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Abstract

Segmentation of range images has long been considered in computer vision as an im­

portant but extremely difficult problem. In this paper we present a new paradigm for

the segmentation of range images into piecewise continuous patches. Data aggregation

is performed via model recovery in terms of variable-order bi-variate polynomials us­

ing iterative regression. All the recovered models are potential candidates for the final

description of the data. Selection of the models is achieved through a maximization of

quadratic Boolean problem. The procedure can be adapted to prefer certain kind of

descriptions (one which describes more data points, or has smaller error, or has lower

order model). We have developed a fast optimization procedure for model selection.

The major novelty of the approach is in combining model extraction and model selec­

tion in a dynamic way. Partial recovery of the models is followed by the optimization

(selection) procedure where only the "best" models are allowed to develop further. The

results obtained in this way are comparable with the results obtained when using the

selection module only after all the models are fully recovered, while the computational

complexity is significantly reduced. We test the procedure on several real range images.
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Segmentation of images has long been considered in computer vision as an important but extremely

difficult problem. One of the reasons being that the definition of segmentation is task oriented

and varies for different types of sensors. We view the segmentation process as a data reduction

mechanism that requantizes sensory measurements into some predefined primitive elements which

encompass the available knowledge. This enables us to infer a symbolic description of the world.

Most commonly, segmentation is viewed as a local to global aggregation problem with various

similarity criteria [BJ88] employed to achieve a coherent global description. Indeed, this global

description is most usefully achieved in terms of global primitives that are easy to extract and

are useful for the later processing. This can be accomplished in two ways: one is to actively use

the global model as the individual primitives are being developed, in essence recovering the model

as aggregation proceeds. The other way is to use a local coherence measure to first classify the

data and then use the fitting technique to recover the model. The latter approach, though not

limited by the global model at the aggregation stage, essentially isolates the segmentation and the

representation stages, with the result that the final description might not correspond to the global

model since it played no part in the segmentation process. Besides, the outliers in the data set

resulting from misclassification, and the sensitivity of the methods for model estimation may lead

to disastrous results [Che89]. A desirable approach is to use both the local coherence measure

and the global model to guide the segmentation, corroborating our notion that the problems of

segmentation and representation are not separable [BSG90].

In this paper we attempt to provide a definition of segmentation as partitioning the images

(range or reflectance) into primitive models by searching for the models as they are developed

everywhere in the image, such that the description is best in terms of global shape and error. By

searching we mean fitting and selecting only those models that best describe the underlying data

using the criterion function which takes into account the number of points that are described by

a particular model, its goodness-of-fit, and the structural complexity of the model. Our method

performs data aggregation via model recovery in terms of variable-order (up to second-order) bi­

variate patches using iterative regression. Model recovery starts simultaneously and independently

at all the regions found to be globally coherent in the initial neighborhood (seed regions). All

the recovered models are potential candidates for the final description. To make the method

computationally feasible, it is necessary to monitor region growing and discard superfluous regions

even before they are fully grown. The major novelty of our approach is in combining model

extraction and model selection in a dynamic way, such that only the "best" models are allowed to

develop further.
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There are two areas of research that are relevant to our work. One is segmentation and in particular

that based on least-squares regression. The other one is optimization of Boolean programming

problems used for the selection of optimal description of image in terms of primitives.

The field of range image segmentation has traditionally been explored by researchers by studying

invariant differential geometric properties of surfaces, followed by fitting surface or volumetric

models to the segmented data, or by using the model to guide the segmentation process. There

are numerous methods performing the segmentation by aggregating the local surface models like

curvature, surface normals, etc. [BJ85, HJ87], or by detecting the surface discontinuities (Co and

C1 discontinuities and smooth boundaries) [Fan88, GL89, SK85].

Approaches based on local differential geometry are the most widely studied techniques for

surface segmentation [BPYA85, AB86, PB84, BJ86, SZ88, LT90]. They range from local analysis

of the surface to more global interpretation like peaks, pits and passes (saddle points) on a surface

[Nac84]. Some of the drawbacks of differential geometric approaches are that they are applicable

only in a small neighborhood of the surface and require extensive processing if a global model

is to be used later (e.g. in Besl and Jain [BJ88]). Although differential geometric quantities

have nice invariant properties, they invariably require smoothing of the data due to the sensor and

quantization noise. The undesirable side effect of uniform smoothing is that it alters the underlying

surface by smoothing the discontinuities which are vital for surface segmentation. There are several

application and sensor dependent range image segmentation techniques that are not of much interest

to us since we are interested in a general algorithm. Besl and Jain [BJ85] have summarized the

field of 3-D segmentation in their excellent survey.

The methods based on aggregation of local properties cluster data into perceptually or geomet­

rically significant regions with or without considering the final representation in terms of primitives.

If a representation in the form of a parametric model is desired, then the model is invoked after

the initial clustering. Similarly, purely edge-based methods fit models to closed regions implicitly

defined by edges. The fundamental drawback of such approaches is that they isolate the problem

of segmentation from the issue of representation. In other words, the model used for representation

plays no role in the process of segmentation. To obtain a meaningful segmentation, it is desirable

to use the model (representation) to guide the segmentation [BSG90, FH86, BJ88]. One of the

motivations for our work is illustrated in figure 1 showing the object (taken from Fan [Fan88]).

An edge-based method is unable to segment the two planar surfaces (A and B) joining smoothly

by the curved surface C, nor is a model available to describe the union surface S (indicating that

segmentation is necessary). Since our approach combines model representation and segmentation,

it can successfully segment such an object (figure 13).
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Figure 1: An example of an object that can not be segmented by edge-based approaches.

Much work has been done recently on the problem of reconstructing piecewise-smooth surfaces

in one or more dimensions [BZ87, MS85, Ter86, PTK85], which is posed as an optimization problem.

In all these approaches the data is weighted uniformly which means that the algorithms do not

possess the capabilities to adapt to different conditions in different parts of the image. The global

measure provided by the energy function is not able to tell which parts of the image are well

described in terms of the underlying models and which are not. Also it is difficult to see how these

approaches could be extended to subsequent stages of the vision problem without using models with

fewer degrees of freedom. Leclerc [Lec89] developed an interesting concept which can compensate

for some of these drawbacks by defining an objective function that is based on the information

theoretic notion of minimum length descriptions.

