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1 Introduction 

The design of functional and object-oriented programming languages has recently witnessed 
the widespread adoption of polymorphic type systems. A list of examples that is by no 
means exhaustive includes, in addition to the archetype ML [GMW79], such languages as 
Miranda [Tur85], Poly [Mat85], Amber [Car85], polymorphic FQL [Nik84], Ponder [Fai82], 
and Hope [BMS80], while an excellent survey of the field is provided by [CW85]. 

To study properties of such languages, we will adopt as a formal setting the Girard-Reynolds 
polymorphic lambda calculus [Gir72, Rey741 (henceforth denoted A'). 

Our concern here will be with constructing models of XV that satisfy certain special con- 
straints. In fact, the paper is built around the presentation of a general method for con- 
structing such models, which we call the polymos.phic extensional collapse. The direct 
motivation for these constructions is that they imply the consistency and/or conservativity 
of certain extensions of X v .  At their turn, these extensions are motivated by the study of 
the interaction between the computational mechanism of the type discipline of XV and the 
specification of the data types with which we compute, e.g., integers, booleans, etc., We 
will explain this primary motivation in what follows. 

Several researchers [Rey83, Lei83, BB851 have shown how to represent interesting data types 
inside the pure polymorphic lambda calculus. This unusual programming style is illustrated 
by Reynolds in [Rey85]. To make our point we will review here the representation of the 
integers (the reader unfamiliar with the syntax of XV should take a detour through the next 
section before continuing). 

The numerals are taken to be the closed terms of type 

def 
polyint = V t .  (t + t ) + t  + t  . 

The numeral corresponding to the integer n is 

- def n = X t . X f : t + t . X x : t .  f n x  . 

One can define, for example, 

Add gf Xu:polyint.  Xu: polyint. At. X f :  t + t. Ax: t.ut f ( v t  f x )  : polyint + polyint + polyint 

and verify that Xv proves 

(1) ~ d d i i i ~  = m T n  . 

The arithmetic functions that are numeralwise representable in the same way addition is 
represented above are exactly the recursive functions which are provably total in second- 
order Peano arithmetic [Gir72] (see also [StaBl, FL0831). To date, no "natural" examples 
of total recursive functions that are not in this class are known and one can argue that 
such computational power is adequate for most purposes [Lei83], [Rey85]. Therefore it 



appears that Av can be regarded as a programming language already equipped with a type 
of integers and, as it turns out, also with one of booleans: 

def 
polybool = Vt. t + t + t 

True %! At. Ax:t. Ay:t. z 

def False - At. Ax:t. Ay:t. y 

as well as many other familiar data types [Rey85]. 

Now, if we were to adopt this paradigm, we would expect that the formal reasoning (in the 
calculus) would allow us to treat any terms of type polyint as if they actually were integers. 
However, the pure AV is not sufficient for that, as it cannot even prove, for example, that 
the operation of addition is commutative: 

(a) Adduv = Addvu 

with arbitrary u, v : polyint is not provable in AV (by a simple Church-Rosser argument). 

A possible remedy to this shortcoming would be to add to the pure A", as further axioms, 
equations such as (2). But are such extensions consistent? 

Notice that when u and v are numerals the equation (2) follows from (1). Thus, the 
consistency of (2) follows from the existence of a non-trivial model in which the only elements 
of type polyint, i.e., the only "polymorphic integers", are the (denotations of the) numerals. 

Such a consistency question, (actually for an equation involving the conditional operation on 
pobybool) was first asked by Meyer [Mey86], and was one of the main sources of motivation 
for the model constructions presented here. Positive answers to Meyer's question, namely 
constructions of models with exactly two "polymorphic booleans", were given by Moggi 
[Mog86a] and the second author [Coq86] (for an account of Meyer7s question, see [MMMS87], 
to which our presentation owes). Both constructions used partial equivalence relations 
to interpret types, suggesting that there might be some relationship between them and, 
indeed, a common generalization was found by the first author [Bre86]. All these model 
constructions are particular instances of the polymorphic extensional collapse method. 

We now turn to our other main source of motivation, illustrated in [BM87a, BM87b7 Bre87al. 
The consistency question we asked above, or that asked in [Mey86], can be seen as a 
particular form of a more general, albeit more vague, question: is it possible to have data 
types with "classical" specifications, say, algebraic axiomatizations, live in a computational 
framework? In [BM87a] it is remarked that unrestricted recursion is not consistent with 
arbitrary algebraic data type specifications and computation done within the framework of 
the type discipline of A" is then offered as an alternative. The approach differs from the one 
we have discussed above, as one does not use the built-in representations of the integers, 
booleans, etc., but instead one adds such data type specifications to AV as algebraic or simply 
typed lambda theories. The advantage is that we can postulate for these added data types 
whatever equations we wish, so that problems like the unprovability of the equation (2) do 



not arise. The consistency question is therefore replaced by one of conservative extension: 
is the theory of the resulting language (Xv plus data type specification) conservative over 
that of the data type specification? A positive answer would assure us that we can continue 
to reason about data type expressions "classica.lly", i.e., using the data type specification, 
even when these expressions occur in the computational framework provided by Xv. 

We use our general method to show that arbitrary simply typed lambda models, and there- 
fore arbitrary algebras, can be fully and faithfully embedded in models of Xv. The full and 
faithful embeddings easily imply the desired conservative extension results [BM87a, BM87b, 
Bre87al. 

There are a number of differences between this paper and the preliminary version of this 
work, presented at the conference [BC87]. We omit here the full and faithful embedding 
of arbitrary algebras into models of Xv in which there is also a one-to-one correspondence 
between the polymorphic integers and an arbitrary sequence of observables in the algebra. 
We do so because we feel now that the result can be well motivated only in the context of the 
conservative extension theorem that called for it, as explained in [BM87a]. On the other 
hand, we include the full and faithful embedding of models of the simply typed lambda 
calculus into models of Xv, which appeared in [BM87b]. Finally, we further generalize here 
the polymorphic extensional collapse construction to use arbitrary logical p.e.r. collections, 
while the construction in [BC87] was using only the logical p.e.r. collection consisting, at 
each type, of all partial equivalence relations. (Warning: the name "polymorphic exten- 
sional collapse" is used both here, for the general construction, and in [BC87], for the less 
general version.) This makes the construction more flexible, allowing us to present a new 
result (proving a conjecture from [BM87b]): full and faithful embedding of simply typed 
lambda models with all type domains non-empty into models of Xv which also have all type 
domains non-empty. In this more general form, the polymorphic extensional collapse also 
covers Mitchell's class of PER models [Mit86b]. 

In Section 2 we review the syntax and semantics of the polymorphic lambda calculus, intro- 
ducing polymorphic lambda theories and the concept of polymorphic lambda interpretation 
and revisiting polymorphic logical relations. In Section 3 we show how to construct, out 
of closed type expressions and closed terms, a polymorphic lambda interpretation for any 
polymorphic lambda theory. In Section 4 we present the polymorphic extensional collapse 
construction. In Section 5 we present several applications of the construction: models with 
exactly two polymorphic booleans and other "minimality properties", "erase-types" models 
and full and faithful embeddings. Some proofs that would have broken the stride of the 
presentation, as well as a historical note, have been relegated to appendices. 



2 The polymorphic lambda calculus 

2.1 Syntax 

Let K be a set of (ground or base) type constants. The K-polymorphic type expressions are 
defined by 

a : :=  k ( t ( a + a ( V t . a  

where k ranges over K and t ranges over an infinite set of type variables. The construction 
Vt. a binds the occurrences of the type variable t in a. The set of free type variables of a 
type expression r will be denoted f v(r). 

