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Representing Powerdomain Elements 
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Carl A. Gunter* 
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Department of Computer and Information Sciences 
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Abstract 

This report characterizes the powerdomain construc- 
tions which have been used in the semantics of pro- 
gramming languages in terms of formulas of first or- 

der logic under a preordering of provable implica- 
tion. This provides an intuitive representation which 
suggests a new form of powerdomain-called the 

mixed powerdomain-which expresses data in a dif- 
ferent way from the well-known constructions from 
programming semantics. It  can be shown that the 
mixed powerdomain has many of the properties as- 

sociated with the convex powerdomain such as the 
possibility of solving recursive equations and a sim- 
ple algebraic characterization. 

1 Introduction. 

A powerdomain is a "computable" analogue of the 

powerset operator. They were introduced in the 

1970's as a tool for providing semantics for pro- 
gramming languages with non-determinism. How- 

ever, it has been appreciated for some time that 
the elements of powerdomains have a strong logical 

*Electronic mail address: gunterPcis . upenn. edu 

intuition. This intuition has been captured rigor- 
ously through the use of modal logic [Win85], certain 
kinds of predicates [HecSOb, HecSOa] and Stone dual- 

ity [Abr87a, Abr87b, Rob87, Abr88, Vic891. In this 
report I want to point out that there is also a simple 
way of understanding (finite or compact) powerdo- 
main elements as monadic second order formulas. A 
secondary objective is to convey the intuition behind 

the powerdomains to those who have found them dif- 
ficult to appreciate under other formulations. This 

work can be viewed as a kind of tutorial supple- 
ment for [Gun911 (to which I refer the reader for 
a more complete and advanced discussion) or as a 

companion to some of the work on powerdomains in 
a database context [BDW88, B086, BJO911. 

The report is divided into four sections. The pow- 
erdomains are defined in the second section and an 

extended example using sets of records is discussed. 
In the third section the intuitions about information 

discussed in the second section are characterized us- 
ing first order logic by proving a correspondence be- 

tween powerdomain elements and certain first order 

formulas which represent second order predicates. 

Theorems establishing a precise relationship for the 

upper and lower powerdomains are proved. In the 
fourth section, the convex powerdomain is also cha.r- 

acterized in these terms and a new powerdomain, 



the mixed powerdomain, is defined. The mixed pow- same). For this reason and another (more impor- 

erdomain elements are then characterized with first tant) reason mentioned below, it is more convenient 

order formulas as well. 

2 Sets of data. 

This section begins by providing precise definitions 

for the upper, lower and convex powerdomains. As 
a guide to  intuition, we will then look at several ex- 
amples of sets from the powerdomains of a simple 
datatype of records. Viewing things in such a con- 

crete fashion aids one in seeing powerdomains as di- 

verse theories of partially described sets and not just 

as a theories of the outcomes of non-deterministic 
computations. 

Rather than follow the usual treatment which one 

can find in many places in the literature (see, for ex- 
ample, [Smy78] or [GSSO]), I will reduce the domain- 

theoretic pre-requisites by working only with the ac- 
tion of the powerdomain operator on the bases of 

domains1 In this way, we may restrict our atten- 
tion t o  the following simple class of directed graphs: 

Definition: A preorder is a set A together with a 
binary relation 2 which is reflexive and transitive. 

We may write y  S x rather than x  2 y. We write 
x = y  i f x z y  a n d z S y . 1  

A preorder is like a poset (partial order) except the 
anti-symmetry axiom need not hold. Intuitively, the 
elements of a preorder A may be thought of as propo- 

sitions (of first order logic, say) under the preorder- 
ing of provable implication. If we have propositions 

to  work with preorders than posets. 