The other area of research that is relevant to our work is optimization of Boolean programming

problems [HT85, Pen90]. Perhaps the closest in spirit to our approach to model selection is the one

used by Pentland [Pen90]. A detailed overview and comparison of our approach with the existing

methods is given in the section on model selection.

The paper is organized as follows. In Section 2 we describe the general framework for seg­

mentation and define our models. Segmentation and model recovery using an iterative refinement

approach is explained in Section 3. In Section 4 we explain how the models with the best descrip­

tive power are selected via optimizing the Boolean programming problem. Section 5 describes our
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approach in combining model extraction and model selection in a dynamic way, which drastically

reduces the computational complexity. In Section 6 we discuss postprocessing steps required to

refine the segmentation results. We present some of our experimental results in Section 7. In

conclusion we summarize our paradigm and outline the work in progress.

2 General Framework

We begin by formally defining the symbols used for the description of our algorithm in this paper.

The image space is denoted by I. A pixel location (x, y) E I is represented as vector x. The input

image data at x is given by a function in image space I as g(x). The general segmentation problem

is usually stated as follows [HP74, Zuc76]. Given the set of all image pixels and a logical uniformity

predicate P(·), find a partition S of the image I in terms of set of regions Ri, where each Ri is the

domain of a model (primitive). Let N R be the number of regions in the segmented image, and let

IRil be the number of pixels in the region Ri. The following conditions must hold for the set S:

(1)

where Ri ~ I for each i. Contrary to the conventional definition of segmentation, our primitive

based approach permits model domains to overlap partially, therefore:

(2)

for i =I j in general. Ri is a 4-connected set of pixels.

The uniformity predicate

(3)

for all i. If Ri is adjacent to Rj

(4)

The uniformity predicate P(.) defines the conformity of all the points in ~ to the global model

(primitive). In the following subsection we discuss the issue of the choice of primitives.

2.1 Primitives for Representation

The criteria for selection of primitives have been studied extensively by vision researchers [Bra83,

Mar82, Bin82]. The primitives should be invariant to rotation, translation, and scale. Accessibility,

defined as computability of the primitive is essential, since our goal is to recover the structure from
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the input. Stability of the primitive with respect to minor changes due to noise or viewpoint, with

respect to scale and configuration is important to generate consistent representations. While small

changes in scale should not create major changes in the description, a multi-scale representation

should be possible. The primitives should have local support, so that occluded parts can still be

described.

Besides, primitives should balance the trade-off between data reduction and faithfulness to

measured data. They should be generic and data-dependent which is a compromise between the

complete knowledge based approach and the one where the primitives possess an enormous number

of degrees of freedom in order to model everything. Knowledge about the constituents of the

scene can make the segmentation process less dependent on noisy data, thus more robust, but less

general. On the other hand, methods that do not constrain their primitives do not achieve any

compression or symbolic description. While the number of different scenes is almost non-countable,

the number of spatial primitives (planar, convex, concave) is relatively small. This enables us to

build models and to find their instances in the scene. It is important for the further processing that

they correspond to meaningful segments in terms of physical phenomena or in terms of natural

qualitative description (planar, convex, or concave shape, for example). In other words they should

possess features which contain perceptually significant information. They represent an intermediate

stage in the process of abstraction of information from early levels into successively more complex

forms.

However, in all model based approaches we are restricted by the primitives, since they cannot

model everything present in the input data. Nevertheless, they can provide approximate descrip­

tions of data even if a model is not present in the vocabulary. For the regions that cannot be

accurately represented by the model vocabulary, (for example, if a surface curves faster than the

highest order model) it is important that the primitives can be easily combined in a description

of patchwise continuous combination of model primitives. In this respect, surface models like bi­

variate polynomials are better than volumetric models like generalized-cylinders and superquadrics,

since they have more local support and higher fidelity to the underlying data.

Spatial primitives like curves and surfaces satisfy the above criteria. Additional criteria for

primitive selection, as given by Besl [Bes88] are: 1) Models should approximate well any smooth

curve or surface of constant sign-of-curvature over a finite domain. 2) Models should extrapolate

accurately to arbitrary points outside the current domain. 3) Models should interpolate between

missing points inside the domain. 4) Models should be computed efficiently. 5) Model representation

should be compact.

A general parametric model f(a, x) can be represented as :
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p(r)

f(a,x) = LaL!/(x) (5)
1=1

where !I(x) are basis functions defined on I, and a is the parameter vector of the model.

The models we have chosen are the variable-order bi-variate polynomials that are linearly pa­

rameterizable in the Euclidean space :

f(r,a,x) = L aijX1yJ

i+j~r

(6)

where the vector a is defined in the parameter space A. Dimensions of the parameter space

depend on the order of the model r which is in our case restricted to 0 ::;: r ::;: 2. Thus our

model admits planar and bi-quadratic surfaces. Surfaces of higher order can introduce oscillations,

are computationally expensive, and are often unstable during the model-recovery process. If the

underlying surface is curving faster than a second-order patch, then it is always possible to break

the patch into smaller second-order patches. Our algorithm for model recovery and model selection

takes care of this in a unique manner. Even if higher order models (say up to fourth-order as in

Besl and Jain, 1988) are considered, there is no guarantee that model will always fit the data, as

is typical with any primitive based approach. Instead, bi-quadratic patches have nice properties

that they can be used to merge segmented descriptions in order to come up with more global

descriptions like concave and convex patches. Second-order patches give descriptions which are

perceptually supported. What is more, it is easy to do reasoning with them and to compute

discontinuities. The final description in terms of piecewise continuous second-order patches contains

global information about the scene that can be described qualitatively (like convex, concave patches)

as well as quantitatively (curvature, normals, etc.). The description has local support and can be

used to derive quantities and higher level descriptions that are invariant to translation and rotation

(Guassian curvature, critical points, etc.).

