
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1992

Interactive Image Display for the X Window System Interactive Image Display for the X Window System

John Bradley
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
John Bradley, "Interactive Image Display for the X Window System", . January 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No.MS-CIS-92-04.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/384
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/384
mailto:repository@pobox.upenn.edu

Interactive Image Display for the X Window System Interactive Image Display for the X Window System

Abstract Abstract
This report describes the program XV, which is an interactive color image display program for
workstations and terminals running the X Window System. The program displays images saved in a
variety of popular formats. It lets you arbitrarily stretch or compress the size of the image, rotate the
image in 90-degree steps, flip the image around horizontal or vertical axes, crop off unwanted portions of
the image, and measure pixel values and coordinates. Modified images can be saved in a variety of
formats, or sent to a PostScript printer.

The program also features extensive color manipulation functions, including a colormap editor, hue
remapping, brightness and contrast adjustment, and individual mapping functions for the Red, Green, and
Blue video channels, to correct for device-dependent non-linear color response.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No.MS-
CIS-92-04.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/384

https://repository.upenn.edu/cis_reports/384

Interactive Image Display For The
X Window System

MS-CIS-92-04
GRASP LAB 299

John Bradley

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

January 1992

In terac t ive
Image Display

for the
X Window Syst

b y John Brad ley

O 1 9 8 9 , 1 9 9 0 , 1 9 9 1 , 1 9 9 2 U n i v e r s i t y of P e n n s y l v a n i a
a n d John B r a d l e y

Interactive Image Display
for the X Window System

W ritten by John Bradley
(bradley@cis.upenn.edu)

Copyright 1989,1990,1991,1992
University of Pennsylvania

and John Bradley

This work was partially funded by the following: Navy Grant N0014-88-K-0630, AFOSR Grants
88-0244, AFOSR 88-0296; Arrny/DAAL 03-89-C-0031PRI; NSF Grants CISE/CDA 88-22719, IRI
89-06770; the Du Pont Corporation, and the IBM Corporation.

Section 1: Overview

XV is an interactive image manipulation program for the X Window System. It can operate on
images in the GIF ', JPEG, PBM, PGM, PPM, XI1 bitmap, Sun Rasterfile, and PM2 formats on 1 -, 4-
, 6-, 8-, 16-, 24-, and 32-bit X displays.

XV lets you do a large number of things (many of them actually useful), including, but not limited
to, the following:

display an image in a window on the screen
display an image on the root window, in a variety of styles
arbitrarily stretch or compress the image
rotate the image in 90" steps
flip the image around the horizontal or vertical axes
crop a rectangular portion of the image
magnify any portion of the image by any amount, up to the size of the screen
determine pixel values and x,y coordinates in the image
adjust image brightness and contrast with a gamma correction function
apply different gammafunctions to the Red, Green, and Blue color components, to
correct for non-linear color response
adjust global image saturation
perform global hue remapping
edit an image's cdormap
reduce the number of colors in an image
dither in color and b&w
smooth an image
crop off solid borders automatically
convert image formats
generate Encapsulated Postscript '

Unfortunately the Automatic Checkbook Balancing Modulestill isn't completely debugged, and is
not included in this distribution.'

' GIF is a trademark of CompuSe~e Incorporated, an H&R Block Company.

An internal format developed and used in the GRASP Lab.

' A trademark of Adobe Systems Incorporated.

' It's a joke.

Section 2: Starting XV

Note: unless explicitly stated otherwise, the term dickmeans 'click with the Leftmouse button."

Start the program up by typing 'xv'. After a short delay, a window will appear with the default image
(the xvlogo, credits and revision date) displayed in it. If you change the size of the window (using
whatever method your window manager provides), the image will be automatically stretchedto fit
the window.

Section 2.1 : Displaying Pixel Values

Clicking (and optionally dragging) the Left mouse button inside this window will display pixel
information in the following format:

196, 137 = 191,121,209 (287 42 81 HSV)

The first pair of numbers (19 6 .13 7) are the xand ypositions of the cursor, in image coordinates.
These numbers remain the same regardless of any image resizing, or cropping. For example, if
you click on the eye of the fish on the right side of the default image, you'll get (approximately)
2 5 1, 12 9 regardless of the size of the displayed image. This allows you to zoom in for precise
measurements.

The first triplet of numbers (191, 121,209) are the RGB values of the selected pixel. The
components will have integer values in the range 0-255. The values displayed are prior to any
HSVIRGB modification, but afterany colormap changes. See 'Section 5: The Color Editor" for
details.

The second triplet of numbers (287 42 81) are the HSV values of the selected pixel. The first
component will have integer values in the range 0-359, and the second and third components will
have integer values in the range 0-100. The values displayed are prior to any HSVIRGB
modification, but afterany colorrnap changes. See "Section 5: The Color Editor" for details. Also,
see 'Appendix D: RGB and HSV Colorspaces" for more information about what these numbers
mean.

Note: If you actually want to measure some pixels, it will probably help to crop to a small region of

your image, and expand that region so that you can see the individual pixels.

This string is automatically copied to your X server's cut buffer whenever you measure pixel
values. This lets you easily feed this information to another program, useful i f you're doing manual
feature extraction, or something. Try it: measure a pixel's value, and then go click your MiddleS
mouse button in an xterm window.

Section 2.2: Cropping

Bring up the xv controls window by typing the '?' key or clicking the Right mouse button inside the
image window.

Clicking and dragging the Middle button of the mouse inside the image window will allow you to
draw a cropping rectangle on the image. If you're unhappy with the one you've drawn, simply click
the Middle button and draw another. If you'd like the rectangle to go away altogether, click the
Middle button and release it without moving the mouse.

You can determine how large the cropping rectangle is (in image coordinates) by bringing up the
xv info window. Do this by clicking the lnf o button in the xv controls window or by typing the 'i' key
into any open xvwindow.

The xvinfo window will display, among other things, the current size and position of the cropping
rectangle in terms of image coordinates. For example, i f it says:

114x77 rectangle starting at 119,58

it means that the current cropping rectangle is 114 image pixels wide, 77 image pixels high, and
that its top-left comer is located 11 9 image pixels in from the left edge of the image, and 58 image
pixels in from the top edge. These values will be updated as you drag the cropping rectangle
around.

If you want to set the size or position of the cropping rectangle precisely, you can use the arrow
keys on your keyboard. First, make the xv info window visible as described above (if it's not
already visible). Second, use the mouse to draw a rough approximation of the cropping rectangle
that you want. You can now use the arrow keys to move the cropping rectangle around the image.
Once you've gotten the top and left sides of the cropping rectangle precisely where you want
them, you can move the bottom-right comer of the cropping rectangle (only) by holding the
<shift> key down while using the arrow keys. Pressing the up arrow will make the rectangle
shorter, and pressing the down arrow will make the rectangle taller.

Once you have a cropping rectangle that you can live with, you can proceed with the actual
cropping operation. Click the Crop button in the xv controls window, or type the 'c' key in any
open xvwindow. The image window will shrink to show only portions of the image that were inside
the cropping rectangle.

Note: if you are running a window manager such as mwm, which decorates windows with a title bar,
resizing regions, and such, it is quite possible that the aspect ratio of the cropped image will get
screwed up. This is because certain window managers enforce a minimum window size. If you try
to crop to a rectangle that is too small, the window manager will create the smallest window it can,
and the image will be stretched to fit this window. If this happens, you can press the Aspect
button in the xv controls window, or type the 'a' key in any open xv window. This will expand the

If your workstation only has a two-button mouse, you can probably emulate a middle button by pressing both
buttons simultaneously.

image so that it has the correct aspect ratio again.

You can crop a cropped image by repeating the same steps (drawing a new cropping rectangle
and issuing the Crop command), ad infiniturn.

You can return to the original, uncropped image by using the UnCrop command. Simply click the
UnCrop button or type the 'u' key in any open xvwindow.

Note that if you try to make the cropping rectangle too small in either width or height (under 5
screen pixels), it'll just turn itself off. If you want to crop a very small portion of an image, you'll
probably have to do it in two passes. First, crop to a small (but large enough to still be enabled)
rectangle, expand that image, then crop again.

Section 3: The Control Window

The xv controlswindow is the central point of control for the program, hence the name. It provides
controls to resize the current image, flip and rotate it, load and save different files, and bring up the
other xvwindows. It can be brought up by clicking the Rightmouse button in the image window,
or by typing the '?' key inside any open xv window. Doing either of these things while the xv
controlswindow is visible will hide it.

splay Mo -

320x200 GIF87. Got all 16 desired colors. -

All of the following commands may be executed by either clicking the appropriate command
button, or typing the keyboard equivalent (where given) into any open xvwindow.

Section 3.1 : Resizing Commands

Note that none of the 'resizing' commands modify the image in any way. They only affect how the
image is displayed. The image remains at its original size. This allows you to ahitrarily stretch and
compact the image without compounding error caused by earlier resizing. In each case, the
displayed image is recomputed from the original internal image.

Command
Normal

!m pescription
'n ' Attempts to retum the image to its normal size, where one image

pixel maps to one screen pixel. For example, if the image (or the
current cropped portion of the image) has a size of 320x200, this
command will attempt to make the image window 320 screen pixels
wide by 200 screen pixels high.

This command may fail in two cases. If you're running a window
manager (such as mwm) that enforces a minimum window size, and
the 'normal' size is too small, the image may get distorted. See the

note in 'Section 2.2: Cropping" for more information.

Also, if the image is larger than the size of your screen, it will be
'halved' until it fits on the screen. For example, if you try to display a
1 400x900 image on a 1 280x1 024 screen, the Normal command will
display a 700x450 image.