Let (A, 2) be a preorder and suppose IF;A is the 
collection of non-empty finite subsets of A. We de- 

fine three preorderings on P j A  as follows. Suppose 

u, v E 'PjA, then 

u 21 v iff for every x E u there is a y E v such 

that x  2 y, 

u zb v iff for every y  E v there is a x  E u such 
that x  2 y, 

u 2h iff u 21 v and u zb v 

I t  is easy to check that each of these relations is, in 

fact, a preordering. The preorder (P;A, 211) is called 

the upper  powerdomain of (A, 2) and it is denoted 

(At, 22.11) (or just At when the preordering is clear). 
The preorder (?A, z b )  is called the l ower  po werdo- 

main of (A, 2) and it is denoted ( A ~ ,  zb). Finally, 

the preorder (P jA ,  2b) is called the convex power- 

domain  of (A, 2 )  and i t  is denoted (Ah, 2b). 

To get a few examples, let us look at the powerdo- 

mains of a simple preorder of records. Our records 

will have between zero and four fields. the available 

fields are name, age, socsec and married?. The 
age and socsec fields may be filled with integers 

and the married? field may be filled with a boolean. 

The name field is a record with two fields: f i r s t  

and second. Each of these fields may be filled with 

a string. The type can be named by the following 
expression: 

4 and II, in A, then we may have 4 -+ II, and 1C, --+ 4 
name : f i r s t  : str ing,  

without it being the case that 4 and 1C, are the same 
last  : string ), 

proposition (although their truth values must be the 
age : i n t ,  

lThis way of doing things has been discussed in numer- socsec : i n t ,  
ous references. The information systems of Scott [Sco82] are 

married? : boo1 
a popular tool; preorders and domains are discussed in some 
detail in [Gun87]. The technique has been carried much fur- 
ther in [Abr88]. Here is a sample record r l :  



( name = ( f i r s t  = "John", Of course, a record is interpreted in this space with- 

l a s t  = "Smith" ), out regard to the order of its fields according to some 

age = 28, convention perhaps ( e . g .  the first two strings are for 

socsec = 439048302, the first and last names respectively; the first inte- 

married? = true 1 ger is the age and the second is the social security 

number). Missing record fields are interpreted as 
We "sume that records have missing 1. Records are ordered coordinate-wise, A pair of 
as in the following record ra: records r, r' is consistent if there is a record r" such 

C name = C f i r s t  = "John" 1, 
age = 28 3 

that r" 2 r and r" 2 r'. Otherwise r and r1 are in- 
consistent. Many of the sets in the powerdomain of 

our space of records will contain pairs of inconsistent 

The record r1 is more informative  than r2 because records. 

it provides more facts about the described individ- Our family of records is the raw material out of 
ual "John". This concept of one record being more which we can build collections of data about some set 
informative than another is basic to the discussion of '<real world entities,, . Some of our records proba- 
which follows. Records may have other relationships bly make no real sense under any circumstances. For 
as well. In particular, there is an inconsistency be- example: 
tween rl, rz and the following record ra: 

C name = ( f i r s t  = "John", 

l a s t  = "Smith" ), 

socsec = 229068403, 

age = 2,  

married? = f a l s e  3 

We may model this collection of records and its 
associated information ordering as follows. First, we 
assume that we are given the types string, int and 

bool as flat domains.  For example, the type of in- 

tegers should contain the ordinary integers 1, -2, 0 

and so on, together with a special bot tom element 
I which is intended to represent "no information". 

The ordering on these elements is given by taking 

m 2 n if and only if n = I or m = n. For example, 
we do no t  have 28 2 2. This is what one would ex- 
pect, after all; a record about a two year old John 

Smith is not less informative than a record about 
a 28 year old John Smith, these records are simply 

incompatible. The interpretation of strings is simi- 
lar. The booleans are also a flat domain, but there 
are only three elements t rue,  false and I .  Now, the 
space of records is the product space 

C name = C f i r s t  = "John", 

l a s t  = "Smith" 1,  
age = 2.  

married? = true 3 

will probably not find its way into any useful 
database of records. There will also be pairs of 
records which are unlikely to be found together in 

the same database: 

< socsec = 229068403, 

age = 2 ) 

< socsec = 229068403, 

age = 28 ) 

Moreover, most data items will be only partial de- 
scriptions (as is the case with most of the examples 

above). The question we need to answer is the fol- 
lowing: how does a se t  of records provide a partial 
description of a set of real world entities? 

