
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

May 2004

Enhancing the Behaviorial Fidelity of Synthetic
Entities with Human Behavior Models
Michael van Lent
Institute for Creative Technologies

Ryan McAlinden
Institute for Creative Technologies

Paul Probst
University of Southern California

Barry G. Silverman
University of Pennsylvania, basil@seas.upenn.edu

Kevin O'Brien
University of Pennsylvania

See next page for additional authors

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Postprint version. Presented at the 13th Conference on Behavior Representation in Modeling and Simulation (BRIMS), SISO, May 2004, 9 pages. Published
at: http://www.sisostds.org/

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/300
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Michael van Lent, Ryan McAlinden, Paul Probst, Barry G. Silverman, Kevin O'Brien, and Jason Cornwell, "Enhancing the Behaviorial
Fidelity of Synthetic Entities with Human Behavior Models", . May 2004.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76360282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers/300
mailto:repository@pobox.upenn.edu

Enhancing the Behaviorial Fidelity of Synthetic Entities with Human
Behavior Models

Abstract
Human-behavior models (HBMs) and artificial intelligence systems are called on to fill a wide variety of roles
in military simulations. Each of the "off the shelf " human behavior models available today focuses on a specific
area of human cognition and behavior. While this makes these HBMs very effective in specific roles, none are
single-handedly capable of supporting the full range of roles necessary in an urban military scenario involving
asymmetric opponents and potentially hostile civilians. The research presented here explores the integration
of three separate human behavior models to support three different roles for synthetic participants in a single
simulated scenario. The Soar architecture, focusing on knowledge-based, goal-directed behavior, supports a
fire team of U.S. Army Rangers. PMFServ, focusing on a physiologically/stress constrained model of decision-
making based on emotional utility, supports civilians that may become hostile. Finally, AI.Implant, focusing
on individual and crowd navigation, supports a small group of opposing militia. Due to the autonomy and
wide range of behavior supported by the three human behavior models, the scenario is more flexible and
dynamic than many military simulations and commercial computer games.

Keywords
human behavior model integration, interchange standards, crowd simulation

Comments
Postprint version. Presented at the 13th Conference on Behavior Representation in Modeling and Simulation
(BRIMS), SISO, May 2004, 9 pages. Published at: http://www.sisostds.org/

Author(s)
Michael van Lent, Ryan McAlinden, Paul Probst, Barry G. Silverman, Kevin O'Brien, and Jason Cornwell

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/300

http://repository.upenn.edu/ese_papers/300?utm_source=repository.upenn.edu%2Fese_papers%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages

Enhancing the Behaviorial Fidelity of Synthetic Entities

with Human Behavior Models

Michael van Lent, Ryan McAlinden, Paul Brobst
Institute for Creative Technologies
University of Southern California

13274 Fiji Way
Marina del Rey, CA 90292

310-574-5710
vanlent@ict.usc.edu; mcalinden@ict.usc.edu; brobst@ict.usc.edu

Barry G. Silverman, Kevin O’Brien, Jason Cornwell

Ackoff Center for Advancement of Systems Approaches (ACASA)
Electrical and Systems Engineering, University of Pennsylvania

Towne 229c, Philadephia, PA 19104-6315
215-573-8368

barryg@seas.upenn.edu

Keywords:
Human Behavior Model Integration, Interchange Standards, Crowd Simulation

ABSTRACT: Human-behavior models (HBMs) and artificial intelligence systems are called on to fill a wide variety
of roles in military simulations. Each of the “off the shelf” human behavior models available today focuses on a
specific area of human cognition and behavior. While this makes these HBMs very effective in specific roles, none
are single-handedly capable of supporting the full range of roles necessary in an urban military scenario involving
asymmetric opponents and potentially hostile civilians. The research presented here explores the integration of three
separate human behavior models to support three different roles for synthetic participants in a single simulated
scenario. The Soar architecture, focusing on knowledge-based, goal-directed behavior, supports a fire team of U.S.
Army Rangers. PMFServ, focusing on a physiologically/stress constrained model of decision-making based on
emotional utility, supports civilians that may become hostile. Finally, AI.Implant, focusing on individual and crowd
navigation, supports a small group of opposing militia. Due to the autonomy and wide range of behavior supported
by the three human behavior models, the scenario is more flexible and dynamic than many military simulations and
commercial computer games.