Let C be a set of constants. By definition, each constant c E C comes equipped with its 
type, Type(c) which must be a closed K-type expression. We also assume a separate infinite 
set of (ordinary) variables. The (K,C)-mw terms are defined by 

where c ranges over C and x ranges over ordinary variables. The set of free variables of M 
will be denoted FV(M)  while the set of free type variables of M will be denoted fv(M). 

As in [Bar841 we identify the terms or type expressions that differ only in the names of 
bound variables. We use the notation 

for simultaneous substitution. 

Not all raw terms are acceptable, only those that type-check. Type assumptions about the 
free variables are needed to type-check an open term. Such assumptions are provided by 
type assignments. A type assignment is a partial function with finite domain that maps 
variables to type expressions. Alternatively, we will also regard type assignments as finite 
sets of pairs x: a such that no x occurs twice. We will use A to range over type assignments. 
We write A,x:  a for A U {x:a} and, by convention, the use of this notation implies that 
x $ domA. The empty type assignment is usually omitted in formulas. 

A typing judgment has the form 
A t -  M : a .  

The proof system for deriving typing judgments (i.e., type-checking) is the following: 

(constants) A t- c:Type(c) c E C  

(project ion) A I- x : A(x) x E domA 



(+ elimination) 

(+ introduction) 

(V elimination) 

(V introduction) 
A t -  M : a  

t $ f v(ranA) 
A I- At. M :  Vt.a 

Usually, instead of "A I- M : a is derivable (in the proof system)" we will write simply 
"A I- M :  a". 

If A I- M : a, we say that M type-checks with type a under A. We say that the raw term 
M type-checks under A if there exists o such that A I- M : a. Note that, when it exists, 
a is uniquely determined by M and A. Note also that if M type-checks under A then it 
type-checks with the same type under any type assignment that coincides with A on the 
free variables of M.  Finally, we say that the raw term M type-checks if there exist A and 
a such that A t- M : a. Thus, if M is a closed term that type-checks then there exists a 
unique closed w such that I- M : w in which case we say that M is of type w.  

Note the inherent impredicativity allowed by the type discipline: polymorphic functions can 
be applied to any type, in particular their own type. For example: 

In order to define equational reasoning that is type-correct the usual equations M = N will 
be tagged with a type assignment A and and a type expression a with the intention that 
both M and N should type-check with type a under A. Moreover, it turns out that tagging 
equations with lists of variables (that include the free variables of the equation) allows us to 
isolate the proof rules that are sound in models in which some type domains may be empty 
[GM82, MMMS871. 

Equation judgments (or, simply, equations) have the form 

We will use the following proof system for deriving equations (see however the discussion 
on completeness and other proof systems in subsection 2.2): 



(extend assign) 

(reflexivity ) 

(symmetry) 

(transitivity) 

(congruence) 

(type congruence) 

A ; M = N ; a  
A ' ;  M = N ; a  

A c A' 

A ; M = M ; a  

where A t- M : a 

A ;    AX:^. M ) N  = M [ x : =  N ]  ; T 

where A , x : a  l- M : T ,  A l- N : a  

A ;  X x : a . M x  = M ;  a - t ~  

where A l- M : a -+ T , x 4' d o m A  

A ; M = N ; a  
t @ f v ( r a n A )  

A ; At. M = At. N ; Vt .  a 



where A l- M : a , t jZ fv(ranA) 

( type 7) A ; At. Mt  = M ; Vt.a 

where A I- M : Vt. a , t pl fv(ranA) , t pl fv(M) 

If E is a set of equations and e is a single equation, we write E kp e when e is derivable 
in the above proof system using additional premises from E. An equation A ; M = N  ; a 

is type-correct if A I- M : a and A l- N : a. It is easy to see that if E kAv e and all the 
equations in E are type-correct then e is type-correct. 

The rule 

(substitutivit y ) 

where A' I- P : T , A C A' 

while not included in the proof system, can be safely used since it is a derived rule. Indeed, 
we have 

Lemma 2.1 (substitutivity) 
I ~ A , x : T  I- M : a, A,x:T l- N :  a, A' I- P :  T and A C  A' then 

(A,x :T ;  M = N ;  a) kp (A'; M[x:= PI = N[z:= PI; a ) .  

Equational reasoning can be analyzed with a reduction system. Our terminology and no- 
R 

tation follows [Bar84]. Given a notion of reduction R, we will use - for the multi-step 
R-reduction relation. 

We define AV-reduction on raw terms as the union of the four basic notions of reduction: P, 
7, type p and type 7, obtained by orienting from left to right the axiom schemes with the 

XV 
same name. It is easy to show that if A l- M : a and M - N then A I- N  : a. Thus, 
type-checking is preserved under reduction, which justifies defining reduction on raw terms, 
in an "untyped" manner. 

Theorem 2.2 (Girard) 
A' is Church-Rosser on terms that type-check. 

In fact, 7 and type 7 are not considered in [Gir72]. However, one can proceed as follows. 
First prove that ,D is Church-Rosser using the method of Martin-Lof and Tait (see [Bar84], 
pp. 59-62). Then, since each of type P, type 7 and 7 is also, by itself, Church-Rosser 
(trivially), show that each two of the four notions of reduction commute and invoke the 
Hindley-Rosen Lemma (see [Bar84], pp. 64-66). The restriction to terms that type-check 
is used only for the commutativity of ,f3 and 7. 

Reduction gives the following alternative characterization of derivable equations: 



Proposit ion 2.3 
txv A ; M = N ; u i f  and only if A I- M : 0, A I- N : u and there ezists a term 

xv xv 
P such that M - P tt N .  

The most important technical property enjoyed by the polymorphic type discipline is the 
following: 

Theorem 2.4 (Girard) 
Xv is strongly normalizing on terms that type-check. 

Again, T,I and type 7 are not considered in [Gir72], but, for example, the strong normalization 
proof in [Mit86b] can be immediately extended to Xv-reduction. Together with the Church- 
Rosser property, this result implies that any term M that type-checks has a unique Xv- 
normal form, which we will denote by nf (M). 

A polynaorphic lambda theory is completely specified by the following 

a a polymorphic signature C = (K,C), where K is a set of (ground or base) type con- 
stants and C is a set of constants, each with a closed K-polymorphic type; 

a a set E of type-correct equations between C-terms to be used as additional axioms; 

We will symbolize by Xv(C, E) the corresponding polymorphic lambda theory. 

2.2 Interpretations and models 

Fix a polymorphic signature C = (K, C). 

A K-algebra of polymorphic types, 7, consists of the following: 

a a non-empty set T of types; 

a a binary operation -+ on T; 

a a non-empty set [T IJ T] of functions from T to T; 

a a map V from [T IJ TI to T; 

a an interpretation 7(k)  E T for each type constant k E K; 

such that the following inductive definition of an assignment of meanings in T to K-type 
expressions in type environments is possible (we define a type environment to be a map 
from type variables to T and we will use T,I to range over type environments): 



1. [k]q = I ( k )  

2. IItIlrl = q(t) 

3. [a + = uanrl + U.rIrl 

4. p t  . a]q = V(Xa E T. [a]lq{t: = a)) 

By "the definition is possible" we understand that each inductive application of step 4 is 
defined, i.e., Xa E T. [a]q{t: = a) E [T j TI. Here q{t: = a)  is the type environment 
equal to q everywhere except at  t where it takes the value a. 

Lemma 2.5 1. If for each t E f v(a) we have q(t) = ql(t) , then [a]q = [a]ql . 

2. [a[t : = r]]q = [a]lq{t : = [r]q) . 