( s t r ing  x s t r ing)  x in t  x int  x bool. Consider the following set s of records 



C name = C f i r s t  = "Mary" I ,  
age = 2 3 

C name = < f i r s t  = "Todd" 3, 
age = 2 1 

C name = { f i r s t  = "John" 3 ,  
age = 2 1 

which might be the database for a small nursery. 

When should we say of another set of records that 
it is mom informatave than the set of records above? 

Here is a first possibility s l :  

{ name = < f i r e t  = "Mary" 3 ,  
age = 2 3 

name = ( f i r s t  = "Todd" 3 ,  

age = 2 3 

< name = < f i r s t  = "John", 

l a s t  = "Smith" 3 ,  

age = 2 3 

< name = C f i r s t  = "Beth" I 
age = 3 3 

< name = f i r s t  = "John", 

l a s t  = "Smith" 1 ,  
socsec = 429238406, 

age = 2 1 

name = ( f i r s t  = "John", 

l a s t  = "Smith" 3 ,  

socsec = 229068403, 
age = 2 3 

This seems more informative than s because it pro- 

vides more information about the children in the 

class and eliminates the name of a child (Todd) who 
will not actually be attending. In the upper pow- 
erdomain ordering, 2fl, the set s2 is greater than s. 
However, it is not greater than s in the lower power- 

domain ordering. Conversely s~ is not greater than 
s in the upper powerdomain ordering. 

These two alternative extensions should point out 

how the ordering of partial information suggests the 
intuitive significance of the set of records s. In the 

first case, under the lower ordering, s might be a list 
of children who have been enrolled in the nursery; 
more may enroll later. In the second case (under 

the upper ordering) s might be the list of all chil- 
dren who are on a waiting list; some children may 

drop off of the list but no new ones may enter (since 
This set seems more informative because it lists 

the deadline for such entries has passed). In eit,her 
more of the children in the nursery and provides 

case, a further refinement of the individual records 
slightly more information about those who are en- 

through the addition of new fields results in a more 
rolled (since we now have John's last name). In the 

informative set of records. 
lower powerdomain (pre)-ordering, zb, the set sl is 

greater (more informative) than s. But consider the It is important to note that powerdomains are only 

following set s2 of records: preorderings and not posets (2.e. partial orderings). 
If the record 

{ name = ( f i r s t  = "Mary" 3 ,  

socsec = 439234970, ( name = ( l a s t  = "Smith" 3 
age = 2 I age = 2 3 

2I hope the reader will pardon my loose use of this term. It 
is not my intent to expound a serious theory of databases. The is added sl 9 there is no in the intended 
examples are meant to suggest the propositional consequences meaning of the set of records with respect to the 
of the powerdomain orderings. lower preordering. In other words, if s/1 is the larger 



set, then sl zb s i  and also si zb sl. This is not 

true of the upper preordering. In that preordering, 

sl 2g s i ,  but st Zf s l .  The following set of records 

( name = ( f i r s t  = "John", 

l a s t  = "Smith" 1,  
socsec = 229068403, 

age = 2 3 

( name = ( f i r s t  = "John" ) 

age = 2 3 

would not change, under either powerdomain order- 
ing, if the following record were added: 

< name = ( f i r s t  = "John", 

l a s t  = "Smith" 1 
age = 2 1 

I t  may seem odd that we would allow in s2 the 

possibility that  a single record might split into two 
records as the record for John did. This seems more 

reasonable in other cases, however. For example, the 
singleton set of records containing only the record 
age = 2 would indicate under the upper ordering 
that we are talking about a nursery of two year olds 