Max Size 'm' This command will make the displayed image the same size as the
screen. If you are running a window manager that puts up a titlebar,
you'll find that the titlebar is now off the top of the screen. To get the
titlebar back, simply shrink the image to anything smaller than the size
of the screen. The window will be moved so that the titlebar is once
again visible.

Maxpect 'M' Makes the image as large as possible, while preserving the aspect
ratio. This avoids the generally unwanted image distortion that
Max S lze is capable of generating. For example, if you have a
320x200 image, and an 1280x1024 screen, doing the Maxpect
command will result in an image that is 1280x800. Max Slze, on the
other hand, would've generated an image of size 1280x1 024, which
would be appear 'stretched' vertically.

bl Size '> ' Doubles the current size of the image, with the constraint that neither
axis is allowed to be larger than the screen. For example, given a
320x200 image and a 1280x1024 screen, the image can be doubled
once (to 640x400), a second time (to 1280x800), but a third time
would make the image 1280x1 024. You'll note that on the third time,
the width didn't change at all, since it was already at its maximum
value. Also note that the height wasn't allowed to double (from 800
to 1600), but was truncated at its maximum value (1 024).

Half S ize '< ' Halves the current size of the image, with the constraint that neither
axis is allowed to have a size less than 1 pixel. Also, you may run into
'minimum size' problems with your window manager. See the note in
'Section 2.2: Cropping" for more infonation.

Note that the window size is maintained as a pair of integers. As a
result you may see some integer round-off problems. For example, if
you halve a 265x185 image, you'll get a 132x92 image, which is just
fine. However, if you Db i S ize this image, you'll get a 264x184
image, not the 265x185 image you might have expected.

' I Increases the current size of the image by lo%, subject to the
constraint that the image cannot be made larger than the screen size
(in either axis). For example, issuing this command on a 320x200
image will result in a 352x220 image.

6 I

I Decreases the current size of the image by 10%. Neither axis of the
image is allowed to shrink below 1 pixel. Also, you run the risk of
running into 'minimum window size' problems with your window
manager.

It should be noted that the + 1 0 % and -1 0% commands have no
concept of an 'original size'. They simply increase or decrease the

current image size by 10%. As a result, they do not undo each
other. For example, take a 320x200 image. Do a + l o % and the
image will be 352x220. If you issue the -1 0% command now, the
image will be made (352 - 35.2)~(220 - 22), or 316x1 98.

'4 ' Attempts to resize the image so that the ratio of width to height is
equal to 4 to 3. (e.g., 320x240, 400x300, etc.) This is useful
because many images were meant to fill the screen on whatever
system they were generated, and nearly all video tubes have an
aspect ratio of 4:3. This command will stretch the image so that
things will probablylook right on your X display (nearly all of which,
thankfully, have square pixels). This command is particularly useful
for images which have really bizarre sizes (such as the 600x200
images presumably meant for CGA, and the 640x350 16-color EGA
images).

Aspect 'a' Applies the 'default aspect ratio' to the image. This is done
automatically when the image is first loaded. Normally, the default
aspect ratio is '1:1', but certain GIF files may have an aspect ratio
encoded in them. You can also set the default aspect ratio via a
command-line argument or an X resource. See 'Section 9: Modifying
XV Behavior' for more info. The idea behind this command is that
you'd stretch the image manually (via your window manager) to
roughly the size you'd like, and then use the Aspect command to fix
up the proportions.

Normally Aspect expands one axis of the image to correct the
aspect ratio. If this would result in an image that is larger than the
screen, the Aspect command will instead shrink one of the axes to
correct the aspect ratio.

Section 3.2: RotateIFlip Commands

Command K!2Y Description
Turn CW Y' Rotates the image 90" clockwise.

Turn CCW 7' Rotates the image 90" counter-clockwise.

Flip H 'h ' Flips the image horizontally (around the vertical center-line of the
image).

Flip V 'v' Flips the image vertically (around the horizontal center-line of the
image).

Section 3.3: Smoothing Commands

Command KW Description
Raw 'r' Returns the displayed image to its 'raw' state (where each pixel in the

displayed image is as close as possible to the corresponding pixel in
the internal image). In short, it turns off any dithering or smoothing.
When dithering or smoothing haven't been done, this command is
disabled.

Dither 'd ' Regenerates the displayed image by dithering with the available
colors in an attempt to approximate the original image. This is only
relevant if the color allocation code failed to get all the colors it
wanted. If it did get all the desired colors, the Dlther command will
just generate the same display image as the Raw command. On the
other hand, if you didn't get all the desired colors, the Dlther
command will try to approximate the missing colors by dithering with
the colors that were obtained. If you're running xv on a 1 -bit display
the Dither command will be disabled, as the image will always be
dithered for display.

Smooth 's ' Smooths out distortion caused by integer round-off when an image is
expanded or shrunk. This is generally a desirable effect, however it is
fairly timeconsuming on large images on most current workstations.
As such, by default, it is not done automatically. See 'Section 9:
Modifying XV Behavior" for more details.

Section 3.4: Cropping Commands

Command Key Pescri~tion
Crop 'c' Crops the image to the current cropping rectangle. This command is

only available when a cropping rectangle has been drawn on the
image. See 'Section 2.2: Cropping" for further information.

UnCrop 'u' Returns the image to its normal, uncropped state. This command is
only available after the image has been cropped. See 'Section 2.2:
Cropping" for further information.

AutoCrop 'A' Crops off any constant borders that exist in the image. It will crop to
the smallest rectangle that encloses the 'interesting' section of the
image. It may not always appear to work because of minor invisible
color changes in the image. As such, it works best on computer-
generated images, and not as well on scanned images.

Section 3.5: The Display Modes Menu

In addition to displaying an image in a window, xv can also display images on the root (background)
window of your X display. There are a variety of ways that xvcan display an image on the root
window. The Display Modes popup menu lets you select where (and how) xvwill display the
image.

Click on the Display Modes button in the xvcontrols window, and hold the mouse button down.
This will cause the Display Modes menu to pop up. The current display mode will be shown
with a check-mark next to it. To select a new mode, drag the mouse down to the desired mode,
and release the mouse button.

It is not possible for xvto receive button presses or keyboard presses in the root window. As
such, there are several functions that cannot be used while in a 'root' mode, such as pixel tracking
and image cropping. If you want to do such things, you'll have to temporarily return to 'window'
mode, and return to 'root' mode when you're finished. Also, when you are in a 'root' mode, you
will not be able to get rid of the xv controls window. At best you can iconify it (using your window

manager). (The reason for this is that if you ever got rid of it there'd be no way to get it back.)

w
Wlndow

Pescri~tion
Displays the image in a window. If you were previously in a 'root'
mode, the root window will also be cleared.

The image is displayed in the root window. One image is
displayed aligned with the top-left comer of the screen. The
image is then duplicated towards the bottom and right edges of
the screen, as many times as necessary to fill the screen.

Root: IntegerTi led Similarto Root:Tiled, except that the image is first shruhk so
that its width and height are integer divisors of the screen's
width and height. This keeps the images along the bottom and
right edges of the screen from being 'chopped-off'. Note:
using any of the 'resizing' commands (such as Normal, Dbl
S lze, etc.) will lose the 'integer'-ness of the image.

Root: Mirrored Tiles the original image with versions that have been
horizontally flipped, vertically flipped, and both horizontally and
vertically flipped. This gets rid of the sharp dividing lines where
tiled images meet. The effect is quite interesting.'

Root: IntegerMirrored Like Root: Mirrored, but also does the integer-ization
described under the Root: IntegerTl led entry.

Root: CenterTi led Like Root: Tiled, but it positions the images so that one of
them is centered on the screen, and the rest are tiled off in all
directions. Visually pleasing without the image size distortion
associated with Root: Integer TIIed.

Root: Centered Displays a single image centered in the root window,
surrounded by black.

Root: Centered, Warp Displays a single image centered in the root window,
surrounded by a black and white 'warp' pattem, which
produces some mildly visually pleasing Moire effects.

Root: Centered, Brick Displays a single image centered in the root window,
surrounded by a black and white 'brick' pattern.

Note: The three 'centered' modes (Root: Centered. Root: Centered, Warp, and
Root: Centered, Brick, but not Root: Center Tiled) require the creation of a Pixmap the
size of the screen. This can be a fairly large request for resources, and will fail on a color X terminal
with insufficient memory. They can also require the transmission of considerably more data than
the other 'root' modes. If you're on a braindamaged X terminal hanging off a slow network, you
should probably go somewhere else. Barring that, you should certainly avoid the 'centered'
modes.

Also note: If you quit xvwhile displaying an image on the root window, the image will remain in the
root window, and the colors used by the image will remain allocated. This is generally regarded as

' Exercise #I: Display the 'default' xvimage (the one with the logo, and the fish). Draw a (roughly) 86x70
cropping rectangle (roughly) centered around the fish on the right. (This is a fine opportunity to acquaint yourself with
the method of cropping rectangle specification via the arrow keys.) Crop the image, and select the Root: Mirrored
display mode. Voila! The Official John Bradley Desktop Pattern. Ask for it by name!

correct behavior. If you decide you want to get rid of the root image to free up resources, or simply
because you're sick of seeing it, the quickest route is to use run 'xv -clear', which will dear the
root window, release any allocated colors, and exit. Alternately, xsetrootand any other X program
that puts things in the root window should be able to do the trick as well.