1. Introduction

Human-behavior models (HBMs) and artificial
intelligence systems are called on to fill a wide variety
of roles in military simulations. These include allied
teammates and subordinates supporting a human
participant, enemy combatants working against the
human participant, and civilians on the battlefield.
Each of these roles requires an HBM that can support
or emphasize different knowledge sets, cultural and
personality factors, and even cognitive processes. For
example, in an urban combat situation a U.S. Army
Ranger’s behavior will primarily be defined by mission
and doctrine reflecting the soldier’s extensive training.
A civilian’s behavior in the same situation will be
determined more by emotions, such as fear, and goals,
such as self-preservation. Ideally a complete Human-
behavior model will include representations of all the
factors that influence behavior and will therefore be
capable of supporting the full range of roles. While a
number of architectures are moving in this direction [1,

8], none of the currently available HBMs yet cover the
full range of human cognitive function. Despite this,
most simulations and research systems use only a
single HBM to drives all their computer-generated
forces (CGFs), no matter how broad the range of roles.
The work presented here explores the use of multiple
human behavior models in a single virtual environment
to increase the realism of the simulated participants by
tailoring the HBMs to each participant’s role in the
scenario.

Using the events depicted in the popular book and
movie Black Hawk Down [3] as motivation, we have
defined a light infantry, urban combat scenario. The
synthetic participants in this scenario include a fire
team of U.S. Army Rangers, a small group of opposing
militia, and a number of civilian non-combatants. The
human participant acts as the leader of the U.S. Army
fire team. The four synthetic entities in the human led
fire team are controlled by four Soar agents [14]. Soar
was selected for its strength in knowledge-based and
goal-directed behavior. The opposing militia is

controlled by AI.Implant [2], a game industry AI
middleware tool selected for its ability to control
multiple entities navigating as a team. Civilians are
controlled by the Performance Moderator Function-
based PMFServ architecture [11]. This scenario takes
advantage of PMFServ’s models of emotion, stress and
a range of coping styles.

The next section describes the Mogadishu testbed in
more detail and the game-engine based simulation
environment in which the testbed is implemented. The
following section describes the common interface used
by all three human behavior models. Developing a
common interface, applicable to a wide range of
models, can reduce the cost inherent in interfacing
multiple HBMs into a single simulation environment.
The three subsequent sections describe each HBM:
Soar, PMFServ, and AI.Implant, in more detail and
describe how each supports a role in the testbed.
Finally, the final section presents some areas of future
research.

2. Mogadishu Testbed Environment

The Mogadishu testbed consists of a partial recreation
of a scenario from the popular book and movie Black
Hawk Down. This testbed was developed using the
Unreal Tournament game [5] in conjunction with the
freely available Infiltration “mod” (or modification) of

the game. Infiltration increases the realism of the game
environment through more realistic character and
weapon models, environments, and damage models.

1.1 Mogadishu Scenario

As stated above, the testbed is based on a Black Hawk
Down-inspired, asymmetric, urban combat scenario.
The testbed currently includes three distinct HBMs that
are integrated and operating concurrently within the
virtual environment. The HBMs control synthetic
entities, or Non-Player Characters (NPCs), serving
three different roles within the game (U.S. Army
Rangers, civilian crowd, asymmetric opponents). All
three HBMs share a common interface to the
simulation environment. Using Unreal Tournament as
the underlying simulation, a Mogadishu-based scenario
demonstrates various HBM capabilities such as tactical
maneuvers and behavior, coordinated group
movement, and threat sequences. Custom art assets
have been developed including terrain, buildings, and
3D models and textures for soldiers and weapons.

In the Mogadishu scenario a group of U.S. Army
Rangers traverse the streets of Mogadishu in an
attempt to locate a downed Black Hawk helicopter.
Along the way, they encounter a variety of asymmetric
threats and civilian crowds, each of which must be
dealt with appropriately. The terrain consists of

Civilian Crowd
(PMFserv)

Civilian
Chopper Looters
(PMFserv)

Helicopter
Crash SiteMilitiaman with

Female Shields
(PMFserv)

Suicide
Bomber
(PMFserv)

Militia Unit
W/ Leader
(AI Implant)

Start

Figure 1: A top-down view of the terrain for the Mogadishu test
bed with the actions of the Soar (blue), AI.Implant (red), and
PMFServ (green) entities.

approximately 16 city blocks in a 4x4 street grid (see
Figure 1). These blocks consist of interspersed multi-
level buildings, obstacles, and a series of alleys. The
general objective of the scenario is for the human
player (and his Soar-controlled subordinates) to engage
and neutralize the OPFOR militia (AI.Implant) while
minimizing BLUFOR and civilian (PMFServ)
casualties.