(whose names we do not yet know). In the lower or- 
dering, this database would indicate only that there 

will be some two year old in the nursery (but there 

may also be some children of other ages). I t  is also 

possible for two data  items t o  merge to  form a new 

data item. For example, the following set of records: 

( name = ( f i r s t  = "Mary" 3 3 

( name = ( f i r s t  = "Johnu 1 ,  

age = 2 1 

( name = ( l a s t  = "Smith" 1 
socsec = 229068403 3 

( socsec = 429238406 3 

is less descriptive (in either lower or upper ordering) 

than the set of records s:! above. 

We will look at some more examples of this kind 
when we get to  the discussion of the convex ordering 
in a later section. 

3 Powerdomains and logic. 

Let us now try to  relate the intuitions and preorder- 

ings discussed in the previous section t o  formulas 
of an appropriate logic. For this discussion first or- 
der predicate logic will be used because it is sim- 
ple, well-known and seems to  be sufficient for the 

job at hand. After some motivation, the upper and 
lower powerdomain operators on preorders will be 

precisely related t o  certain operations on collections 

of first order formulas. 

In the examples provided in the previous sec- 

tion, we thought of sets of records as partial de- 
scriptions of sets of real world entities. However, 

one may dually think of a set of records as descrih- 
ing a set of "situations" compatible with the set of 

records. Each record can be treated as a predicate 

over a collection of individuals. For example, the 
record name = f i r s t  = "John" is satisfied by 
individuals whose first name is "John". More con- 

cretely, we might think of individuals as t o ta l  records 
(a.e. records with all fields filled in) for the example 

of the previous ~ e c t i o n . ~  If we view things this way, 

can we think of sets of records as predicates too? 
First of all, we must ask what is being predicated 

by a set of records. The answer seems clear: sets of 

individuals. Hence, a set of records should be con- 

sidered a predicate over sets of individuals or, put 

succinctly, a second order predicate. 

This seems to  justify a leap into second order logic 

for a description of powerdomains. We expect to  

find that  the different powerdomain orderings give 

3 ~ t  will not always be intuitively reasonable to view things 
in this way, although it works well for the example at hand. 



rise to  different second order predicates. However, 

a first order formula may be considered a second 

order predicate if it contains a unary predicate sym- 

bol. Suppose we are given a distinguished unary 

predicate symbol W and a collection of predicate 
symbols U .  In a given model, a formula like U(x) 
might be asserting that x is a two year old. With 

this interpretation, a first order formula such as 

95 r Vx. W(x) 4 U ( x )  

asserts that everyone in the interpretation of W is 
a two year old. Hence 4 itself becomes a predicate 

of W. Of course, there will be many predicates de- 
fined by first order formulas in this way, but which 
of them (if any) correspond to the elements of the 

powerdomains? 

Let us attempt to work out an example similar 

to  those in the previous section. Recall the set s of 
records: 

( name = ( f irst  = "Mary" 1 ,  
age = 2 1 

C name = C f irst  = "Todd" 1 ,  
age = 2 1  

C name = C f irst  = "John" 3 ,  
age = 2 1 

Let M ,  T and J be unary predicate symbols for hav- 

ing first name "Mary", "Todd7' and "John" respec- 

tively. Under the lower powerdomain ordering, what 

is this collection of records telling us about the set 

of children in our hypothetical nursery? The first 
record of s seems to assert that there is a child named 
"Mary" in the nursery. If W is a predicate symbol 

which we are interpreting as the children in the nurs- 

ery, this can be represented by the formula 

32. W (x) A M (x) 

which we may express more succinctly as W n M  # 0. 
Actually, the first record expresses a bit more than 

this. Let 0 be a predicate which is being interpreted 

as the set of all two year olds. Then the first record 

says: W n M n 0 # 0. In summary, s corresponds 

t o  the following proposition: 

As an exercise, the reader may express sl in this way 

and show that the resulting proposition implies the 
one above. 