A C-polymorphic lambda interpretation (p.l.i.), 1, consists of the following: 

a K-algebra of polymorphic types, 7 ; 

a set D,  for each type a E T (the domain of a); 

a binary operation .,b : D,, x D, - Db for each pair of types a, b E T (functional 
application); 

a binary operation -4 : DV(4) x T --+ U{D,) for each function 4 E [T + TI, such 
that p -4 a E D4(,) (polymorphic application); 

an interpretation Z(c) E U{D,)  for each constant c E C such that Z(c) E DIType(c)l ; 

Given a type assignment A and a type environment q, we define a Aq-environment to 
be a function p that maps domA to U{D,)  such that p(x) E DLa(,)l, for each variable 
x E domA. As with type assignments, we will regard Aq-environments as finite sets of pairs 
x: d, extending to them the notational convention p, x: d. With this, the final component of 
the p.1.i. is 

a meaning map that assigns to every typing judgment A I- M : a that is derivable 
and every type environment q a function [A t- M : a]q from Aq-environments to 
DIo1, such that (p ranges over Aq-environments) 

2. [A I- x : A(x)jqp = p(x) where x E domA 



def def where a = [a]q and b = [r]q 

4. [A I- Ax: a. M : a + r]qp mab d = [A, 5: a I- M : r]qpt 

def def where a = [a]q , b = [r]q , d E Do and p' gf p, x: d 

5. [A I- MT : art: = r]]qp = [A I- M : Vt. a]qp -4 [r]q 

where q5 gf Xa E T. [a]q{t: = a) 

6. [A I- At. M : Vt. a]qp -4 a = [A I- M : a]q{t: = a} p 

where a E T and q5 de' Xa E T. [a]q{t: = a} 

7. if for each x E F V ( M )  we have p(x) = pt(x) 
then [A I- Ad : a]qp = [A I- M : a ] ~ '  . 

8. if for each t E f v(ranA) U f v(M) we have q(t) = qf(t) 
then [A t- M : a]q = [A t- M : a]q' 

As opposed to  the previous definition of meaning for type expressions, these clauses are 
conditions to be satisfied by an a priori given meaning map and do not constitute an induc- 
tive definition. An alternative definition of models in which meaning is defined inductively 
is possible [BM84]. 

Note that the definition allows empty type domains. If for some x E domA, DIa(z)ls is 
empty then the set of Aq-environments is empty and there is only one choice for [A t- 
M : a]?the empty function. This case still fits in our definition since the clauses above 
then hold vacuously. 

A type-correct equation A ; M = N ; a is valid in Z, write 

iff [A I- M : a]q = [A I- N : a]q for every type environment q. By convention, 
all the equations we will talk about in the context of validity will be implicitly assumed 
type-correct . 
A p.1.i. is a quite general concept. For example, not even basic axioms like P are necessarily 
valid in arbitrary p.1.i.'~. However, most of the p.1.i.k we will consider are instances of 
the closed type/closed term construction of section 3 and P as well as all the equations 
provable in Xv(~ ,O)  are valid in any such p.1.i. We chose not to include these validities 
among the conditions satisfied by p.l.i's because they are not needed for the construction 



in section 4 to produce a model. In fact, Proposition 2.6 and the polymorphic extensional 
collapse construction do not even need the meaning map to satisfy conditions 7 and 8. The 
absence of these conditions, however, would burden the treatment of validities in p.1.i.'~. 

A C-polymorphic lambda model is a C-p.1.i. in which functional and polymorphic application 
are extensionak 

This definition of model for Xv is equivalent and, in fact, very close to the one in [BM84]. (In 
the presence of extensionality, conditions 7 and 8 are consequences of the other conditions 
satisfied by the meaning map.) 

A model is trivial when all its domains have at most one element. It is easy to see that a 
model is trivial if and only if it equates True and Fabe (i.e., ; True = False ; polybool 
is valid). 

It is easy to see that the axioms and rules of the proof system are sound for this notion 
of model. As was explained in [MMMS87], completeness is more complicated. One is, of 
course, interested in the strong kind of completeness, i.e., completeness of reasoning from 
additional premises. In [BM84] such a result is stated, but it amounts to completeness of 
the proof system we gave here (call it "core"), extended with the rule: 

(discharge var) 

for the subclass of models with all type domains non-empty. (The rule discharge var is not 
sound, in general, in models that can have empty type domains.) 

In [MMMS87], Meyer et al., argue that models with empty types come naturally into 
consideration. For example, the models that satisfy constraints like having exactly two 
polymorphic booleans or having exactly the numerals as polymorphic integers must have 
empty types. Furthermore, it is stated that the "core" proof system is not complete neither 
for deriving semantic consequences over the class of all models (and thus) nor for deriving 
semantic consequences over the class of all models with all types non-empty. However, as an 
aside, we note that "core" is complete for the hyperdoctrine models of Seely [See86b, See86aI 
and the topos models of Pitts [Pit87], which do not seem to fit into the framework of [BM84], 
and that Mitchell and Moggi [MM87] have shown that the proof system for the simply typed 
lambda calculus that corresponds to "core" is complete for their simply typed Kripke-style 
models. Meyer et al., give an extension of the "core" proof system that is sound and 
complete for all models [MMMS87]. This extension involves modifying the syntax of the 
equations to allow "type emptiness" assertions to be added to the type assignments as well 
as new axioms and inference rules. 

However, as far as the model constructions described in the present paper are concerned, 
we note that it does not matter which of the three proof systems we use to construct our 



closed type/closed term interpretations. Indeed, by Church-Rosser arguments, discharge 
var is a derived rule in the pure XV theory or in other theories axiomatized by additional 
equations that can be analyzed, together with Xv, by Church-Rosser reduction. Thus, the 
closed type/closed term constructions of subsections 5.1 and 5.3 are the same as the ones 
that would be obtained using the extended proof system of [MMMS87] or the proof system 
with discharge var. 

2.3 Logical relations 

Second-order logical relations were introduced in [MM85]. Here we will review only a 
particular case of this concept, the case that we need for the polymorphic extensional 
collapse. 

Fix a polymorphic signature, C = (K, C), and a C-p.l.i., Z. 

A logical relation on Z is a family R = {Ra)aET of binary relations on the type domains, 
R ,  5 D, x D, such that 

f Ra+bg  iff VdVe d R ,  e =j f .,bd Rb g.,be 

and 

P q iff Va P -4 a Rd(a) q -4 a * 

We say that R relates the constants in  C if 

Proposition 2.6 (Fundamental property of logical relations) 
If R is a logical relation on Z which relates the constants in  C then, for any derivable typing 
judgment A k M : a,  any type environment q and any two Aq-environments p l  and pz, if 

then 

!A k M : ~ B V P I  RI,], [ A  I- M : ojqPz . 

The proof is by a routine induction on A I- M : a. 

We will make essential use of this property in the polymorphic extensional collapse and, in 
fact, the definition of polymorphic lambda interpretations was engineered to consist of the 
"minimum necessary" to make the proof of Proposition 2.6 work (almost; see the remark 
about conditions 7 and 8 in the previous subsection). 



3 The closed type/closed term construction 

For any polymorphic theory, it is possible to construct a p.1.i. out of closed type expressions 
and classes of closed terms equated in the theory. This p.1.i. is closely related to the theory 
and, as we will see in the applications, the additional axioms of the theory can be used to 
determine the content of its type domains. In this section we present the construction in 
general. 

Fix a polymorphic theory, Av(C, E), and construct a p.l.i., Z, as follows: 

We start with the observation that the closed type expressions form an algebra of polymor- 
phic types. Indeed, if we take T to be the set of closed K-polymorphic type expressions, 
we can take 

[T + TI !Ef {Aw E T. o[t : = w] I Vt. u closed) . 
The rest of the definition of the algebra of types of 1 is straightforward. The meaning map 
satisfies 

[U]V = U[tl : = '$'(tl), . . . , tk : = V(tk)] 

def where{tl, ..., tk) = fv(0). 