Section 3.6: Working With Multiple Files

xvprovides a set of controls that let you conveniently operate on a list of images. To use the
following commands, you'll have to start up xvwith a list of filenames. For example, you could type
'xv * . g i f ' (assuming, of course, that you have a bunch of files that end with the suffix '.gif' in the
current directory).

?I maxhead-gif I I Disolav Modes I.

mickey-gif
mickey2.gif

, minmei4.gif

I Previous 1 1-Save-l1 . .--?,,: ----=< *

-. ., .,.

The filenames are listed in a scrollable window. The current selection is shown in reverse video. If
there are more names than will fit in the window, the scrollbar will be enabled.

Section 3.6.1: Operating a List Window

The scrollbar operates as follows:
clicking in the top or bottom arrow of the scrollbar scrolls the list by one line in the
appropriate direction. It will continue to scroll the list as long as you hold the mouse down.

The thumb(the small white rectangle in the middle of the scrollbar) shows roughly where
in the list you are. You can change your position in the list by clicking and dragging the
thumb to another position in the scrollbar.

You can scroll the list up or down a page at a time by clicking in the grey region between
the thumb and the top or bottom arrows.

If you click on a name in the list, that name will become highlighted. You can drag the highlight bar
up and down, and the list will scroll appropriately.

It is also possible to control the list window from the keyboard. In all cases, you must make sure
that the window seesthe keypress. Generally, this means you have to have the cursor inside the
window, though your window manager may also require you to click inside the window first.

The upand downarrow keys move the highlight bar up and down. If the bar is at the top or
bottom of the window, the list will scroll one line.

The page upand page downkeys scroll the list up or down a page at a time.

Pressing the home key will jump to the beginning of the list. Pressing the end key will
jump to the bottom of the list.

Section 3.6.2: The File Commands

You can directly view any image in the list by doubleclicking on its filename. If xvis unable to load
the file (for any of a variety of reasons), it'll display an error message and put up the default image,
the xvlogo.

Command llev Descri~tion
Next <space> Attempts to load the next file in the list. If it is unable to load the

next file, it will continue down the list until it successfully loads a file.
If it gets to the bottom of the list without successfully loading a file, it
will put up the default image.

Previous <backspace> Attempts to load the previous file in the list. If it is unable to load the
previous file, it will continue up the list until it successfully loads a
file. If it gets to the top of the list without successfully loading a file,
it will put up the default image.

Delete ectrl-D> This command lets delete the currently selected file from the list
(and optionally delete the associated disk file). Note that the
currently selectedfile is the one with the highlight bar on it. While
this is generally the same as the currently displayed image, it
doesn't have to be.

The Delete command will pop-up a window asking you what you
want to delete. Your choices are:

List Entry, which will remove the highlighted name from
the list. (Keyboard equivalent: the enterkey)
Disk File, which will remove the highlighted name from
the list and also delete the associated disk file. This
removes unwanted images, just like manually typing
'rm <filename>' in another window. (Keyboard
equivalent: <ctrl-D>)
Cancel, which lets you get out of the Delete command
without actually deleting anything. (Keyboard equivalent:
the esc key)

Section 3.7: Other Commands

~ommanc] Kev Descri~tioIl
In fo 'i' Opens and closes the xv info window. See "Section 4: The Info

Window" for more details.

ColEdit 'e ' Opens and closes the xv color editorwindow. See "Section 5: The
Color Editor" for more details.

Load cctrl-L> Opens the xvloadwindow. See "Section 6: The Load Window" for
more details.

Save t c t r l -S r Opens the xvsave window. See "Section 7: The Save Window"
for more details.

Q u I t 'q ' Quits out of the program.

Section 4: The Info Window

X V - Rev: 12/4/91 (Patchlevel 4)
by John Bradley (bradley@cis.upenn.edu)

Copyright 1989-1991, University of Pennsylvania

{ ~ i le name: rnegazonegif
) Format: CIF07,4 bits per pixel, non-interlaced. (51 38 bytes)
1 Resolution: 320 x 200 1 Cropping: <none>

Expansion: 1 x 1 (320 x 200)

COIOrs:
Cot all 16 desired colors.

i
320x200 CIF87. Cot all 16 desired colors.

Section 4.1 : Overview

xv provides a window to display information about the current image, color allocation, expansion,
cropping, and any error messages. This window can be opened by issuing the ln fo command.
(Click on the ln fo button in the xv controls window, or type 'I' in any open xvwindow.) You can
close the window by using the ln fo command while the window is open. You can also close the
window by clicking anywhere inside it.

The top portion of the window displays the program name, revision date, and patchlevel. It also
shows the University of Pennsylvania shield, the GRASP Lab logo, the copyright notice, and of
course, the author's name.

Section 4.2: The Fields

The "Filename" field displays the name of the currently loaded file. The name is displayed without
any leading pathname. If there isno currently loaded image (you're looking at the default image)
this field will display "<none>".

The "Format" field displays information describing what image format the file is stored in, and how
large the file is (in bytes).

The "Resolution" field shows the width and height (in image pixels) of the loaded image. Note
that this does not necessarily have anything to do with the size of the image currently displayed
on your screen. These numbers do not change as you modify the display image.

The "Cropping" field displays the current state of any cropping activity. If you are looking at the
entire (uncropped) image, and there is no cropping rectangle drawn, this field will show "<none>".
If you draw a cropping rectangle, or if you are viewing cropped portion of image, this field will
display something like "247x128 rectangle starting at 132,421". See "Section 2.2: Cropping" for
more details.

The 'Expansion" field gives you information about how the image is displayed. It will display
something like "1.58 x 1.37 (505 x 273)". This tells you that the current displayed image is 505
pixels wide and 273 pixels high, and that it is 1.58 times wider and 1.37 times higher than the
internal image (which, in this case, had a size of 320x200).

The "Colors" field gives you detailed information on how well (or poorly) color allocation went. If
everything went reasonably well it will display something like:

Got all 67 desired colors. (66 unique)

This means that 67 entries in the image's colormap were used in the image, but that only 66 of
these colors were different, as far as the X server is concerned.

See uAppendix E: Color Allocation" for a complete discussion of how colors are allocated, and
what the "Colors" field can tell you.

Note that the fields are filled in as information becomes available. As such, they can be used as a
rough 'progress indicator' when loading images. When you begin loading, all the fields are
cleared. Once the image has been successfully loaded, the top three fields (Filename, Format,
Resolution) are filled in. Once the colors have been allocated, and the display image generated,
the bottom three fields are shown (Cropping, Expansion, and Colors).

Section 4.3: Status Lines

The bottom two lines in the info window display various error messages, warnings, and status
information. These two lines are also duplicated in the xv controlswindow.

The upper line is the more commonly used. It normally displays a one-line summary of the current
image and color allocation success. If an error occurs, it will be displayed on this line as well.

The lower line is used to display warning messages.

Section 5: The Color Editor

Intensity

Section 5.1 : Overview

The xv color editor provides a powerful system for manipulating color images. Since there are
many different reasons why a person would want to modify an image's colors, and many different
types of images that may need modification, there is no onecolor manipulation tool that would be
'best' for all purposes. Because of this problem, xvgives the user threedifferent color tools, all of
which can be used simultaneously.

Coiormap Editing: This tool lets you arbitrarily modify individual colormap entries.
Useful for modifying the color of captions or other things that have been added to images.
Also works well on images that have a small number of colors, such as images generated
by 'drawing' or CAD programs. It's also an easy way to spiff up boring l-bit black and white
images.

H SV Modification: This tool lets you alter the image globally in the HSV colorspace.
(See "Appendix D: RGB and HSV Colorspaces" for more info.) Here are examples of the
sort of things you can do with this tool:

turn all the bluesin an image into reds
change the tintof an image

change a greyscale image into a mauvescale image
increase or decrease the amount of color saturation in an image
change the overall brightness of an image
change the overall contrast of an irnage

RG B Modlf icat ion: This tool lets you route the red, green, and blue color components
of an image through independent mapping functions. The functions can either be the
standard gamma function, or any arbitrary function that can be drawn with straight line
segments or a cubic spline. See "Section 5.3.4: The Intensity Graph for more info about
graph functions.

The major use of the RGB Modification tool is to correct for the differing color response
curves of various color monitors, printers, and scanners. This is the tool to use when the
image is too red, for instance.

These three tools are tied together in a fixed order. The Colormap Edi t ing tool operates on the
original colors in the image. The output of this tool is piped into the H S V Modification tool. Its
output is piped into the RGB Modificatlon tool. The output from the RGB Modification tool
is what actually gets displayed.

In addition there is a collection of buttons that control the xv color editoras a whole (more or less).

Don't Panic! It's not as complicated as it looks.

Section 5.2: The Colormap Editing Tool

Colormao Edit inq

The top portion of this window shows the colormap of the current image. There are 16 cells
across, and up to 16 rows down, for a maximum of 256 color cells. Only cells actually used
somewhere in the image are shown in this array.

The currently selected color cell is shown with a thick border. You can change the selection by

clicking anywhere in the array. If you drag the mouse through this area, you'll see the dials at the
bottom change to track the current pixel values.

You can also select a color cell by clicking anywhere in the imagewindow. Whichever pixel value
you were on when you let go of the mouse will become the new selected color cell.

Since certain images will have many colors that are the same, or neatly the same, it is sometimes
convenient to group color cells together. Grouped color cells all take on the same color, and
changing any one of them affects all of the other colors in the group.

To group color cells together, do the following:
Hold down the <shift> key.
Leftclick on one color cell that you would like to be in the group
Right click on other color cells that you wish to be in this group. (Right clicking on cells
that are already selected will de-select them.)
Release the <shift> key when you're done.