Now, what about the upper powerdomain order- 
ing? Under this ordering, each record expresses a 
range of possibilities. The three records together as- 

sert that the children of the nursery (or those on its 
waiting list if that is preferred interpretation) are all 
named "Mary", "Todd" or "John". More specifi- 

cally, a child on the waiting list must be a two year 
old "Mary", a two year old "Todd" or a two year old 

"John". However, this does not preclude the possi- 
bility that there is no "Todd" who is actually waiting 
for entry. If W is a new unary predicate symbol to  

be interpreted as the individuals in the nursery, then 

this assertion may be summarized as 

Vx. W(x) -+ 9 (1) 

where 0 is the disjunction 

The formula (1) may also be expressed with set- 
theoretic notation: 

Again, the reader may find it instructive to express 
s2 in this way and check that the resulting proposi- 

t ion implies this one. 

It is tempting, at this point, to "think semanti- 

cally" and try to view the powerdomains in terms of 
sets of individuals. This can be misleading, however. 

Given a predicate symbol U, let ([U] be the interpre- 

tation of U in a fixed model. In particular, for the 



upper ordering, we may have as exactly the upper powerdomaan of A. 

without it being the case that the [Ui] E [b)] or 

[ y ]  [Ui] for any pair of predicate symbols Ui and 
5. It seems, therefore, that although the formulas 

and * wc_ VlU.. .UVrn 

define the same family of predicates, this does not 
follow from the ordering under inclusion of the sets 
[[U] for unary predicate symbols U of the language. 

For a fixed model, the interpretations of the predi- 
cates &(W) and $(W) may have more relationships 
than one can "obtain* from the ordering of the sets 
[U]. One may place some ad hoc assumptions on the 

model to make things work out better. However, the 

treatment which I provide below uses non-standard 

models to hide this problem. 

To crystalize this discussion by proving some the- 
orems, it is necessary to be somewhat more formal 
about the ground rules. Some notation is helpful. 
Fix a first order language L of unary predicate sym- 
bols and a set T of formulas of the form U c V 
where U and V are unary predicates in the language. 
Given a set of formulas a, the theory T induces a 

preordering on the formulas of @ by provable impli- 

cation. In other words, the induced preorder has, as 

its elements, formulas 4 E @ and it is preordered by 
taking $!I 2 4' iff T b 4 -+ $!I1. For the remainder of 

this paper, fix the theory T and assume that W is a 
new unary predicate symbol not in the language of 

T. It will simplify matters to assume that U C V is 
in T whenever T I- U E V. Let A be the preorder 

which T induces on formulas of the form U(x) where 

U is a unary predicate symbol of L .  Then we have 
the following: 

Theorem 1 The preorder which T induces o n  for- 

mulas of the form 

Proof: Suppose we are given formulas 

It  is not at all difficult to  see that if, for each predi- 
cate Ui, there is predicate I$ such that Ui C Vj is in 

the theory T, then 

What is less obvious is the fact that this is the only 

way such an implication can be proved. Suppose we 

know that T I- 4 -+ $. By the Soundness Theorem 
for First Order Logic, we know that 

Suppose that (2) holds, but there is a predicate Ui 

such that Ui C 6 is not in T for any Vj. We demon- 

strate a contradiction. Define a model A of T U ($1 
as follows. The universe of A is the set of predicate 
symbols of C (this does not include W). If U is a 
predicate symbol of C,  it is interpreted in A as the 
set of predicate symbols V E C such that U C V is 

in T. The predicate symbol W is interpreted as the 
set {U1, . . . , Un) . Let [U]I be our notation for the 
interpretation of a predicate symbol U .  I claim that 

A T U ( 4 ) .  If U E V is in T and U' E [U] ,  then 
U I C  U i s i n T s o U 1  G V i s i n T .  T ~ u s U ' E  [Viand 
it follows that [UB E [V] as desired. That A 4 
follows immediately from the interpretation of IY. 
On the other hand, I also claim that A $. Since 

there is no I$ such that Ui C 5.;. is in T, the el- 

ement Ui is not in [V1] u .. .  U [VrnD and therefore 

[ V l ] ~ . . . u [ v m ] . l  

Theorem 2 The preorder which T induces on for- 

mulas of the form 

is  exactly the lower powerdomain of A. 