1.1 Unreal Tournament: Infiltration

Unreal Tournament (UT) is the underlying simulation
environment used to develop the Mogadishu test bed.
UT is a popular First Person Shooter (FPS) game,
released in 1999, that includes one of the most widely
used interfaces to allow hobbyists, researchers and
developers to extend and adapt (or “mod”) the game to
meet particular needs. “Modding” the game occurs on
a variety of different levels, from 3D model, texture,
and terrain design and importation (using the Unreal
Editor), to defining new behaviors and action
sequences within the game itself.

The UT Game Engine (UTGE) is the driver behind any
game or simulation scenario developed in UT.
Through the free mod interface, many of the UTGE
components have been “exposed” giving hobbyists and
developers a consistent programming interface to make
changes to many aspects of the existing game
(rendering, physics, AI, networking). UT was selected
as the simulation environment for this project due to
this extensible and flexible interface that allows for
relatively simple integration with external software
modules (i.e. HBMs). One of the most powerful tools
provided by the UT mod interface is UnrealScript [13].
UnrealScript is a high level programming language
used to construct game mods, either within the
confines of the game engine or through an interface to
external programs. It is object-oriented and is very
similar in syntax to Java. Moreover, it allows
developers to extend baseline game engine
functionality with native C++ code. These native
functions allow for relatively seamless integration of
external software components with the game engine.
Typically, the flow of data between these components
and the game engine is managed by a threaded
Windows-based Dynamically Loaded Library (DLL).

The off-the-shelf version of Unreal Tournament is not
a realistic simulation of urban combat. However, a
mod called Infiltration [10], developed by Sentry
Studios, modifies UT to include more realistic soldier
and weapon models, base-level behaviors, and tactics.
Infiltration replaces the default weapons in UT (laser
guns, rail guns) with weapon models common to armed
conflicts today (such as the M16, the M4, and the
AK47). Moreover, the character models have been

modified so that they resemble soldiers and civilians
rather than futuristic robots. Infiltration provided the
baseline character movement (walking, running) and
weapon handling (firing, reloading, unjamming)
actions. We enhanced the Infiltration mod with the
custom urban terrain and custom character models
representing Somali civilians.

3. Interface

The Human Behavior Model Interface Standard (HBM
IS) is a control methodology and set of data
specifications that allows disparate HBMs (such as
Soar, AI.Implant and PMFServ) to manage and control
synthetic entities in a common simulation environment.
One of the advances demonstrated by this project is the
use of a single interface specification to support these
three models running concurrently within the
simulation. Each HBM is an external software module
that operates asynchronously through an UnrealScript
native function interface with the game engine.

The most important aspect of the HBM IS is that it is
independent of any specific HBM or simulation
environment. While a layer of the interface software
has been developed specifically for UT, the
methodology used is quite broad. Simulation data is
polled each iteration through the game cycle,
distributed to the appropriate HBM, processed by that
HBM, and an entity-control command is returned to
the simulation for execution (move, attack, orient).
The HBM IS is the codification of a great deal of
previous experience with HBM design on the part of a
number of members of the development team. As a
starting point, the interface builds off a portion of the
Soar General Input/Output (SGIO) mechanism
developed at the University of Michigan. This
mechanism, combined with UT-specific native
function software, allows for the management of data
between Soar and UT. However, in the standard SGIO
interface, this data is quite Soar specific. Several
modifications have to be made to the methodology to
support the incorporation of other HBM components.
High-level modifications include:

• HBM initialization—specify the world state
representation for each HBM’s data model.

• HBM setup and teardown—structure HBM
processes as separate threads so that do not
interfere with one another or the game engine.

• HBM group actions—Add a specialized set of
actions to support HBM control of groups of
synthetic entities.

Data Control
The quantity of sensor data coming into each of the
HBMs through the interface can be extremely large.
Sensor data is updated from the simulation multiple

times per second (about 10 times per second), requiring
the input mechanism for each HBM to be constantly
monitoring for the most recent simulation updates.
This occurs with the use of a custom Unreal
Tournament DLL that is loaded into the game engine
process during startup. This DLL interface has the
advantage of providing a high throughput, low latency
interface between the simulation and the HBM
components. However, DLLs are a feature supported
only in Microsoft Windows which somewhat decreases
flexibility when considering non-Windows
environments. Linux and MacOS both have equivalent
but different features which are not supported by the
HBM IS at this time.