You can create as many groups as you like.

You can use this groupinglungrouping technique to copy colors from one color cell to another.
Left click on the source color cell, Right click on the destination color cell, and Rightclick on the
destination color cell again (to ungroup it).

Section 5.2.1: Using the Dial Controls

At the bottom the Colormap Editing tool are three dials that let you set the color of the current
color cell (or group of cells). By default, the dials control the Red, Green, and Blue components of
the RGB colorspace, but they can also control the Hue, Saturation, and Value components of the
HSV colorspace. (The R G BIH SV button controls this.)

Red
r\"'''l#,,

p*'
1.

8 088

Regardless of what they control, all dials in xvwork the same way. Clicking on the single arrows
increaseldecrease the value by 1. Clicking on the double arrows increaseldecrease the value by
a larger amount (16 in this case). If you click on one of the arrows, and hold the mouse button
down, the increaseldecrease will repeat until you release the mouse button.

You can also click in the general area of the pointer and simply drag it to the position you want.
The further your mouse cursor is from the center of the dial, the more precise the control will be.
While dragging, you do not have to keep the cursor inside the dial window.

Green
, s ~ ' ~ ' ~ # , ,

'p,'
1%

088

Blue
. \ a ' l ' D # , ,

-1 ' 1.

08

Section 5.2.2: Colormap Editing Commands

Command
ColUndo

Revert

Grey

Rev Vld

Random

Undoes the last change made to the colormap that resulted in a color cell
changing value. This includes grouping and ungrouping color cells, and
changing any of the dials.

Undoes all color changes. Returns the colorrnap to its oliginal state.
Destroys any groups that you may have created.

Toggles the Coiormap Editing dials between editing colors in terms of
Red, Green, and Blue, and editing colors in terms of Hue, Saturation, and
Value.

Tums color images into greyscale images by changing the colorrnap. This
replaces each color cell with a greyscale representation of itself. Use the
Revert command to restore the colors.

This command behaves differently, depending on the setting of the
R G B/H S V mode. (You can tell which mode you're in by the titles on the
dials.)

In RGB mode, each color component is separately 'inverted'. For
example, Yellow (which is composed of full red, full green, and no blue)
would turn to Blue (no red, no green, full blue).

In HSV mode, only the Value (intensity) component is 'inverted'. The Hue
and Saturation components remain the same. In this mode, bright colors
turn to dark versions of the same color. For example, a Yellow would turn
Brown.

Generates a random colornap. This is of questionable usefulness, but it
will occasionally come up with pleasing color combinations that you never
would've come up with yourself. So it stays in. It works best on images
with a small number of colors. Note that it respects cell groupings, so if
your image has a lot of colors, you can create a few large groups and then
use the Random command.

Note: It is HIGHLY RECOMMENDED that if you're using the Colormap Editing tool, you do NOT
use the HSV Modification tool or the RGB Modification tool as well. If you do, the results can be
quite confusing. For example, you might edit a color cell, and set its color values to produce a
purple. However, because of HSVlRGB Modification further down the line, the actual color
displayed on the image (and in the color cell) is yellow Very confusing, indeed.

Section 5.3: The HSV Modification Tool

There are four separate controls in the H S V Modlflcatlon tool. At the top of the window are a
pair of circular controls that handle hue remapping. Lower down is a circular control that maps
'white' (and greys) to a specified color. There is a dial control that lets you saturateldesaturate the
colors of the current information. Finally, at the bottom there is a graph window that lets you
modify intensity values via an abiirary remapping function.

Section 5.3.1: Hue Remapping Controls

HSV Modification

These two dials are used to define a sourceand a destination range of hue values. Every hue in
the source range (defined in the From dial) gets mapped to the value of the corresponding point
in the destination range (defined in the To dial).

Each dial has a pair of radial lines with handles at their ends. Between the two lines an arc is drawn
with an arrow at one end. The wedge drawn by these lines and the arc defines a range of values
(in degrees). The direction of the arc (clockwise, or counter-clockwise) determines the direction
of this range of values (increasing or decreasing).

Distributed around the dial are tick marks and the letters 'R', Y', 'G', 'C', 'B', and 'M'. These letters
stand for the colors Red, Yellow, Green, Cyan, Blue, and Magenta, and they show where these
colors appear on the circle.

The range is shown numerically below the control. By default the range is '3 30°, 30" cw'.
This means that a range of values [330°, 331 O, 332O, ... 35g0, 0°, 1 O, ... 28O, 2g0, 30°] has been
defined. Note that (being a circle) it wraps back to 0° after 35g0.

The range can be changed in many different ways. You can click on the 'handles' at the end of the
radial lines and move them around. If you click inside the dial, but noton one of the handles, you'll
be able to drag the range around as a single object. There are also 5 buttons below the dial that
let you rotate the range, flip the direction of the range, and increaseldecrease the size of the
range while keeping it centered around the same value.

In its default state, the To dial is set to the same range as the From dial. When the two dials are set
to the same range, they are effectively 'turned off', and ignored.

An example of hue remapping:
As a simple example of the sort of things you can do with the hue remapping control, we'll
change the background color of the default (xvlogo) image without changing any other
colors in the image. Since the background is composed of a gradient of 64 colors, you
would not want to do this with the Colormap Editing tool. It would take forever.

First, get the default image up on the screen by running 'xv' without giving any filenames.
Open up the xv color editorwindow via the Co IEd it command.

Next, click the mouse in the image window and drag it around. You'll see that all the
background pixels have the same Hue component value (240).

To remap this hue, simply adjust the From dial so that its range includes this Hue value.
The background should change from 'blue' to a reddish color, assuming the To dial is still
set to its default range (centered around 'R'). If more than the background changed color,
you can shrink the From range so that it covers fewer colors. In fact, it's possible to shrink
the range to the point where it only covers only a single value.

Note that the values printed when you are tracking pixel values in the image are the values
before the HSV Modification tool is applied. For example, the background of the default
image will still claim to be blue, regardless of what color you may have changed it to. This is so that
you know what Hue value you will need to remap if you want to change its color again.

If you press the Reset button that is located near the hue remapping controls, it will effectively
disable the hue remapping by setting the To range equal to the From range.

Below the hue remapping controls are a group of 'radio buttons'. You can have up to six different
hue remappings happening simultaneously. Higher numbered mappings take precedence over
lower number mappings.

An example of multiple hue remappings:
Draw a From range that is a complete circle. The easiest way to do this is to draw a range
that is nearly a full circle, then click and hold down the 'increase range' button located
below the From range dial until the range stops getting bigger.

Copy this range to the To range by pressing the Reset button.

Rotate the To range slightly, by either clicking and dragging anywhere in the To range dial,
or by using the 'rotate clockwise' and 'rotate counter-clockwise' buttons located below the
To range.

You've just built yourself what is effectively a tintcontrol.

Now, suppose, you'd like to adjust the background color of your (tint-modified) image,
without affecting anything else. Clicking on the background in the image window reveals
that the background still has an (original) hue of 240. To modify this hue without affecting
anything else, we'll need a second hue remapping.

Click on the 2 radio button. The dials will change to some other default setting. As
before, set the From range to encompass the value 240, preferably as 'tightly' as possible,
and set the To range to produce the desired background color.

Note that the six hue remappings are not 'cascaded'. The output of one remapping is not fed as
input into any of the other hue remappings. The hue remappings always operate on the hue

values in the original image. In this example, if remapping #I adds 32 to all hue values, thereby
mapping the blue background (value 240) into a purple-blue (value 272), remapping #2 still sees
the background at 240, and can remap it to anything it likes. Similarly, in the same example, if
remapping #1 has mapped a green-blue color (value 208) into blue (value 240), remapping #2 will
not map this into another color. As far as remapping #2 is concerned, that green-blue is still green-
blue.

If it seems complicated, I'm sorry. It is.

Section 5.3.2: The White Remapping Control

In the HSV colorspace, 'white' (including black, and all the greys in between) has no Hue or
Saturation components. As such, it is not possible to use the hue remapping controls to change
the color of white pixels in the image, since they have no 'color' to change.

The white remapping control provides a way to add Hue and Saturation components to all the
whites in the image. It consists of a movable point in a color dial. The angle of the dot from the
center of the dial determines the Hue component. The distance of the dot from the center of the
dial determines the Saturation component. The further the dot is from the center of the dial, the
more saturated the color will be.

You can control the white remapping control in several ways. You can click on the handle and drag
it around with the mouse. There are also four buttons provided under the dial. One pair allows
you to rotate the handle clockwise and counter-clockwise without changing its distance from the
center. The other pair of buttons lets you change the distance between the handle and the
center without changing the angle.

The current Hue and Saturation values provided by the control is displayed below the dial. The
first number is the Hue component, in degrees, and the second is the Saturation component, as a
percentage.

There is also a checkbox that will let you turn off the white remapping control. This lets you quickly
compare your modified 'white' with the original white. You can also effectively disable the white
remapping control by putting the handle back in the center of the control. The easiest way to do
this is to click and hold the 'move towards center' button until the saturation gets down to 0%.

Example:
Press the Grey control in the Colormap Editing tool. This turns all the colors in the image
into shades of grey.

Drag the handle in the white remapping control halfway down towards the 'R' mark. The
Hue and Saturation values should be roughly 0" and 50%. The image should now be
displayed in shades of pink.

Section 5.3.3: The Saturation Control

The saturation control lets you globally increase or decrease the color saturation of the image. In
effect, it is much like the 'color' control on most color televisions.