Then, for each closed type expression w we define a relation G, on the set of closed C-terms 
of type w: 

P G w Q  iff E E " ; P = Q ; ~ .  

G, is an equivalence relation and even a congruence w.r.t. functional and polymorphic 
application. Therefore, we take the domain of w in Z to consist of the congruence classes of 
closed terms of type w, modulo G,, and we define application via representatives, as usual. 

def 
We denote by G,[P] the congruence class of P modulo G,. Take Z(c) = Gr,,,(,)[c]. 

The meaning map is defined via substitution: 

def 
[ ~ l : u l , . . . , X n : ~ n  M :  oITtlp = Gbln[QJ 

where 
def 

Q = M[tl : = q(tl), . . . , tm : = ~(t,),  x1 : = PI,. . . , xn : = Pn] 

where {ti,. . . , t,} dCf f v(M) U f ~ ( 0 1 )  u . . U f v(on) and 

By Lemma 2.1, the choice of the Pi's does not matter so meaning is well-defined. It is easy 
to check that Z is a C-p.1.i. and that all the equations in E are valid in Z. In fact, more is 
true: 

Lemma 3.1 
~f E t A v e  thenZ C e . 



The converse is not true, in general. Counterexample: K = {k) , C = {c : k , f ,  g : k + k) , E = 
{ ;  f c  = g c ;  k)and e = ( x : k ;  f x  = g x ;  k). 

We will call Z the closed type/cbsed term polymorphic lambda interpretation of the given 
theory. 

In general, closed type/closed term p.1.i.'~ are not extensional (see subsection 5.1 for a 
counterexample) and, therefore, are not models. The following section will describe a general 
method for achieving extensionality. 

4 Polymorphic extensional collapse 

4.1 Preliminaries 

The extensional collapse construction starts from an arbitrary p.1.i. and produces a model, 
thus achieving extensionality of functional and polymorphic application. In doing so, the 
construction makes heavy use of partial equivalence relations (p.e.r.'s), i.e., relations that 
are symmetric and transitive but not necessarily reflexive. 

If D is a set, let per(D) denote the set of partial equivalence relations on D. Note that the 
empty relation is also a p.e.r. Let R E per(D). We denote by R[d] the p.e.r. class of d mod 
R. Note that R[d] # Q) iff d R d. The quotient set D/R is the set of all non-empty p.e.r. 
classes mod R. Clearly R is empty iff D/R is empty. Another way of looking at p.e.r.'s 
is as pairs consisting of a subset of D and an equivalence relation on that subset. For this 
reason, D/R is sometimes called a subquotient. 

For the remainder of the section, fix a polymorphic signature, C = (K, C). 

4.2 Factoring by a logical partial equivalence relation 

Suppose that we have a C-p.l.i., Z, and a logical relation R on it, which is such that each R, 
is a partial equivalence relation. We will call such an R a logical p.e.r. Suppose, moreover, 
that R relates the constants in C. We construct a new C-p.l.i., denoted Z/R and called the 
quotient of Z by R as follows: 

The algebra of types will be the same. As domains we take the quotient sets D,/R,. Since 
R is logical, it is also a congruence w.r.t. functional and polymorphic application therefore 
we can define functional and polymorphic application on the quotient sets straightforwardly, 
via representatives. Take 

~ / R ( C )  d"' R[~pe(c),[Z(c)l 
(which is non-empty because R relates the constants). 

To show how to define the meaning function let us fix a derivable typing statement A I- M : a 
and a type environment 7. For any Z/R-AT-environment j?, choose an Z-AT-environment 
p such that 

VX E doma, @(x) = R[A(Z)],[P(X)] 



and then define 
[A I- M : o]'IR3 RIoln[[A I- M : al'qp] . 

Indeed, by Proposition 2.6 the definition does not depend on the- choice of p and also 
[A I- M : ~ 1 ) ~ ~  is related to  itself hence its p.e.r. class is nonempty. It is easy to check 
that the meaning map defined this way satisfies the required conditions, thus 1/72 is a p.1.i. 

Lemma 4.1 
1/72 is actually a model, that is, functional and polymorphic application are extensional. 

Indeed, for polymorphic application extensionality is immediate while for functional appli- 
cation it can be seen that 

if f f and g R a + b g  and (vd f e a b d  Rb g'abd) then f R a - r b g .  

Moreover, from the way meaning is defined, it follows that any equation valid in Z is also 
valid in 1/72. The converse is in general not true since, for example, there can be pairs 
of closed terms whose meanings in 1 are distinct but related by R and therefore whose 
meanings in 1/72 are the same p.e.r. class. 

4.3 Tagging the types with partial equivalence relations 

Suppose that we have a p.1.i. and we would like to construct a model out of it, by factoring 
through a logical p.e.r., as explained in the previous subsection. How do we obtain such a 
logical p .e.r .? 

The difficulty comes from the inherent impredicativity of Xv. This prevents the condition 

from being used as an inductive definition clause since it is possible that V(+) = +(a) 
(e.g., take g5 to be the identity map and a to  be V(+)). Thus, constructing a logical p.e.r. is 
like solving a system of equations. It is therefore natural to enlarge the space in which we 
search for solutions, in the hope of increasing the chances of finding one. Instead of logical 
p.e.r.'s, which have one p.e.r. for each type, we will search for collections of several p.e.r.'s 
at  each type, satisfying "logicality" conditions. In extrernis, taking all p.e.r.'s at each type 
will always work, but smaller collections will also be useful. Then, such a collection will 
give an actual logical p.e.r., not on the original p.l.i., but on a modified one in which each 
original type is split in as many copies as there are p.e.r.'s on it in the collection. 

Fix a C-p.l.i., Z (with algebra of types I). A logical p.e..r. collection, P, on Z has two 
components. The first component is a family {Pa}aET, of non-empty sets of p.e.r.'s, 0 # 
Pa per(Da), satisfying the following closure conditions: 



for any a, b E T, any R E Pa and any S E Pb, the binary relation R-+ S on Da+b 
defined by 

f R + S g  iff VdVe d R e  f . ,bdSg- ,be  

(which is easily shown to be a p.e.r. too) is actually in P a + b ;  

for any 4 E [T + T] and any family, 7-1 = {Ha)aE~,  of maps Ha : Pa + Pd(,), the 
binary relation V(7-1) on Dtl(4) defined by 

p V(7-1) q iff Va,VR p -4 a Ha(R) q -4 a . 

(which is, trivially, also a p.e.r.) is actually in PV(4); 

The second component is a p.e.r.-interpretation P(k) E P7(kI for each type constant k E K. 

d ~ f  Any logical p.e.r. R trivially determines a logical p.e.r. collection, P, namely take Pa - 
{R,) and P(k) def R q k ) .  At the other extreme, the collection that consists of all p.e.r.'s 
at each type is also logical (since R -+ S and V(7-l) are always p.e.r.'s). See the proof of 
Theorem 5.7 for an intermediate example. 

Given such a logical p.e.r. collection, P, on 1, we construct a new C-p.l.i., Z(P). First, from 
the algebra of types 7, construct I (P) as follows: 

the new set of types is T(P)  *' {<a, R> 1 a E T , R E Pa); 

[T(P) + T(P)] consists of all the functions determined (one-to-one) by pairs <4,7-1> 
where 4 E [T + T] and 7-1 = {Ha)aET is a family of maps Ha : Pa - Pd(,); 

Lemma 4.2 
I (P)  is an algebra of polymorphic types. Moreover 

The proof shows by simultaneous induction on a that the inductive definition of [a]17(') is 
possible and that, when defined that way, satisfies, for all 7,  the property stated in 
the lemma. 

