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1 INTRODUCTION 

1 Introduction 

The object of our study is the Bayesian approach in solving computer vision problems. 
We examine in particular: (i) applications of Markov random field (MRF) models to 
modeling spatial images; (ii) MRF based statistical methods for image restoration, 
segmentation, texture modeling and integration of different visual cues. 

The Bayesian method is a ~robabilistic framework which has four major components: 
(i) prior model which in low-level vision tasks describes prior information about an 
original image; (ii) degradation (sensor) model which models an observed degraded 
image as a result of applying some transformation to the original image; (iii) posterior 
model which relates the prior and degradation models, and given the observed data, 
for any allowable image, it represents the probability that this image has generated 
the observed data; (iv) loss function which is used for expressing costs of errors and 
preferences to particular estimators. The goal is, to  find an optimal estimate with 
respect to the prior model, the degradation model, and the loss function, given the 
observed data. Finding the "best" estimate is an optimization problem which is 
usually intractable by traditional methods. This is where the MRF's have important 
applications. Geman and Geman [GG84] state and prove the main theorems on which 
the application of MRF's to image modeling and estimation is based. These theorems 
together with the "simulated annealing" technique [KGV83] provide computational 
methods for finding optimal image estimates. 

Our survey is structured as follows. 
In Section 2, we state the computer vision paradigm and give a brief overview of 

the major problems. In Section 3, we formulate the Bayesian approach and illustrate 
how it can be used in modeling spatial images and computer vision tasks. In Section 
4, we introduce the Markov random field models and give some examples relevant to 
modeling spatial images. We discuss the difficulties associated with the MRF models 
and how these are overcome by exploiting the MRF-Gibbs equivalence. In Section 
5, we consider the maximum a posteriori (MAP) estimate for MRF prior, and the 
restrictions imposed on the degradation transformation. In Section 6, we discuss the 
optimization problem related to the MAP problem, the Gibbs sampler (a procedure 
for taking samples from Gibbs-distributed random vectors), and Geman and Geman's 
results [GG84] which are the mathematical theory for investigating MRF's: (i) by 
sampling (Relaxation Theorem); (ii) by computing modes (Annealing Theorem); and 
(iii) by computing expectations (Ergodic Theorem). In Section 7, we illustrate the 
application of the theory presented in the previous sections to modeling images and 
solving some computer vision tasks. The examples are taken from [GG84], [GG86b], 
[Rip88], [Mar85], and [PT88]. They are related to restoration of images, texture 
modeling, texture segmentation and integration of visual cues from different low-level 
vision modules. 
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2 Computer Vision 

The purpose of this section is to introduce the reader to computer vision. It is not 
intended to be complete, but only to give the necessary minimum background for the 
purpose of our presentation. 

The ultimate goal of computer vision is to provide the computer systems with human- 
like vision: to give the machines ability to look for, see and understand (interpret) 
what has been seen [PT88]. The input is a digitized image usually on a square grid of 
pixels (each pixel measures the image in a small square). The measurement at  each 
pixel may be a gray level (usually at most 256 levels of luminance) or a vector of gray 
levels (measuring luminance in different spectral bands). The resolution (the size of 
each pixel per scene) is often limited by hardware considerations in the sensors. In 
computer vision the resolution is also limited by real-time requirements. Most images 
available today are used in at most 512 x 512 sections. But these limits will increase 
with time. The output is a description of the scene observed. As Horn [Hor77] states, 
computer vision systems work toward symbolic description; in short: from 2-D images 
to 3-D symbolic description. In this, the computer vision systems differ from image 
processing systems which deal with conversion of images into new images, usually for 
human viewing. Marr [MN78] considers the process from 2-D images to 3-D symbolic 
descriptions as a complex hierarchical one consisting of three major levels (low, inter- 
mediate and high), each with its own representations and computational algorithms. 
These levels on the other hand are not isolated, but interconnected. 

Here is the structure of the vision system as Marr views it. See figure 1 (page 3). 
The 2-D digitized image is processed at the lowest level so that important features 
are extracted, intensity variations in the image are made explicit (edges, homoge- 
neous regions). A primal sketch which is a primitive description of local geometric 
relationships is obtained. This is a local camera-dependent image representation. 
Next, different low-level vision modules (texture, stereo, motion, color, "shape from 
shading") process the image in attempt to recover surface depth, orientation, local 
curvature, reflectance, texture, motion, color. The locally definable features are given 
3-D interpretations: from 2-D edges to 3-D boundaries, and from 2-D regions to 3-D 
surfaces. The result from the low-level vision processing is the so called 2;-D sketch. 
It is a viewer-dependent and viewer-centered local represent ation of an object (scene), 
and it is at the intermediate level in the vision hierarchy. Since the input data of 
the low-level vision modules are noisy and sparse, pre- or post-processing for image 
smoothing, or restoration may be necessary. At this stage a restoration and approx- 
imation by using MRF's may be applied. The intermediate-level vision algorithms 
integrate different visual cues (outputs from low-level vision modules). This stage of 
the vision processing is geared toward a global 3-D description of the object or the 
scene (not the image, not the surfaces). This description is at the high level of the 
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1 High-level processing: 
interpret ation, recognition 

High-level representation: 
(3-D objects,scene) 7 

Intermediate-level processing: 
integration of visual cues 

I 

Intermediate-level represent at ion: 
2a-D sketch 

(3-D boundaries, surfaces) 
. 
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Low-level processing: Stereo, 
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I Low-level represent ation: 
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Figure 1: Vision Hierarchy: block-diagram. 



2 COMPUTER VISION 4 

visual hierarchy. It is a viewer-independent, object-centered global representation. 
Higher-level processing concerns the issues of interpretation, recognition, and knowl- 
edge representation. We do not study these questions in the present survey. 

In his study of computer vision problems, Horn [Hor77] emphasizes the importance 
of understanding how images are formed, and what are the constraints imposed by 
the physical world. He considers vision tasks as "inverse problems" relative to  optics; 
in optics the processing is from objects to images. In order to be able to deal with 
low-level vision tasks, explicit assumptions about the world being seen are made (for 
example, point light source, smooth surfaces, specific materials). 

Poggio at al. [PTK85] observe that the problems arising in low-level vision are in 
general ill-posed (in a mathematical sense). A problem is well-posed when it has 
unique solution which depends continuously on the input data. Ill-posed problems 
fail to meet these conditions. The image data are inherently ambiguous and noisy, 
and based on this image data we try to  recover unique surface properties. These 
data does not imply unique solution. Many low-level vision problems are ill-posed 
[PTK85]. The main idea, in solving ill-posed problems, is to restrict the class of 
admissible solutions. To make an ill-posed problem well-posed, regularization meth- 
ods are used. One possibility is to reformulate the problem in terms of a variational 
principle, and then to use standard regularization methods to solve it [TA77]. 

The regularization of an ill-posed problem of finding z from the data y 

requires a choice of a norm and a stabilizing functional 1 1  PzII. TWO methods that can 
be applied are: 

Find z which minimizes 1 1  Pzl12, and satisfies 1 1  A z  - y 1 1  5 E ,  for any sufficiently 
small E .  "This method looks for a z which is sufficiently close to the data and 
is most regular, meaning minimizes the criterion 1 1  PZ 1 2" [PTKSS]. 

Find z which minimizes 

IIAz - Y 1 1 2  + X I I P Z I I ~ ~  
where X > 0 is the so called regularization parameter. This parameter controls 
the degree of regularization of the solution and its closeness to the data. 

The standard regularization methods impose constraints on an ill-posed problem by 
a variational principle such as (2.1) [PTK85]. This principle reflects the physical 
constraints about what represents a good solution: it has to be both close to the data, 
and regular (making 1 1  Pzll minimal). Note that the standard regularization methods 
have to be applied after a careful analysis of the ill-posed nature of the problem. The 
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choice of the norm, the stabilizing functional, and the functional spaces involved, is 
dictated by both, mathematical and physical, considerations. 

In this survey we present an alternative approach to regularizing ill-posed problems- 
Bayesian modeling. 

3 Bayesian Approach 

The Bayesian approach models the image formation and the sensor output as stochas- 
tic processes. It assumes prior knowledge expressed in terms of a probability distribu- 
tion. A motivation for using the Bayesian approach in computer vision is that image 
problems do not occur in isolation [Rip@]. Often, many images, obtained under simi- 
lar conditions, have to be processed. Previous experience, and physical considerations 
may impose some constraints on the model. For example, astronomers know a lot 
about atmospheric distortion [Rip88]. 

Remark 3.1 Notational conventions. For a square matrix G,  denote the transpose 
and the inverse matrices of G with Gt and G-l, respectively. Random variables are 
denoted by capital Roman letters, and their particular values by small Roman letters. 
Vectors are denoted by boldface type. The distributions of discrete random variables 
can be specified in terms of point mass functions (p.m.f.). For a discrete random 
variable Z, the p.m.f. is pz(z) 

def where (2 = z) = {w : Z(w) = z). Similarly for the joint and the conditional 
distributions of two random variables X and Z 

pz,x(z, x) = P ( Z  = 2, X = x), 

pzlx(z I x) = P ( Z  = z I X = x). 

The distributions of continuous random variables can be specified in terms of density 
functions (d.f.). For a continuous random variable Z, the d.f. is fi(z) 

where (z < Z _< z + dz) ef {w : Z(w) E (z, z + dz ] } .  Similarly for the joint and the 
conditional distributions of two random variables X and Z 

f z , x ( ~ , ~ ) d ~ d x = P ( z < Z ~ z + d z , x < X ~ x + d x ) ,  

fzlx(z I x)dz = P ( z  < Z 5 z + d z  ( X  = x). 
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3.1 Definitions and Problem Statement 

From a decision-theoretic point of view the formulation of the problem is as follows 
[Ber85]. We are given: 

A parameter space R (a nonempty set of possible values of the unknown param- 
eter 8 E 0). 

An action space A (a nonempty set of actions available to the statistician). 

A loss function L : 0 x A -+ R (a real-valued function defined on R x A). 

In a statistical decision problem we are given a triple (R, A, L) coupled with an 
experiment involving an observable random variable (vector) Z whose probability 
distribution depends on the value of 8. 

r The set 2 of all possible realizations of the observable random variable (vector) 
Z, is called the sample space. In computer vision applications 2 is a subset 
of a finite dimensional Euclidean space. The cumulative distribution function 
(CDF) FZ(z; 0) of Z depends on the true state of nature 8, and is called the 
sampling distribution. 