The saturation control is a dial that operates exactly like the dials described in "Section 5.2.1
Using the Dial Controls". In short, you can click and hold down any of the four buttons in the
bottom of the control to increase or decrease the control's value. You can also click on the dial
itself and move the pointer around directly.

The saturation control has values that range from '-100%' to '+1000/0'. At its default setting of 'OW,
the saturation control has no effect on the image. As the values increase, the colors become
more saturated, up to '+I 00%' where every color is fully saturated. Likewise, as values decrease,
the colors become desaturated. At '-100%', every color will become a completely desaturated
(i.e., a shade of grey). Note that this control is applied afferthe the White Remapping control, so if
you 'greyify' the image by completely desaturating it, you will not be able to color it using the White
Remapping control.

Unless you're trying for some special effects, the useful range of this control is probably 'k20%'.
Also note that the control will have no effect on shades of grey, as they have no color to saturate.

Section 5.3.4: The Intensity Graph

The intensity graph allows you to change the brightness of the image, change the contrast of the
image, and get some unique effects.

The intensity graph is a function that lets you remap intensity values (the Value component in HSV
Colorspace) into other intensity values. The input and output values of this function both range
from 0 to 255. The input values range along the xaxis of this graph (the horizontal). For every
input value (point along the xaxis) there is a unique output value determined by the height of the
graph at that point. In the graph's default state, the function is a straight line from bottom-left to
top-right. In this case, each input value produces an equivalent output value, and the graph has
no effect.

There are a number of 'handles' along the graph. These provide your major means of interacting
with the graph. You can move them around arbitrarily, subject to these two constraints: the
handles at the far left and far right of the graph can only be moved vertically, and handles must
remain between their neighboring handles for the graph to remain a proper function.

The handles are normally connected by a spline curve. To see this, move one of the handles by
clicking and dragging it. The function will remain a smoothly curved line that passes through all the
handles. You can change this behavior by putting the function into 'lines' mode. Press the 'lines'
button (the second button down from the top). The function will change to a series of line
segments that connect the handles. Press the 'spline' button (the top button) to go back to
'spline' mode.

The next two buttons let you add or delete handles. The 'add handle' button will insert a handle
into the largest 'gap' in the function. The 'delete handle' button will remove a handle from the
smallest 'gap' in the function. You can have as little as 2 handles, or as many as 16. Note that as
the number of handles gets large, the spline will start getting out of control. You may wish to
switch to 'lines' mode in this case.

The 'Reset' button puts everything back on a straight line connecting bottom-left to top-right (a
1 :1 function). It does not change the number of handles, nor does it change the x-positions of
the handles.

The 'Gam' button lets you set the function curve by entering a single number. The function is set
equal to the gamma function:

where /is the input value (0-255), y is the gamma value, and Yis the computed result.

Gamma values (for our purposes) can range between 0 and 10000, non-inclusive.
A gamma value of '1.00' results in the normal 1 :1 straight line.

Gamma values of less than 1.00 but greater than 0.00 result in 'exponential' curves, which
will dim the image.

Gamma values greater than 1.00 result in 'logarithmic' curves, which will brighten the
image. Try it and see.

There is a shortcut for the 'Gam' button. Type 'g' while the mouse is inside the graph window.

Also, touching any of the handles after a 'Garn' command will put the graph back into its 'normal'

mode. (Either 'spline' or 'lines' depending on which of the top two buttons is turned on.)

Generally, whenever you move a graph handle and let go of it, the image will be redrawn to show
you the effects of what you've done. This can be timeconsuming if you intend to move many
points around. You can temporarily prevent the redisplay of the image by holding down a <shift>
key. Continue to hold the <shift> key down while you move the handles to the new position.
Release the <shift> key when you're done, and the image will be redisplayed.

Section 5.4: The RGB Modification Tool

The RGB Modification tool is a collection of three graph windows, each of which operate on
one of the components of the RGB colorspace. This tool lets you pelform global color-correction
on the image by boosting or cutting the values of one or more of the RGB color components. You
can use this to correct for color screens that are 'too blue', or for color printers that produce
'brownish' output, or whatever.

RCB Modification

The graphs work exactly as explained in "Section 5.3.4: The Intensity Graph".

mi

Neat Trick: In addition to color-correction, you can use the RGB modification tool to add color to
images that didn't have color to begin with. For instance, you can 'pseudocolor' a greyscale
image.

rJ

N
T - -
7
RESET - -
G AM

--- - 1;!
RESET --
G AM

RESET

G AM
- - v

An example of pseudocoloring:
Adjust the Red graph so that there is a strong red presence on the right side of the graph,
and none on the left, or in the middle.

Adjust the Green graph so that there is a strong green presence in the middle of the
graph, and none on the left or right.

Adjust the Blue graph so that there is a strong blue presence on the left side of the graph,
and none on the left, or in the middle.

The graphs should look roughly like this:

You now have a transformation that will take greyscale images and display them in pseudo-color,
using a 'temperature' color scheme. Neato!

Section 5.5: The Color Editor Controls

These buttons provide general control over the whole xw color editorwindow. You can display the
image with or without color modification, save and recall presets, and undolredo changes. Also,
convenience controls are given for performing some of the most common operations on the
Intensity graph.

Command W D e s c n ~ t u
. .

Apply 'P ' Displays the image using the current HSV and RGB Modifications.
Also tums the 'Display with HSVIRGB mods' checkbox on. (See
below.)

This is only useful when the 'Auto-apply HSVIRGB mods' checkbox
is off.

NoMod

Reset

Displays the image without any HSV or RGB Modifications. Also tums
the 'Display with HSVIRGB mods' checkbox off.

'R' Resets all HSV and RGB controls to their default settings. Doesn't

affect the Colormap Editing tool.

Undo

Redo

1 ,2.3,4

Set

Undoes the last change to the HSV or RGB controls.

It may be helpful to think of xv as maintaining a series of 32
'snapshots' of the HSV and RGB controls. You are normally looking at
the last frame in this series. The Undo control moves you backwards
in the series.

Only available after you've hit Undo. Moves you fotward in the
'snapshot' series described above. Note that if you have hit Undo a
few times (i.e., you're now looking at some frame in the middle of the
series), and you change an HSV or RGB control, all subsequent
frames in the series are thrown away, and the current state becomes
that last frame in the series.

Pressing any of these buttons recalls a preset (a complete set of
values for the HSV and RGB controls).

Used in conjunction 'with the 1 ,2,3,4 buttons to store the current
settings of the HSV and RGB controls into a preset. To do so, press
the Set button, and then press one of the 1 ,2,3,4 buttons. The
current HSV and RGB control settings will be stored in that preset, as
long as xv continues running. The values will be lost when the
program exits. It is also possible to save these values permanently.
See the Cut Resources button (below) and "Section 9: Modifying
XV Behavior" for more details.

Cut Resources Copies the current settings of the HSV and RGB controls, as text,
into the X server's cut buffer. You can then use a text editor to paste
these values into your '.Xdefaults' (or '.Xresourcesl) file. This lets you
save the current settings 'permanently'. See "Section 9: Modifying
XV Behavior" for more details.

Close This button closes the xvcolor editingwindow.

Brite

Dim

Sharp

Dull

Brightens the image by moving all the handles in the lntensity graph
up by a constant amount.

Darkens the image by moving all the handles in the lntensity graph
down by a constant amount.

Increases the contrast of the image by moving handles on the left
side of the lntensity graph down, and handles on the right side up.

Decreases the contrast of the image by moving handles on the left
side of the lntensity graph up, and handles on the right side down.

MaxCn 'C' Automatically maximizes the contrast of an image by finding the
second-brightest and seconddarkest colors in the image, making
those full-bright and full-dark respectively, effectively expanding the
dynamic range of the image. All in-between colors are remapped
accordingly. The image must have at least four colors for this control
to have any effect.

Auto-apply HSV/RCB mods.

The 'Display with HSVIRGB mods' checkbox tells you whether or you're looking at a modified
image (checked) or the 'raw', unmodified image (unchecked). The Apply and NoMod buttons
change the setting of this checkbox, and you can also change the checkbox directly by clicking
on it.

The 'Auto-apply HSVIRGB mods' checkbox controls whether or not the program regenerates and
redisplays the image after each change to an HSV or RGB control. By default, this checkbox is
turned on, so that you can easily see the results of your modifications. However, in the case that
you want to make a large number of changes at once, it might be preferable to turn automatic
redisplay off for a while, to speed things up.

The 'Auto-reset on new image' checkbox controls whether or not the HSV and RGB controls are
Reset back to their default values whenever a new image is loaded up. By default, this is also
turned on, as when you're playing with the HSVIRGB controls, you probably only want to affect
the current image, and not all subsequently loaded images as well.

Section 6: The Load Window

space
007.gif a 1 llhttow.glf

a Chrlstinas,world.gif

I 1 9 2 f i l e s i
1 road file: 11

- i
i
1

- * F * W , *- ;**------ "?=- *-*w-m

1

q7wJ%? -- __-.a

The xv load window lets you load and view images interactively, without specifying them on the
command line when you start xv.

The load window shows the contents of the current directory in a scrolling window. The files will
be sorted alphabetically, with all the directories (and symbolic links to directories, if your operating
system supports them) displayed first.

This list window operates in the same way that the one in the xv controls window works. (See
"Section 3.6.1 : Operating a List Window" for details.) In short, you can operate the scroll bar, drag
the highlight bar around the window, and use the up-arrow, down-arrow, Home, End, Page Up,
and Page Down keys on your keyboard.