The rest of the definition of Z(P) is by "taking the first projection of the types": 

def 
= Da ; 



def f '<a,R><b,S> d = f 'ab d ; 

Clearly, any equation valid in Z is valid in Z(P). The converse is also true since any T-type 
environment is the first projection of some T(P)-type environment. 

The benefit of all this is that now we have a family R ( P )  = { R ( P ) < ~ , s > ) < ~ , s > ~ T ( ~ )  of 
def p.e.r.'s, one at each new type, namely R(P)<a,s> = S such that 

Lemma 4.3 
R ( P )  is a logical p.e.r. on Z(P) .  

As usual with logical relations, it does not follow in general that R ( P )  relates the constants 
in C. This has to  be checked for each particular construction. 

4.4 Properties of the construction 

Suppose we have a C-p.l.i., 1, and a logical p.e.r. collection, P, on it such that the resulting 
logical p.e.r. R ( P )  relates the constants in C. Then, by the lemmas in the previous 
subsections, Z(P) /R(P)  is a C-model. We will call this model the polymorphic extensional 
collapse of Z and P and denote it by cobl(Z, P ) .  

By the observations in the previous subsections, any equation valid in Z is also valid in 
coll(Z, P ) ,  while the converse fails, in general. On the other hand, it is important in appli- 
cations to  ensure that coll(Z,P) is non-trivial. The following result gives useful sufficient 
conditions for this. 

Proposition 4.4 
Assume that Z {p, type P) and that P contains, at  each type, the identity p.e.r. Then, 
if Z does not equate (the meanings of) True and False, coll(Z,P) does not equate them 
either. 

Proof. Let tt ef  rue]' and fl ef [ ~ a l s e p .  Suppose coll(Z,P) equates True and 
False. Then, 

tt R(P)[p~lyb~~l17('J3 fl * 

A straightforward computation gives 



Thus, for any a E T and any R  E Pa we have 

(tt a) R+ R 4  R  (fl a)  . 

Let bb %f bly6wl]7. Take a = bb and R  = ID, the identity on Dbb.  Since tt ID tt and 
fl ID fl we obtain 

(tt bb tt fl) ID ( 8  bb tt fl) . 

Using the fact that Z + {P, type P} we obtain tt bb tt fl = tt and 8 bb tt fl = fl , 
hence Z equates True and False too. End of Proof. 

If Z is a model to begin with, then, because of extensionality, the relation ZV consisting of 
the identity on each type domain is actually logical and thus a logical p.e.r. on Z. Moreover, 
as we have noted before, ZV trivially determines a logical p.e.r. collection on Z (call it ZD 
too) such that R(ZD) turns out to be the identity logical p.e.r. on Z(Z2)) (and thus to relate 
the constants). Clearly, we have the isomorphisms coll(Z,Z2)) e Z(ZV) = Z. Therefore, 
the class of models obtained by polymorphic extensional collapse is as general as the class 
of all models. 

Finally, for any p.l.i., Z, and any p.e.r.-interpretation, n, for the type constants (i.e., n 
maps each type constant k to a p.e.r. n(k) E p e ~ ' ( D ~ ( ~ ) )  consider the logical p.e.r. collection 

ALL, consisting, at each type, of all p.e.r.'s (i.e., (ALL,)a sf per(Da)), and such that 

AfL,(k) dCf n(k). Then, eoll(Z,ALL,) is the construction that we called 'polymorphic 
extensional collapse" in [BC87]. Since the empty relation is a p.e.r., we have immediately 

Proposition 4.5 
The domain of the (meaning of the) type Vt. t in coll(Z,ALL,) is empty. 

Consequently, the models obtained as coll(Z, ALL,) from arbitrary p.l.i.'s, Z, are not arbi- 
trary at all. For example, Proposition 4.5 implies that the non-trivial equation 

is valid in all such models. It is an open question to characterize the theory of this class of 
models. 

5 Applications 

5.1 A minimal(?) model 

We will present here the model, call it C, with exactly two polymorphic booleans that was 
given in [Coq86] (see the discussion in the introduction). It turns out that the model has also 
exactly the numerals as polymorphic integers as well as an entire class of such "rninimality" 
properties. 



Consider To, the closed type/closed term p.1.i. of the pure polymorphic lambda calculus 
(the polymorphic theory with K = C = E = 0). In Zo, we can think of the domain 
of each closed type w as consisting of all closed normal forms of type w.  In particular, 
the interpretation does not equate True and False. Moreover, by Lemma 3.1, all the 
equations that are provable in the pure AV are valid in To. However, this p.1.i. is not 
yet a model because extensionality fails. For example, there are two distinct elements of 
type (Vt. t )  -+(Vt. t) -+(Vt. t) namely (the equivalence classes of) Xx:Vt. t. Xy:Vt. t. x and 
Ax: Vt. t. Xy:Vt. t .  y while by extensionality there should be at most one since there are no 
elements of type Vt. t. 

Hence the idea of [Coq86] of combining the closed type/closed term construction with 
factoring by p.e.r.'s and thus achieving extensionality. This amounts to constructing the 
model 

def C = coll(Zo,ALLQ) . 
(since K = 0, the p.e.r.-interpretation can only be the empty map). By Proposition 4.4, C 
is non-trivial. 

The model C has a very interesting property: by construction, all the elements of C are 
denotable by pure closed terms. Therefore, since C is non-trivial, it must have exactly two 
polymorphic booleans. The idea used in the proof of Proposition 4.4 can be adapted (see 
[BC87]) to show that C does not equate distinct numerals either, thus has only the numerals 
as polymorphic integers. However, it has been pointed out to us by Meyer that this, and 
more, should already follow from the non-triviality of C and a general result of Statman 
[Sta83]. Notice that polybool and polyint are quite special types. More precisely, let us 
define an ML-polymorphic type to be a closed type expression of the form Vtl . . .Vt,. o 
where a is V-free. (These types correspond to the limited kind of polymorphism allowed 
in the language ML [GMW79].) As expected, the "combinatorics" of pure terms of ML- 
polymorphic type is essentially that of simply typed terms. The following is a result about 
simply typed lambda terms from [Sta83], rephrased for ML-polymorphic terms. 

Theorem 5.1 (Stat  man's Typical Ambiguity Theorem) 
Let w be an ML-polymorphic type and M, N two pure closed terms of type w. If 

then there exists a pure closed term L : w +polybool such that 

tAv ; L M = True ; polybool and tp ; L N = False ; polybool . 

Therefore, while a lot of additional equations are expected to hold in C, no such closed 
equations will hold at ML-polymorphic types. To summarize, we introduce the following 
definition. Let w be a closed type. A model of AV is said to be canonical at w if the meaning 
map establishes a bijection between the closed normal forms of type w and the elements of 
the domain of w. 



Proposition 5.2 
The model C is canonical at  all ML-polymorphic types. 

This proves, and strengthens, the first half of Conjecture 1.3 of [MMMS87], which that 
for each ML-polymorphic type w, there exists a non-trivial model (with empty types) that 
is canonical at w. In [Bre87b] it is shown that the second half of this conjecture, which 
states that a non-trivial model that has all types non-empty cannot be canonical a t  any 
ML-polymorphic type, also holds. 

A very interesting open problem is to characterize the theory of C. A possibility, suggested 
by Statman [Mog86b], is that the theory of C is the maximal consistent polymorphic theory 
whose existence was proved by Moggi [Mog86b]. This would completely justify calling C a 
minimal model. 

5.2 "Erase-types" models 

These models are obtained by applying the polymorphic extensional collapse to "erase- 
types" p.1.i.'~ in which the terms are interpreted by first erasing the type information and 
then interpreting the resulting untyped terms in, say, some combinatory algebra (via the 
usual translation into combinatory terms; see [Bar84]). 