One particularly important aspect of the Human
Behavior Model Interface Standard is the use of
multiple processing threads to decouple the game
engine’s processing cycle from each HBM’s
processing cycle (see Figure 2). The Unreal Engine
runs within a single thread for maximum efficiency.
The HBM interface, however, carries over SGIO’s
multithreaded approach to allowing the simulation and
HBM components to operate asynchronously. A key
feature of the UT engine is the real-time rendering of
the environment. To support this each step in the
internal game loop must be carefully controlled to
execute and return quickly. If any step takes too long
the frame rate of the game can drop below the

acceptable 30 frames per second. HBMs, especially
those from the academic research community, have not
yet been engineered to fit into these strict processing
limits. Soar, for example, generally takes well less
than 50 msec per cycle but in degenerate cases may
take seconds per cycle. Encapsulating each HBM in a
separate processing thread allows the game engine and
HBM component to operate independently.

Data Types
In order for the HBMs to accurately model any level of
intelligent behavior, from path-planning to emotional
effects, data on the environment must be gathered from
the simulation to serve as sensor input to the particular
behavior model. This sensor data can include a wide
variety of information about world state:

• Entity information (name,
position/orientation, team, equipment, health,
fatigue)

• Static and dynamic objects and terrain
(obstacles, path nodes, projectiles)

• Goal and mission information (map name,
game type, time limit)

• Spatial representations (weighted path node
graph)

• Communication between synthetic entities
and with the human user (formation, engage
requests)

Figure 2: The Human Behavior Model Interface Standard’s multithreaded approach allows the simulation
and HBMs to operate asynchronously.

This sensor data is organized as a multi-level
hierarchy. The top level of the hierarchy groups the
sensors into general classes; Agent, Feedback, Objects,
Game, Map, Sound, Message.

In addition to the sensor values, the HBM IS also
specifies a set of action outputs that the HBM issues to
control an entity in the environment. Each of these
actions includes a number of parameters that inform
the simulation as to the details of how to execute that
action. Examples of action outputs include movement
commands, firing commands, inter-agent
communications, and special actions such as surrender.

Both the control mechanism and data types used in the
interface are sufficiently independent that interfacing
new human behavior models should be fairly simple.
Some custom interface code will need to be written
but, the HBM IS abstracts both sensor inputs and
action outputs so that the integration process should be
straightforward.

4. Soar

Initially developed at Carnegie Mellon University by
Allen Newell, John Laird, and Paul Rosenbloom, Soar
[8] is the human behavior model that controls entity
movement, formation, and attack behaviors for the
U.S. Army Rangers operating as subordinates of the
human player.

The Soar-controlled characters in the Mogadishu
scenario are designed to coordinate their behavior
closely with the human player. The Soar characters
initially form a box formation around the player and
move with the player in that formation. The player can
also order the Soar characters into a line formation. In
addition, the player can order all four Soar-controlled
Rangers or either pair of Rangers to hold position.
Finally, the player can give the Rangers a weapons-
tight command, forbidding them from firing, and a
weapons-loose command, allowing them to fire at any
hostile characters. Using combinations of these orders,
the player’s fire team can execute a number of basic
tactics. For example, the player can set a base of fire
with one pair of Rangers and move with the second
pair to flank hostile forces.

One important distinction between the original Soar-
UT integration, done at the University of Michigan and
Soar Technology [14], and the one described here is
use of player inputs to control mission-specific
behaviors to be executed by the subordinate NPCs. In
the Mogadishu scenario, the player can issue
commands to the Soar entities directing their behavior.
The player can issue formation commands, weapons
tight and weapons loose commands, and hold position

commands to all four Soar entities or individual pairs
of Soar entities. There are two different approaches to
modifying the behavior of the Soar-controlled entities
based on these commands. The first, developed at the
University of Michigan as part of this project, treats the
player’s commands as sensor inputs that modify Soar’s
internal operator and action selection. This approach
encodes all aspects of player-directed behavior as Soar
productions. The second approach, developed at ICT
for this project, is encoded as a combination of high-
level Soar productions and extensions to the sensors
and actions available to the Soar entities. The player’s
commands are sent to the interface which then
interprets the command and generates command-
specific sensor inputs for the individual NPCs. For
example, if the player issued a command for the Soar
team to move in a line formation the HBM interface
would interpret the command and provide each
individual Soar entity with the specific coordinates of
its position in the formation.