Whenever you click on a name in the list (or otherwise change the position of the highlight bar),
the name of the highlighted file is copied to the "Load file" text entry region, located below the list
window. Pressing the 0 k button (or typing <return>) will cause the program to attempt to load
the specified file. If the load attempt is successful, the load window will disappear, and the new
image will be displayed. Otherwise, an error message will be displayed, and the load window will
remain visible.

If the image is successfully loaded, its name will be added to the xv controls window list. This will
let you quickly reload it later without have to go through the xvloadwindow again.

You can also load a file by doubleclicking on its name in the file list.

If the specified file is a directory, xv will figure that out and (instead of loading it) will 'cd' to that
directory, and display its contents in the list window.

Above the list window is a pop-up menu button, much like the Display Modes button in the xv
controlswindow. It normally displays the name of the current directory. If you click this button, and
hold the mouse down, the complete path will be shown, one directory per line. You can go 'up'
the directory tree any number of levels, all the way up to the root directory, by simply selecting a

directory name in this list.

For those who prefer the direct approach, you can simply type file or directory names in the 'Load
file" text entry region. If you type a directory name and hit <return>, xvwill 'cd' to that directory
and display its contents in the list window. If you type a file name and hit <return>, xvwill attempt
to load the file. You can enter relative paths (relative to the currently displayed directory), absolute
paths, and even paths that begin with a I-'.

The "Load file" text entry region supports a number of emacs-like editing keys.
Cttl-F moves the cursor fonvard one character
Ctrl-B moves the cursor backward one character
Ctd-A moves the cursor to the beginning of the line
Ctd-E moves the cursor to the end of the line
Ctd-D deletes the character to the right of the cursor
Ctd-U clears the entire line
Ctd-K clears from the cursor position to the end of the line.

If the filename is so long that it cannot be completely displayed in the text entry region, a thick line
will appear on the left or right side (or both sides) of the region to show that "there's more over this
way.

Section 7: The Save Window

192 files

Save file: 1007.gil

Format Colors
@ CIF @ Full Color
O PM 0 Greyscale
0 PBM (raw) 0 B/W Dithered
0 PBM (ascii) 0 Reduced Color
0 X I 1 Bitmap
0 Sun Rasterfile
0 PostScript
0 JPEC

The xvsave window lets you write images back to disk, presumably after you've modified them.
You can write images back in many different formats, not just the original format.

For the most part, the xvsave window operates exactly like the xvloadwindow. (See 'Section 6:
The Load Window" for details.) Only the differences are listed here.

When the window is opened, it should have the filename of the currently loaded file already
entered into the text entry region. If you change directories, or click on a file name in the list
window, this name will be cleared and replaced with the new name.

At the bottom of the window are a list of possible formats in which you can save the file. If you click
on one of these formats, and your filename has a recognized suffix (i.e., '.gif', '.GIF', '.pbm', etc.),
the suffix portion of your filename will be replaced with the new, appropriate suffix for the selected
format.

You can pipe output from xvto other programs by using the xvsave window. A fine use for this
feature is directly printing images to a Postscript printer by selecting 'PostScript' in the formats list,
and typing something like " I l p r " as the filename. In this case, xvwill create a temporary file,
write the Postscript to that file, and cat the contents of that file to the entered command. XVwill
wait for the command to complete. If the command completed successfully, the xvsave window

will disappear. If the command was unsuccessful, the window will remain visible. In any event, the
temporary file will be deleted.

At the bottom right side of the window there is a list of possible 'Color' variations to save. Most file
formats support different 'sub-formats' for 24-bit color, 8-bit greyscale, 1-bit BMI stippled, etc. Not
all of them do. Likewise, not all 'Color' choices are available in all formats.

In general, the 'Color' choices do the following:

Full Color Saves the image as currently shown with all color modifications,
cropping, rotation, flipping, resizing, and smoothing. The image
will be saved with all of its colors, even if you weren't able to
display them all on your screen. For example, you can load a
color image on a 1-bit BMI display, modify it, and write it back.
The saved image will still be full color, even though all you could
see on your screen was some BMIdithered nightmare.

Greyscale Like Full Color, but saves the image in a greyscale format.

BMI Dithered Like Full Color, but before saving the image xvgenerates a 1 -
bit-per-pixel, black-and-white dithered version of the image, and
saves that, instead.

Reduced Color Saves the image as currently shown, with all color modifications,
cropping, rotation, flipping, resizing, and smoothing. The image
will be saved as shown on the screen, with as many or few colors
as xvwas able to use on the display. The major purpose of this is
to allow special effects (color reduction) to be saved, in
conjunction with the '-ncols' command line option. You will
probably never need to use this.

Format notes:
G IF

P B M (raw)

While xvcan read both the GIF87a and GIF89a formats, it will only
write GIF87a. This is in keeping with the GIF89 specification,
which states that if you don't need any of the features added in
GIF89 (which xvdoesn't), you should continue to write GIF87, for
greater compatibility with old GIF87-only readers.

Since GIF only supports one format (up to 8 bits per pixel, with a
colormap), there will be no size difference between a Full Color
and a Greyscale image. A BIW Dithered image, on the other
hand, will be considerably smaller.

Full Color images are saved in the 3-plane, 1-band, PM-C
format. Greyscale and B I W Dithered images are both saved
in the 1-plane, 1-band, PM-C format. As such, there is no size
advantage to saving in the BMI Dithered format.

Full Color images are saved in PPM format. Greyscale images
are saved in PGM format. BIW Dithered images are saved in
PBM format. Each of these formats are tailored to the data that
they save, so PPM images are larger than PGM images, which are
in tum larger than PBM images.

In the raw variation of the PBM formats, the header information is
written in plain ASCll text, and the image data is written as binary
data. This is the more popular of the two dialects of PBM.

P B M (ascii) Like P B M (raw), only the image data is written as ASCII text. As
such, images written in this format will be several times larger than
images written in P B M (raw). This is a pretty good format for
interchange between systems because it is easy to parse. Also,
since they are pure, printable ASCll text, images saved in this
format can be mailed, without going through a uuencode-like
program.

Note that xv-produced PBM files may break some PBM readers
that do not correctly parse comments. If your PBM reader cannot
parse comments, you can easily edit the PBM file and remove the
comment lines. A comment is everything from a ' # character to
the end of the line.

X I 1 Bitmap Saves files in the format used by the 'bitmap' program, which is
part of the standard XI1 distribution. Since bitmap files are
inherently 1-bit per pixel, you can only select the B/W Dithered
option for this format.

Sun Rasterf i le FuIIIRed uced Color images are stored in a 24-bit RGB format,
Greyscale images are stored in an 8-bit greyscale format, and
B/W Dithered images are stored in a 1-bit BMI format.

Postscr ipt FulllReduced Color images are stored in a 24-bit RGB format,
Greyscale images are stored in an 8-bit greyscale format, and
B/W Dithered images are stored in a 1-bit BMI format.

XV writes Encapsulated PostScript, so you can incorporate xv-
generated PostScript into many desktop-publishing programs.
XValso prepends some color-to-greyscale code, so even if your
printer doesn't support color, you can still print 'color' PostScript
images. These images will be three times larger (in file size) than
their greyscale counterparts, so it's a good idea to save
Greyscale Postscript, unless you know you may be printing the
file on a color printer at some point.

Also, you should probably never need to generate B/W
Dithered Postscript, as every Postscript printer I've ever heard
of can print greyscale images. The only valid cases I can think of
are: A) doing it for a special effect, and B) doing it to generate a
much smaller (roughly 118th the size) PostScript file.

Note: When you try to save a Postscript file, the xvpostscript
window will pop up to let you specify how you want the image
printed. (See 'Section 8: The PostScript Window", for details.)

JPEG XV writes files in the JFlF format created by the Independent
JPEG Group. FullIReduced Color images are written in a 24-
bit RGB format, and Greyscale images are written in an &bit
greyscale format. B/W Dithered images should not be used,

as they will probably wind up being larger than Greyscale
versions of the same images, due to the way JPEG works.

When you save in the JPEG format, a dialog box will pop up and
ask you for a quality setting. '75%' is the default value, and really,
it's a fine value. You shouldn't have to change it unless you're
specifically trying to trade off quality for compression, or vice
versa. The useful range of values is 5%-95%.

Section 8: The Postscript Window

Save PostScrlpt File ...

Position:
El Left: 2,028" (5.15cn)

Top: 4.111" (10.44cm)

51ze:
Orientatlon 4.444" x 2.778"

@ Portrait 0 Landscape
11.29~~ x 7.06m

Resolution:
I

Paver Size 72dpi x 72dpi
@ 8 . 5 " x 1 1 " 0 ~ 4 0 ~ 5

I
f

The xvpostscript window lets you describe how your image should look when printed. You can
set the paper size and the image size, position the image on the paper, and print in 'portrait' or
'landscape' mode.

The majority of the xvpostscdpt window is taken up by a window that shows a white rectangle (the
page) with a black rectangle (the image) positioned on it. You can position the image rectangle
anywhere on the page. The only constraint is that the center of the image (where the two
diagonal lines meet) must remain on the page. Only the portion of the image that is on the page
will actually be printed.

The image can be (roughly) positioned on the page by clicking in the image rectangle and
dragging it around. As you move the image, the Top" and "Left" position displays will show the
size of the top and left margins (the distance between the top-left comer of the page and the top-
left comer of the image).

You'll note that you have limited placement resolution with the mouse. If you want to fine-position
the image, you can use the arrow keys to move the image around. The arrow keys will move the
image in .001" increments. You can hold them down, and they will auto-repeat. You can also hold
a <shift> key down while using the arrow keys. This will move the image in .01V increments.

