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Microfluidic chaotic stirrer utilizing induced-charge electro-osmosis

Abstract
Recently, there has been a growing interest in using induced electro-osmosis to pump fluids in microfluidic
devices. We show that induced electro-osmosis can also be used to promote stirring and chaotic advection. To
this end, we study theoretically a stirrer in which the flow patterns are alternated in time. We first analyze an
idealized embodiment of the stirrer that admits a simple analytical solution for the flow patterns. The stirrer
consists of a concentric annulus whose outer surface is defined by an array of electrodes that provide a
spatially varying potential distribution. The resulting electric field induces quadruple electro-osmotic flow
around the inner cylinder. By timewise alternating the potential distribution around the outer cylinder, we
induce chaotic advection in the cavity. Subsequently, we carry out numerical simulations for a more realistic
design that can be readily constructed, and demonstrate that it is possible to induce chaotic advection also in
this case.
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Microfluidic chaotic stirrer utilizing induced-charge electro-osmosis

Hui Zhao and Haim H. Bau*
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

�Received 22 February 2007; published 28 June 2007�

Recently, there has been a growing interest in using induced electro-osmosis to pump fluids in microfluidic
devices. We show that induced electroosmosis can also be used to promote stirring and chaotic advection. To
this end, we study theoretically a stirrer in which the flow patterns are alternated in time. We first analyze an
idealized embodiment of the stirrer that admits a simple analytical solution for the flow patterns. The stirrer
consists of a concentric annulus whose outer surface is defined by an array of electrodes that provide a spatially
varying potential distribution. The resulting electric field induces quadruple electro-osmotic flow around the
inner cylinder. By timewise alternating the potential distribution around the outer cylinder, we induce chaotic
advection in the cavity. Subsequently, we carry out numerical simulations for a more realistic design that can
be readily constructed, and demonstrate that it is possible to induce chaotic advection also in this case.

DOI: 10.1103/PhysRevE.75.066217 PACS number�s�: 47.52.�j, 47.65.�d, 47.63.mf

I. INTRODUCTION

Recently, the use of induced �ac� electro-osmosis has been
proposed as an effective means to pump fluids in microflu-
idic systems �1–8�. Induced electro-osmosis is distinct from
the classical electro-osmosis �9,10�, since it results from the
interaction between the electric field and ions in the electric
double layer formed by the polarizing effect of the electric
field itself. The intensity of the resulting flow is proportional
to the square of the electric field intensity. At relatively low
frequencies, the direction of the electric body force is inde-
pendent of the direction of the electric field. Thus, unidirec-
tional fluid motion can be induced with ac fields, thus avoid-
ing many of the complications associated with dc electric
fields, such as electrode electrochemistry.

The phenomenon of induced-charge electro-osmosis
around conducting particles has been studied extensively
�7,11–18� Only recently has it been recognized that, in the
absence of symmetry, induced electro-osmosis leads to net
pumping in conduits �1,16,19� and net forces on particles
�19–22�.

Since the Reynolds numbers are typically very low and
the flow is laminar, fluid mixing is a significant challenge in
microfluidic systems �23�. Aref �24� demonstrated that, when
flow patterns form closed orbits, one can induce Lagrangian
chaos and effective stirring by alternating periodically be-
tween two or more flow patterns. See also Ottino �25� for a
lucid review. In this paper, we demonstrate that induced
electro-osmosis can be used to generate various flow patterns
and chaotic advection. In the first part of the paper, we
present an idealized model which allows us to obtain exact
expressions for the flow patterns. The stirrer consists of a
concentric annulus. The outer surface of the cylinder consists
of an electrode �or an array of electrodes� that forms a spa-
tially varying potential. The inner cylinder is conducting. As
a result of the induced electric double layer around the inner
cylinder, convective cells form in the annulus. By timewise

alternations of the electric potential of the outer cylinder, we
induce chaotic advection in the annulus. Although the above
stirrer design exhibits the basic physics of the process, it is
not readily amenable for fabrication. Therefore, in the second
part of the paper, we analyze a more realistic device that can
be readily constructed.

II. MATHEMATICAL MODEL

We start with a simple embodiment of the stirrer. Con-
sider a concentric annulus. The radii of the inner and outer
cylinders are, respectively, a and a+b. The annulus is filled
with electrolyte solution of bulk concentration C0 and
dielectric constant �. The inner cylinder is electrically con-
ducting. The outer cylinder is subjected to a potential distri-
bution f���. We use the cylindrical coordinate system �r ,��
with its origin at the center of the inner cylinder �Fig. 1�.
When the inner, conducting cylinder is subjected to an elec-
tric field, it polarizes. The induced surface charges attract
counterions from the electrolyte solution, which, in turn,
leads to the formation of an electric double layer. The
thickness of the double layer is the Debye screening length

*Author to whom correspondence should be addressed. Electronic
address: bau@seas.upenn.edu

FIG. 1. Schematic depiction of a stirrer consisting of a concen-
tric annulus of inner radius a and outer radius a+b.
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�D=��RT / �2F2C0�, where R is the ideal gas constant, T is
the absolute temperature, and F is the Faraday constant.
When C0=10 mM, �D�8 nm. We assume that b�100 �m,
b /�D�125, and one can use the thin electric layer approxi-
mation.

