done under the supervision of Albert Meyer at the Massachusetts
Institute of Technology. This paper has directly benefited from Albert Meyer's suggestions.

Appendix A

Refer to the notation of the proof of Theorem 5.7.

Lemma A.l Any C"-polymorphic term of simple type and with free variables of simple
type only has a AVc-normal form, which, moreover is a simply typed term (in particular,
&-free).

Proof. It is sufficient to prove the lemma for Av-normal forms. We proceed by induction
on the length of the n.f.

A'-normal forms of length 1, of simple type and with free variable of simple type must
be variables or constants of simple type (thus distinct from E) and therefore are already
A'E-normal forms and simply typed.

If the lenghth is greater than 1, the Av-n.f. must have the form

Ax1: 01 . . . Ax,: om. h a1 . . - a,

where m,n 2 0, 01,. . . ,a, are simple types, h is a variable or a constant, al,. . . ,am are
either type expressions or terms in Av-normal form and h a1 . . . a, is of simple type.

If h is not E then it must be a variable or constant of simple type, thus al, . . . , a, are all
terms of simple type. Then, by induction hypothesis, each aj has a X'E-normal form Nj
which is also a simply typed term. Hence, the whole term has the simply typed A'E-normal
form

Axl:ol ... Ax,:u,. h N l . . - N n .

If h is E, let T be the (simple) type of E a1 . . - a,. An easy induction on m shows that

But T must be of the form TI -t - . . -t T,I + Ic so

Thus, the whole term has the simply typed AV&-normal form

End of Proof.

Refer now to the notation of the proof of Theorem 5.4.

Lemma A.2 The Xv-normal form of any Cf-polymorphic term of simple type and with free
variables of simple type only is actually a simply typed term.

The proof, by induction on the length of Xv-normal forms, can be extracted from the proof
of the previous lemma by ignoring the complications caused by E .

Appendix B: Historical note

The connection between extensionality and p.e.r.'s has a long history. For the case of
simple (finite) types, the idea that (what amounts to) simply typed logical p.e.r.'s give
extensionality is attributed in [Tro73], p. 124, to Zucker. Barendregt ([Bar84], p. 565), gives
the name "extensional collapse" to Zucker's construction. The construction was extensively
used by Statman [Sta82]. However, in [Sta80], Statman, while still refering (via [Sta82]) to
[Tro73], calls essentially the same construction, the Gandy "hull", presumably in reference
to [Gan56]. The extensional collapse was used to compare Kreisel's extensional model
HE0 [Kre59] with Kreisel-Troelstra's non-extensional "model" HRO [Tro73]. P.e.r.'s play
a crucial role in the construction of HEO, but the extensional collapse of HRO, H R O ~ , is
set-theoretically distinct from HE0 ([Tro73], p. 127). However, it was shown by Bezem
(announcement in [Bar84], p. 566) that H R O ~ and HE0 are isomorphic.

Troelstra has extended HRO to Girard's second-order types (which include the types of
Xv), constructing the non-extensional "model" H R O ~ [Tro73] while Girard extended the
HE0 construction to HE02 [Gir72]. As mentioned in [Mit86b], Plotkin and Moggi have
(independently from Girard's construction) constructed a model of Xv, that seems to be
intimately related to H E O ~ . The Plotkin-Moggi model construction starts from the partial
combinatory algebra of natural numbers and Kleene brackets application. It then uses
a generalization to partial application of (what amounts to) the polymorphic extensional
collapse for erase-types polymorphic lambda interpretations and the logical p.e.r. family (see
subsection 4.3) consisting of all p.e.r.'s. The most obvious (but perhaps minor) difference
between this model and HE02 is that there are empty types here but all the types of HE02
are non-empty, due to the addition of a canonical element, 0, at each type.

The categorical correspondent of the Plotkin-Moggi model is the Moggi-Hyland interpreta-
tion of in the modest sets (a name given by D. Scott) which form an internally complete
subcategory of the realizability universe or effective topos, [Hy187]. This interpretation has
the remarkable property that the polymorphic types are interpreted as products of modest-
set objects, which can be seen as intuitionistic-set-theoretic products. Freyd and Scedrov
exploit this interpretation in [FS87], based on a reconstruction of the modest sets described
in more detail in [CFS87]. For a related, but technically different construction, see [HRR].
We believe that a minor modification of the HR02 construction can be seen as an erase-
types polymorphic lambda interpretation (see subsection 5.2, and that the polymorphic

extensional collapse c o l l (~ ~ 0 ~ , A L L) (again see subsection 5.2) is isomorphic to a minor
modification of the HE02 construction. As was pointed out to us by Scedrov, this seems
to be supported by the fact that the construction of the modest sets by Carboni, F'reyd
and Scedrov [CFS87] (see also [FS87]) uses, among other things, the "splitting of all the
symmetric idempotents" of a certain category. Indeed, in a category whose morphisms are
relations the symmetric idempotents are exactly the p.e.r.'s and splitting corresponds to
taking quotients. However, to the best of our knowledge, the exact connections between all
these constructions, and especially the connections between the categorical constructions
and those in the style of this paper, are still unclarified.