3 Segmentation and Model recovery

Iterative Regression Approach

In this section we describe the process of recovering the primitives from the data. This is performed

by following the iterative regression approach, used for surface segmentation by [BJ88] and for

contour segmentation by [Che89]. Our approach differs from the former's in the selection of initial

estimates (seed regions), search for connected compatible points, highest order of the polynomial;

and from the latter's in that we do not restrict the connected compatible region to a predefined

size and update the model's order during region growing. Our method differs from the Random
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Sample Consensus (Ransac) approach of Bolles and Fischler [BF81] in that the seed regions are

not selected at random and the model is updated during region-growing depending on the data.

3.1 Surface fitting

Let us first introduce the notation of a linearly parameterizable surface patch S(r,a,x) :

S(r,a,x) = ((x,z) E I x Z Iz =f(r,a,x)}

The distance function from a data point g(x) to the surface S(r,a,x) is given by :

2 A 2d (r,a,x) = [g(x) - f(r,a,x)]

(7)

(8)

(9)

Let us take a topologically connected set of points 'D which is a subset of I and define the total

deviation of the points from the surface S(r,a,x) :

x2(r,a, 'D) = L: d2(r,a,x)
XED

Given a set of points 'D, the problem is to find the order r of the model and the parameters a

which will minimize the error function x2(r,a, 'D). Using least-squares regression we get:

x2(r, a, V) = min X2( r, a, 'D)
aEA

We use the standard technique for solving the General Linear Least Squares Problem.

The solution is given by :

where X T is the transpose of the matrix X. The optimal vector a is computed as :

(10)

(11)

(12)

where a = [ ~l ]

~p pxl

_ [ g(~d ]y- :

g(xn) nxl

, x = [ h(~l)
h(xn)

(13)

and flex) are the basis functions as defined in equation 5. The solution depends on the points in V.

If V is determined before the fitting takes place then the schema is called Classify-then-Fit [Che89].

As mentioned earlier, this approach essentially isolates the segmentation and the representation
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Figure 2: Schema for the iterative regression approach to model-recovery (for one model).

stages, with the result that the final description might not correspond to the global model since

it played no role in the segmentation process. Besides, the outliers in the data set resulting from

misclassification, and the sensitivity of the methods for model estimation may lead to disastrous

results. A desirable approach is to use both the local coherence measure and the global model to

guide the segmentation. This is achieved by an iterative procedure combining data classification

and model fitting - the iterative regression method - with an additional feature that during the

process of model recovery even the order of the model can be changed [BJ88]. Our algorithm is

outlined below. First we will explain the procedure for one region. The general algorithm which

automatically determines the regions (seeds) where the process is initiated is discussed later.

3.2 The Segmentation Algorithm (recovery of one model)

The schematic diagram of the algorithm is shown in figure 2. The detailed step-wise description is

given below :

1. Initial region (seed) is a small window whose size is determined on the basis of scale consid­

erations and can be adaptively changed depending on the data. It is denoted by 1)(0).

2. A first-order surface is fitted to the data in 1)(0). On the basis of results of different statistical

techniques (explained in §3.3) we make a decision whether all the data in 1)(0) belong to the
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same surface. If they do, the procedure continues with the following steps combining data

classification and model fitting. Otherwise the model recovery process is not initiated and

the seed-region is rejected.

3. Set the order r to O. If the goodness-of-fit is not acceptable then set the order r to 1. Compute

the initial estimates of parameters a(O) by fitting the data V(O) in S(O)(r,a(O),V(O»). The

iterative data classification and model fitting consist of the following three steps performed

in a loop, till the region growing terminates.

3.1 V(s) is updated with all compatible points. This is achieved via extrapolation of the

current estimate S(s)(r,a,x). Compatible points are defined as :

where C is the compatibility constraint, used as a local coherence measure. It also acts as

a scale parameter by effectively "smoothing" the data. Notice the recursive definition of

the compatible points C(s) (the set is initially empty) which are connected to the current

V(s) or to new compatible points C(s). The distance of the connected compatible points

from V(s) can be controlled by specifying the additional condition in equation 14 that

(x is no further than k pixels from the nearest border point in V(S») (15)

3.2 Based on V(S+I) = V(s) U C(S), update the model, and compute the new goodness-of-fit:

S(s+l)(r a(s+l) V(s+l») where a(s+l) - a, , - v(s+l)

The difference between the old and the new goodness-of-fit is :

3.3 These two steps are followed by a decision making process :

(16)

(17)

i. If (C(s) = 0) Goto step 3.3(iii).

ii. If (p(s+l) < T1 ) continue with growing. Goto step 3.1.

111. Update the order. r = r + 1. If (r > max_order) Goto step 3.3(v)

iv. Update model for new r. If error improves significantly continue with growing. Goto

step 3.1.

v. V = V(s+I) - C(s). a = aVis) Goto step 4.

4. Done with region growing. Store the model f( r, a, x) and the region of its extent V.
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Figure 3: Noise distribution and the role of C.

3.2.1 Features of the Algorithm

Thresholds: The thresholds for model acceptance and updating the order of the model are

determined empirically and kept constant for all the data from the same sensor.

Termination: The algorithm always terminates, since the monotonicity requirement for growing

regions holds :

(18)

Insensitivity to outliers: The iterative regression method is an efficient tool for data-driven

extraction of parametric features. Its main advantage is that the performance of the fitting is con­

stantly monitored. The procedure dynamically analyzes data consistency allowing rejection of the

outliers. The compatibility constraint, C, which is determined on the basis of the statistical behavior

of the sensor prevents the outlying points from being taken into the fitting process (figure 3). This

in an important feature since least-squares fitting has undesirable sensitivity to outlying points,

and measurement errors are not necessarily normally distributed [BKM86].

Switching the Order of the Model A first-order model when grown to its full extent can

extend to the neighboring regions along the intersection curve (figures 4 and 8). While it is not a

cause for concern in the case shown in figure 8 since the surface is planar, it is necessary to remove

the points along the intersection curve for the unbiased growth of the model as a second-order

surface in figure 4. We have devised a systematic analytical method for removing these points

before the model switches to the second-order. The method, which is general in scope, is explained

in section 6.
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Figure 4: Changing the model - Switching the order.