Fix a polymorphic signature C = (K,C). We consider untyped lambda terms built from 
the same variables used for the polymorphic lambda terms and from constants in C.  Again, 
we identify terms that differ only in the name of the bound variables. 

A C-untyped lambda interpretation (called pseudo-X-structum in [HL80]), U, consists of the 
following: 

a a non-empty set D; 

a a binary operation . on D (application); 

a an interpretation U(c) E D for each constant c E C; 

a a "meaning" map that assigns to every untyped lambda term M and every D- 
environment n an element [M]n of D (we define a D-environment to be a map from 
variables to D and we will use n to  range over D-environments) such that: 



4. [Ax. MIJT . d = [M]n{x: = d) where d E D 

5. if Vx E F V ( M ) ,  nl(x) = n2(x) then IIM]?rl = [M]n2 

If application is also extensional we get the usual concept of model of the untyped APq- 
calculus [HL80, Mey82, Bar841. 

Any combinatory algebra yields an untyped lambda interpretation. Namely, the meaning 
map [M]T is defined by first translating M into a combinatory term [Bar841 and then 
interpreting the result in the algebra. 

Now, starting from an arbitrary K-algebra of polymorphic types 7 and an arbitrary C- 
untyped lambda interpretation U, we construct an emse-types C-p.l.i., emse(T,U), as fol- 
lows. 

The algebra of types is, of course, I. The domain of each type is a copy of D, the domain of 
U. Functional application is given by the application in U. Polymorphic application simply 
erases the type: 

d& 
P.ba  - P -  

Finally, the meaning map is defined by 

where T is some D-environment that takes the same values as p on F V ( M )  (by (4) above, 
only these values matter) and where Erase(Ax:o. M )  = Ax. Erase(M), Erase(Mo) = 
Erase(M), Erase(At. M )  = Erase(M), etc., . 
An emse-types model is a model obtained by polymorphic extensional collapse from an 
erase-types p.l.i., i.e., has the form coll(emse(7, U), P). 

Moggi's ingenious construction [Mog86a] having exactly two elements of type polybol 
amounts t o  the erase-types model 

def M = coll(emse(1, Term), ALLe) 

where 1 is the algebra of polymorphic types consisting of just one type (the rest of the 
definition is forced) and Term is the pq  open term model of the untyped lambda calculus 
(see [Bar841 p. 96). In what follows we generalize the argument about M that Moggi 
gave for polybool to a certain class of ML-polymorphic types. Define the mnk of an ML- 
polymorphic type by induction on the Q-free part: mnk(t) = 0 for any type variable t and 
mnk(a + r )  = max{rnnk(a) + 1, mnk(r)}. Thus, Vt. t has rank 0, polybol has rank 1 and 
polyint has rank 2. 

Proposition 5.3 (Moggi) 
The model M is canonical cat all ML-polymorphic types of mnk 5 2. 



Proof. We will give the proof for a complicated enough type of rank 2, say 

From this, it should be clear to the reader how to proceed in general. The closed normal 
forms of type w are 

Xr. As. Ax: r. Xg: s + r. Xy: T. X f :  T + s. Xz: s. X 

where X is one of the terms in 

Define also the set 

def 
Q = j.7 f (9.4, f (s(f (9.>>>, - - .)u 

U{f Y? f (s(f Y)), f (s(f (9(f Y)))), . - .) u 
~ ( f x ,  f (g(fx)), f (g(f (dfx)))) ,  -1 

Let [MI denote the equivalence class of the untyped term M mod pq-conversion. Let 

A l(ALLI), i.e., the logical p.e.r. constructed on emse(l,lerm)(ALL1). We claim 
that, for any untyped terms M, N, if 

then there exists a closed normal form of type w,  Q, such that both M and N pq-convert 
to Erase(Q). It is easy to see that the claim implies that M is canonical at w. 

To prove the claim, note that (3) implies that for any R, S, p.e.r.'s on the set of equivalence 
classes of untyped lambda terms 

[MI (R+(S+R) - .R+(R- tS )+S- tR)  [N] .  

Let x, y, z, f ,  g be fresh variables. Take 

R ef {< [X],[X] > IX E a )  and S kf {< [Z],[Z] > 1.2 E 9) , 
with the notations defined above. Clearly, [XI R[x], [y] R[y] and [z]S[z], and, it is easy to see 
that [f](R + S)[ f ]  and [g](S -t R)[g]. It follows that [Mxgy f z]R[Nxgy f z] therefore there 
exists an X E 9 such that both Mxgy f z  and Nxgy f z  pq-convert to it, thus both M and 
N convert to Xxgy fz. X .  End of Proof. 

We don't know what happens at ML-polymorphic types of rank 3 or more. 

Note that if U is actually an untyped lambda model (untyped application is already exten- 
sional) then emse(T,U) is already a model: functional application is extensional because 



the untyped application is while polymorphic application is always (trivially) extensional! 
However, such a model is much too coarse: all elements have all types! The point of 
continuing with a polymorphic extensional collapse-as suggested by Moggi7s idea-seems 
therefore to be the "pruning" of the model, while preserving extensionality. 

Finally, we show that the class of erase-types models is (up to isomorphism) the same as 
Mitchell's class of PER models [Mit86b]. Such models are determined by three parame- 
ters: an algebra of polymorphic types 7, an untyped lambda interpretation U (actually, 
Mitchell requires U to be an untyped lambda model but the construction goes through for 
interpretations) and (what amounts to) a logical p.e.r. that relates the constants, R, on 
erase(7,U). The model is then defined as the quotient emse(7,U)lR. 

Given a PER model determined by 7, U and R, as we have remarked before, R triv- 
ially determines a logical p.e.r. collection, call it R too, and erase(7,U)lR is isomor- 
phic to the erase-types model coll(emse(7,U), R). Conversely, any erase-types model, 
coll(erase(T,U),P), is isomorphic to the PER model determined by T(P), U and R(P) .  

5.3 Full and faithful embedding of simply typed models 

We begin by reviewing the simply typed lambda calculus, seen as a fragment of A". Let 
K be a set of (base) type constants. The K-simple type expressions are built out of base 
types from K and the -t constructor, thus are always closed. Let C be a set of constants 
of simple type. The (K, C)-simple mw terms are defined by: 

From what we described for the polymorphic calculus, it is straightforward to define simple 
type-checking and simply typed equational reasoning. Simply typed models are like in [Fri75]. 
The definition, as well as that of simply typed lambda interpretations, can also be extracted 
from our definitions of polymorphic interpretations and models, by ignoring the algebra 
of polymorphic types, taking the meanings of simple types to be the types themselves, 
ignoring type environments and polymorphic application and keeping only the relevant 
meaning clauses. 

Fix a simply typed signature C = (K, C), i.e., a polymorphic signature in which the types 
of the constants are simple. Let & be a C-polymorphic model. There is an obvious way 
to extract a C-simply typed model, s(&), out of & by selecting only the domains (of the 
meanings) of the simple types. Given a E-simply typed model 2) and a polymorphic model 
C we say that 2, is fully and faithfully embedded in C if 2) is isomorphic to s(E).  (Here, an 
isomorphism is a bijection that preserves types and meaning; hence, in particular, it will 
also preserve application and the interpretation of constants.) The crucial property of full 
and faithful embeddings, used in proofs of conservative extension, is that for any simple 
equation e, 2) + e iff & + e. 

Theorem 5.4 ([BM87b]) 
Any simply typed lambda model can be fully and faithfully embedded in a polymorphic lambda 
model. 