The reader can consult [Mit86b] for a few more examples of using p.e.r.'s to interpret types.

References

[Bar841 H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Vol-
ume 103 of Studies in Logic and the Foundations of Mathematics, North-
Holland, Amsterdam, second edition, 1984.

[BB85] C. BGhm and A. Berarducci. Automatic synthesis of typed A-programs on term
algebras. Theoretical Computer Science, 39:135-154, 1985.

[BC87] V. Breazu-Tannen and T. Coquand. Extensional models for polymorphism.
In Proceedings of TAPSOFT - Colloquium on Functional and Logic Program-
ming and Specifications, Pisa, March 1987, pages 291-307, Lecture Notes in
Computer Science, Vol. 250, Springer-Verlag, 1987. An expanded version will
appear in the special issue of Theoretical Computer Science dedicated to the
colloquium.

[BM84] K. B. Bruce and A. R. Meyer. The semantics of second order polymorphic
lambda calculus. In G. Kahn, D. B. MacQueen, and G. Plotkin, editors, Pro-
ceedings of the Conference on Semantics of Data Types, Sophia-Antipolis, June
1984, pages 131-144, Lecture Notes in Computer Science, Vol. 173, Springer-
Verlag, 1984.

[BM87a] V. Breazu-Tannen and A. R. Meyer. Computable values can be classical. In
Proceedings of the 14th Symposium on Principles of Programming Languages,
pages 238-245, ACM, January 1987.

[BM87b] V. Breazu-Tannen and A. R. Meyer. Polymorphism is conservative over simple
types. In Proceedings of the Symposium on Logic in Computer Science, pages 7-
17, IEEE, June 1987.

[BMS80] R. M. Burstall, D.B. MacQueen, and D.T. Sanella. Hope: an experimental
applicative language. In LISP Conference, pages 136-143, Stanford University
Computer Science Department, 1980.

[Coq861

[CW85]

[Fai 8 21

[FL083]

[Fri 751

V. Breazu-Tannen. Communication in the TYPES electronic forum (types-
@theory.lcs.mit.edu). July 29, 1986.

V. Breazu-Tannen. Conservative extensions of type theories. PhD thesis, Mas-
sachusetts Institute of Technology, February 1987. Supervised by A. R. Meyer.

V. Breazu-Tannen. Proof of a conjecture on polymorphic lambda models with
all types non-empty. manuscript, univ. of pennsylvania. July 1987. '

L. Cardelli. Amber. In Combinators and functional programming languages,
Pmeedings of the 13th Summer School of the LITP, Le Val D'Ajol, Vosges,
France, May 1985.

A. Carboni, P. J. Freyd, and A. Scedrov. A categorical approach to realiz-
ability and polymorphic types. In Proceedings of the 3rd ACM Workshop on
the Mathematical Foundations of Programming Language Semantics, New Or-
leans, April 1987, Lecture Notes in Computer Science, Springer-Verlag, 1987.
To appear.

T. Coquand. Communication in the TYPES electronic forum (typesQtheory-
.lcs.mit.edu). April 14, 1986.

L. Cardelli and P. Wegner. On understanding types, data abstraction and
polymorphism. Computing Surveys, 17(4):471-522, 1985.

J . Fairbairn. Ponder and its type system. Tech. Rep. 31, Computer Laboratory,
Univ. of Cambridge, Cambridge, England, November 1982.

S. Fortune, D. Leivant, and M. O'Donnell. The expressiveness of simple and
second-order type structures. Journal of the ACM, 30(1):151-185, January
1983.

H. Friedman. Equality between functionals. In R. Parikh, editor, Proceedings
of the Logic Colloqium '73, pages 22-37, Lecture Notes in Mathematics, Vol.
453, Springer-Verlag, 1975.

P. Freyd and A. Scedrov. Some semantic aspects of polymorphic lambda calcu-
lus. In Pmeedings of the Symposium on Logic in Computer Science, pages 315-
319, IEEE, June 1987.

R. 0. Gandy. On the axiom of extensionality-Part I. Journal of Symbolic
Logic, 21:36-48, 1956.

J.-Y. Girard. Interpre'tation fonctionelle et e'limination des coupures duns l'a-
rithme'tique d'ordre supe'rieure. PhD thesis, Universitd Paris VII, 1972.

J . Goguen and J. Meseguer. Completeness of many-sorted equational logic.
SIGPLAN Notes, 17:9-17, 1982.

[GMW79] M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF. Volume 78
of Lecturv Notes in Computer Science, Springer-Verlag, Berlin, 1979.

[HL80] R. Hindley and G. Longo. Lambda-calculus models and extensionality.
Zeitschrift f ir Mathematische Logic und Grundlagen der Mathematik, 26:289-
310, 1980.

[HRR87] J. M. E. Hyland, E. P. Robinson, and G. Rosolini. The discrete objects in the
effective topos. manuscript, univ. of cambridge. 1987.