A function d : 2 + A which maps the sample space 2 into the action space A is 
called a decision rule (procedure). Based of the outcome of the experiment, Z = z 
the statistician chooses an action d( r )  E A. The loss, L(0,  d(Z)  ) is now a random 
quantity itself. The expected value, Es L( 0, d(Z)  ) is called the risk function 

The expectation here is taken with respect to the sampling distribution for fixed 8. It 
represents the average loss to the statistician when 8 is the true state of the unknown 
parameter, and the statistician uses a decision rule d. 

There exist several principles by which the decision rules can be chosen. One such 
basic principle is Bayes' Principle. The Bayesian approach involves the notion of 

prior probability distribution T on the parameter space R. 

We need two more quantities: 

the Bayes risk of a decision rule d with respect to T 

r ( ~ ,  d) E T R  (0, d) ,  

where O is a random variable over R with prior distribution T; 
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the posterior distribution, a(0 ( r ) ,  of the parameter 0 given the observations. 
In the discrete case, 

n(0 ( z )  = 
P Q , Z ( ~ ,  4 

pz( r )  * 

(3.2) 

In the Bayesian setting, the parameter 0 is treated as a random variable. Using Bayes' 
Principle, the statistician acts as if the parameter 0 were a random variable O with 
known distribution. 

A Bayes decision rule is a decision rule with smallest Bayes risk (3.1). Note that a 
Bayes rule may not be unique, or may not exist at all. When the Bayes rule does not 
exist, we obtain an E- Bayes rule [Fer67]. 

Observation 3.1 [Fer67] The Bayes decision rule d minimizes the posterior condi- 
tional expected loss, given the observation(s). Hence, we choose d ( r )  = a, where 
a E A minimizes 

In order for Observation 3.1 to be true, certain conditions have to be satisfied (namely, 
the conditions of Fubini's theorem [Roy68]). Since all the functions we use satisfy 
these conditions, we will not discuss this aspect. 

Another way of using Bayesian analysis in inference problems is to look directly at 
the posterior distribution (3.2). The idea is that the posterior distribution, n(0 I r) 
contains all the available information about 0 (both prior and sample information). 
Thus, any inference concerning 0 should be based on this distribution. Ideally, the 
entire posterior distribution should be reported. But the most common technique is 
to give the maximum likelihood estimate obtained from the posterior distribution. 

Definition 3.1 The maximum a posteriori (MAP) estimate, 6, is the value of the 
parameter 0, which maximizes the posterior distribution ~ ( 0 1 ~ ) .  Thus, given r E 2 

a ( i  I z )  2 a(0 I I),  for all 0 EG.  

The MAP estimate is the "most likely" value of the parameter given the prior and 
the sample information. This is the estimate we discuss in our presentation. 

In the Baysian approach to computer vision problems, the MAP estimate is widely 
used (the modes of the posterior distribution are considered to be good estimates). An 
example of an estimator different than the MAP is used in a tomography application 
[GM87]. There, the authors use the posterior mean in the reconstruction problem. 
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Marroquin [Mar851 explicitly discusses loss functions (error criteria) for computer 
vision applications, and the appropriate optimal estimators with respect to the prior 
and the degradation models, and the specific loss function. The loss function is an 
important component of the Bayes estimation, no less important than the prior model 
for example, and our view is that it should receive serious attention. 

3.2 Computer Vision Applicat ions-Example 
Let us now show how a specific low-level vision task can be placed in a Bayesian 
setting. Consider the problem of image restoration ("cleaning"). 

An image consists of an M x M rectangular array of pixels. With each pixel, we asso- 
ciate a random variable which represents the measure of a certain attribute (intensity 
gray level, object label, texture label) at this pixel. Then, an image is regarded as 
the collection of the random variables, associated with all the pixels. Let X = {X;j} 
represents an original unobservable image. An observed image Z = {Zij} is obtained 
from X = {Xij} through some degradation transformation Q, Z = Q(X,  E ) ,  where 
E is a noise vector. In particular, we may use the model 

where H is a blurring transformation. The problem of image restoration is to infer 
X from Z .  Assume a prior probability model T for X, ~ ( x )  = px(x). From Bayes' 
theorem 

P X ~ Z ( X  1 % )  = 
fzlx(z I 4 P X ( ~  

f z ( 4  
There is a practical difficulty here: the dimensions of the pixel arrays are huge, so 
it is impossible to evaluate directly pxlz(x I z) ,  for each x .  Instead, we look for the 
MAP estimate. This is equivalent with finding an x which minimizes 

Assume that the noise E is independent of X, and has Multivariate Normal distri- 
bution with covariance matrix C, and mean zero. Then, the sampling distribution is 
the conditional Normal distribution 

Let the prior model for X be a Gibbs distribution, meaning 
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where X is a parameter of the distribution, and U is a function of a certain form which 
we will consider later. Then, (3.3) can be rewritten as 

So the problem of maximizing the posterior p.m.f. pxlz(x I z )  in this case reduces to 
the problem of minimizing (3.4). This is a difficult optimization problem. 

Ripley [Rip881 draws a correspondence between the MAP estimate and the standard 
regularization technique. Denote the first summand in the left-hand side of (3.4) by 
I (x ) .  Then the MAP estimate has to minimize I(=) + XU(x). We may think of I as 
measure of the 'infidelity' of the data Z to the true image X .  If the energy U is a 
measure of the 'roughness' of X, it is clear that 

MAP minimizes  ( 'infidelity' + X 'roughness'). (3.5) 

Note that (3.5) can be identified with a special case of a standard regularization (2.1). 

In order to discuss an important issue, we look at the fundamental problem of image 
segmentation. The segmentation of an image denotes the division of the image into 
homogeneous subimages and the labeling of the pixels by their type. We observe 2, 
consisting of image intensities, and infer X, the map of labels assigned to each pixel. 
In image segmentation, the MAP estimation is justified by a simple decision theory 
problem [Rip88]. Let the images have size M x M. Consider a parameter space 

where A is a finite set of labels. In this notation x takes the role of the parameter 8. 
The action space A may be the same as R. Let L(a ,  x )  be a zero-one loss function 
with error tolerance zero: 

0, a = x ,  
L(a ,  x )  = 

1, otherwise. 

Hence, the loss is zero for all correct maps, and one for the incorrect ones. From 
Observation 3.1, it follows that the MAP estimator is a Bayes rule. 

Another measure of the error, commonly used in segmentation, is the number of 
misclassified pixels [Ripas], corresponding to a loss function equal to that number. 
In this case, Bayes rules maximize 
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which is equivalent to maximizing each of the posterior marginal distributions P (Xij = 
x;j I Z), { i ,  j }  c (1, . . . , M}. This estimation is known as maximum a posteriori 
marginals (MAM) [Mar85]. The posterior marginal distributions do not have a simple 
form. There are methods which seek to overcome this difficult problem. Marroquin 
considers a simulation-based method for finding MAM. Since G ( x )  cannot be found 
analytically for computational reasons, farther simplifications, by approximations, 
P (Xij = xij I ZN),  of the exact computations, P (X;j = x,j I Z), are necessary. Here 
ZN denotes the observations in a neighborhood of (i, j) [Rip88]. In our study we will 
not discuss this method. Our concern is the MAP estimate. 

4 Markov Random Field Models 

4.1 MRF-Definit ion and Specification 

Definition 4.1 Let S = { s l ,  sz, . . . , s ~ )  be a lattice (a set of sites), and let 6 = 
(6, : s E S} be a family of subsets of S .  The family 6 is a neighborhood system for 
S if: 

1. for every s in S, s $ G,; 

2. for every s and r in S ,  s E 6, if and only if r E G,. 

For each s E S, B, is the neighborhood of s; the elements of 6, are the neighbors of 
s. The neighborhood relation is antireflexive and symmetric. It is not transitive. 

Remark 4.1 The pair {S, 6) is a graph in the usual sense: the vertices are the sites 
of S ;  two vertices are connected if they are neighbors in S with respect to 6. From 
here on, {S, G} is a graph as in Definition 4.1. 

Definition 4.2 Let {S,G)  be a graph, IS( = N ,  and let R be a subset of the N -  
dimensional Euclidean space, 

f l =  { ~ = ( X , ~ , X , ~  ,..., xs,):xSi €Asi ,  lA,,I<oo, i = 1 ,  ..., N}. (4.1) 

A random vector X = {Xs}sES, with range R ,  is a Markov random field (MRF) over 
S with respect to 6, if there exists a probability measure P on R  such that: 

1. for every w in R 
P ( X = w ) > O ,  

2. for every s in S 

P ( X , = x , ~ X , = x , V r # s ) = P ( X , = x , ~ X , = x , ~ r € ~ , ) ,  (4.3) 

for any w = (x,,,x ,,,..., x,,) in R.  
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The set R is the configuration space, and any w in it is a configuration. The local 
characteristics of the MRF X (4.3) determine uniquely the joint probability (4.2). 
For any site s E S, the equality (4.3) states that the probability of X, conditioned 
on the remaining random variables, X, r E S r # s, is equal to the probability of 
X, conditioned only on the random variables X, where r is a neighbor of s, r E 6,. 
Hence, X is characterized only by local interactions, the value at  a site s, is depen- 
dent only on the values of its neighbors, not on the values over the whole lattice S. 

Without loss of generality, assume that all the random variables X,, s E S have a 
common finite range space A, A, = A, s E S. 

Remark 4.2 Any random vector X with positive joint density is a MRF for neighbor- 
hoods large enough to represent the dependences. But MRF are useful for modeling 
spatial images when neighborhoods are small enough to ensure fast computations, 
and yet large enough to represent varieties of images [GG84]. 

Example 4.1 One-dimensional Markov Random Chains [GG84]. A one-dimensional 
Markov random chain X defined on S = {1,2,. . . , n)  with respect to the nearest 
neighbor system GI = (21, G, = {i - 1, i + 1),1 < i < n - 1, G, = {n - 1)) if started 
at equilibrium, is an example of a MRF. 

Observation 4.1 The MRF's are defined by their local characteristics (4.3). These 
represent a very large family of functions, satisfying certain consistency conditions. 
"It is extremely difficult to spot the local characteristics" [GG84]. This is why the 
Definition 4.2 is not useful in practice, it does not give a formalism for constructing 
MRF's. 

This problem is overcome by utilizing the MRF-Gibbs equivalence. 

Definition 4.3 Let G be a neighborhood system for S, and let C be a subset of S. 
The set C is a clique in { S ,  G) either if it is a one element set (ICI = I), or ICI > 1 
and any two of its elements are neighbors. We denote the set of all cliques in {S, 6) 
by C. 