You can change the size of the printed image by adjusting the "Width" or "Height" dials. Normally,
the dials are locked together, to keep the aspect ratio of the image constant. You can unlock the
dials by tuming the off the checkbox located below the dials. As you change the dials, the size of
the image (when printed) is displayed below, in inches and in millimeters. The current resolution
of the image is also displayed below. The "Resolution" numbers tell you how many image pixels

will be printed per inch.

Located below the 'page' rectangle are a set of radio buttons that let you specify the current paper
size (8.5" x 11", 8.5' x 14", 11" x 1 7 , A4, and B5), and orientation (Portrait and Landscape).

The Center button will center the image on the page. The Maxpect button will make the image
as large as possible (maintaining half-inch margins on all sides) without changing the aspect ratio.

There are a pair of small buttons located next to the "Left" and Top" displays. Clicking the "Left"
one will cycle between displaying the "Left" margin, the 'Right" margin, and the "Center X"
position (the distance from the left edge of the paper to the center of the image).

Clicking the Top" display's button will cycle between displaying the size of the Top" margin, the
size of the 'Bottom" margin, and the "Center Y position (the distance from the top edge of the
paper to the center of the image).

Click the "Ok" button when you're finished with the xv postscript window. If everything is
successful, the xvpostscript and the xvsavewindow will both close. If xvwas unable to write the
Postscript file, the xv postscript window will close, but the xv save window will remain open, to
give you a chance to enter a different filename.

Section 9: Modifying XV Behavior

XV supports literally dozens of command line options and XI1 resources. Fortunately, it is
doubtful that you'll ever need to use more than a small few. The rest are provided mainly for that
'one special case' application of xv... Note that you do not have to specify the entire option name,
only enough characters to uniquely identify the option. Thus, '-geom' is a fine abbreviation of
'-geometrys. The shortest legal abbreviations are shown in bold face.

Section 9.1: Command Line Options Overview

If you start xvwith the command 'xv -help1, the current list of options will be displayed:

xv [- I [-2xlimitl [-aspect w:h] [-bg color] [-black color]
[-bw width1 [-cegeometry geoml [-cemap] [-cgeometry geom] [-clear]
[-cmap] [-cursor char#] [-DEBUG level] [-display disp] [-dither]
[-expand expl [-fg colorl [-fixed] [-geometry geom] [-help]
[-hi colorl [-hsv] [-igeometry geom] L-imapl [-keeparound]
[-lo colorl [-maxl [Fmaxpectl [-mono1 [-ncols #I [-ngloball
[Fninstalll [-noposl [-noqcheckl [-owncmapl [-perfect] [-quit]
[-rbg colorl [-rfg colorl [-rgb] [-rmode #I [-root] [-rw]
[-slow241 [-smooth1 [-visual type] [-wait seconds] [-white color]
[-wloopl [filename . . .]

Section 9.2: General Options
-help Print usage instructions, listing the current available command-line

options. Any unrecognized option will do this as well.

-display disp Specifies the display that xvshould attempt to connect to. If you don't
specify a display, xvwill use the environment variable $DISPLAY.

- f g color Sets the foreground color used by the windows. (Resource name:
foreground. Type: string)

- b g color Sets the background color used by the windows. (Resource name:
background. Type: string)

- h i color Sets the highlight color used for the top-left edges of the control
buttons. (Resource name: highlight. Type: string)

- lo color Sets the lowlight color used for the bottom-right edges of the control
buttons, and also the background of some windows. (Resource name:
lowlight. Type: string)

- bw bwidth Sets the width of the border on the windows. Your window manager may
choose to ignore this, however. (Resource name: borderwidth. Type:
integer)

Section 9.3: Image Sizing Options

-geometry geom Lets you specify the size and placement of the 'image' window. It's most
useful when you only specify a position, and let xvchoose the size. If
you specify a size as well, xvwill create a window of that size, unless
-fixed is specified. The geom argument is in the- form of a normal X
geometry string (e.g. '300x240 or "+I O+lOn or '400x300+10+1 On).
(Resource name: geometry. Type: string)

- f i x e d

- expand exp

Only used in conjunction with the -geometry option. If you specify a
window size with the -geometry option, xv will normally stretch the
picture to exactly that size. This is not always desirable, as it may seriously
distort the aspect ratio of the picture. Specifying the -fixed option
corrects this behavior by instructing xvto use the specified geometry size
as a mawmum window size. It will, however, preserve the original aspect
ratio of the picture.

For example, if you give a rectangular geometry of '320x240', and you try
to display a square picture with a size of '256x256', the window opened
will actually be '240x240', which is the largest square that still fits in the
'320x240' rectangle that was specified. (Resource name: fixed. Type:
boolean)

Lets you specify an initial expansion or compression factor for the picture.
You can specify floating-point values. Values larger than zero multiply the
picture's dimensions by the given factor. (i.e., an expand factor of '3' will
make a 320x200 image display as 960x600).

Factors less than zero are treated as reciprocals. (i.e., an expand factor of
'-4' makes the picture 114th its normal size.). '0' is not a valid expansion
factor. (Resource name: expand. Type: floating-point)

Lets you set an initial aspect ratio, and also sets the value used by the
Aspect control. The aspect ratio of nearly every X display (and, in fact,
any civilized graphics display) is 1 :l. What this means is that pixels appear
to be 'square'. A 100 pixel wide by 100 pixel high box will appear on the
screen as a square. Unfortunately, this is not the case with some screens
and digitizers. The -aspect option lets you stretch the picture so that
the picture appears correctly on your display. Unlike the other size-
related options, this one doesn't care what the size of the overall picture
is. It operates on a pixel-by-pixel basis, stretching each image pixel
slightly, in either width or height, depending on the ratio.

Aspect ratios greater than '1 :I' (e.g., '4:3') make the picture wider than
normal. Aspect ratios less than '1:l' (e.g. '2:3') make the picture taller
than normal. (Useful aspect ratio: A 512x480 image that was supposed
to fill a standard 4x3 video screen (produced by many video digitizers)
should be displayed with an aspect ratio of '5:4') (Resource name:
aspect. Type: string)

Section 9.4: Color Allocation Options

-ncols nc Sets the maximum number of colors that xvwill use. Normally, this is set
to 'as many as it can get'. However, you can set this to smaller values for
interesting effect. If you set it to 'O', it will display the picture by dithering
with 'black' and 'white'. (The actual colors used can be set by the -black
and -white options, below.) (Resource name: ncols. Type: integer)

- owncmap

Adjusts the way the program behaves when it is unable to get all the
colors it requested. Normally, it will search the display's default colormap,
and 'borrow' any colors it deems appropriate. These borrowed colors are,
however, notowned by xv, and as such, can be changed without xv's
permission, .or knowledge. If this happens, the displayed picture will
change, probably in a less-than-desirable fashion. If you specify the
-nglobal option, xvwill not use 'global' colors. It will only use colors that
it successfully allocated, which makes it immune to any color changes.

It should be noted that 'use global colors' is 'the default because color
changes aren't generally a problem if you are only using xv to display a
picture for a short time. Color changes only really become a problem if
you use xv to display a picture that you will be keeping around for a while,
while you go and do some other work (such as using xv to display a
background). In such cases you will want to specify -nglobal. Note:
using the -ncols or -root options automatically turn on -nglobal.
(Resource name: nglobal. Type boolean)

Tells xv to use readhrite color cells. Normally, xv allocates colors read-
only, which allows it to share colors with other programs. If you use
readlwrite color cells, no other program can use the colors that xv is
using, and vice-versa. The only reason you'd do such a thing is that
using readhnrrite color cells allows the Apply function in the xv color
editorwindow to operate much faster. (Resource name: ~wColor. Type:
boolean)

Makes xvtry 'extra hard' to get all the colors it wants. In particular, when
-perfect is specified, xvwill allocate and install its own colormap if (and
only if) it was unable to allocate all the desired colors. This option is not
allowed in conjunction with the -root option. (Resource name: perfect.
Type boolean)

Like '-perfect1, only this option forces xvto alwaysallocate and install its
own colormap, thereby leaving the default colorrnap untouched.
(Resource name: ownCmap. Type boolean)

Prevents xv from 'installing' its own colorrnap, when the -perfect or
-owncmap options are in effect. Instead of installing the colormap, it will
merely 'ask the window manager, nicely' to take care of it. This is the
correct way to install a colormap (i.e., ask the WM to do it), unfortunately, it
doesn't actually seem to work in many window managers, so the default
behavior is for xv to handle installation itself. However, this has been
seen to annoy one window manager (dxwm), so this option is provided if
your WM doesn't like programs installing their own colormaps. (Resource
name: ninstall. Type: boolean)

Section 9.5: 24-bit Conversion Options

The following options only come into play if you are using xvto display 24-bit RGB data (PPM files,
color PM files, JPEG files, and the output of bggen). They have no effect whatsoever on how GIF
pictures or 8-bit greyscale images are displayed.

- s low2 4 Specifies that the 'alternate' 24-bit to &bit conversion algorithm is to be
used by the program. The default algorithm dithers the picture using a
fixed set of colors that roughly approximate all displayable colors. The
-slow24 algorithm picks the 'best' colors on a per-image basis, and
dithers with those. (Resource name: slow24. Type: boolean)

Advantages: The -slow24 algorithm often produces better looking
pictures.'

Disadvantages: The -s low2 4 algorithm is about half as fast as the default
algorithm. Also, since the colors are chosen on a per-image basis, it can't
be used to display multiple images simultaneously, as each image will
almost certainly want a different set of 256 colors. The default algorithm,
however, uses the same exact colors for all images, so it can display many
images simultaneously, without running out of colors. Also, the -s low2 4
algorithm occasionally produces worse-looking pictures than the default
algorithm, particularly on displays with very few colors. The default
algorithm produces nice, dependably 'okay' pictures.