Proof. Let 2) be a (K,C)-simply typed model. For each element d of V we introduce a 
1 def 

new constant qd of the same type. Let C' sf C U {qd I d E 2)) and C = (K,  C'). D is also 
a C'-model, in an obvious manner. For each simple type a and for each closed C'-simply 
typed term M of type a that is not a q d ,  we introduce an equation 

We will denote by H the set formed by these equations. 

The first step is to construct the closed type/closed term C'-p.l.i., Z, of the theory XV(C', H). 
We claim that, as a C'- simply typed interpretation, 2) is fully and faithfully embedded in 
Z via the map that takes d E D, to  the congruence class G,[qd]. In particular, in Z, the 
restriction of functional application to simple types is extensional (because application in 
D is extensional). 

Indeed, note that for any closed C'-polymorphic term M of simple type, nf (M) is simple 
(see Lemma A.2 in Appendix A) hence M is provably equal in XV(C', H )  to q ~ ~ f ( ~ ) ] .  This 
proves the fullness of the embedding. For faithfulness, we show 

Lemma 5.5 
If P and Q are closed polymorphic terms of simple type a and ; P = Q ; a is provable i n  
XV(z', H ) ,  then [nf (p)BV = [nf (Q)jv. 

Indeed, this implies that if H kAV qd = qdl then d = dl. 

Proof of Lemma. In view of the well-known equivalence between provability using an 
equational proof system like the one we defined, and provability by chains of replacements 
of equals by equals (see, for example, [BM87b]), we can prove the result by induction on 
the length of such chains of replacements. 

The induction is trivial except for the base case of a replacement using one of the axioms in 
H .  Suppose Q is obtained from P by replacing an occurrence of a closed and simply typed 
subterm M of P by q[w. Let T be the type of M and z a fresh variable of type T. Then, 
there exists a polymorphic term Z with FV(Z) = {z} and with exactly one occurrence of 
a, such that P = Z[z: = MI and Q = Z[z: = qIW]. We have 

I-*' ; P = (Xz: r. nf (Z))M ; a and kp ; Q = (Xz: T. n f  (Z))q[w ; a . 

But, by Lemma A.2, nf ( 2 )  is a simply typed term too, so we calculate 

[ n f  (PI] = 1.f ((X.: 7. n f  (-vM)1 = 
[(Xz: T. nf (Z))M] = [Xz: T. n f  (Z)][M] = 

1x2: 7. nf ( z ) ] [ q [ ~ ~ j  = - - - = Bnf (&)I 

where all the meanings are in D and where we use the fact that Xv-reductions from a simply 
typed term are in fact simply typed reductions, hence sound in 2). End of Proof. 



While it is true that 2) is fully and faithfully embedded in Z, Z is not extensional and 
hence not a model. We will therefore continue with a polymorphic extensional collapse, 
and show that the full and faithful embedding "survives" it. More precisely, we construct 

& sf coll(Z,ALL,) where, for each k, r(k) is the identity p.e.r. on the domain of (the 
meaning of) k in 2. 

Recall that Z(ALL,) is the notation for the p.1.i. obtained by tagging the types of Z with 
p.e.r.'s from ALL,, that T(ALL,) is the notation for the algebra of polymorphic types of 
2(ALL,), that R(ALL,) is the notation for the resulting logical p.e.r. on Z(ALL,), and, 

finally, that coll(Z, ALL,) sf Z(ALL,)/R(ALL,). 

Lemma 5.6 
For any simple type a, the component of R(ALL,) which corresponds to the meaning of a 
in T(ALL,) is also the identity p.e.r. 

This follows by induction on simple types using the fact that functional application in Z is 
extensional at simple types. 

One consequence of the lemma is that R(ALL,) relates the constants in C' since they are 
all of simple type. Thus, & is a E'-polymorphic model. Another consequence is that the 
extensional collapse leaves the domains of simple types unchanged, which was exactly the 
part of 2 onto which 2) was fully and faithfully embedded. Thus, 2) is also fully and faithfully 
embedded in &. The desired C-model is obtained by "forgetting" about the interpretation 
of the qd7s. End of Proof. 

As we mentioned in the introduction, this result serves to prove that simply typed theories 
are conservatively extended by polymorphic constructs and axioms [Bre87a, BM87bl. Of 
course, a conservative extension result depends on the proof sytems that are considered. 
As explained in [MMMS87] (see also our discussion in subsection 2.2), for both A' and the 
simply typed lambda calculus, there are at least two proof systems of interest: one that is 
complete for deriving semantic consequences over all models, call it "all", and one that is 
complete for deriving semantic consequences over all models with all  types non-empty, call 
it "non-empty". By Proposition 4.5, the previous full and faithful embedding construction 
always produces polymorphic models that have some empty types, even if the embedded 
simple model had all types non-empty. Therefore, Theorem 5.4, will imply only conservative 
extension for the "all" proof systems. For "non-empty", we need our next result (there is 
also a purely syntactic proof [BM87b]). 

Theorem 5.7 
Any simply typed lambda model with all type domains non-empty can be fully and faithfully 
embedded in a polymorphic lambda model with all type domains non-empty. 

Proof. The proof uses and extends both ideas from the previous embedding and an idea 
of Mitchell and Moggi on how to fully and faithfully embed arbitrary non-empty one- 
sorted algebras in erase-types models with all types non-empty [Mit86a]. Remember that 
a polymorphic model has all types non-empty iff the domain of [Vt. t ]  is non-empty. 



Let 2) be a (K,C)-simply typed model with all types non-empty. For each base type 
k E K ,  choose an element 4 E Dk. For each element d of D we introduce a new constant 
qd of the same type. Moreover, we introduce another new constant E of type Vt. t . Let 

c ' % ~  C U { ~ ~ I ~ E D } ~ ~ X I Y ( K , C ~ ) .  ~ e t c " d e '  C'U{E} a n d X " % ( ~ , C " ) .  For 
each simple type a and for each closed C1-simply typed term M of type u that is not a qd, 
we introduce an equation 

; M = q [ j q ; a .  

We will denote by H the set formed by these equations. We also introduce the equations 

where a, T range over closed polymorphic type expressions, 

; E(Vt. a )  = Xt.EU ; vt. u 

where a ranges over polymorphic type expressions such that Vt. a is closed and 

where k ranges over K. We will denote by E, the set formed by these three kinds of 
equations. 

We construct again the closed type/closed term El1-p.l.i., Z, of the theory XV(Cf1, E, U H) 
and, again, we claim that, as a C1- simply typed interpretation, D is fully and faithfully 
embedded in Z via the map that takes d E D, to the congruence class G, [qd]. To see this, 
consider the reduction system X'E consisting of the usual reductions of AV plus the notion 
of reduction E defined as the union of a l l  the equations of E, oriented from left to right. 
It is easy to show that A'& is Church-Rosser on terms that type-check (use the Hindley- 
Rosen Lemma; see our comments to the proof of Theorem 2.2). Moreover, in Lemma A.l  
(Appendix A), we show that any polymorphic term of simple type and with free variables of 
simple type has an X'E-normal form which is actually a simply typed term. With this, the 
fullness and faithfulness of the embedding are shown just like in the proof of the previous 
theorem. 

By abuse of notation, let us denote the meaning of the constant E in Z also by E . Let 7 
be the algebra of polymorphic types of Z and {Ia}aGT be the type domains of Z. For any 
a E T there is an element E a E I, (we omit the dot for polymorphic application) and we 
have 

( E  ( a  -+ b)) i = E b where a, b E T , i E I, 

(~V(q5)) -4  a = E 4(a); where 4 E [T + TI , a E T . 
This will insure that the p.e.r. collection P, on Z, defined by 

Pa gf {RI R E per(&) and (E a) R (E a)} 



and by taking P(k) to be the identity p.e.r. on the domain of (the meaning of) k, is logical. 
def Thus, we can construct the model & = col l (Z,P) .  It is easy to  see that 

thus E will survive the polymorphic extensional collapse. It follows that & has all types 
non-empty. The rest of the proof, which checks that D is also fully and faithfully embedded 
in & is just like in the proof of the previous theorem. End of Proof. 