Remark 4.3 In terms of graphs, a clique is a completely connected subgraph. Note 
that a clique is not necessarily maximal. 

Example 4.2 Let 2, = {(i, j)};=, be an integer lattice. A homogeneous neighbor- 
hood system Fc on S is defined by 

F c = { F i : F i j = { ( k , l ) : O < ( k - i ) 2 + ( ~ - j ) 2 c } , i , j = l ,  . m}. (4.4) 

Figure 2 (page 12) illustrates the interior neighborhoods for homogeneous four-,eight- 
and twenty four-neighbor systems ( c  = 1,2,8). Figure 3 (page 12) shows the clique 
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Figure 2: Interior neighborhoods for homogeneous neighborhood systems, c = 1,2,8. 

Figure 3: (a): The clique types for a four-neighbor system; (a) and (b): The clique 
types for an eight-neighbor system. 

types: part (a) for c = 1, and parts (a) and (b) the clique types for c = 2. "Obviously, 
the number of clique types grows rapidly with c" [GG84]. 

Definition 4.4 Let {S ,G)  be a graph, IS1 = N ,  and let R be a configuration space 
(4.1). A Gibbs probability measure IT on R relative to { S ,  6) , is defined by 

such that 

for any configuration w = (xs,,xs,, . . . , x,,) E fl 

where for every clique C in C, Vc(w) depends only on these components xsi of 
w for which s; E C.  

Z is a normalizing constant. 

T is a positive constant. 

Gibbs distributions are widely used in statistical physics. They describe equilibrium 
states of large-scale physical systems. The sites of the lattice are identified with the 
components of the system. The names of the functions and the constants in a Gibbs 
distribution come from statistical physics: 
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U is the energy function. Low-energy configurations have high probabilities, 
and high-energy configurations have low probabilities. 

Vc, C in C, are the potentials. They are real-valued functions, which repre- 
sent contributions to the total energy from external fields (JC(  = 1) and from 
interactions of the elements of the system (ICI > 1). 

Z is the partition function, 

T is the temperature. It is a scale parameter for the distribution. By varying 
T, the height of the peaks of T changes. Let the energy function U is fixed. At 
very high temperature, the "density" T is almost uniform on R. Lowering the 
temperature, exaggerates the peaks of T, the difference between the probability 
of a minimal energy configuration and the probability of a configuration which 
does not have minimal energy, is increased. At very low temperature, .rr is 
almost uniform on the subset of R on which U attains its global minimum (T 

is zero outside this subset), a random sample from the corresponding Gibbs 
distribution is with high probability a minimal energy configuration. This is 
the principle of the technique used for finding MAP estimates. That technique 
is called simulated annealing, and it is discussed in Section 6.1. 

Theorem 4.1 Let {S,G} be a graph, R be a configuration space, and P be a proba- 
bility measure on R. Let X be a random vector. The random vector X is a MRF on 
S with respect to 6 if and only if X has a Gibbs distribution over R with respect to 
{S,G), P ( X  = w )  = ~ ( w ) ,  (4.5), w E R. 

"Explicit formulas exist for obtaining U from the local characteristics" [GG84]; for 
sketch of a proof see [Mar85]. For our purposes, more important is the other "di- 
rection" of the theorem. The local characteristics can be expressed in terms of the 
potentials (the energy). By applying Bayes rule and the definition of conditional 
probability, we see this as follows: 

Let X has a Gibbs distribution, 

By the definition of conditional probability 
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where w = (x,, , . . . , x,,), and the denominator denotes the joint probability distri- 
bution of all XT7s except X,. Let x denote the sth coordinate in w. By the definition 
of marginal probability 

where ws denotes a configuration which is x at site s, and agrees with w everywhere 
else. So by (4.5) 

Substitute in (4.6) 

Expand the energy, and cancel the common factors. Thus, obtain 

This is the local characteristic of a site s in terms of the potentials over the cliques 
which contain s. The computations in (4.7) are local and simple. They are the basis 
for the Gibbs sampler-an algorithm which we discuss in Section 6.2. 

The advantage of specifying MRF in terms of Gibbs distributions (potentials) instead 
in terms of local characteristics is evident. To define a MRF prior for a class of images, 
it is sufficient to specify the spatial dependences in terms of potentials. The potentials 
in a Gibbs distribution reflect the spatial coherence of the image. For a given pixel, 
they show how the neighboring pixels taken one at a time, two at a time (and so on) 
change the probability that this pixel has a certain value. The potentials Vc, C E C, 
are a family of real-valued functions, which do not satisfy any consistency conditions 
(note the difference with the local characteristics). Specifying the potentials is more 
practical than specifying the local characteristics directly. 

Ising model 

Let 2, = {(i, j ) }Yj=,  be an integer lattice with the homogeneous four-neighbor sys- 
tem Fl (4.4), and let X be a MRF over a configuration space R 

St = {a = {x..)m. 13 a,j=l : Xij E A, 1 5 i , j  5 m ) .  
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A clique is either a single site, or a pair of adjacent sites. The MRF X has a Gibbs 
distribution with energy function U .  The most general form of the energy U is 

where w = {x;j )c=,, and the first sum is over all sites in S ,  the second over all 
horizontal pair-cliques, and the third one-over all vertical pair-cliques [GG84]. The 
Ising model is a special case of (4.8) in which the MRF X is binary (IAl = 2), ho- 
mogeneous (translationally invariant, strictly stationary), and isotropic (rotationally 
invariant) [WonTl]. The Ising energy function U is 

where cr and /? are parameters. Without loss of generality we assume that the tem- 
perature T = 1. Substituting (4.9) in (4.7), we obtain the local characteristics for the 
Ising model. For (i, j) E 2, 

where vij  = x;(j-1) + x(i-l)j + + x ( ~ + ~ ) ~ .  For A = { -1,1) ,  it is easy to recognize 
that the Ising model favors images in which adjacent pixels have the same values. It 
represents adequately scenes consisting of homogeneous regions (of intensity, colors). 

Strauss model 

This is a model for unordered categories, such as maps of colors (labels) [Rip88]. Let 
L be a random field over an integer lattice 2, = { (i, j) ITj=, with the homogeneous 
neighborhood system Fc, and let A be a finite set of colors (labels) in which the 
components of L take values. The configuration space R consists of all maps which 
can be generated with the allowable colors, R = For any configuration I E R, 
the energy U(1)  represents the number of pairs of neighbors with different colors. 
Only potentials over the pair-cliques may be different from zero. For any pair-clique 
{ s , r l  E C 

1, I s # E r ;  

0, otherwise. 

Maps all of one color have lowest energy (zero), and, by the Gibbs model, are most 
probable. This probability decreases when the number of pair neighbors with different 
colors increases. The local characteristic at (i, j), derivable from (4.7), depends on 
the number of neighbors of (i, j) with color k 
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No. maps Description 
the whole map has one color 
one corner has color different from the rest of the map 
one pixel along the edge has color different from the rest 
two pixels next to each other at a corner have the same color 
and the reminder has the complimentary color 
one edge has a color different from the rest of the map 
one interior column or row has a color different than the rest 

Table 1: Some energy values for the Strauss model on a 4 x 4 grid. 

where k E A. In the case of a four-neighbor system ( c  = I) ,  and only two colors 
(IAl = 2), the Strauss model reduces to the Ising model (4.9). But even with this 
simple model on a 4 x 4 grid, the number of possible maps is hug+216. Table 1 
illustrates some of the energy values, and descriptions of corresponding maps [Rip88]. 
The pictures of the maps are shown on figure 4 (page 17). 

4.3 MRF-Hierarchical model 

The simple MRF models are not rich enough to express adequately complicated de- 
gree of prior knowledge. In some cases we would expect long straight boundaries 
which, for example, the Strauss model penalizes. Geman and Geman introduce the 
hierarchical MRF models [GG84]. The hierarchy reflects the type and the degree of 
prior knowledge about the image being studied. The image is modeled as a "multiple 
processes" MRF X = (xP, xE, x L, . . .), each component of which is a MRF itself. 
The first process xP is a process of image intensities. The rest of the processes 
model some geometrical (structural) attributes in the image. These correspond to 
edges [GG84], feature or texture labels [GG86b], etc. "They are part of the image 
model but not of the physical data." [GG86a]. In Section 7.2 we present the the hi- 
erarchical model from [GG86b], where images are modeled in two levels, by intensity 
process and texture label process. Here we present Geman and Geman7s hierarchical 
model for the MAP image restoration problem from [GG84]. The images are modeled 
in two levels, by intensity process and edge (discontinuity) process. 

The hierarchical MRF model [GG84] 

The image X is regarded as a MRF composed of two processes, 

where the intensity process F is a MRF of observable pixel intensities, and the line 
process L is a MRF of unobservable edge elements. Here "observable" refers to the 
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Figure 4: Maps described in Table 1. 

Figure 5: Pixel sites (0) and line sites (*). 

fact that the pixel intensities are the values at the pixels, measured by the sensors; and 
"unobservable" refers to the fact that in the input image, there are no measurements 
about the geometrical structure of the intensity edges. Let Zm be a square m x m 
integer lattice with a homogeneous four-neighbor system Fl (4.4). Consider a lattice 
Dm consisting of the "places" between any two adjacent pixels of 2,. See figure 5 
(page 17). The "line" neighborhood L((;,j)(;+l,j)) of a "place" between pixels (i, j) and 
(i + 1, j) consists of the six places ( Look at figure 6 (page 18)) 

+ j  = { ((4.i - 11, (4j)), ((i,j), (i,j + 111, (G1j - 11, (i + 1,j - 111, 

((4.i + 1)) (i + 1,j + I)), ((i + llj - I), (i + Lj)), 
((z + l).& (i + + I)) 1 1  

where ((i, j), (k,  I)) denotes the "place" between the adjacent pixels (i, j), and (k, I). 
This neighborhood is horizontal. A neighborhood L((;,j)(;,j+l)) is similar but vertical. 
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Figure 6: Interior neighborhoods for vertical and horizontal line sites. 

A line site in Dm has a horizontal or vertical neighborhood, depending on its position 
among the pixels of 2,. 

Denote the neighborhood system over Dm with L. 

The intensity process F is a MRF over the graph {Z,, Fl); at each pixel (i, j ) ,  Fij 
represent the measure of the intensity at that pixel. The line process L is a MRF over 
the graph {Dm, L);  at each line site, the corresponding component of L, represents 
the ('measure" of an intensity edge at that line site. Each component of the line 
process represents a lack of an edge, or presence (and orientation) of an edge at a line 
site. 