The electrolyte solution is treated as a conductor, and the
electrical potential in the solution satisfies the Laplace equa-
tion

�2� = 0. �1�

We assume that the electric field is too small to induce Fara-
daic reactions on the inner cylinder’s surface. Thus, at equi-
librium, no current enters the double layer, and on the inner
cylinder’s surface �r=a�

n� · �� � = 0. �2�

In the above, n� is the outer normal vector to the surface. On
the outer cylinder’s surface, we impose a potential distribu-
tion of the form

��r + b,�� = f��� . �3�

We assume that Faradaic reactions take place at the surface
of the outer cylinder and that the electrical resistance of the
electric double layer is relatively small so that there is a
small difference between the electrode’s potential and the
potential immediately outside the electric double layer.

Since typically the Reynolds number associated with the
electrokinetic flow is very small, the fluid motion can be
described with the Stokes equation

− �� p + ��2u� = 0� �4�

and the continuity equation

�� · u� = 0. �5�

In the limit of the thin-double-layer approximation, the
electric field is coupled with the flow problem through the
Smoluchowski slip velocity �7�,

u��a,�� = −
���a,��

�
�� t��a,�� . �6�

In the above, �� t� is the tangential component of the poten-
tial’s gradient. Equation �6� is applicable as long as the �
potential is not too large, i.e., on the order of the thermal
voltage ��25 mV� or smaller �26,27�.

We assume that the potential of the outer cylinder varies
slowly, and we neglect induced electroosmotic flow at the
surface of the outer cylinder:

u��a + b,�� = 0� . �7�

When the approximation �7� is not applicable, one can
readily determine the flow field induced by the electroos-
motic flow at the outer cylinder and superimpose it on the
flow fields computed later in this paper.

It is convenient to nondimensionalize the various vari-
ables. We use the radius of the inner cylinder a as the length
scale; ��	�0�2 / ��a� as the velocity scale; and �a2 / ��	�0

2�

as the time scale. In the above, 	�0=max f���−min f���. We
define the dimensionless radius 
=r /a and the annulus as-
pect ratio �=b /a. 1�
�1+�.

For concreteness, we consider the case of the electrical
potential on the outer cylinder given by

f��� = A sin�� + �0� . �8�

The electrical potential is

� = A
1 + �

1 + �1 + ��2	
 +
1




sin�� + �0� . �9�

To calculate the velocity field, we introduce the stream
function 
. 
 satisfies the biharmonic equation

�4
 = 0. �10�

The velocity components are related to 
 by

ur =
1

r

�


��
, u� = −

�


�r
. �11�

The boundary conditions on the outer and inner cylinders are
given by the nonslip condition and the Smoluchowski for-
mula �6�, respectively. The general solution for the stream
function has the form


�r,�� = 	A1

r2 + B1 + C1r2 + D1r4
sin 2�� + �0� . �12�

The constants A1, B1, C1, and D1 are determined by using the
appropriate boundary conditions.

Figure 2 depicts the flow pattern when �0=0 and �=8.
The flow consists of four counter-rotating vortices. Although
the flow is effective in moving material across the width of
the annulus, the flow is laminar and a poor mixer. This short-
coming can be overcome with the use of chaotic advection.

FIG. 2. �Color online� Flow field �streamlines� resulting from
induced electro-osmosis around the inner cylinder. The potential
distribution A sin � is imposed on the outer cylinder.
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III. AN IDEALIZED CHAOTIC STIRRER

Aref �24� demonstrated that, by alternating between two
�or more� different closed-orbit patterns A and B, one can
generate Lagrangian chaos. Here, we obtain two such pat-
terns by timewise alternations of the potential imposed on
the outer cylinder. In the time interval kT� t�kT+T /2, we
impose the potential �8� with phase angle �0=0 on the outer
electrode. We refer to the corresponding flow field as pattern
A. In the time interval kT+T /2� t� �k+1�T, we impose the
potential �8� with phase angle �0=� /4. We refer to the cor-
responding flow field as pattern B. The time period T is much
larger than any of the other time constants associated with
the various physical processes that occur in the annulus, such
as the time constant associated with the charging of the
double layer.