Each of these approaches has advantages and
disadvantages. In the ICT approach the low-level
formation holding behaviors are encoded in the
interface which results in quicker reactions to the
user’s movements within the game. Also, since these
low level behaviors exist in the interface they are not
Soar-specific and may be used by other HBMs.
However, while the reactions are faster, the resulting
behavior seems significantly less natural (almost
robotic) than the Michigan approach. The Michigan
approach also has the advantage of making these low-
level behaviors available to the Soar model where they
can be affected by the higher-level goal-directed
behaviors. For example, soldiers under fire might
choose to move out of formation slightly to take better
cover.

5. Performance Moderator Functions

The Performance Moderator Function Server, or
PMFServ, is a flexible, composable approach to rapid
generation of scenarios from reusable, previously
validated components and agents. Over the past three
years, PMFServ has been developed to construct a
number of scenarios, including civilian and military
crowd scenes, a car buying family and asymmetric
leaders and followers. PMFServ was conceived as a
software product that would expose a large library of
well established and data-grounded Performance
Moderator Functions (PMFs) for use by cognitive
architectures deployed in a variety of simulation
environments [11]. Its principal feature has been and
continues to be a physiologically/stress constrained
model of decision-making based on emotional utility
[6] as follows:

 1) Stress-Constrained Coping -- Physiological data
across a range of measures (including arousal, fatigue,
hunger, thirst, injury, etc) are combined to set the
levels of a series of stress reservoirs. The stress
reservoirs then determine the agent’s coping style (a
measure of the agent’s current awareness and capacity
for rational thought) for the current decision cycle. We
follow Decision Conflict Theory’s five stages of
coping for a given agent: When bored or under-
stimulated, such as in a prolonged surveillance
mission, people tend to use defective coping, often
blindly following procedures without thinking or
double checking their execution -- slips and lapses are
likely to arise. Under perfect conditions (moderate
stress causing vigilant mode of thought), humans are
presumed to be rational and often behave as Bayes
Theorem and expected utility might predict, yet as
conditions degrade (still more stress), they initially
follow the dictums of subjective expected utility theory
(Edwards, 1992) and, eventually, of recognition
primed decision-making (Klein et al., 1993) if they are
expert, or panic if they are inexperienced.
 2) Cultural & Affective Reasoning -- Each agent
is guided by three value trees (with Bayesian
importance weights) concerning (1) a goal hierarchy,
(2) a standards tree which includes how people should
behave (ethics, religion, laws, and doctrine), and (3)
preferences for artifacts/situations an agent wants near
or far away. Together these three trees are what we
refer to as the Goal, Standards, Preference (GSP) trees.
These three hierarchies (and relationship linkages) and
the importance weights for the individuals being
simulated determine the activation and decay of 11
pairs of emotions as agents interact in the simulated
world. As a demonstration of this concept, we have
implemented this model and produced several papers
on how to generate the GSP trees for various
individuals belonging to several security, civilian, and
opponent groups: e.g., [11,12]. PMFServ also
implements the Damasio/Lazarus [4,9] concept of
emotion influencing action by summarizing the values
of the 11 pairs of oppositely valenced emotions into a
single somatic marker or subjective “expected utility”
score for each of the next steps that each individual is
weighing. This is used in the decision unit of the
agent’s cognition to prioritize next response choices.

With this architecture, decisions made by PMFServ
agents are bounded by coping style and by

culture/affect. PMFserv quickly grew to become a
cognitive architecture in its own right – with the
flexibility to either act as a meta-level emotional
arbitrator for others’ cognitive architectures or to
provide a fully functional stand-alone system to
simulate bounded rationality human decision making.

In any given implementation, PMFserv runs as a server
that operates the mind and behavior of each bot it is
hooked up to, while the game or simulation
environment operates as a client displaying the scenes
and body animations. In this instance, the client is the
Unreal Tournament Engine, while we linked the
PMFserv to it through the Microsoft COM interchange
method. Through this interchange, each client-side
body interacts with its server-side mind to find out its
reactions to events and to determine its next action
choices. For each agent, PMFserv would operate its
perception and run its physiology and cognition to
determine injuries and related stressors, grievances,
tension buildup, impact of rumors and communicative
acts, and various mobilizations. Then individual action
decisions and instructions are passed back to the game
platform to carry out the resulting and emergent
behaviors. It is the interaction of these parameters from
the first-person perspective of the agent, not a rule or
schema coded by a knowledge engineer in the third-
person, which allows the agent to decide its next
course of action. The result is an agent attuned to
characteristics of the environment that readily adapts
and responds to different situations.