3.2.2 Solving Least Squares Problem

In the step 2 of the segmentation algorithm we accept or reject seed regions based on a global

coherence measure, which is the global chi-square error of the first-order least squares fit.

(19)

If the seed is accepted we compute the initial estimates of parameters a(O) by fitting the data 1)(0)

in S(O)(r,a(O),V(O)). This is achieved by solving the normal equations:

(20)

Here we describe an efficient way for solving the normal equations [Seb77].

Let us define the augmented matrix A.

XTY)
yTy

(p+l)X(p+l)

(21)

By simply applying Gaussian elimination to the first p columns of the augmented matrix A we

obtain
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(22)(: d )
(0)

P (p+l)x(p+l)

Since Va = d, where V is an upper triangular matrix, the elements of a can be found by

back-substitution. The important observation is that the chi-square error can be obtained directly,

(23)

without computing the parameters a, thus reducing the computational complexity of the algorithm

when only the goodness-of-fit is required.

In each iteration we update the model with new compatible points. This is simply accomplished

by updating the augmented matrix A and performing Gaussian elimination followed by the back­

substitution.

3.2.3 Computational Complexity:

Initial estimate: The computational complexity for computing the first estimate is:

(24)

where n = II'DII is the number of points and p = IJail is the number of unknown coefficients. Note

that the number of coefficient is limited from above and is in our case less or equal to 6.

Let us explain the equation 24. We need np2 multiplications to build the matrix (XTX) and

np multiplications to obtain the term (XTy). The computational complexity required to obtain

the solution vector a, and also the covariance matrix if needed, is of the order of O(p3). In case

that n » p, the computational complexity is O(n), which is linearly proportional to the number

of points.

Updating the estimate: Let n' denotes the number of points that are added to update the

estimate of the vector a. The computational complexity for updating the estimate is:

(25)

We add a whole set of new points so the dominant factor in determining the computational com­

plexity becomes the updating of the terms (XTX) and (XTy). This can be effectively achieved

by storing the (XTX) size p X P and vector (XTy) size p x 1. The number of the operations that

is needed to update the first term is O(n'p2) and the second O(n'p). If the number of updating

points n' >> p, then the procedure is asymptotically linear in the number of newly added points.
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3.3 Complete algorithm for model recovery : Seed selection

The only problem that remains to be explained is where to find the initial regions (seeds) in general.

Selection of the seed regions is one of the most important issues in any region growing algorithm

since it determines the starting estimates of the parametric models. Placing the seed regions

arbitrarily on the image cannot guarantee good description at least for those parts that need to

be split to match our primitives. Clearly, this requires the knowledge of those parts a priori which

is nothing but segmentation. This catch-22 problem can be solved either by intelligently selecting

the seeds by computing the primitive-related properties and placing the seeds in the pre-processed

image or by placing the seeds everywhere in the image thereby ensuring the best and complete

segmented description. Besl and Jain [BJ88] followed the former approach by computing the

Gaussian-mean curvature sign maps and selecting only the best patches as seeds. Their procedure

involves smoothing the image and computing second-order properties in the local neighborhood of

every pixel which is noise sensitive and computationally expensive. Also, uniform smoothing has

a major disadvantage of altering the underlying surface at the discontinuities, especially the C1

(surface normal) type, which are smoothed out to form high curvature continuous patches.

To avoid the problems related to smoothing and local curvature computation, we decided to

place fixed size (7x7) seed regions in the image in a grid-like pattern of non-overlapping windows.

The seed regions are accepted based on a global coherence measure (step 2 of the segmentation

algorithm), which is the global chi-square error of the first-order least squares fit. This should be

less than a specified threshold. This constraint ensures that the behavior of the seed is acceptable

for the current extent of the region, and that it is not placed on a discontinuity. However, it does

not guarantee that a seed accepted for further growth will always grow into an acceptable region,

since the global coherence measure can be satisfied on the low strength Co and C1 discontinuities.

It is possible to incorporate a planarity check that analyzes the distribution of the residuals to

better constrain the seed selection. At present we are not performing such a check since it adds

substantial computational burden, and more importantly, because our method is not sensitive to

bad starting regions. Such seeds result in regions with high error that are better explained by

other well-behaved regions. As explained in a later section, using our model selection procedure it

is trivial to discard such regions early in the model recovery process. For now, we limit ourselves

to the discussion of model recovery (region growing) as an independent process and outline the

complete algorithm:

1. Place 7x7 seeds in a grid-like pattern. If the current attempt of placing a seed region on a

window is unsuccessful, then the next attempt is made in a 5x5 overlapping window.

2. For each seed the model-recovery procedure explained in § 3.2 is invoked. The schematic
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Figure 5: A schematic representation of the region growing process.

diagram is shown in figure 5, where the individual blocks represent the iterative regression

schema (figure 2).

Let V~s) denotes the set of points which are used for the estimation of the parameters arB) of

the i-th model at the s-th iteration. Notice that the regions can overlap partially or completely, so

(V~s) nV;s)) -::I 0 in general.

The final output of the above algorithm are all the recovered models that are potential candi­

dates for the final description of the data. Selection of the models is achieved through a maximiza­

tion of quadratic Boolean problem described in the following section.

4 Model Selection

After all possible models are recovered we need an efficient procedure for selecting the best de­

scription of the image. The growing procedure, as described in the previous section, outputs many

different regions of which many are partially or totally overlapped. Intuitively, the method should

select the models so that :

• the number of selected models is as small as possible,

• the size of each model (i.e, the cardinality of V) is as large as possible,

• the error measure between the original data and the recovered models is small.
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Perhaps the closest in spirit to our approach to model selection is the one used by Pent­

land [Pen90]. However, there are at least two major differences.

• The objective (saving) function is different since we deal with complex models and not binary

silhouettes. This gives us the opportunity to give more preference to a particular description;

for example the one which describes more points, or has smaller error, or has lower order

model.

• The objective function is not solved by the continuation method, where it is not clear how

to precisely adjust the steps of the scale parameter. We have developed a faster algorithm

whose computational complexity is proportional to the number of selected models and thus

drastically speeds up the selection procedure.