We examine the performance of the stirrer by tracking the
trajectories of passive tracer particles:

dr�

dt
= fA�t�u�A + fB�t�u�B. �13�

In the above,

fA�t� = �1 when kT � t � kT + /T/2,

0 when kT + T/2 � t � �k + 1�T ,
� �14�

fB�t� = �0 when kT � t � kT + /T/2,

1 when kT + T/2 � t � �k + 1�T ,
� �15�

and the subscripts A and B denote, respectively, flow patterns
A and B. At time t=0, the particle is located at r�0. T is the
switching time period. k=0,1 ,2 ,3 , . . . is an integer.

The ordinary differential equations �13� with the initial
condition r�0 are nonlinear. We solve these equations with a
fourth-order Runge-Kutta algorithm �MATLAB program
ODE45�. We find it convenient to summarize the computa-
tional results in the form of stroboscopic images �Poincaré
sections�. The Poincaré section consists of a record of the

passive tracer particles’ locations at the end of each period T,
i.e., �r�kT� ,��kT��, k=0,1 ,2 , . . .. When the pattern in the
Poincaré sections is regular and smooth, it implies that the
streamlines have a simple geometric character and the stir-
ring is poor. When the pattern of the Poincaré sections is
irregular and no or just a few closed trajectories are traced,
the flow is deemed to be chaotic and provides good stirring.

Figure 3 depicts the streamlines in the limit of high-
frequency switching T→0. The two flow patterns superim-
pose to form a well-organized flow. As the period of alterna-
tions increases so does the complexity of the flow.

FIG. 3. �Color online� Flow field �streamlines� resulting from
superimposing flow patterns A ��0=0� and B ��0=� /4�.

FIG. 4. �Color online� Stroboscopic image �Poincaré section� of
the trajectory of four passive tracer particles initially positioned at
r�0�=1.82, and ��0�=0, � /2, �, and 3� /2. T=2. 5000 periods are
recorded.

FIG. 5. �Color online� Enlarged stroboscopic image �Poincaré
section� of the trajectory of a passive tracer particle initially posi-
tioned at �r ,��= �1.82,0�. T=4. 5000 periods are recorded.

MICROFLUIDIC CHAOTIC STIRRER UTILIZING… PHYSICAL REVIEW E 75, 066217 �2007�

066217-3



Figure 4 depicts the Poincaré sections, when T=2 and the
four passive tracer particles are initially located at
�r�0� ,��0��= �1.82,0�, �1.82,� /2�, �1.82,��, and
�1.82,3� /2�. The figure records 5000 periods. The strobo-
scopic image consists of a closed orbit, indicating that the
dynamical system has two noncommensurate periods.

Figure 5 depicts an enlarged section of the stroboscopic
image �Poincaré section� when T=4. Consistent with the
Poincaré-Birkhoff theorem, the tori deform significantly and
form a “petal” structure that leads in the Poincaré section to
a sequence of hyperbolic �saddle� and elliptic fixed points.

Figures 6�a�–6�c� depict, respectively, the stroboscopic
images �Poincaré sections� when T=10 �a�, 20 �b�, and 100
�c�. Witness that, as the period T increases, the chaotic re-
gions increase in size and the tracer particles visit all regions
of the annulus.

Another diagnostic tool often used to examine the effect
of the stirrer in enhancing mixing �24� consists of tracking
the deformation of a material blob. To this end, we
inserted the material blob at �10−0.1�r��10+0.1,
−� /60���� /60. Figure 7 depicts the positions of
104 particles initially located in the blob at t
=0,3T ,5T ,7T ,9T ,11T ,13T ,40T. In the above, T=20. Wit-
ness that the material blob undergoes a sequence of stretch-
ing and folding until the material spreads to cover the entire
volume of the cavity.

In the above, we presented a simple paradigm of a chaotic
stirrer in which fluid flow is driven by induced electro-
osmosis. The example was deliberately designed with math-
ematical convenience in mind. In the next section, we illus-
trate that similar ideas can be put into use in a device that can
be readily fabricated.

FIG. 6. �Color online� Stroboscopic image �Poincaré section� of the trajectory of a passive tracer particle initially positioned at �r ,��
= �1.82,0�. T= �a� 10, �b� 20, and �c� 100. 5000 periods are recorded.
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FIG. 7. �Color online� Trajec-
tory of a material blob initially lo-
cated at �10−0.1�r��10+0.1,
−� /60���� /60, when t=0 �a�,
3T �b�, 5T �c�, 7T �d�, 9T �e�, 11T
�f�, 13T �g�, and 40T �h�. T=20.
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IV. A PRACTICAL CHAOTIC STIRRER

Our previous example required one to impose a spatially
distributed potential on the outer surface of the stirrer. Such a
task may not be easy. In this section, we describe a device
that can be readily fabricated. We need, however, to resort to
numerical techniques to calculate the flow patterns.