[Hy187] J . M. E. Hyland. A small complete category. 1987. Manuscript, to appear in
the proceedings of the Conference on Church's Thesis: Fifty Years Later.

[Kre59] G. Kreisel. Interpretation of analysis by means of constructive functionals of
finite types. In A. Heyting, editor, Constructivity in mathematics, pages 101-
128, North-Holland, 1959.

[Lei831 D. Leivant. Reasoning about functional programs and complexity classes asso-
ciated with type disciplines. In 24th Symposium on Foundations of Computer
Science, pages 460-469, IEEE, 1983.

[Mat851 D. C. J. Matthews. Poly manual. Tech. Rep. 63, Computer Laboratory, Univ.
of Cambridge, Cambridge, England, 1985.

[Mey82] A. R. Meyer. What is a model of the lambda calculus? Information and
Control, 52(1):87-122, January 1982.

[Mey86] A. R. Meyer. Communication in the TYPES electronic forum (typesQtheory-
.lcs.mit .edu). February 7, 1986.

[Mit86a] J. C. Mitchell. Personal communication. August 1986.

[Mit86b] J . C. Mitchell. A type-inference approach to reduction properties and seman-
tics of polymorphic expressions. In Proceedings of the LISP and Functional
Programming Conference, pages 308-319, ACM, New York, August 1986.

[MM85] J . C. Mitchell and A. R. Meyer. Second-order logical relations (extended ab-
stract). In R. Parikh, editor, Proceedings of the Conference on Logics of Pro-
gmms, Brooklyn, June 1985, pages 225-236, Lecture Notes in Computer Sci-
ence, Vol. 193, Springer-Verlag, 1985.

[MM87] J . C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus.
In Proceedings of the Symposium on Logic in Computer Science, IEEE, June
1987.

[MMMS87] A. R. Meyer, J . C. Mitchell, E. Moggi, and R. Statman. Empty types in
polymorphic A-calculus. In Proceedings of the 14th Symposium on Principles
of Progmrnming Languages, pages 253-262, ACM, January 1987.

[Stat321

[St a831

E. Moggi. Communication in the TYPES electronic forum (types@ t heory.lcs-
.mit.edu). February 10, 1986.

E. Moggi. Communication in the TYPES electronic forum (typesQtheory.lcs-
.mit.edu). July 23, 1986.

R. S. Nikhil. An incremental, strongly typed database query language. PhD
thesis, Univ. of Pennsylvania, Philadelphia, August 1984. Available as tech.
rep. MS-CIS-85-02.

A. M. Pitts. Polymorphism is set theoretic, constructively. Report 2/87, Uni-
versity of Susssex, School of Mathematical and Physical Sciences/Computer
Science, July 1987. To appear in the proceedings of the Summer Conference
on Category Theory and Computer Science, Edinburgh, Sept. 1987, Springer
Lecture Notes in Computer Science.

J. C. Reynolds. Towards a theory of type structure. In B. Robinet, editor,
Programming Symposium, pages 408425, Springer Lecture Notes in Computer
Science, Vol. 19, Springer-Verlag, 1974.

J. C. Reynolds. Types, abstraction, and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing '83, pages 513-523, North-Holland,
1983.

J. C. Reynolds. Three approaches to type structure. In Mathematical foun-
dations of software development, pages 97-138, Lecture Notes in Computer
Science, Vol. 185, Springer-Verlag, 1985.

R. A. G. Seely. Categorical semantics for higher order polymorphic lambda
calculus. 1986. Manuscript, to appear in Journal of Symbolic Logic.

R. A. G. Seely. Higher order polymorphic lambda calculus and categories.
Mathematical Reports, Academy of Science (Canada), VIII(2):135-139, 1986.

R. Statman. On the existence of closed terms in the typed A-calculus. In J. P.
Seldin and R. Hindley, editors, To H. B. Curry: Essays in Combinatory Logic,
Lambda Calculus, and Formalism, pages 511-534, Academic Press, New York,
1980.

R. Statman. Number theoretic functions computable by polymorphic pro-
grams. In 22nd Symposium on Foundations of Computer Science, pages 279-
282, IEEE, 1981.

R. Stat man. Completeness, invariance and A- definability. Journal of Symbolic
Logic, 47:17-26, 1982.

R. St at man. A- definable functionals and ,Bq conversion. Arch. Math. Logik,
23:21-26, 1983.

[Tro73] A. S. Troelstra (ed.). Metamathematical investigation of intuitionistic arith-
metic and analysis. Volume 344 of Lecture Notes in Mathematics, Springer-
Verlag, 1973.

[Tur85] D. A. Turner. Miranda: a non-strict functional language with polymorphic
types. In J.-P. Jouannaud, editor, Pmeedings of the Conference on Functional
Programming Languages and Computer Architecture, pages 1-16, Springer Lec-
ture Notes in Computer Science, Vol. 201, Springer-Verlag, 1985.

	Extensional Models for Polymorphism
	Recommended Citation

	Extensional Models for Polymorphism
	Abstract
	Comments

	tmp.1190405975.pdf.NBFsH