4.1 Objective function

Let us first analyze the objective function for one particular model describing the underlying data.

The objective function F is a weighted linear combination of the following terms:

• Benefit: Number of points (ni =1 D I) that are described by the i-th model.

• Cost: Error measure ~i = X~ of the i-th model.

• Cost: Number of parameters (Ni) that are needed to specify the particular model.

(26)

where F( mi) is the objective function that we want to maximize and is the function of the model mi.

ni corresponds to the number of points that are explained by the model mi. ~i is the error measure

between the model mi and the data. Ni denotes the number of parameters for a particular model,

which depends on the order of bi-variate polynomial that models the data. K1, K2' K3 are weights

which can be adjusted in order to give more preference to a particular description; for example the

one which describes more points, or has smaller error, or has a lower order model.

Since many of the models overlap completely or partially, we have to design an objective function

that takes into account the interaction between different models. As in Pentland [Pen90] , we

consider only the pairwise overlaps in the final solution.

The objective function to be maximized for the selection of the "best" description for multiple

models has the following form :
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(27)

(28)

where Tni is a function of the presence of the model mi, having unit value for the presence and 0

for the absence of the model in the final description. Diagonal terms express the cost-benefit value

for a particular model mi:

(29)

Off-diagonal terms handle the interaction between the overlapping models:

(30)

where r(mi, mj) = I 1\ nV j I is the number of points that are explained by both models. ~i,j

corrects the diagonal error terms in case that both models are selected. In the intersection area

where both models cover the data the smaller error is taken. The term ~i,j is

L:ni dr + L:nj dJ - max(L:qmi,mj) dr, L:qmi,mj) dJ)
~i,j=~i+~j- + r( ) (31)

Tli nj - mi, mj

K 1,K2,K3 are weights which can be adjusted in order to take into account the signal-to-noise

ratio of the image or to express a preference for a particular type of description. K1, which weights

the number of points in the model is set to unity and 1(2,](3 are set relative to it.

Notice that the matrix is symmetric. Depending on the overlap of models, the matrix Q can

be sparse or banded, which can be used to reduce the computations needed to calculate the value

of F(m).

We would like to emphasize that in contrast with some other approaches, the models that are

wholly contained within the bigger models are not a priori discarded but are passed to the selection

procedure. The following example dispels the misconception that bigger model always provides a

better description.

An Example: Table 1 shows three models where model m1 is wholly contained in the model

m3, and m2 and m3 overlap partially. This situation can occur quite often in real images when
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m3 m2 ml Value of the objective function

0 0 0 0
M_,

0 0 1 Klnl - K26 - K3N1Model 3

0 1 0 Kl n2 - K26 - K3N2
SeedS 0 1 1 K1(nl + n2 - r(ml,m2» - K2(6 + 6 - 6,2) - K3(Nl + N2)

1 0 0 K1n3 - K26 - K3 N3

1 0 1 K1(nl + n3 - r(ml,m3» - K 2(6 + 6 - el,3) - K3(N1 + N3)
_2

1 1 0 K 1 (n2 + n3 - r(m2, m3» - K 2(6 + 6 - 6,3) - K3(N2 + N3)

1 1 1 Kl(nl + n2 + n3 - r(ml,m2) - r(ml,m3) - r(m2,m3»-

K2(6 +6 +6 - 6,2 -6,3 -6,3) - K3(Nl + N2 +N3)

Table 1: An Example: Three overlapped regions and the corresponding objective function table.

the seed of the model (in this case m3) is placed too close to the neighboring region which causes

an overflow in the initial stages (initial iterations) of the model recovery process. The values

of the objective function for all possible combinations are shown in the table. Since pointwise

description is too costly for a significant number of data, at least two models have to be selected

to describe the underlying area. So let us concentrate only on two solutions, where m= (1,1,0)

and m = (0,1,1). Let us suppose that the models ml and m3 are of the same order. Since

(nl + n2) = (n2 + n3 - r(m2, m3)) the final decision depends on the error terms. If 6,2 < 6,3 the

combination of models m= (1,1,0) is selected.

4.2 Optimizing the objective function - the Algorithm

The variables mi are Boolean and denote the presence or the absence of a model in the final

description. Since the function F(m) is quadratic, the problem is known as Boolean quadratic

problem. Since the objective function is non-convex, the only way to determine the models which

maximize the value of the objective function F(m) is to calculate the value for all the 2M possible

vectors m and choose the one which gives the highest value. This algorithm is exponential in

the number of models and thus computationally infeasible. Several different approaches have been

proposed to solve the problem faster. Pentland [PengO] devised a continuation method where he

weights the negative diagonal terms in the matrix Q by a factor k3 which forces the matrix to

become diagonally dominant and thus negative definite. The method is to first solve using a very

large value of k3 , and then, using the previous solution as a starting point, progressively resolve

using smaller and smaller values of k3 , until the solution is reached. He does not mention how

the factor k3 , which can be considered as a scale factor at which parts are recovered, is decreased.

It is clear that there is no guarantee that the global maximum will be found, but the reported

experimental results show that in most cases the algorithm performs well and gives the expected
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results.

We implemented this method using a direct descent algorithm. We observed that if k3 is

decreased in large steps, the solution gets stuck in a local maximum which is significantly lower

than the solution reached by decreasing the parameter almost continuously. The computational

complexity of the method is proportional to:

(no. of steps of k3) x M x (evaluation of the matrix Q) (32)

where M is the number of models involved in a selection process. In evaluating the matrix Q we

exploited the fact that the matrix can be sparse and banded. Since the computational complexity of

the method depends on k3-steps, there is an obvious trade-off between the accuracy of the solution

and the speed.

While experimenting we made two observations on how the solution develops, which allowed us

to design a very efficient algorithm that is based on two assumptions:

• Only one model is chosen at a time,

• Once the model is chosen it cannot be rejected.