Proof: Define formulas 

( w n u 1  # 0 ) ~ . . . ~ ( w n U ,  #0 )  
$ l ~ ( ~ n ~ # O ) ~ . . . ~ ( W n V m # O )  

If, for each Vj there is a predicate Ui such that Ui C 
5 is in TI then it is easy to show that 

T I- 4' + 4' 

Conversely, if this holds then we also have 

T 'F + +' (3) 

Suppose that (3) holds, but there is a predicate I$ 
such that Ui E 5 is not in T for any Ui. I will 

demonstrate a contradiction. Let A be the model 

of T given in the proof of Theorem 1. Obviously 

A 4'. However, [Q] n 1[W] is the emptyset since 
there is no Ui in [[I$]. I 

4 Other powerdomains? 

In this section I will look at a few more second order 
predicates such as the ones which were used to char- 

acterize the upper and lower powerdomains in the 
previous section. I begin by discussing the convex 
ordering and its information-theoretic significance 

using sets of records. A logical characterization of 
the convex powerdomain is then provided and a cor- 

respondence theorem similar to Theorems 1 and 2 
will be given. I will then define a close relative of 
the sandwich powerdomain of Buneman, Davidson, 
Ohori and Watters [BDW88, B086, BJ0911 which 
has been used used for the semantics of databases. 

Under the convex ordering, none of the three sets 
of records s, sl, $2  given earlier are related. The 

following set s3 satisfies s3 2b s :  

( name = ( f i r s t  = "Mary" 3 ,  

socsec = 4392349703, 
age = 2 3 

name = C f i r s t  = "Todd", 

l a s t  = "Smith" 3.  
rocsec = 923799210, 

age = 2 1 

< name = { f i r s t  = @' Johne*, 
l a s t  = "Smith" 3 ,  

socsec = 429238406, 

age = 2 ) 

{ name = ( f i r s t  = "John", 

l a s t  = "Smith" ), 

socsec = 229068403, 

age = 2 3 

Note that no new names were added in s3 as we 

added the name "Beth" in sl  (although the two John 

Smith's were disambiguated), and no names were re- 
moved from s as we removed "Todd" in s a .  On the 

other hand, the records of s3 are considerably more 

specific than those in s. For example, if we assume 

that now two children have the same social security 
number, then no further refinement of s3 will have 
more or less than four children. (However, sets with 
multiple names associated with the same social se- 

curity number are permitted in the convex powerdm 
main.) As with the other powerdomains, it is easy to 
produce examples which show that the convex pow- 

erdomain of a poset may not satisfy anti-symmetry. 
The following can be proved by combining the proofs 

of Theorems 1 and 2: 

Theorem 3 The preorder which T induces on for- 

mulas of the form 

is exactly the convex powerdomain of A. ) 

The convex powerdomain is generally considered 

to be more "natural" than the upper and lower pour- 
erdomains; this view is supported, for example, by 
the categorical characterizations of the three pow- 

erdomains [HP79, GS901 as well as considerations 



from the semantics of concurrency. However, when 
one views the three powerdomains from the stand- 
point of this paper, the convex powerdomain seems 
to entail a peculiar assumption. Each of the records 
in a database under the convex ordering must con- 
vey both upper and lower information; or, to put it 
another way, the upper and lower information con- 
veyed by the database must be conveyed by the same 
set of predicates. We are permitted to use formulas 
of the form 