The MRF X = (F, L) is specified over the graph {S, 6 ) .  The lattice S is an union 
of the "pixel" and the "line" lattices 

See figure 5 (page 17). The neighborhood system G is defined as follows: (i) the line 
neighbors of a line site in S are the same as in {Dm, L);  (ii) the pixel neighbors of 
a pixel site in S are the same as in {Zm , F1);  (iii) the line neighbors of a pixel site 
in S are the four nearest line elements (two horizontal and two vertical line sites, 
placed between the pixel site and its four nearest pixel neighbors under Fl). By 
symmetry of the neighborhood relation, the interior neighborhoods for a pixel site, 
and a vertical and a horizontal line sites are inferred. See figure 7 (page 19). The line 
process L modifies the pixel neighborhoods in F1: if an edge is present at  a line site, 
the potential over the pair-clique consisting of the pixels which this line site separates 
is zero; the two pixels separated by the edge element do not influence each others 
intensities, the bonding between them is broken. In this sense these pixels are not 
neighbors with respect to X, and they will not influence each other intensities, in spite 
of the fact, that they are neighbors in { .Fl, Zm ), and influence each other intensities 
with respect to F. Figure 8  a age 19) illustrates this concept; pixels separated by an 
edge elements are not considered neighbors any more; there may be sharp difference 
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Figure 7: Interior pixel and line sites neighborhoods for the hierarchical MRF. 

Figure 8: A grid of pixels (circles) with an edge process (bars). 

between their intensities, and configurations which have this particular pat tern will 
not be penalized (note the difference with the Strauss model, which penalizes the 
difference in intensity of the neighboring pixels). 

The hierarchical model reflects the type and the degree of the prior knowledge about 
the class of images under study. 

The MRF X = ( F ,  L )  on {S, 6 )  is defined by the following Gibbs distribution 

where 

The configuration space consists of all pairs w = (f , I ) ,  where the components of f 
are allowable intensity values (gray levels) and the components of 1 are encoded line 
states (a presence of an edge is coded with one, and a lack of an edge is coded with 
zero; if it is desirable to code possible orientations of an edge at a line site, more than 
two values are necessary). 
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5 The MAP problem 

We return now, to the MAP problem. It has three major components. 

1. Prior model 

2. Degradation model 

3. Posterior model 

The MAP estimator is the one which maximizes the posterior distribution, recall 
Definition (3.1). The results are stated for the general case of a hierarchical MRF 
prior, X. The MRF models were discussed in Section 4. 

5.1 Prior model 

The prior is a MRF X = (F, L) over R with respect to {S, G} (discussed in Section 
4.3). 

Next, we focus on the degradation and the posterior models. 

5.2 Degradation model 

The intensity process F is subject to some degradation, but the line process L is 
preserved. So the observed process (complete degraded image) is 

Z = (G ,L) ,  where 

G = *( 4 ( H ( F ) ) , N ) -  (5.1) 

Here H denotes a blurring matrix (shift-invariant point spread function), 4 is a non- 
linear transformation, and N is a noise process. Assume that 

N and F are independent, and N and L are independent. 

The transformation KP is invertible in the second argument when the first one 
is fixed: 9-l (a, . ) exists for any a E 4(H (aF)), where RF denotes the config- 
uration space of the intensity process F .  For example, Q may be addition or 
multiplication of its arguments. This ensures that the posterior distribution is 
a well-defined function which we can derive directly, and use in the inference 
problem. 

For computational purposes, the degradation function should preserve the ap- 
proximate locality of F, so that the neighborhood systems of the prior and 
degraded images are comparable. 

These restrictions are fulfilled for a wide class of useful degradation models, including 
combinations of blur, additive or multiplicative noise, and a variety of nonlinear 
transformations. 
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5.3 Posterior model 
For a MRF prior model, and for a degradation model which satisfy the assumptions 
stated in the previous subsection, the posterior distribution defines a MRF with 
a local neighborhood structure. The following theorem is proved in [GG84]. To be 
specific, let consider a Gaussian noise process N consisting of independent identically 
distributed (i.i.d.) Normal random variables N ( p ,  u2). 

Theorem 5.1 For eachfixed observation g ,  g E q5(H(RF)), the posterior distribution 
P ( F = f ,  L = l(G = g ), is a Gibbs distribution over { S, GP } with energy function 

where U (  f, 1) is the prior energy (4.13), and p = ( p ,  . . . , p)t has dimension m2 x 1. 

The theorem is stated for Gaussian noise process, but the proof can be extended 
directly for a general noise process. Here we give a sketch of the proof [GG84]. In order 
to keep the notation simple, and the derivations general (for any noise distribution), 
we make the following agreement: for arbitrary continuous random variable Y, P (Y = 
y) denotes P (y < Y 5 y + dy). 

From (3.2), the posterior distribution can be expressed as 

for w = (f ,l) E Q and g E $ (H(Q~) ) .  Next, from the assumed degradation trans- 
formation (5.1) and the independence of the noise N from X 

Since any random process with a positive joint density can be represented as a MRF 
(Remark 4.2), we are able to express the sampling distribution in a Gibbs form. In 
the particular case of a Gaussian noise process, 

But the prior model X has the Gibbs distribution (4.12). Substituting in (5.3) and 
combining the constants 
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Figure 9: Posterior neighborhood. 

where the posterior energy UP is as in (5.2). The posterior neighborhood system, 
GP is obtained from the prior neighborhood system G by preserving the "line neigh- 
borhoods ," but enlarging the pixel neighborhoods. The enlargement of the pixel 
neighborhood of a site s is done by including in a posterior neighborhood of s all the 
pixels which are not neighbors of s with respect to the prior model, but now, due 
to the blurring, affect the intensity at  the pixel s. For illustration look at figure 9 
(page 22). Let the neighborhood system for F be Fl; the neighbors of * are the 
0's connected to it. Let the blurring transformation H be averaging over the eight 
nearest neighbors; each of the 0's will influence the intensity of the * in the blurred 
image. By the Markov property, each o is statistically dependent on its four nearest 
neighbors (with respect to Fl) , and these dependences does not spread farther. Thus, 
the intensity at the pixel + in the degraded image is statistically dependent on all the 
pixels represented at figure 9 (page 22), o's, and 0's. 

Hence, the class of the MRF's has a nice feature-it describes both the prior and 
the posterior models. For computational reasons, MRF models with only short-range 
interactions (up to 10 - 20 sites in a neighborhood [GG86a]) are suitable for image 
modeling. When the blurring function is "local," the prior and the posterior MRF's 
have similar neighborhood structures. In this case, the degradation transformation 
preserves the short-range of the interactions of the prior model, and the posterior 
model has relatively small neighborhoods. 

The MAP estimate 

The MAP estimate maximizes the posterior distribution (5.4) which is equivalent to 
maximizing 

log P (X = w I G = g) = -UP(w) + constant. 

And subsequently, the MAP estimate has to minimize the posterior energy function 
UP(#), w E R. 
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6 Optimization Algorithm 

The MRF's have practical representations in terms of Gibbs distributions. The MAP 
estimate for such a process minimizes the posterior energy function (5 .2) ,  which is 
an energy function of a Gibbs distribution. At this point, we are confronted by 
computational problems. For MAP estimate we have to search a huge number of 
configurations. Even for a binary image on a 64 x 64 lattice, with no line process, 
there are 24096 possible configurations. Another computational difficulty, in case of a 
Gibbs distribution, is inherit from the partition function the computation of which is 
an intractable problem [GG84]. 

Computational methods are needed for (i) sampling from Gibbs distributions, (ii) 
minimizing Gibbs energy functions, and (iii) computing functions of Gibbs distributed 
processes. 

As seen at the end of the previous section, the MAP estimate problem is reduced 
to the problem of minimizing Gibbs posterior energy function. Gibbs distributions 
describe the equilibrium states of large-scale discrete physical systems. This suggests 
an analogy to statistical physics. Because, for many physical systems the equilibrium 
states at very low temperatures have desirable properties, a fundamental question 
is, what is the state of the matter at these temperatures. At such temperatures the 
physical systems are close to ground states (the lowest energy states). A way, for 
exploring such states is trough lowering the temperature until a lowest energy state 
is reached. But just lowering the temperature is not enough; during that process, the 
system has to be kept in equilibrium. The cooling process is therefore very delicate. 
The chemical annealing is a method for obtaining low energy states of a material: 
first the substance is melted at high temperature (so the equilibrium is reached fast), 
then the temperature is lowered gradually; enough time is spent at low temperatures 
for the system to reach equilibrium states. 

6.1 Simulated annealing 

In analogy with the chemical annealing Kirkpatrick [KGV83] develops "simulated an- 
nealing", for solving combinatorial optimization problems. The optimization problem 
is to obtain a minimum energy configuration for the Gibbs distribution 

Note, that the temperature T is a scale parameter of T (6.1), so a configuration which 
maximizes T (minimizes the energy U )  does not depend on T. Hence, if we obtain a 
configuration which has a minimal energy at  some very low temperature, this same 
configuration is a solution of the optimization problem. In the simulated annealing, a 
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solution of the optimization problem is identified with a ground state of an imaginary 
physical system with energy U. A control parameter T (temperature) is introduced. 
For a fixed value of the temperature T, a simulation of a collection of the elements 
of the system in equilibrium, at  that temperature, is performed. For that purpose, 
some algorithm for sampling from the Gibbs distribution (6.1) is emploied. Next, 
the temperature T is lowered, and at  the new temperature the sampling algorithm is 
repeated and so on. At high temperatures the equilibrium states are easily reached, 
fewer iterations, through the steps of the sampling algorithm employed, are needed. 

In his work [KGV83], Kirkpatrik employs the Metropolis' algorithm, to do the sam- 
pling at  any fixed temperature. The Metropolis' algorithm provides a computational 
technique to determine the equilibrium properties, especially ensemble averages, time 
evolution, and low-temperature behavior, of very large systems of essentially iden- 
tical, interacting components, such as molecules in a gas or atoms in binary alloys. 
Let R be the configuration space (all possible states of the system). If the system is 
in thermal equilibrium with its surroundings, the probability that it is in a certain 
configuration w is ~ ( w ) .  The iteration scheme is as follows. Let X ( t )  denote the 
state of the system at time t. Given X ( t  - 1) transfer to X( t ) ,  as follows. Randomly 
select a configuration w, and compute the energy change AU = U(w) - U(X(t - 1)) 
and the quantity 

If q > 1, set X ( t )  = w. If q 5 1, set X ( t )  = w with probability q, and set 
X ( t )  = X ( t  - 1) with probability 1 - q. 