The Algorithm:

Initial values: Vi mi = o. The initial value of the objective function is o.

do

old_value_oLobjectiveJunction = new_value_oLobjectiveJunction;

procedureJs_done = true;

for all the models do

find_the_one_thaLcontributes_theJllosLto_the_value_oLobjectiveJunction;

new_value_oLobjectiveJunction = maximum_value_oLobjectiveJunction;

if (old_value_oLobjectiveJunction < new_value_oLobjectiveJunction)

Output( Model that was selected, Value of the objective function);

procedureJs_done = false;

while (not procedureJs_done).
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The computational complexity of our method is proportional to:

(number of models in the final description) X (evaluation of the matrix Q) (33)

The designed algorithm is an excellent compromise between speed and accuracy. Experimental

results show that in almost all the cases the algorithm performs well and gives good results both

quantitatively and qualitatively. We compared it to the continuation method and except for very

small steps of k3 , where the results were the same, our algorithm selected the models with the

higher value of the objective function.

Thus, we now have a complete model recovery procedure that yields all the models in the

image, followed by the above model selection procedure which selects the best models according

to the global error, order, and the spatial extent of the region. The complete procedure works

as shown in Figure 6 (a). As a consequence of the selection process, eventually very few of the

regions emerge as acceptable descriptions of the data. However, instead of growing all the regions

completely, it is desirable to discard regions as they grow. Also, the computational cost of growing

all the regions completely is prohibitive in most cases. These observations suggest incorporating

the selection procedure into the recovery procedure to discard redundant and superfluous regions

even before they are grown fully. Our final algorithm described in the next section accomplishes

this integration.

5 Model Recovery and Model Selection

Combined in a Dynamic Iterative Schema

After describing the two major components of our system, namely, the module for model recovery,

and the module for model selection, we now describe how they can be combined in a dynamic

way to obtain a fast and efficient method for image segmentation. As explained earlier, to avoid

the problems related to smoothing and local curvature computation, seed regions are placed in

globally coherent windows everywhere in the image, and models are grown simultaneously and

independently for all of them. This way all the regions are grown to their full extent and then

selected for the optimal description, as shown in Figure 6a. Since the regions are selected by the

optimization procedure after they are fully grown, the resulting segmentation can be claimed to be

the best piecewise continuous description of the image. We call this procedure Recover-then-Select,

for it grows all the regions fully and then prunes them (discards the redundant ones). While the

results of this procedure are optimal (we use the word optimal to signify the fact that optimization

was performed to extract the final regions and that the results are optimal in some sense, and

by no means imply that the global maximum was achieved by the procedure), the computational
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Feature Model selection invoked

Early Late

Description - Less reliable + More reliable

Models remaining for further growth - More + Fewer

Processing needed for initial growing + Less - More

Matrix Q + Sparse - Dense

Table 2: Trade-offs in dynamically combining model recovery and model selection procedures.

complexity is prohibitive because all the regions are grown to the maximum before the best among

them are chosen. Surely, there must be a way to discard the regions after a few iterations of region

growing using the same model selection procedure (with conservative weights, to accept multiple

descriptions rather than losing a good one about which we are not confident yet), so that only the

active models are grown further. This procedure, performed continuously in a loop (see figure 6b)

is called Recover-and-Select.

The incorporation of Recover-and-Select paradigm opens up a number of possibilities as to the

control of the region-growing procedure. It has the feature of growing only well-behaved regions

(in terms of convergence, error, number of compatible points) while at the same time lowering

the computational complexity of the procedure. There is a clear trade-off in combining the model

recovery module with the module for the selection of the optimal current description. The more

the regions are grown, the more reliable is the description they give. But the initial growing

is computationally expensive and also results in a less sparse matrix Q. However, this reduces

further processing since fewer models are selected for further growth. On the other hand, if the

growing process is interrupted by the selection of currently optimal models at the early stages, the

complexity of the early processing is decreased and the matrix Q is sparse due to less overlapping.

In this case fewer models are rejected, increa.<;ing the complexity of the further processing. These

tradeoffs are summarized in Table 2. By properly balancing the two trade-offs a computationally

efficient algorithm is obtained.

During the very first iteration, model selection is invoked after all the regions are grown only

for a distance of k = 20 pixels (equation 15 in step 3.1 of the segmentation algorithm) from the

seed. After that, the restriction on k is removed, and the model selection procedure is invoked after

every iteration of region growing (one itera.tion of the steps 3.1-3.3). We have found that after the

initial selection of regions, depending on the type of surfaces in the image, less than 50% of the

regions survive. The model selection weights are kept biased to discard only the completely identical

regions. Also, error is weighted more than the order of the regions. Later in the procedure, however,
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Figure 6: Model recovery and selection: (a) Recover-then-Select (b) Recover-and-Select.

the weights are changed to eliminate duplicate regions describing a patch with considerable overlap

and similar global error.

6 Post-processing of the Regions

The collection of models obtained by the Recover-and-Select strategy describes the image in terms

of primitives with minimum overlap such that all the parts of the image (where seeds were placed)

are described by at least one surface. Some of the regions may need refinement of their spatial extent

due to the overlaps with neighboring regions. Regions may overlap due to the surface similarities

near the border between two patches. It is acceptable in most cases and we make no attempt for

further segmentation due to the absence of any additional information.

The second type of overlap is caused due to the compatibility constraint (equation 14). It can

result in two cases, shown in figure 8 :

1. Type I: Region A overflows into region B along the intersection curve (region C) due to the

lack of topological constraints.

2. Type II: Region A and B overlap near the common boundary.
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Figure 7: Recover-and-Select: A schematic diagram of the closed-loop model recovery and selection

process.
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Figure 8: Limitations of the approach due to the lack of topological constraints. They are enforced by

the postprocessing stage by following a simple analytical approach.



24 7 EXPERIMENTAL RESULTS

Both types can be resolved by a systematic procedure. Since the regions are described analyti­

cally, it is possible to detect such cases and remove the extraneous points in a clean manner. This

is true for all kinds of intersections, including the intersections formed by two second-order regions.

A surface normal check is performed in the overlapped portion of the two regions to determine

the type of overlap. If the average angle between surface normals is not significant then there is a

smooth overlap between the two regions, otherwise the two patches intersect and need additional

processing. We have devised an algorithm to refine the overlapping regions formed at the line of

intersection and to assign the points to the right patch. For each pair of overlapping regions the

following steps are performed :

1. Determine the pixels Pi that are on the intersection curve.

2. Compute the normal to the curve at each Pi.

3. Trace pixels along the normal on both sides of the curve, storing all the traced pixels and

looking for the first pixel on both sides that does not belong to the overlapped region.