By knowledge engineering a large default “cast” of
such agents, placing them in a reusable library, and by
providing the analysts and trainers with easy to use
editors and generators, we feel this capability could
lead to the military being able to compose new agent
types and rapidly compose them into scenarios of
interest to their training and analytic goals. The cast for
the current implementation consisted of Somali
civilians (males and females), Somali militia members,
and a terrorist bomber. These cast types were modeled
in PMFserv by adjusting their GSP tree values
(Bayesian weights derived from SMEs). On the Unreal
side, we found two freeware “skins” that were a male
and female Arab in robes and that had some of the
animations needed, though we had to adjust some of
these and add others.

In the Black Hawk Down scenario, as the player moves
through the environment, the PMFserv controlled
NPCs begin to be encountered. From here onward, a
number of PMFserv controlled NPCs populate the
world as the Somali civilians (males and females) and
Somali militia members (see Figure 3). Also a terrorist
bomber emerges.

As the player and his subordinates advance upon the
crash site, they encounter two groups of PMFserv
civilians, one gathered around the helicopter and the
other looting inside it. The player must disperse the
crowds of Somali civilians both inside and outside the
helicopter. In general, these Somalis have grown up
with violence and are not easily intimidated. Further,
they recognize when Rangers are vulnerable to
swarming behaviors such as when a Ranger is alone, or
with weapon out of ammo.

If the player or Rangers kill a civilian, this will
precipitate all males (and possibly a female) to feel so
violated they will search for a way to revenge
themselves on the Rangers. In many cases this will
result in them appearing to flee, when in fact they are
locating a weapon and intending to return fully armed
and ready to engage. Also, the player and his Rangers
may encounter a crowd of civilians with a Somali
militia shooting from behind them. The female NPCs
have to make a decision to act as shields or not for the
militia. If they do act as shields, the militia’s tactics are
probably to try and get the Ranger to kill one of the
civilians. If the player or Rangers kill a civilian, this
will precipitate a second threat which is a suicide
bomber who appears as any other civilian male and is
undetectable except that he advances without halting.

None of these behaviors are programmed directly into
our PMFserv NPCs. Rather, the Goal, Standard and
Preference Trees and weights are such that the chain of
events described might emerge. Whether these
behaviors emerge or not depends on player’s and

Ranger’s behavior as well as on what the individual
PMFserv NPCs actually observe happening. The latter
also extends to what objects and perceptual types they
notice in the world and how those project what they
afford to the NPC. More details exist at:
http://www.acasa.upenn.edu/Final_Tech_Report.doc.

6. AI Implant

AI.Implant is a commercial toolset, developed by
BioGraphic Technologies [2], that allows developers to
build and control in-game characters, focusing on
group behaviors and basic navigation and path
planning. It simplifies the need for the programmer to
manually define particular behaviors and movements at
the lowest level, allowing for enhanced game play and
more intelligent characters. AI.Implant operates as a
Maya or 3ds max plugin, both popular 3d modeling
applications, and as a Software Development Kit
(SDK) intended to be interfaced with other
applications. The characters controlled by AI.Implant
in the Mogadishu scenario used the SDK to connect to
the HBM Interface built into Unreal Tournament.

AI.Implant contains its own internal representation of
the terrain, separate from Unreal Tournament’s
representation. Classic game industry representations,
such as Unreal Tournament’s, involve embedding path-
finding information directly into the 3D terrain model
by creating a path node or waypoint network for an
agent to follow. AI.Implant bases its terrain
representation on the concept of barriers, walls and
obstacles that an agent can collide with and see. These
barriers form a somewhat simplified representation of
the Unreal Tournament terrain indicating where the
agent can and can’t travel. Thus, agents can move
freely around the environment, as long as they avoid
the barriers instead of being forced to follow specific
paths between nodes. AI.Implant can also use the
barrier-based representation to automatically generate a
path-finding network if one is needed. Unfortunately
there is no simple way to extract the barrier geometry
from UT so AI.Implant’s barrier-based representation
was created by hand.