When the temperature T is near zero, the imaginary physical system should converge 
to a state of minimal energy. 

This is a stochastic relaxation algorithm. The essence of such an algorithm is that 
transfers from a state X ( t  - 1) to a state X ( t )  are permitted even if the energy of the 
system will be increased (remember that the goal is to obtain minimal energy state). 
This is not the case with deterministic iterative algorithms, where only changes lead- 
ing to decreasing of the energy are allowed. (Always go "down-hill"!) The latter 
scheme may lead the system to a state of locally minimal energy (local minimum), 
from which "back tracking" is the natural way to continue the search. But the latter 
is computationally very expensive. Stochastic relaxation algorithms avoid that situa- 
tion, by allowing, occasionally, sequencing through states which will lead to increase 
of the energy. Unfortunately, it may take a very long time for such un algorithms, to 
find a state of minimal energy. Some scheme which will guarantee better convergence 
is needed. 
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The scheme for lowering the temperature, and the number of the rearrangements of 
the system, attempted at  each fixed temperature, is the annealing schedule. The an- 
nealing schedule which Kirkpatrick suggests is determined by trial and error. This is 
not satisfactory. Geman and Geman [GG84] designed the Gibbs sampler, a stochastic 
relaxation scheme for image processing, which is a variation of the Metropolis' algo- 
rithm. The computations in the Gibbs sampler are simple and local. Geman and Ge- 
man also propose an annealing schedule which guarantees convergence. The dynamics 
of the chemical annealing are simulated by producing a Markov chain X(1) ,  X(2),  . . . , 
with Gibbs equilibrium distribution [GG84]. When this distribution is the posterior 
distribution (5.4) the simulated annealing algorithm obtains a solution of the MAP 
estimate problem. 

6.2 The Gibbs sampler 

Let X be a MRF over a graph {S, 6) with Gibbs distribution 

T(w) = ~ X P {  -U(w)/T z , T = constant. 

The Gibbs sampler is a procedure for sampling from (6.2). Note that once the 
sampling problem is solved, the simulated annealing equipped with the sampling 
algorithm, approximates a solution of the MAP problem. 

For a fixed temperature T, the transition scheme is as follow. Imagine a simple 
processor at  every site s E S.  For each site s E S ,  the processor at  the site s is 
connected only to the processors at the neighbors of s. The size of the lattice S is 
very big, but the size of the neighborhoods is modest. All processors follow the same 
simple algorithm. The system evolves due to discrete changes in time. All sites of the 
lattice S are visited in some order. At each time step, the current configuration of the 
system undergoes a possible change only at one site. Hence, the states of the system 
in two consecutive time steps can differ in at  most one coordinate. The Gibbs sampler 
algorithm is based on Geman and Geman's Relaxation theorem. This theorem states 
that, regardless of the initial configuration, and the sequence in which the sites are 
visited for replacement, provided that all sites are visited infinitely many times, the 
distribution of the sequence, {X(t))t>l, produced by the Gibbs sampler, converges in 
distribution to the Gibbs distribution T (6.2). 

Let { t : t 2 0 ) denotes the discrete time sequence, { n, the sequence in which 
the sites are visited for update, and X( t )  the stake of the system at  time t ,  t 2 0. At 
time t the state of the system at site s is X,(t), Xs(t) E A. The total configuration, 
X ( t )  = (X,,(t),. . . ,X,,(t)), evolves due to state changes, such that, at time t ,  
X,(t) = X,(t - I), s # nt, and only the state at site nt is changed. At time t, the 
processor at site nt computes the local characteristic T(X,, = x,,lX, = x, : s E 
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G,,), Vx,, E A; recall that this local characteristic is easily computable in terms of 
the potentials over the cliques which contain the site nt. Next, a random saniple is 
drawn with respect to the probability low of the local characteristic, and this sample 
replaces the state at the site nt. The probability that at time t ,  the system is in a 
state w = (x,,, . . . , x,,) is 

where for any s in S, 6, denotes the neighborhood of s. 

Theorem 6.1 (Relaxation) Let X is a MRF, over {S, 61, represented b y  a Gibbs 
distribution T. Assume that the sequence Int, t > 1 )  contains each s E S infinitely 
many times. Than for any starting configuration q E R, and for any configuration 
~ € 0  

lim P ( X ( t )  = w  I X(0) = q )  = ~ ( w ) ,  
t+oo 

where {X(t)),OO=l is the sequence produced by the Gibbs sampler. 

Geman and Geman implement the Gibbs sampler in a raster scan fashion. In the 
raster version of the Gibbs sampler, the processor updates the states of the lattice 
sites in order. At each site s ,  the neighborhood relation and the values at the neigh- 
bors are loaded, then a sample is drawn from the local characteristic of s, and that 
sample replaces the state at site s. The time for one complete iteration grows linearly 
with the size N of the lattice S (a complete iteration is one full swept through S).  

A higher degree of parallelism can be achieved if the lattice S is divided into sublat- 
tices. A processpor is assigned to each sublattice. Each procrssor runs a raster-scan 
version of the Gibbs sampler in a sublattice. Since the convergence of the algorithm 
does not depend on the initial state and the sequence in which the different sites are 
visited (Relaxation theorem), all the processors can run simultaneously. If the divi- 
sion of S is done with respect to the natural topology of the scene the communication 
time will be diminished. The time for a complete iteration depends on the longest 
time for iterating over a sublattice, so it will grow linearly with the maximal size of 
a sublattice. Due to hardware limitations, this was the best parallelism which could 
be achieved at the time the Gibbs sampler was designed. 

With the development of massively parallel high-performance computers, higher de- 
gree of parallel implementation is achieved. Marroquin [Mar851 implemented the 
Gibbs sampler on the Connection Machine. A processor is assigned to each site. The 
number of steps necessary for a complete iteration is determined by the chromatic 
number of the graph with respect to which MRF is defined. 

The chromatic number of a graph is the minimal number of colors needed to color the 
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Figure 10: Scheme for parallel implementation of Gibbs sampler. 

graph in such a way that no neighbors have the same color. This number is bounded 
below by the size of the largest clique. In a parallel implementation of the Gibbs sam- 
pler, we may update simultaneously all the states which have the same color. States 
which belong to a same clique cannot be updated simultaneously. The execution time 
for one complete iteration, will decrease with respect to the raster scan version, with 
a factor of N/H,  where H is the chromatic number of the graph. 

Figure 10 (page 27) shows an example of coloring the lattice for the Ising model (four- 
neighbor homogeneous neighborhood system) with two colors-black and white. A 
complete iteration may be done in two steps. In the first step all white pixels are 
updated, and in the second step all black pixels are updated. 

6.3 Annealing scheme 

An "artificial temperature" T is introduced into the posterior distribution. This 
temperature is lowered in a way which forces the system into a minimum energy state. 
The Gibbs sampler is incorporated with this process of lowering the temperature. The 
difference between that scheme and the Gibbs sampler is that the latter produces a 
sequence of configurations, at constant temperature. 

First we introduce some notations. Let T(t)  denotes the temperature a t  time t, and 
.rrT(t) is the Gibbs measure corresponding to that temperature. The Gibbs sampler 
incorporated with the annealing scheme, generates a sequence {X(t) ,  t 2 1) such 
that 

Theorem 6.2 (Annealing) Assume that there exists an integer T 2 N such that 
for every t = 0,1,2,. . . , S C {nt+,, nt+2,. . . , nt+,). Let T(t)  be a decreasing sequence 
of temperatures for which 
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2. There exists to such that 

T ( t )  2 N A /  log t ,  for all t 2 to, 

where A is the digerence between the maximum and the minimum values of 
U(w), w E R. 

Then for any starting configuration q E R and for every w E R, 

lim P ( X ( t )  = w I X(0)  = q )  = U(w), 
t 4 m  (6.3) 

where U is the uniform distribution over the subset of R on which U attains its 
mznimum. 

This stochastic relaxation algorithm generates a Markov chain which converges in 
distribution to the uniform distribution, 2.4, over the minimal energy configurations 
[GG84]. A major practical weakness of the algorithm is the second condition-NA is 
too big. However, this is consistent with the physical experiments, in the sense that 
T must be lowered very slowly, particularly near the freezing point [GG84]. For their 
experiments Geman and Geman use the annealing scheme 

where T(k) is the temperature during the kth iteration (one iteration is one complete 
sweep trough the lattice S ) ,  and I< is the total number of iterations. The constant r 
is estimated by ad hoc methods. The bound for I' has subsequently been improved by 
other authors. "The smallest constant which guarantees convergence of the annealing 
algorithm can be specified in terms of the energy function." [GG86b]. 

Remark 5.1 We remind the definition of convergence with probability one. Given 
a sequence of random variables {Z,)F=l, and a constant c, {Z,),"==, converges to c 
with probability one if, for any positive numbers e and 6, there exists a positive integer 
N(e, 6) such that 

The next theorem concerns the ergodicity of the sequence produced by the Gibbs 
sampler. We are interested in computing the average of some function, Y, with 
respect to a Gibbs distribution. This cannot be accomplished analytically (due to 
the partition function) [GG84]. In some cases Monte Carlo Methods are applied: R 
samples are taken based on an uniform distribution on R, and then the average of Y 
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with respect to a(w) is approximated by the ergodic average (the sample mean of the 
values of Y at the sampled configurations). But this strategy is not practical when 
~ ( w )  is a Gibbs distribution because with high probability we sample low probability 
configurations (the exponential factor puts more mass over a small subset of 0). 
Fortunately the following theorem holds [GG84]. 

Theorem 6.3 (Ergodicity) Assume {X(t)),OO,-, is the sequence generated b y  the 
Gibbs sampler at constant temperature T ,  and that there exists T such that for all 
t 2 0, S c {nt+l, . . . , nt+T). Then, for every real-valued function Y : R + R, and 
for every starting configuration q E R, 

holds with probability one, namely, 

7 Applications 

In Bayesian approach to computational vision, several major components have to be 
considered 

1. Prior probability model for the original image. The prior models we present are 
MRF's. 

2. Degradation model which reflects the transformation of the original image into 
the observed data. This may include a sensor model. 

3. An estimator. The estimator we consider is the one which uses the MAP. 

4. Efficient optimization algorithms. The challenges of the problems in computer 
vision are (i) the optimizations have to be done over huge configuration spaces, 
and (ii) the real-time restriction in present in most of the computer vision 
applications. The question of efficient algorithms is vital. 