5.4 Full and faithful embedding of algebras 

It is well-known that any many-sorted algebra can be fully and faithfully embedded into 
a simply typed lambda model. Indeed, the simply typed model will have as base type 
domains the carriers of the algebra and, at higher types, the domain of a -+ T will consist 
of all functions from the domain of a to the domain of T .  Moreover, if the carriers of 
the algebra are all non-empty then the type domains of the simply typed model are all 
non-empty too. From this and Theorems 5.4 and 5.7 we deduce: 

Theorem 5.8 
Any many-sorted algebra can be fully and faithfully embedded in a polymorphic lambda 
model. Any many-sorted algebra with all sort carriers non-empty can be fully and faithfully 
embedded in a polymorphic lambda model with all type domains non-empty. 

This will imply some of the desired conservative extension results about adding Xv to arbi- 
trary algebraic theories [BM87a, Bre87al. 

It can be argued that that the full and faithful embedding of algebras into simply typed 
models described above, while conceptually very simple, is too "lavish", that is, the resulting 
simply typed model has much "more" elements than what is needed for the embedding. 
Indeed, a better construction uses the simply typed version of the extensional collapse (see 
[Tro73] or [Bar84], p. 565). It is also possible to give a direct and "lean" constructions for the 
proof of Theorem 5.8. The constructions are similar to those of Theorem 5.4 Theorem 5.7 
and the first one is sketched in [BC87]. Most likely, this direct constructions produces 
models that are isomorphic to the ones produced by the simply typed extensional collapse 
embeddings followed by the embeddings of Theorem 5.4 and Theorem 5.7. 

In [Mit86b] it is stated that PER models can be used to obtain faithful but not full embed- 
dings of algebras into models of the polymorphic lambda calculus. Next, we obtained full 
and faithful embeddings of many-sorted algebras into models of Xv, but the resulting mod- 
els had always empty types (work described in [BC87]). Subsequently, Mitchell and Moggi 
independently discovered how to do faithful and full embeddings of many-sorted algebras 
into PER models that have empty types and full and faithful embeddings of non-empty one- 
sorted algebras into PER models with all types non-empty [Mit86a]. Theorem 5.8 finally 
provides a completely satisfactory answer to the question. 
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Appendix A 

Refer to the notation of the proof of Theorem 5.7. 

Lemma A.l Any C"-polymorphic term of simple type and with free variables of simple 
type only has a AVc-normal form, which, moreover is a simply typed term (in particular, 
&-free). 

Proof. It  is sufficient to prove the lemma for Av-normal forms. We proceed by induction 
on the length of the n.f. 

A'-normal forms of length 1, of simple type and with free variable of simple type must 
be variables or constants of simple type (thus distinct from E )  and therefore are already 
A'E-normal forms and simply typed. 

If the lenghth is greater than 1, the Av-n.f. must have the form 

Ax1: 01 . . . Ax,: om. h a1 . . - a, 

where m,n 2 0, 01,. . . ,a, are simple types, h is a variable or a constant, al,. . . ,am are 
either type expressions or terms in Av-normal form and h a1 . . . a, is of simple type. 

If h is not E then it must be a variable or constant of simple type, thus al, . . . , a, are all 
terms of simple type. Then, by induction hypothesis, each aj has a X'E-normal form Nj 
which is also a simply typed term. Hence, the whole term has the simply typed A'E-normal 
form 

Axl:ol ... Ax,:u,. h N l . . - N n  . 

If h is E,  let T be the (simple) type of E a1 . . - a,. An easy induction on m shows that 

But T must be of the form TI -t - .  . -t T,I + Ic so 

Thus, the whole term has the simply typed AV&-normal form 



End of Proof. 

Refer now to the notation of the proof of Theorem 5.4. 

Lemma A.2 The Xv-normal form of any Cf-polymorphic term of simple type and with free 
variables of simple type only is actually a simply typed term. 

The proof, by induction on the length of Xv-normal forms, can be extracted from the proof 
of the previous lemma by ignoring the complications caused by E .  

Appendix B: Historical note 

The connection between extensionality and p.e.r.'s has a long history. For the case of 
simple (finite) types, the idea that (what amounts to) simply typed logical p.e.r.'s give 
extensionality is attributed in [Tro73], p. 124, to Zucker. Barendregt ([Bar84], p. 565), gives 
the name "extensional collapse" to Zucker's construction. The construction was extensively 
used by Statman [Sta82]. However, in [Sta80], Statman, while still refering (via [Sta82]) to 
[Tro73], calls essentially the same construction, the Gandy "hull", presumably in reference 
to [Gan56]. The extensional collapse was used to  compare Kreisel's extensional model 
HE0 [Kre59] with Kreisel-Troelstra's non-extensional "model" HRO [Tro73]. P.e.r.'s play 
a crucial role in the construction of HEO, but the extensional collapse of HRO, H R O ~ ,  is 
set-theoretically distinct from HE0 ([Tro73], p. 127). However, it was shown by Bezem 
(announcement in [Bar84], p. 566) that H R O ~  and HE0 are isomorphic. 

Troelstra has extended HRO to Girard's second-order types (which include the types of 
Xv), constructing the non-extensional "model" H R O ~  [Tro73] while Girard extended the 
HE0 construction to HE02 [Gir72]. As mentioned in [Mit86b], Plotkin and Moggi have 
(independently from Girard's construction) constructed a model of Xv, that seems to be 
intimately related to H E O ~ .  The Plotkin-Moggi model construction starts from the partial 
combinatory algebra of natural numbers and Kleene brackets application. It then uses 
a generalization to partial application of (what amounts to) the polymorphic extensional 
collapse for erase-types polymorphic lambda interpretations and the logical p.e.r. family (see 
subsection 4.3) consisting of all p.e.r.'s. The most obvious (but perhaps minor) difference 
between this model and HE02 is that there are empty types here but all the types of HE02 
are non-empty, due to the addition of a canonical element, 0, at each type. 

The categorical correspondent of the Plotkin-Moggi model is the Moggi-Hyland interpreta- 
tion of in the modest sets (a name given by D. Scott) which form an internally complete 
subcategory of the realizability universe or effective topos, [Hy187]. This interpretation has 
the remarkable property that the polymorphic types are interpreted as products of modest- 
set objects, which can be seen as intuitionistic-set-theoretic products. Freyd and Scedrov 
exploit this interpretation in [FS87], based on a reconstruction of the modest sets described 
in more detail in [CFS87]. For a related, but technically different construction, see [HRR]. 
We believe that a minor modification of the HR02 construction can be seen as an erase- 
types polymorphic lambda interpretation (see subsection 5.2, and that the polymorphic 



extensional collapse c o l l ( ~ ~ 0 ~ , A L L )  (again see subsection 5.2) is isomorphic to a minor 
modification of the HE02 construction. As was pointed out to us by Scedrov, this seems 
to be supported by the fact that the construction of the modest sets by Carboni, F'reyd 
and Scedrov [CFS87] (see also [FS87]) uses, among other things, the "splitting of all the 
symmetric idempotents" of a certain category. Indeed, in a category whose morphisms are 
relations the symmetric idempotents are exactly the p.e.r.'s and splitting corresponds to  
taking quotients. However, to the best of our knowledge, the exact connections between all 
these constructions, and especially the connections between the categorical constructions 
and those in the style of this paper, are still unclarified. 

The reader can consult [Mit86b] for a few more examples of using p.e.r.'s to interpret types. 
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