In addition to the novel terrain representation,
AI.Implant includes an extensible, agent-based system
to generate individual and crowd navigation behaviors.
Many default behaviors are included, such as flocking,
avoiding barriers, following paths, and moving to a
specified location. These behaviors are part of an
inheritance hierarchy in order to facilitate easy
extensions. Agents can have multiple behaviors active
at one time and the system resolves the contribution
each represents to the final actions performed. Simple
decision trees are used to facilitate reactive behavior
based on environmental sensors.

Figure 3 – View of Some of the PMFserv
Controlled Bots in the Unreal-Mogadishu
Environment

The AI.Implant-controlled militia in the Mogadishu
scenario consists of two different behavior sets. The
leader behavior set follows a pre-specified patrol path
through the environment circling the crash site. The
follower behavior set uses AI.Implant’s built-in crowd
flocking behavior to move with the leader around the
patrol path. Only the leader agent has any knowledge
of the patrol path so the path can be modified without
any changes to the follower agents.

AI.Implant was an interesting choice for driving the
opposing militia for several reasons. Using barriers
instead of path-finding networks seems to be a
promising representation to support agent navigation.
This approach eliminates the need to embed navigation
queues into the terrain representation which can be a
time consuming process. In this case the barrier
representation was created by hand, which was equally
time consuming, however AI.Implant should
eventually be tied closely enough to Unreal
Tournament that it could automatically gather the
barrier information. In addition, AI.Implant’s multiple,
parallel behavior system lends itself to simple, goal-
based behavior by representing each goal as a behavior
and activating each behavior via decision tree at the
appropriate time.

5. Results and Future Work

The main purposes of this effort was to explore how to
integrate pre-existing human behavior models into
simulation environments and game engines in order to
enhance the realism of the characters in different roles.
This was accomplished by building a standard HBM
interface to a commercial game engine and using three
different “off the shelf” human behavior models to
populate a military scenario. These three models,
drawn from both academic and commercial developers,
focused on three different areas of human behavior.
The Soar model focuses on goal-directed behavior
based on knowledge of tactics and doctrine. PMFserv
is a physiologically/stress constrained model of
decision-making based on emotional utility.
AI.Implant takes a composite behavior-based approach
to individual and crowd navigation.

The primary result of this effort is the Black Hawk
Down scenario itself. Unlike the heavily scripted play
of most commercial games, this scenario is very
dynamic and can play out in a wide variety of different
ways. This is primarily due to the autonomy and wide
range of behavior supported by the three human
behavior models. This scenario demonstrates the key
contribution of this research; the integration of three
HBMs into a single virtual environment through
variations on a common interface architecture.

Because pre-existing HBMs were employed,
developing the behaviors for each character was fairly
quick and efficient. As a result, most of the effort
involved the development of the interface architecture
and the extensions to this for each HBM.

Since the interface architecture was based on a
previously developed Soar interface, the interface
between Soar and Unreal Tournament was the easiest
to accomplish. Soar communicated with Unreal
Tournament through a combination of UnrealScript
code and C++ code taking advantage of the SGIO
system.

The AI.Implant interface was significantly more
difficult. The AI.Implant SDK was still under
development as the interface to Unreal Tournament
was being developed. Fortunately, the SDK was
sufficiently mature that the same combination of
UnrealScript and C++ allowed us to interface
AI.Implant with the game engine.

From the PMFserv perspective, we interfaced with
Unreal Tournament via the Microsoft COM
interchange method. This interchange protocol
performed quite well in practice and did not lead to
latency of note in the responses of the NPCs. What
follows is a summary of the observed pros and cons of
this approach.

PROS of the Interchange Architecture
 Uses a standardized software approach that’s

widely available on all PCs
 Microsoft’s COM layer is straightforward, well

documented, and rapid to implement
 Runtime performance was excellent – no

noticeable latency between events and responses

CONS of the Interchange Architecture
 COM is a Microsoft artifact, and not a universal

standard
 Limits portability to platforms using Windows
 COM approach doesn’t solve many interchange

issues, but pushes most of the interchange
responsibility onto other layers

 Since there are no naming conventions or
translation standards in general for human
behavior models, the resulting Custom Unreal
Script was difficult to create and grew to about
1,000 lines of code, code that is not itself very
reusable.

Due to time constraints, most of the custom
UnrealScript had to be dedicated to nuances of this
interchange environment and more specifically to this
exact scenario. Given a few more such interchanges
one might observe some useful patterns and

conventions might emerge that would further help the
field of human behavior model interchange. Certainly
that is a worthy goal and a trend that should be
encouraged in the field as more M&S environments
attempt to benefit from existing and complementary
types of human behavior models.