7.1 Restoration of Images 

The image restoration problem is to infer original unobservable image X from ob- 
served degraded image 2. The prior models are MRF's. They are specified by Gibbs 
distributions, the potentials of which model the spatial coherence in the original im- 
ages. 
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Here we present experimental results in image restoration from [GG84]. The restored 
images are approximations of the MAP estimates obtained by using the Gibbs sam- 
pler and the annealing scheme based on the Annealing theorem 6.2 and annealing 
schedule (6.4). 

For any of the illustrated experiments, the prior process X is either a simple MRF, 
consisting only of an intensity process F, or a hierarchical MRF ( F ,  L), consist- 
ing of an intensity process F, and a line processes L .  The neighborhood system 
is homogeneous four- or eight-neighbor systems (4.4). For the intensity process, F, 
only potentials over the pair-cliques may be different than zero. The particular prior 
models Geman and Geman use for illustration in [GG84] are both homogeneous and 
isotropic MRF. The mean of X ,  is a non-zero constant for every site s E S, and the 
correlations between any two random variables are preserved by rigid body motions 
on S [Won71]. 

Only the intensity process F may be degraded, the line process Lis preserved. The 
total degraded image is Z = (G, L),  where G is the observed degradation of the 
intensity process. The observed image G is obtain from F through degradation 
transformation which satisfies the restrictions specified in Section 5.2. In particular, 
the degradations are obtained by the following transformations, or their combinations: 

A blurring effect H modeled by a convolution over a small window 
H = { h k l } : , l = - l :  

112, k = 0, I = 0, 
h k l  = 

1/16, 0 < (k2 + Z2) 5 2. (7.1) 

At each pixel (i, j) E Z,, the blurring effect H ( F )  is 

"In this case the intensity at (i, j) is weighted equally with the average of the 
eight nearest neighbors" [GG84]. 

Nonlinear transformation # absent or 4(x) = @. 

Degradation map XP which is either addition or multiplication of its arguments 
(additive or multiplicative noise) 

Z = (G,  L) ,  where 

G = Q ( # ( H ( F ) ) , N ) .  

All restorations are approximations of MAP estimates, generated by a serial Gibbs 
sampler. The update of the states is done in a raster fashion. 
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The annealing schedule is 

where T(k) is the temperature during the kth iteration, and K is the total number of 
iterations. The constant I? is 3.0 or 4.0, estimated by trial and error. 

Different signal-to-noise levels are examined. The signal to noise ratios are very low. 
As it can be seen in the Appendix the algorithm gives satisfactory results. 

Two groups of experiments are conducted. 

7.1.1 Computer-generated original image 

The first class of experiments uses an original image which is sampled from a MRF 
over z128 with the eight-neighbor system. There is no line process, so X = F. The 
pixel process has 5 intensity levels. The form of the potentials over the pair-cliques is 

if the elements of C have the same intensity, 
, otherwise. 

The original image is obtained using Gibbs sampler with two hundred iterations 
at temperature T = 1. Experiments are performed with two different degradation 
transformations. 

Case 1.1 Additive Gaussian noise. See the Appendix, figure 13 (page 49). The 
degraded image in the first experiment, Z = G ,  is obtained by adding Gaussian 
noise with a = 1.5 to the original image 

Gibbs sampler with I< = 25 and K = 300 iterations is run. From the results we 
conclude that the bigger the number of iterations, the better the restoration is. 

Case 1.2 Blur, nonlinear transformation and multiplicative Gaussian noise. See 
the Appendix, figure 14 (page 50). The degraded image is obtained by blurring the 
computer generated image (convolving with H (7.1)), applying square root operation 
at every pixel, and multiplying (a) by Gaussian noise with p = 1 , a  = 0.1 

Again, the Gibbs sampler with I< = 25 and K = 300 interactions is run. The in- 
creased complexity of the degradation transformation does not affect the quality of 
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the restored image. This is consistent with the Relaxation and Annealing theorems. 
As long as the locality is preserved in the degradation, and the degradation transfor- 
mation '3 is invertible with respect to the first argument, these theorems guarantee 
the convergence. 

7.1.2 Hand-drawn original image 

The second class of experiments uses a "hand-drawn" original image on Z64 with 
three intensity levels. It consists of overlapping rectangles with parallel sides. See the 
Appendix, figure 18 (page 52). The prior model for this image has to be designed. 
Several experiments are conducted. 

Case 2.1 Prior: no line process; Degradation: additive Gaussian noise. See the 
Appendix, figure 18 (page 52). The prior for the original image is without presence 
of a line process, X = F. It does not account of the straight line edges. A Gaussian 
noise p = 0, a = 0.7 is added to the original image Z = X + N. Some big blobs 
which miss in the original image, are present in the restored image. 

Case 2.2 Prior: with line process; Degradation: additive Gaussian noise. See the 
Appendix, figure 18 (page 52). For a comparison and an improvement a binary line 
process is adjointed to the original image model, X = (F, L). The line process is as in 
section 4.3. The energy U( f ,  I) for the prior is modeled by -U( f 11) - U(1). For U(Z), 
only potentials over cliques of size four may be nonzero. See the Appendix, figure 15 
(page 51). A line process component models a lack (coded as 0) or a presense (coded 
as 1) of an edge at a line site. Depending on the site the edge may be horizontal or 
vertical. See the Appendix, figure 16 (page 51). There are six possible configurations 
for "line elements" in a clique. These configurations are unique up to rotations, and 
are specified by a presense (bar) or a lack (empty space) of an edge element at  the line 
sites. We express our preferences to these configurations by assigning different values 
to the potentials indexed by the corresponding cliques. See the Appendix, figure 17 
(page 51 ). 

In the interaction term U(f 11) only potentials over pair-cliques may be non-zero. 
Over such a clique the potential Vc(f 11) = 0 if there is an edge between the pixels of 
the clique C. If there is no edge 

1 if the pixels of C have same intensity, 
-1 otherwise. 

Looking at the restored images obtained in Case 2.1 and 2.2, shown in the Appendix, 
figure 18 (page 52), it is clear that the restoration with a presence of a line process is 
much more suitable. This experiments also show how important the prior probabilistic 
mode in Bayes estimation is. This prior is task dependent. In each case careful 



7 APPLICATIONS 3 3 

examination of the image is necessary. The result should be a neighborhood system, 
and a model of the interactions between the neighboring pixels in terms of potentials. 

Case 2.3 Prior: with line process; Degradation: blur, nonlinear transformation and 
multiplicative Gaussian noise. See the Appendix, figure 19 (page 53). The prior model 
is as in Case 2.2, X = (F, L).  The line process is not subjected to any degradation. 
The degradation transformation for the pixel process is as in Case 1.2 

For the restoration I( = 1000 iterations are done. Even with this nontrivial degrada- 
tion model the result examined by eye is satisfactory. 

7.2 Texture modeling 

We present an application of MRF for texture modeling, and the use of these models 
for texture segmentation from [GG86b]. By texture we mean the spatial distribution 
of the surface markings. It can refer to both, statistical variations in intensity (micro- 
structure texture), and patterns of lines or shape tokens (macro-structure texture). 
Segmentation refers both to dividing an image into homogeneous regions (in intensity, 
color, texture), and labeling each pixel with a label identifying the region to which 
that pixel belongs. When texture is used in segmentation, the different regions are 
identified not by their intensities, but by their texture types. 

Geman and Graffigne [GG86b] use hierarchically structured MRF to model images 
consisting of different natural textures. The prior model, for the texture modeling 
application [GG86b], consists of a pixel process and a texture label process. Simu- 
lated annealing with Gibbs Sampler is used for approximating the MAP estimate for 
segmenting a scene consisting of patches of natural textures (wood, plastic, carpet). 

The prior model 

Images are represented on an M x M pixel grid. The original image X is a MRF 
over a graph {S, 6 )  . The lattice is S = SP U SL, where SP is the square lattice 
of pixel intensity sites, and SL is the same square lattice as SP, but it represents 
sites for texture labels. The random vector X has two components, a pixel pro- 
cess xP = {Xr),ES~,  and a texture label process xL = {Xf ) sES~r  X = (xP, x L ) .  
The pixel process components may take any of sixteen gray levels, xf E (0, 1, . . . ,151. 
The texture label process components may take any of N given texture labels, xt E 
{1,2,. . . , N), s E SL. 

The neighborhood system for the pixel process is a nonstandard one. There is no 
uniform way for choosing it. There are only six types of cliques. From here, a 
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Figure 11: The six types of pair-cliques and the neighborhood structure for the pixel 
process, fixed texture type. 

diamond-shaped pixel neighborhoods are inferred. See figure 11 (page 34). For dif- 
ferent types of textures, the neighboring pixels have different degrees to which they 
tend to have similar grey levels. For fixed texture type 1 E (1, . . . , N), the degrees 
of dependence of the intensities of the neighboring pixels, are modeled by six tex-  
ture  dependent  parameters  {@j1))f=,. Roughly, for positive parameters neighbors tend 
to have similar intensities, and for negative parameters, the intensities tend to be 
different. For each texture type I, 1 = 1, . . . , N,  the texture dependent parameters 
o!'), i = 1, .  . . ,6,  are estimated from a single training sample. 

For a given texture type I E {1,2,. . . , N),  the pixel intensity process xP is a MRF 
specified by the Gibbs distribution 

where z(') is a normalizing constant. Only the six pair-clique types (figure 11 
(page 34)) appear in the energy function 

6 

u'' '(z~) "' - C C 0j''rn(.f' - xP). (7.3) 
i=l (s, t); 

For any index i of the outher sum, the summation in the inner sum is over all pair- 
clique parameters (s,t); of type i. The function @ is defined as follows 

where 15 is some positive parameter. There is no general method for designing the 
function a. As Geman and McLure [GM87] explain, the exact form of is not 
important. What matters are its qualitative features. For the particular problem, a 
function sensitive to difference in intensities of neighboring pixels is needed. But the 
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energy also have to account for certain type of intensity changes (edges, boundaries). 
The authors in [GG86b], [GM87] examine different types of @(A), mainly decreasing 

(1) in \A].  Hence the energy function (7.3) is increasing in IAl, (if 0; > 0 , i  = 1, ..., 6). 
This is consistent with the heuristic that more likely are close intensity levels for 
the neighboring pixels. The natural choice for @ is @(A) = A-2 [GM87]. But in 
this case the estimator results in oversmoothing of the original image. Under this 
choice of @ some natural boundaries (edges) are unlikely. Instead, to account for the 
oversmoothing, a function Q, of the form (7.4) is considered. The scale parameter S 
is estimated based on the range of the possible intensity values. Geman and McLure 
establish that the reconstruction is not sensitive to moderate changes of S [GM87]. 