4. If both end-pixels belong to the same region then assign all the traced pixels along the normal

to that region, else if they belong to different regions then distribute the traced pixels between

the two regions.

In figure 8, points in C that should only be labeled as belonging to B are assigned to B (case

I). In case II, points on the two sides of the intersection curve are distributed between A and B.

This procedure has been tested on numerous images with excellent results.

During the post-processing various heuristics can be incorporated to derive the desired high

level description. Surfaces curving faster than our second-order model are described as piecewise

combination of second-order patches. While the global qualitative description is unique, there is a

possibility of a non-unique individual description of the patches that compose the global patch. In

other words, more than one kind of decomposition is possible for data that does not exactly match

our model, as is the case with any primitive based approach.

7 Experimental Results

We tested the Recover-and-Select paradigm on a number of range images of scenes with a combi­

nation of different kinds of surfaces. The method is straightforward and is computationally feasible

on a sequential machine. All the examples were run on a SUN-4, with the average execution time

of less than 2 minutes. The program is twice as fast on the IBM-6000 RISC machine.



25

Since the pixel values in range images correspond to the real surfaces, it is easy to analyze

the results from a geometrical point of view, particularly because our primitives are geometric in

nature. Results are shown for seven range images. The images (except the block image) were

scanned using a structured lighting laser-scanner with approximately 1mm/pixel spatial resolution

and 1.5mm depth resolution. Due to the geometry of the scanner, certain parts ofthe scene appear

as shadow regions (with no data) in the 2!D image representation. The compatibility constraint

for all the range images was set to 4, which corresponds to a quantization and sensor noise of ±2

pixels. The algorithm was run on the raw data without any preprocessing like uniform smoothing.

Results are discussed for each image below. All the results coded in gray-levels are grouped such

that the top row of the figure (from left to right) shows the original image, its 3-D perspective

plot, the reconstructed image from the piecewise continuous segmented patches, and the 3-D plot

of the reconstructed image. The images are displayed with the depth value at each pixel from a

reference plane appearing larger if the pixel is closer to the camera. The white square in the patch

indicates the seed region for that patch. The individual surface patches are displayed in the second

row of the figures in the order in which they were selected by the model selection procedure, and

are referred to below with their position in the row, counting from left to right.

Image 1: This range image consists of a triangular prism and two half-cylinders placed on a box

(figure 9). Three planar regions representing the box and the prism and two second-order patches

for the cylindrical objects are recovered, as shown in the bottom row of the figure 9. The planar

regions on the prism extend along the intersection with the box. Using the procedure described in

the previous section, the region of overlap due to intersection of the envelopes was removed and

the results are shown in the last three images in the bottom row. The line of intersection between

the planes gives the surface-normal (Cl ) discontinuities.

The Coffee-mug image: The convex and concave portions ofthe body ofthe cup are recovered

as individual second-order patches, as shown in the first two images of the bottom row in figure 10.

The handle consists of very curved patches which are modeled piecewise for the given scale (which

directly relates to the compatibility constraint). According to the results, the missing parts are

better described pixelwise than as parametric patches (due to the scale consideration). It should

be noted that the jump (Co) discontinuities are clearly delineated by the neighboring regions.

Image 2: The image consists of three cylinders joined to form a globally curved structure.

At the regular scale, we obtain three second-order regions (left three images in the bottom row of

figure 11, which is the best description ofthe scene. To demonstrate our claim that the compatibility

constraint acts like a scale parameter, we increased its value to 121, (corresponding to noise of ± 11

pixels), and obtained a single second-order surface describing the "smoothed" data.

Image 3: This is a complex image for any surface modeling algorithm, primarily because of
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Figure 9: Image 1: The cylindrical surfaces are modeled as bi-quadratic patches. C 1 discontinuities

at planar intersections are reliably recovered.
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Figure 10: The coffee· mug Image: The highly curved handle is modeled as a combination of the

smaller patches.

the smooth boundaries (zero-crossing contours) between the convex and concave patches forming

the undulated portion of the scene. The individual patches recovered for the image are shown in

the middle row of figure 12, with the first four patches describing the image almost completely. The

undulated portion is described as two convex and one concave regions intersecting in the vicinity

of the zero-crossing contours. Patch 5 and 7 are the first-order patches flanking the convex second­

order patch 3. Adding them to the fmal description increases the accuracy of description of the

convex patch which is curving faster than the bi-quadratic surface. They are selected by putting

emphasis on the error term in the model-selection procedure. Patch 6 describes the second-order

region that smoothly merges into the planar patch. The merged region is modeled partly by the

planar patch and completely by patch 6, which is an acceptable description. One significant result

in this example is the approximate detection of the zero-crossing contour by region-growing and

not by curvature tracing, which is computationaJly prohibitive and extremely sensitive to noise.

Such a region based description is also useful for qualitative description of the scene in terms of

convex, concave a.nd planar patches. The third row in figure 12 shows some of the regions that were

rejected during various stages of the Recover-and-5elect procedure. In most cases, these regions

had bad starting points which passed the seed-selection criterion. It shows that though the seed

placement is not perfect, the procedure is robust enough to reject the patches arising out of bad

seeds in favor of the patches that are well behaved in terms of the spatial extent, order, and the
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Figure 11: Image 2: Three cylindrical surfaces. Increasing the compatibility-constraint smooths the

data to recover one surface.
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Figure 12: Image 3: Undulated surface smoothly merging into a planar surface. Some of the rejected

patches are shown in the bottom row.
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global error.

Complex Object: As mentioned in the introduction, the second-order surface in figure 13(taken

from [FanBB}) is difficult to segment due to the absence of jump or surface normal discontinuities.

OUT method gives a clean separation of the curved surface from the neighboring planar patches.

Such a result a possible only because we search for the best description everywhere in the image

and allow the models to develop independently.

Block: This noisy range image of a block (taken from Besl [BesSS]) has both planar and curved

patches (figure 14). Due to the noise in the image, higher value of compatibility constraint was used.