Consider a conducting cylinder of radius a located at the
left bottom corner of a closed square cavity, distance h above
the bottom and distance w from the left edge �Fig. 8�. The
edge length of the box is 10a. The cavity is filled with elec-
trolyte solution of permittivity � and conductivity �. Four

FIG. 8. Schematic depiction of the second stirrer’s geometry
consisting of a conducting cylinder placed off center in a square
cavity. Electrodes are deposited along the edges of the box.

FIG. 9. �Color online� Flow pattern A �a� occurs when the top
and the bottom electrodes are active and flow pattern B �b� occurs
when the left and the right electrodes are active.

FIG. 10. �Color online� Stroboscopic images �Poincaré sections�
of the trajectory of a passive trace particle initially located at
�x ,y�= �2,0� when T=1 �a� and 16 �b�. 2000 periods are recorded.
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electrodes, each with length 6a, are deposited along the cavi-
ty’s edges �heavy lines in Fig. 8�. The electrodes’ centers are
at the centers of the edges. Only two of the electrodes are
active at any given time. We obtain flow pattern A when
voltage V0 is imposed on the bottom electrode and voltage
−V0 on the top electrodes; and we get flow pattern B when
potential V0 is imposed on the left electrode and potential
−V0 on the right electrode. The conducting cylinder was in-
tentionally placed off the cavity’s center to allow the forma-
tion of two distinct flow fields when the two electrode pairs
are actuated.

The momentum and electrical equations and the corre-
sponding boundary conditions are the same as in Sec. II. The
inactive electrodes act like conductors with floating poten-
tials �that need to be determined�. We specify on the passive
electrodes that

� = const and 

A

��

�n
dA = 0. �16�

Due to the complex geometry, analytical solutions are not
possible. Instead, we use the finite element software COMSOL

3.2 to calculate the electrical potentials and the velocity fields
A and B. Once the velocity fields have been computed, we
use the kinetic equations to trace the trajectories of passive
tracer particles. To capture the motion accurately, we use a
very fine grid. Figures 9�a� and 9�b� depict flow pattern A
�when the bottom and top electrodes are active� and flow
pattern B �when the left and right electrodes are on�.

Figures 10�a� and 10�b� depict the stroboscopic images
�Poincaré sections� of a passive tracer particle initially lo-
cated at �x ,y�= �2,0� when T=1 �a� and 16 �b�, respectively.
These figures are a record of 2000 periods. As in Sec. III, as
the period increases so does the complexity of the flow. This
section demonstrates that chaotic advection can be obtained
in an embodiment of a stirrer that can be readily fabricated.

V. CONCLUSION

Two examples of chaotic stirrers in which fluid flow was
driven by induced electro-osmosis were presented. The stir-
rers do not require any moving parts and are suitable for

applications in microfluidics. The first paradigm consisted of
a stirrer in the shape of a concentric annulus with the outer
cylindrical surface forming an electrode with spatially and
temporarily controlled potential distribution. The simple ge-
ometry allowed us to obtain analytical solutions for the flow
fields and investigate in detail the trajectories of passive
tracer particles as functions of the period of time alternations
of the electrode’s potential. As the period of alternations in-
creased so did the complexity of the flow. At sufficiently
high periods, the stirrer exhibited chaotic advection and a
passive tracer particle visited nearly the entire volume of the
stirrer’s cavity.

Since, in practice, it may not be easy to spatially control
the electrode’s potential distribution, we investigated a sec-
ond paradigm of a stirrer consisting of a conducting cylinder
placed off center in a square cavity equipped with two elec-
trode pairs stretched along the outer surfaces of the cavities.
Only one pair of electrodes was active at any given point in
time. Two different flow patterns were formed by alternately
activating the two pairs of electrodes. Due to the complexity
of the geometry, these flow patterns were computed numeri-
cally with finite elements. By switching periodically between
the two pairs of electrodes, the complexity of the flow in-
creased until chaotic advection ensued as in the first embodi-
ment of the stirrer.

The paper demonstrates that induced electro-osmosis can
be used to facilitate stirring. The stirrer has the advantage of
simple design and requires only low voltage for operation.
The stirrers presented in this paper consisted of a single,
cylindrically shaped conducting internal structure. The de-
sign can be extended to include arrays of internal
structures—each inducing electro-osmotic flow in its vicin-
ity. Another interesting possible extension of the work is the
optimization of the stirrer’s geometry to maximize stirring
efficiency.
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