(W UlU...UU,)A 
( w n u l # O ) ~ . . . ~ ( w n U n # O )  (4) 

but not formulas of the the more general form 

( W C  UlU...UU,)A 
(WnU:  # 0 ) ~ . . . ~ ( w n U , :  # I )  ( 5 )  

While it makes perfectly good sense to make a re- 
striction to formulas as in (4), it also seems reason- 
able, in some circumstances, not to make this re- 
striction. The use of formulas such as those in (5) 
in the theory of databases has been discussed in sev- 
eral publications [BDW88, B086, BJ0911 using an 
operator known as the sandwiches powerdomain. Al- 
though questions about the categorical and topolog- 
ical significance of sandwiches are only beginning to 
be investigated, their information-theoretic signifi- 
cance and potential applications suggest interesting Figure 1: A mixed powerdoma~n element ( ~ 1  11) 

lines of investigation. I now define an operator illustrated above. The elements of the sei u are in- 

has a strong kinship to the domain and dicated as closed circles (dots). They determine a 

demonstrate a logical characterization for it. shaded upper set within which the elements o fv  must 
lie. The elements of v are represented as open cir- 

Definition: Let (A, 2) be a preorder. A miz (on A) cles. 

is a pair (u, v )  E P;A x P f A  such that v 2 1  u. We 
define the mixed powerdomain A ( X * ~ )  to be the set 
of mixes on A under the preorder given by taking 
(u,v) 2 (u',v') iff u 211 U' and v zb v'. As with 
other preorders, we write x 5 y if y k x. We also 
write x zz y if z 5 y and x 2 y. I 

As aside on uniformity of notation, we might have 
written 2 ( f l b )  rather than 2, but this becomes a 
rather cumbersome notation in calculations. 



The choice of preordering on the pairs ( u , v )  E 
~ ( 1 , ~ )  is unsurprising. I t  is slightly less clear why 
only pairs (26, V) with v 21 u are used. To understand 
this restriction and get a feeling for the mixed power- 
domain, it is best to look a t  some examples. Rather 
than representing elements of the mixed powerdc- 
main with a pair of sets of records it is convenient 
to write a set of records which are tagged to indicate 
whether they belong in the first or second coordinate 
of the pair. I will use a tag # for the records in the 
first coordinate (since this looks like the tf sign) and a 

tag b for records in the second coordinate (since this 
looks like a b sign). Forget, for the moment, about 
the condition that v 21 u and consider the following 
set of (tagged) records t: 

bC name = 1 f i r s t  = "Mary" 3 3 

b( name = ( f i r s t  = "Todd" 3 3 

#( age = 2 3 

#€ age = 3 3 

which allows that the nursery is now enrolling three 
year olds as well as two year olds. However, the 
following set of records is nonsense: 

b( name = € f i r s t  = "Mary" 3, 
age = 2 3 

b( name = ( f i r s t  = "Todd" 3, 
age = 2 3 

b( name = ( f i r s t  = "John", 
l a s t  = "Smith" 3, 

age = 2 3 

b( name = ( first = "Beth" 
age = 3 3 

b( name = ( f i r s t  = "Johnn ) 3 
#€ age = 2 3 

#C age = 2 1 

This is very similar in information content to the set 
of records s which were considered earlier. It de- 
scribes a group of two year olds which must include 
a "Mary", a "Todd" and a "John". Here is another 
set of records t l  similar t o  sl: 

b( name = ( f i r s t  = "Mary" 1, 
a g e = 2 3  

b( name = ( f i r s t  = "Todd" 3, 
age = 2 3 

b( name = ( f i r s t  = "John", 
l a s t  = "Smith" 3, 

a g e = 2 3  

b( name = C first = "Beth" 3 
age = 3 3 

because Beth is incorrectly recorded as a three year 
old or the new admissions policy has not be prop- 
erly entered. In order for a set of mixed records 
such as these to make sense, it is essential that, for 
each b-record, there is a fl-record which applies to 
it. Otherwise, the set of mixed records is "incon- 
sistent." As another example, a dating service may 
have a database d: 