This has the effect of non-uniform smoothing, where noise points are left out in the final description.

The segmentation is as good as the one obtained by Besl using a curvature based approach, but

processed at a fraction of the computational cost involved in such elaborate processing.

NBS object: This is the range image of a machined object from the National Bureau of

Standards. All the surface patches are recovered accurately. This information is useful for initial

clustering for automatic or operator-assisted model building from range data.

Piecewise constant and first· order description of Coffee-mug: So far we have presented

the results of the Recover-and-Select paradigm with models allowed to change up to second-order.

Consequently, the final description consists of a. combination of piecewise patches up to second­

order. Similarly, it is possible to obtain piecewise constant or piecewise first-order descriptions of

the scene. Due to the simplicity of our paradigm, it is trivial to restrict the highest allowable order

to zero or first-order. [t is interesting to note that no other changes need to be made. Starting with

the same seed regions, the piecewise constant and piecewise first-order descriptions are obtained

for the coffee mug (figure 16). The piecewise constant description is like equidistant contours or

planar slices of width determined by the compatibility constraint. The piecewise planar description

shows a natural approximation of curved patches by planar patches. The extent of planar patches

(along the curvature) is determined by the compatibility constraint.

The above examples show that our method gives acceptable segmentation of objects into patches

in most of the cases. The interpretation of these patches is straight forward, with direct applications

for surface modeling and detection of both, discontinuities and smooth boundaries. The primitives

do not explicitly contain information about the boundaries of the segmented data. This is advanta­

geous, especially in the case of occlusion, but requires a secondary process to determine the actual

boundaries.

During the course of experimentation, we observed that the method degrades gracefully if

the assumptions which are determined by the choice of primitives are not met. For example, a

geometric object like torus is described by numerous bi-quadratic patches which do not result in a

simple description, signaling that different kind of primitives should be invoked.
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Figure 13: The Complex object: The second-order patch (2) is segmented from the planar patches.
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Figure 14: Block: Regions are recovered in the noisy image.



Figure 15: NBS Object: Surface patches are reliably recovered.

33
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Figure 16: Coffee-Mug: Piecewise constant (left) and planar patches (right).
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OUf future work which is directed toward overcoming some of the problems is discllssed in the

final section.

8 Conclusions and Work in Progress

We believe that our segmentation schema is a tool that will prove useful in many tasks of early

vision. We described two procedures where it is clearly shown that the whole is greater than

the sum of its parts (synergism). The iterative approach combining data classification and model

fitting shows that segmentation and modeling are not two independent procedures but have to be

integrated. The procedure which dynamically combines model recovery with model selection proves

to be much more efficient than applying the modules one after another.

Another important conclusion that we could draw from our work is that reliable segment.at.ion

can only be achieved by considering many competitive solutions and choosing those which reveal

some kind of structure in terms of underlying models. We agree with Pentland [Pen90] that fine­

tuning of feature detectors does not lead to reliable segmentation, because of the variability of

the input data. Initial local estimates, no matter how good they are, do not necessarily lead to a

good result, a,nd more global information is needed. Optimization that is performed on the level of

primitives rather t.han on a pixel level not only improves the performance enormollsly in terms of

computational complexity but also gives more reliable results.

An obvious extension is to use the proposed schema to segment int.ensity images. In intensit.y

images, though smooth boundaries and C1 discontinuities are not t.hat. import.ant, t.he description

can be used to model shading or just to provide a region-based parametric description that effec­

tively achieves data-reduction and generates a middle-level description of image regions for further

reasoning in terms of analytical regions instead of coping with unstructured data at pixel level.

The intensity image in figure reffig:ball shows a ball with a circular hole through it. For the

compatibility constraint of 49 (noise of ±7 pixels), the ball was described as the convex combination

of two second-order patches (1 and 2). The reconstructed image is shown in the figure 17, which

is a good approximation of the original. Dy increasing the compatibility constraint by one pixel,

almost the entire ball was recovered as one second-order patch (patch 3). Patches 4 and 5 are two

of the more than 100 regions rejected during t.he Recover-and-Select procedure.

An important, implicit feature of our schema is that it automat.ically selects the domain of

applicability, which means that it models only the data that can be expressed ill terms of predefined

models. For textured regions (relative to the scale determined by the size of seed region), the

schema tha.t we describe is insufficient. These regions are left out in processing, since lIO seeds

are placed there. They can be further anaJyzed in the same paradigm, but using different models.
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Figure 17: Intensity image: A ball with a hole.

Small regions which have a size that is insufficient to provide enough of information for a reliable

estimate can be analyzed 011 a different scale after new information is acquired.

We plan to apply the same principles to other problems in low-level vision. We have already ob­

tained some preliminary results in detecting curve-structures in the image. The images in figure 18

show the edge elements obtajned by Illultircsolution wavelet transform using different thresholds.

The algorithm, similar in spirit, but with some interesting modifications, has detected in all images

the same "most" significant structure (the dosed outline curve) given by the objective function.

This means that the algorithm can perform well in cases of noisy and incomplete information.

The surface segmentation described in this paper will become all integral part of a larger schema

for 3-D segmentation of range data using volumetric, surfa.ce and curve models [GB90].

Another interesting challenge would be to lise the proposed schema as a framework for combin­

ing different sources of information. There are two places where we see that the integration of the

information could take place. The first one is at the time of decision making in the iterative regres­

sion procedure and the second one at the phase of selecting optimal descriptions where different

modules could influence one another through the objective function. A module for detecting curve

structures in the image would add an important (topological) dimension to the existing schema.

The aelive vision paradigm [Baj88) could use the hierarchy of models that is produced by the

selection procedure as a focus of attention.



37

Figure 18: Structure in edges: Top row: Edge images using different thresholds. Bottom row:

The most significant curve recovered from the corresponding edge image superimposed on the original

data.

The process of individual region growing as well as the complete model recovery procedure is

pa.rallel. Although the procedure is computationally feasible on a sequential machine, like SUN-4,

in order to exploit the inherent parallelism, the procedure has been implemented 011 the Connection

Machine.
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