After the probability models for all texture types l E { 1,2,. . . , N } are specified 
separately (7.2), a composite MRF X which couples pixel intensities and texture 
labels is specified. It has the joint Gibbs distribution 

The interactions between texture labels and intensities are given by U, (xP, xL). The 
heuristic is that each texture label at  a pixel s, is influenced by the gray levels of 
the other pixels around it. The interactions are on three levels (i) local pixel-based 
interactions, ( ii) local block- based interactions, and (iii) global interactions. 

The local pixel-based interactions account for the influence from the gray levels at  
the pixels which are immediate neighbors of the site s 

The local block-based interactions account for the influence from local pixel-based 
interactions at  the pixels in a 5 x 5 block of sites centered at s 

def 1 2 ( x P ,  1,  s)  = - H(x', l,t). 
a t € B ,  

Here B, denotes the set of 5 x 5 sites centered at s, and a is a constant which ac- 
counts for the fact that with the use of block interactions some cliques will contribute 
more than once to the total energy U( ' ) (X~) .  The constant a adjust the sum of the 
block-based interactions such that it would be consistent with the energy function for 
homogeneous textures (7.3) 
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Finally, the "interaction energy" models the global interactions between the block- 
based interactions at all sites s E S 

L def P L 
Ul(xP7x ) = xz(= 7~~ 7 ' ) .  

s E S  

Note that this model is consistent with the homogeneous texture model (7.3), Xf = I ,  
for all s in S. 

Since the textures are expected to appear in patches, the Ising like model with four- 
neighbor homogeneous system is suitable for the specification of the texture potential 
energy U2 in (7.5) 

U2(xL) = --/j C l.f=z: + w(xL), 

where the sum is taken over all horizontal and vertical pair-cliques, and w is a "bias 
correction term" [GG86b]. 

Parameter estimation 

The parameters S (for @) and (for U2) are determined by trial and error. The 
estimation of the pair-clique parameters Oj l ) ,  i = 1, .  . . ,6, 1 = 1,. . . , N, is systematic, 
trial and error methods are not feasible [GG86b]. These parameters are crucial for 
the performance of the model [GG86b]. They are estimated using a "training sample" 
x P  for each fixed texture d .  Let us denote the pair-clique parameters for arbitrary 
fixed texture type with 8 = (01, . . . , d6). The prior model for the pixel process and 
the homogeneous texture type depends on the parameter 8 

We are given a single "training sample," it corresponds to x P  = iiP. Our goal is to 
- P  estimate the parameter 8 in (7.6) for xP  = x . 

One popular estimate is the maximum likelihood estimate (MLE). It is the value, 6 
which maximizes the likelihood function (7.6) 

Maximizing the likelihood function is equivalent to maximizing its logarithm 
log P (xP = xP; 8).  The latter function is concave in 0 with a gradient 
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From (7.6) and (7.3) with Of = O;,  i = 1,. . . ,6 

- 
doi z ( 9 )  ao, 

1 a{-u(xP; 9))  
= C @(i f  - if) - - C exp{-U(xP; 8))  

Z(8) x*cQ do; 
(s, t)a 

But 

C 
exp{-U(xP; 8 ) )  C @(.f - x:) = E~ C s(x: - xp), 

XPEQ Z(8) ( s ,  t)i ( s ,  t)i 

where the expectation Eg is with respect to the prior (7.6) for fixed 8. Hence 

where the sums are taken over the pair-cliques of ith type. To maximize 
log P (xP = xP; 8) we have to solve for 8 the system 

The expectation Ee is with respect to the prior (7.6) for fixed 8. This expectation 
cannot be computed directly. One possible way is to approximate it using the Ergodic 
theorem (Theorem 5.3, Section 5.4). 

But even this computation can be omitted. An efficient improvement for a homoge- 
neous MRF is achieved by replacing the MLE with the Maximum Pseudolikelihood 
Estimate (MPLE) [Bes74]. The MPLE maximizes the pseudolikelihood function 
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where the product is taken over all sites s interior with respect to the pixel neighbor- 
hood system. The analytical justification for using that estimate is the "consistency 
of the pseudolikelihood in the "large graph" limits"" which is established in [GG86b]. 
The issue is that the parameter estimation is based on a single sample. The consis- 
tency refers to limiting case when the size of the graph grows (not the number of the 
samples taken) . 

The advantage of using MPLE instead of MLE is that the expectations which par- 
ticipate in the gradient expression of log P L (xP; 8 )  are directly computable. In this 
case there is no need of applying the stochastic relaxation method. 

The Degradation model 

We observe the clean pixel process with no noise or any other kind of degradation. 
The degradation model is the projection 9 : (xP, xL) -+ x P ,  and the observed 
image is Z = x P .  

The Posterior distribution 

The posterior distribution is the same as the conditional distribution of the texture 
label process given the pixel process: 

The MAP estimate 

We have to find xL  which will maximize (7.8). That is equivalent of maximizing 
(7.5), given the observation, xP = xP. Thus the MAP maximizes the prior energy 
U I ( X ~ , X ~ )  + U2(xL), for fixed xP. 

The computation of a minimal energy configuration is done by simulated annealing 
with Gibbs sampler. For the experiments considered, to achieve good approxima- 
tions, about a hundred and fifty iterations are enough. 

Experiments are done with four different types of natural textures: wood, plastic, 
carpet and cloth. There are scenes involving two and four different textures as well. 
No pre- or post-processing is done, and though the gray level histograms of the differ- 
ent texture types are similar very good segmentation results are obtained (examined 
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by eye). See the Appendix, figure 20 ÿÿ age 54). A drawback of this application is the 
fact that the model is dedicated to fixed types of textures. For each type of texture 
the neighborhood systems and the parameters of the energy (excluding the texture 
type parameters {o! ' ) ) )  have to be estimated "by hand." The method is good for 
segment ation but not for recognition, since the "texture synthesis" is not sat isfactory 
[GGSGb]. 

7.3 Integration of image cues 

In this section we present the MIT vision machine project [PT88]. "The MIT vision 
machine is mostly a specialized software running on the Connection machine" [PT88]. 
Its goal is to explore the issue of integration of early vision modules (such as edge 
detection, motion, texture, color), and to develop parallel algorithms for use on the 
CM (to organize a real-time vision system on a massively parallel computer). 

MRF models are used in some low-level vision modules (image restoration, stereo), 
but most important in the integration stage. The visual modules are coupled to each 
other and to the image data in a parallel fashion. 

The input images are processed in parallel through independent algorithms corre- 
sponding to different visual cues. 

1. Edges are extracted using: (i) zero-crossings of the Laplacian of the image 
filtered through an appropriate Gaussian; (ii) Canny7s edge detector. These 
edges at  coarse resolution are input to the MRF-based integration stage. 

2. Stereo computes disparity from left and right images. The match used is feature- 
based. 

3. From pair of images in a time sequence optical flow is estimated. 

4. Texture module attributes density and orientation of textons. The textons are 
elongated blobs by variation of which different texture regions are distinguished. 
Textons include rectangles, ellipses, and line segments, with specific properties 
such as color, orientation, length, and width. The end-of lines and crossings of 
lines are also textons. 

5. Spectral albedo of the surface is estimated independently of the effective illu- 
mination. 

The measurements provided by the early vision modules are typically noisy and pos- 
sibly spare. The approximation and restoration of the data is performed using MRF 
models. In each process known constraints are exploited. 
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Simultaneously discontinuities are found in each cue (intensity, motion, texture, color, 
stereo), and the prior knowledge about these discontinuities is utilized. Then each 
cue is coupled to the edges of brightness. The complete algorithm consists of finding 
various types of discontinuities. The output of the system is a set of labeled dis- 
continuities of the surfaces around the viewer. "This discontinuities taken toget her 
represent a cartoon of the original scene which can be used later for recognition and 
navigation" [PT88]. 

The integration stage 

Intuitively it is clear that the evidence provided by multiple cues (texture, color, 
stereo, etc.) should provide more reliable information about the scene than any sin- 
gle cue alone. But the problem of intergating the different visual cues is not trivial, 
actually it is not obvious at all how the integration should be done. How strong 
should be the coupling? The coupling depends critically on the reflectance and the 
imaging models. What features should be integrated and how? The authors argue 
that the coupling of the image data, and surface properties is more robust and qual- 
itative at locations of brightness discontinuities, at edges. Discontinuities are often 
most important locations in a scene (object boundaries or object parts for example). 
The changes in surface properties usually produce large brightness changes in the 
image. This suggests an integration scheme in which the brightness edges guide the 
computation of the discontinuities in the physical properties of the surface. 

The approach is to detect the discontinuities in each cue, simultaneously with the 
approximation of the image data. In each case a prior information about the type of 
the discontinuities is exploited. For example the discontinuities themselves may be 
expected to be continuous, non intersecting. The different cues are coupled through 
their discontinuities. Surface depth, orient ation, motion, texture and color are each 
coupled to the edges of brightness data and to each other. The information from sev- 
eral cues is used simultaneously to help refine the initial estimation of discontinuities. 

The integration stage exploits the hierarchically structured MRF model introduced by 
Geman and Geman [GG84] (see Example 4.5). For example, the prior depth model 
for a smooth surface may be a MRF X = F on a square M x M lattice S with 
homogeneous four-neighbor system, and potentials on the pair-cliques C = {i, j ) ,  

where f; E A,i 5 N, and A is a finite set of possible depth values. More prior 
information (about depth edges) may be embodied by the addition of a depth line 
process L to the pixel depth process F, X = ( F , L ) .  The potentials are modified 
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Maps 

physical discontinuities 

Figure 12: The MIT vision machine: block-diagram. 

where l i j  E ( 0 , l )  is the value of the component of the "depth line process" for the 
line site between pixel sites i and j .  The line process is binary so only presence of hor- 
izontal and vertical depth edges is modeled. The direction of the edge is determined 
by the place of the line site. This process models the prior knowledge about the type 
of the depth edges expected. If there is no "depth edge element" between two "depth 
pixel" neighbors i and j, (Iij = 0), a smooth depth is most likely at these pixels (they 
should have similar depths). At the presence of a "depth edge,'' the potentials are 
modified in accordance with the depth discontinuity model V&. 