Acknowledgements: The authors would like to thank
Joe Toth, Michael Young and John Tyler for their
guidance. The authors would like to thank John Laird
and Robert Marinier at the University of Michigan for
their assistance with the Soar/Unreal Tournament
interface and the Soar architecture. The authors would
like to thank Dr. Paul Kruszewski at BioGraphic
Technologies for his assistance and the generous
donation of an AI.Implant license for this project. This
paper was developed with funds of the Defense
Modeling and Simulation Organization under contract
number 53-0820-0139 and funds of the Department of
the Army under contract number DAAD 19-99-D-
0046. Any opinions, findings and conclusions or
recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of
the Defense Modeling and Simulation Organization or
the Department of the Army.

3. References

[1] Anderson, J. R. (1993). Rules of the Mind.
Erlbaum, Hillsdale, NJ.

[2] BioGraphic Technologies (2000). AI.Implant.
Retrieved February 13, 2004, from http://www.ai-
implant.com/.

[3] Bowden, M. (1999). Black Hawk Down. Atlantic
Monthly Press, New York, NY.

[4] Damasio, A.R. (1994): Descartes’ Error –
Emotion, Reason, and the Human Brain, Avon, New
York 1994.

[5] Epic Games (2003). Unreal Tournament. Retrieved
February 13, 2004, from http://unrealtournament.com/.

[6] Janis, I.L. and Mann, L. (1997): Decision Making:
A Psychological Analysis of Conflict, Choice and
Commitment, The Free Press, New York 1977.

[7] Klein, G.A., Orasanu, J., Calderwood, R., and
Zsambok, C.E. (1993): Decision Making in Action:
Models and Methods, Ablex, Norwood, NJ 1993.

[8] Laird, J.E., Newell, A. and Rosenbloom, P.S.
(1987). Soar: An architecture for general intelligence.
Artificial Intelligence 33:1-64.

[9] Lazarus, R. (1991): Emotion and Adaptation,
Oxford University Press, Oxford 1991.

[10] Sentry Studios (2003). Infiltration: This is as real
as it gets. Retrieved February 13, 2004, from
http://infiltration.sentrystudios.net/.

[11] Silverman, B.G., Johns, M., et al. (2002),
“Constructing Virtual Asymmetric Opponents from
Data and Models in the Literature: Case of Crowd
Rioting “,11th Conf. On Computer Generated Forces
and Behavioral Representation, SISO, May. 2002.

[12] Silverman, B.G. (2003), "Human Performance
Simulation" to appear in Ness, J.W., Ritzer, D.R., &
Tepe, V. (Eds.) (2003) Metrics and methods in human
performance research toward individual and small unit
simulation.

[13] Sweeney, T. (1998). UnrealScript Language
Reference. Retrieved February 13, 2004, from
http://unreal.epicgames.com/UnrealScript.htm.

[14] Wray, R.E., Laird, J.E., Nuxoll, A. and Jones,
R.M. (2002). Intelligent opponents for virtual reality
trainers. In Proceedings of the Interservice/Industry
Training, Simulation and Education Conference
(I/ITSEC) 2002, Orlando, FL, Dec 2002.

Author Biographies

MICHAEL VAN LENT is a Project Leader at the
USC Institute for Creative Technologies. Dr. van Lent
received his Ph.D. from the University of Michigan in
2000.

BARRY G. SILVERMAN is a Professor in
Engineering, Medicine, and Wharton, Director of
ACASA, and a core faculty member of several other
research centers at the University of Pennsylvania.

RYAN MCALINDEN is a software developer at the
USC Institute for Creative Technologies, where he
investigates commercial game engines and their
applicability to various research environments.

KEVIN O’BRIEN is a graduate student at the
University of Pennsylvania.

JASON CORNWELL is a graduate student at the
University of Pennsylvania.

PAUL BROBST is a graduate student in Computer
Science at the University of Southern California.

	University of Pennsylvania
	ScholarlyCommons
	May 2004

	Enhancing the Behaviorial Fidelity of Synthetic Entities with Human Behavior Models
	Michael van Lent
	Ryan McAlinden
	Paul Probst
	Barry G. Silverman
	Kevin O'Brien
	See next page for additional authors
	Recommended Citation

	Enhancing the Behaviorial Fidelity of Synthetic Entities with Human Behavior Models
	Abstract
	Keywords
	Comments
	Author(s)

	Microsoft Word - 26D64432