b( name = ( f i r s t  = "Sharon" , 
age = 26, 

married? = f a l s e )  

b( name = C f i r s t  = "David" 3 ,  
age = 28, 

married? = f a l s e )  

b( name = ( f i r s t  = "Mabel" 3, 
age = 58, 
married? = f a l s e )  



b( name = ( f irst  = "Lee" ), 
age = 55, 

married? = false) 
I 

#( married? = fa l se  3 I 

I 

but trouble may arise from adding a record such as 

b( name = ( f irst  = "John" 3 
age = 30, 

married? = true 

The sandwiches powerdomain is defined to include 
records like t above; t is not in the mixed power- 
domain because the b-records are missing their age 
fields. 

Definition: A sandwich is a pair 

(u, v) E P j A  x P j A  

such that there is a set w E IP;A such that w 511 u 

and w zb v. The sandwich powerdomain of A is the 
set of sandwiches under the ordering (u, v) 2 (u', v') 

iff u 2fi u' and v zb v' 

Obviously, any mix is a sandwich. Unfortunately, 
the logical interpretation of the sandwich powerde 
main in the sense of this paper does not seem to be 

straight-forward. 

To characterize the mixed powerdomain logically, 
it is necessary to generalize from formulas such as (4) 
to a set of formulas such as (5). It is easiest to do this 
for a subset of the mixes which is isomorphic to the 
mixed powerdomain. Suppose (u, v) E A ( ~ P ~ ) .  Since 
u zfl v, we have u U v E u. In particular, (u U v, v) 
is a mix which is equivalent to (u,v). Since we are 
only really interested in the equivalence classes of 
mixes, we might therefore have included this condi- 
tion our earlier definition of the mixed powerdomain. 
However, this would have complicated the examples 
slightly, since some elements would need to be listed 
twice. 

Figure 2: A sandwich (u,v) is illustrated above. The 
elements of the set u are indicated as closed circles 
(dots). They determine a shaded upper set. The 
elements of v are represented as open circles; each 
element of v as required to  have an upper bound in 
the shaded region. 



Recall that T is a set of formulas of the form U c 
V where U and V are unary predicates in a fixed 
first order language C. A is the preorder which T 
induces on formulas of the form U(x) where U is a 

unary predicate symbol of L. 

Theorem 4 The preorder which T induces on for- 
mulas of the form 

is  isomorphic t o  the mixed powerdomain of A. 

Proof: Suppose we have formulas 

and define 
u = {Ul, ..., Urn) 
u1 = {Ui,.. .,UA} 
v = {Vl, ..., V,) 
V' = { K t ,  . . . , v;} 

We must show that 

I 

I 

I 

I 

does not include the distinguished predicate symbol 
W). If U is a predicate symbol of L ,  it is interpreted 

I 

in A as the set of predicate symbols V E L such that 
U C V is in T. The predicate symbol W is inter- i 
preted as the set {Ul, . . . ,Urn, U:, . . . , U,!,). That A 
is a model of T U {q5,d1) follows immediately from I 

the definitions. 

Now, suppose that (1) fails. Then there is some 

U such that ! 
Since U E [W], it follows that [W] [Vl] U . . . U 

I[V~]U[V:]U. . ,U[V;] and therefore A does not satisfy 
$. Suppose that (2) fails. Then there is some 4' 
such that U,! $z [I$'] for each U,!. To get the desired 
contradiction, we want to  use a new model A' which 

is the same as A except [W] = Ul, . . . , U,!,. Clearly, 
A' + T u {4,d1}. B U ~  [y] n [w] = 8 SO A' p 4'. I 
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