Using hierarchical MRF models even more complicated illformation than just depth 
edges (line process) can be incorporated in the energy function. The energy is ex- 
tended to couple several of the early vision modules to brigl~tness edges in the image. 
For the depth map exaniple the coupling to the brightness edges may be done by 
replacing the term VA in (7.9) by a function 

where eij represents a measure of a brightness edge between sites i and j. The function 
g modifies the probability of a depth edge in the presence of a brightness edge, for 

where E is the brightness edges process. This model for the depth discontinuities 
given the brightness discontinuities have to be chosen carefully. It should reflect the 
knowledge how the two types of discontinuity relate to each other. The heuristic is 
that the probability of a depth edge increases in the presence of a brightness edge. 

We should note that the brightness edges activate different surface discontinuities 
(depth, color, texture, etc.) with different probabilities. These probabilities have to 
be estimated individually. The exact type of the function g depends on the particular 
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cue coupled with the edges of brightness. We do not know of any consistent method 
for choosing g. The surface discontinuities are coupled to the outputs of stereo, mo- 
tion, color, texture using the form of potentials "similar1' to (7.9) [PT88]. 

The result of the integration stage is a set of edges labeled in terms of physical dis- 
continuities of the scene. They can be used for image recognition later. Initially only 
the discontinuities are used for recognition. But the information from the MRF's of 
the surfaces between the discontinuitied may be utilize in the recognition stage. 

There are many open questions concerning the implementation of the "couplingn in 
the MIT vision machine project. The general idea is clear, but the details which are 
critical for the performance at the integration stage are not. We face all the problems 
concerning MRF modeling (neighborhood structure, type of energy, parameter esti- 
mation), but they expand in the integration application. This is because, in order to 
model the discontinuity dependences, we have to understand how they relate on prac- 
tice. Which is very difficult, and that is not surprising. What we have to do is first to 
model every low-level vision output cue in terms of a MRF (this is difficult), second 
to model the relation between the particular type of discontinuity and the brightness 
discontinuity, next to model the feedback influence of the output of the integration 
to the separate low-level vision modules. But there is no easy way of performing the 
integration stage. On the other hand, though difficult, the MRF-based integration 
seems a consistent and an uniform way of performing the integration. There is a 
need fore more research in this direction, which hopefully will achieve a satisfactory 
results. The MIT vision machine system "will be improved at an incremental fash- 
ion" [PT88]. The authors expect to develop a deterministic algorithms which will 
eliminate the difficulties with MRF applications. 

8 Conclusions 

In this survey we introduce the Bayesian approach to solving some computer vision 
problems. This approach gives an uniform way of looking at  the low-level vision 
tasks. It involves five major components: (i) a prior probability model; (ii) a sam- 
pling (degradation) model; (iii) a loss function; (iv) an optimal estimate with respect 
to (i)-(iii); (v) algorithms for computing (iv). To use Bayesian approach we have to 
study carefully the prior and the sensor (degradation) models. The optimal estimate 
should be relevant to a loss function suited to the specific problem. Mathematical 
simplicity should not be the primary concern in building the models. We consider the 
issue of an appropriate error criteria (loss function) very important. The loss function 
helps in understanding the nature of the problem. It is a mathematical interpretation 
of what a solution should be. We may use it to tune an algorithm to the particular 
problem under study. The choice of the loss function is task dependent and it is not 
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obvious. This is a hard problem. But, for any application, it is very useful the right 
error criteria to be established. In some cases of image reconstruction/segmentation, 
the loss is naturally associated with squared distance/rnisclassification rate. Special 
attention has to be paid to the possible loss functions for different low-level vision 
tasks. 

Our presentation focuses on the MAP estimate. In this case the issue of the loss 
function is omitted. The MAP estimate is assumed to be a "good" estimate. It sum- 
marizes the prior and the sampling information. In some problems the MAP estimate 
comes naturally from a decision theory problem, but in the research we studied only 
Ripley [Rip881 explicitly stated this relation. 

We introduce the MRF models and show how they can be used in modeling spatial 
images. The MRF-Gibbs equivalence provides a practical way for specifying MRF: 
by potentials. The computational algorithms exploit the type of the interactions in 
these models. The interactions are rich enough to represent a wide classes of images 
and at the same time they are local so the models ensure feasible computational al- 
gorit hms. MRF models are naturally suited for distributed parallel computations. 
Under reasonable constraints, MRF give a uniform way of describing the prior and 
the posterior models. Another advantage, is that by Gibbs sampler we may simulate 
a sample and verify if the choice of a particular model is consistent with the prior in- 
formation about the process under study. Subsequently, the model may be improved. 

The hierarchical MRF models [GG84] can express complicated prior knowledge. The 
hierarchical structure of the prior model reflects the type and the degree of the prior 
information. 

There is another useful feature of the hierarchy. First, note that for any MRF 
X = (X,,, X,,, . . . , X,,) the marginal x ( ~ )  = {X, : s # T )  is a MRF for any 
fixed r. The neighborhood structure of the marginal is such that, two sites are neigh- 
bors with respect to it either if they are neighbors or each of them is a neighbor of r,  
with respect to the neighborhood structure of X. Generalize this to the case when 
X = (F, L) from section 4.3. The result is that the marginal of F is a MRF defined 
over a completely connected graph. This way, we we may incorporate long-range 
interact ions in the model and still perform local computations. 

A step is made toward using the hierarchical MRF models in the process of integrat- 
ing the data from different low-level vision modules [PT88]. 

In case of MRF the MAP estimate reduces to minimizing the posterior energy func- 
tion. The optimization algorithms exploit the annealing techniques and the results 
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obtained by Geman and Geman in [GG84]. 

The main problems in using MRF models relate to the following issues. 

The neighborhood system. The neighborhood system with respect to which 
the MRF is specified has to be investigated carefully. Any random process 
with positive joint density may be specified in terms of a MRF. The useful 
models are these in which the neighborhoods are small enough to ensure fast 
computations, and at the same time can define a variety of images. There are no 
design methods for neighborhood specification. The homogeneous neighborhood 
systems may be a class to start with. But in many applications these simple 
models cannot capture complicated prior knowledge. In the latter cases, the 
choice of the neighborhood system is done by the researchers, using intuition, 
past experience, and trial and error methods. 

The energy function. The type of the energy function is task dependent. A good 
understanding of the process and the local interactions is very important. There 
are no algorithms for constructing the energy function, just general principles 
which suggest its qualitative features [GM87]. Even these principles are valid 
only for a certain class of problems. However, it is true that in many practical 
problems, these general guidelines are enough for specifying a parametric family 
of suitable energy functions [GG84], [GG86b], [Mar85]. 

The parameter estimation. The models used in the Bayesian approach are di- 
rectly related to the particular problem under study. But if it were necessary 
to start the application of the approach "from scratch" for any particular prob- 
lem , it is worth asking ourselves "Does it pay?". Fortunately such models are 
described in terms of some free parameters. So in their general form they are ap- 
plicable to variety of problems. We have to investigate the problem and choose 
a model based on some more general principles. The fine tuning of the model 
to the particular task is done by fixing the parameters. And the big question 
is: How? To illustrate the difficulties, lets look at  some of the parameters from 
the experiments in Section 6. 

The energy function usually has several free parameters. Representing more 
and more complicated prior knowledge usually implies increasing number of pa- 
rameters in the prior model. Rigorous methods for estimating these parameters 
are critical for the performance of the algorithms. There is no even a general 
principle for estimating the different parameters for a single energy function 
used in a specific problem. 

In Subsection 7.2 we showed how in case of texture modeling, some of pa- 
rameters may be "learned" from training samples. Statistical methods (MLE, 
MPLE) may be used in the estimation process. These methods give an uni- 
form way of estimating the texture parameters. But note that in the special 



8 CONCL USIONS 45 

case of texture modeling the neighborhood structure is estimated by hand. The 
the parameter S (7.4) on the other hand is loosely related to the range of the 
intensity values. It is tuned by trial and error. 

The smoothing (regularization) parameter 1/T in the specification of the Gibbs 
distribution is estimated based on different heuristic. The choice of this param- 
eter is very important, it is directly related to the "roughness" of the estimate. 
This parameter may be estimated utilizing preferences and understanding how a 
typical image should look [Rip88], or some statistical methods may be employed 
in its estimation [GM87]. 

Past experience may be very useful in the parameter estimation. 

Recently increasing attention is given to the sensor models-a good understanding of 
the image formation (degradation) will help in the estimation process [Sze88]. 

A feature of the decision-theoretic approach which we did not discuss here is that 
this approach is natural for estimating the uncertainty in the obtained estimate, and 
subsequently improving it in a dynamic fashion [Sze88]. 

In applying Bayesian modeling important questions have to be answered: How do 
we establish prior and sampling models? What are the parameters of these models? 
What is the most appropriate loss function? Are the solutions robust? None of 
these questions has a simple solution. In summary, the research which relates to 
the application of the Bayesian modeling to low-level vision problems has to be done 
on three major levels. First, a variety of models suitable for different low-level vision 
problems has to be investigated. This include prior and degradation models, and error 
criteria. In case of MAP estimate the error criteria is not questioned but still the 
neighborhood structure and the energy function (up to some parameters) have to be 
specified. Second, rigorous parameter estimation met hods have to be designed. This 
is a very difficult problem and it relates not only to computer vision applications 
but to any application of probabilistic models. At this point the integration of a 
fundamental research in statistics, statistical decision theory is necessary. Third, 
efficient computer algorithms have to be designed (some already exist) for estimation 
of the parameters of the models and for computing the estimators. 
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Figure 13: Original image: Samplc from MRF. 

origillal image degraded image: additive noise 

restoration: Ii' = 25 restoration: Ii' = 300 
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Figure 14: Original image: Sample from MRF. 

original image degraded image: blur, nonlinear 
transformation, multiplicative noise 
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Figure 15: Original image: Hand-drawn. Line process7 cliques. 

Figure 16: Original image: Hand-drawn. Type of the edge elements of the line 
process . 

Figure 17: Original image: Hand-drawn. Potentials over the line process cliques. 
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Figure 18: Original image: EIand-drawn. 

original image degraded image: additive noise 

restoration: no line process, .ti' = 1000 restoration: line process, I f  = 1000 
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Figure 19: Original image: I-Iand-drawn. 

original image degraded image: blur, nonlinear 
transformation, n~ultiplicative noise 

restoration: line process, I{ = 1000 
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Figure 20: Texture segmentation. 

wood on plastic background 

carpet on plastic backgroulld 

wood, plastic and cloth on plastic background 
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