Turns off a 'quick check' that is normally made. Normally, before running
either of the 24-bit to 8-bit conversion algorithms, xvdetermines whether
the picture to be displayed has more than 256 unique colors in it. If the
picture doesn't, it will treat the picture as an &bit colormapped image (i.e.,
GIF), and won't run either of the conversion algorithms. (Resource name:
noqcheck. Type: boolean)

Advantages: The pictures will be displayed 'perfectly', whereas if they
went through either of the conversion algorithms, they'd be dithered.

Disadvantages: Often uses a lot of colors, which limits the ability to view
multiple images at once. (See the -slow2 4 option above for further info
about color sharing.)

Section 9.6: Root Window Options
xvhas the ability to display images on the root window of an X display, rather than opening its own
window (the default behavior). When using the root window, the program is somewhat limited,
because the program cannot receive input events (key press and mouse clicks) from the root
window. As a result, you cannot track pixel values, nor crop, nor can you use keyboard commands
while the mouse is in the root window.

Directs xvto display images in the root window, instead of opening its
own window. Exactly howthe images will be displayed in the root window
is determined by the setting of the -rmode option. (Resource name:
<none>)

- r mode mode

- r f g color

- r bg color

-ma%

- c lear

~etermines how images are to be displayed on the root window, when
- roo t has been specified. You can find the current list of 'modes' by
using a mode value of ' - 1 ' . XV will complain, and show a list of valid
modes. The current list at of the time of this writing is:

tiling
integer tiling
mirrored tiling
integer mirrored tiling
centered tiling
centered on a solid background
centered on a 'warp' background
centered on a 'brick' background

The default mode is '0'. See "Section 3.5: The Display Modes Menu" for
a description of the different display modes. (Resource name:
rootMode. Type: integer)

Sets the 'foreground' color used in some of the root display modes.
(Resource name: rootforeground. Type: string)

Sets the 'background' color used in some of the root display modes.
(Resource name: rootBackground. Type: string)

Makes xvautomatically stretch the image to the full size of the screen.
This is mostly useful when you want xv to display a background. While
you could just as well specify the dimensions of your display
('-geom 1152x900' for example), the -max option is display-
independent. If you decide to start working on a 1280x1 024 display the
same command will still work. Note: If you specify -max when you aren't
using - roo t , the behavior is slightly different. The image will be made as
large as possible while still preserving the normal aspect ratio. (Resource
name: <none>)

Makes the image as large as possible while preserving the aspect ratio.
(Resource name: <none>)

Makes xv display the (first) specified file and exit, without any user
intervention. Since images displayed on the root window remain 'there
until explicitly cleared, this is very useful for having xvdisplay background
images on the root window in some sort of start-up script. This is only
useful if you are using - root . (Resource name: <none>)

Clears the root window of any xv images. Note: it is not necessary to do
an 'xv - c l e a r ' before displaying another picture in the root window. xv
will detect that there's an old image in the root window and automatically
clear it out (and free the associated colors). (Resource name: <none>)

Section 9.7: Window Options

XVcurrently consists of three main windows, plus one window for the actual image. These three
windows (the xv controls window, the xv info window, and the xv color editor window) may be
automatically mapped and positioned when the program starts.

- cmap

- c geom g e m

Maps the xv controls window. (Resource name: ctrlMap. Type: boolean)

Sets the initial geometry of the xv controls window. Note: only the
position information is used. The window is of fixed size. (Resource
name: ctrlGeometry. Type: string)

- imap Maps the xv infowindow. (Resource name: infoMap. Type: boolean)

- i geom geom Sets the initial geometry of the xvinfo window. Note: only the position
information is used. The window is of fixed size. (Resource name:
infoGeometry. Type: string)

- c emap Maps the xv color editor window. (Resource name: ceditMap. Type:
boolean)

- c e geom g e m Sets the initial geometry of the xv color editor window. Note: only the
position information is used. The window is of fixed size. (Resource
name: ceditGeometry. Type: string)

Turns off the 'default' positioning of the various xvwindows. Every time
you open a window, you will be asked to position it. (Assuming your
window manager asks you such things. mwm, for instance, doesn't seem
to ask) (Resource name: nopos. Type: boolean)

Section 9.8: Miscellaneous Options

Forces the image to be displayed as a greyscale. This is most useful
when you are using certain greyscale X displays. While xv attempts to
determine if it's running on a greyscale display, many X displays lie, and
claim to be able to do color. (This is often because they have color
graphics boards hooked up to b/w monitors. The computer, of course,
has no way of knowing what type of monitor is attached.) On these
displays, if you don't specify -mono, what you will see is a greyscale
representation of one of the RGB outputs of the system. (For example,
you'll see the 'red' output on our greyscale Sun 3160s.) The -mono
option corrects this behavior. (Resource name: mono. Type: boolean)

- w h i t e color Specifies the 'white' color used when the picture is b/w stippled. (When
' -ncols 0' has been specified.) (Resource name: white. Type: string)

- b l a c k color Specifies the 'black' color used when the picture is b/w stippled. (When
'-nco 1 s 0' has been specified.) (Resource name: black. Type: string)

Try something like:
'xv -ncols 0 -b l red -wh yel low <filename>'

for some interesting, late-60's-style psychodelia effects.

- w a i t secs Turns on a 'slide-show' feature. Normally, if you specify multiple input
files, xv will display the first one, and wait for you to give the Next
command (or whatever). The -wait option makes xvwait the specified
number of seconds, and then go on to the next picture, without any user
intervention. The program still accepts commands, so it's possible to

'abort' the current picture without waiting the full specified time by using
the Next command. (Resource name: <none>)

- w loop Normally, when running a slide-show with the -wait option, xv will
terminate after displaying the last image. If you also specify the -wloop
option, the program will loop back to the first image and continue the
slide-show until the user issues the Qu I t command. (Resource name:
<none>)

Specifies that, by default, the colormap editing dials in the xvcolor editor
window should be in RGB mode. This is the normal default behavior.
(Resource name: hsvMode. Type: boolean)

Specifies that, by default, the colormap editing dials in the xvcolor editor
window should be in HSV mode. (Resource name: hsvMode. Type:
boolean)

When specified, tells xv to automatically issue a Dither command
whenever an image is first displayed. Useful on displays with limited color
capabilities (4-bit and 6-bit displays.) (Resource name: autoDither. Type:
boolean)

When specified, tells xv to automatically issue a Smooth command
whenever an image is first displayed. This is useful when you are using
one of the image sizing options (such as '-expand' or '-max'). (Resource
name: autosmooth. Type: boolean)

-visual vistype Normally, xvuses the default visualmodel provided by your X server. You
can override this by explicitly selecting a visual to use. Valid types are
StaticGtay, Staticcolor, TrueColor, Grayscale, PseudoColor, and
Directcolor. Not all of these are necessarily provided on any given X
display. Run 'xdpyinfo' on your display to find out what visual types are
supported. (Resource name: visual. Type: string)

-cursor curs Specifies an alternate cursor to use in the image window (instead of the
normal 'cross' cursor). curs values are obtained by finding the character
number of a cursor you like in the 'cursor' font. (Run 'xf d -f n cursor'
to display the cursor font.) For example, a curs value of '56' corresponds
to the (singularly useless) 'Gumby' cursor. (Resource name: cursor.
Type: integer)

- keeparound By default, if you Delete the last file in the xv controls list, the program
will automatically exit as a convenience. If you find this an inconvenience,
the -keeparound option will inhibit this behavior. (Resource name:
keepAround. Type: boolean)

- 2xlimit By default, xv prevents the image window from ever getting larger than
the screen. Unfortunately, because of this, if you load an image that is
larger than your screen, the image will be shrunk until it fits on your
screen. Some folks find this undesirable behavior. Specifying the
-2xlimit option doubles the size limitations. The image window will be
kept from getting larger than 2x the width and height of your screen.

Just in case you're wondering why there are any size limitations: it's fairly

- DEBUG level

easy to accidentally ask for a huge image to be generated. Simply crop a
section of the image, zoom so you can see the individual pixels, and
uncrop. If there were no size limitations, the (expanded many times)
image could be huge, and might crash your X server. At the very least, it
would take a long time to generate and transmit to your X server, and
would freeze up your X sewer during part of it. Generally undesirable
behavior. (Resource name: 2xlimit. Type: boolean)

Turns on some debugging information. You shouldn't need this. If
everything worked perfectly, I wouldn't need this. (Resource name:
<none>)

Specifying I-' all by itself tells xvto take its input from stdin, rather then
from a file. This lets you put xvon the end of a Unix pipe.

Section 9.9: Color Editor Resources

You can set default values for all of the HSV and RGB modification controls in the xv color editor
window via X resources. The easiest way to explain this is with an example.

Start xvand put it in the background by typing 'xv &'.

Type the command 'cat >f oo' in an active xterm window
Bring the xvcolor editorwindow up.
Issue the Cut Resourcescommand.
Click your middle mouse button in the xtermwindow. A set of resource lines describing
the current stateof the xvcolor editorcontrols will be 'pasted' into the window.
You could type '<ctri-D>' in the xterm to complete the catcommand, edit this file, and put it
in your .Xdefaults/.Xresources file.

The lines generated by Cut Resources will look like the following:
xv.default.huemap1: 330 30 CW 330 30 CW
xv.default.huemap2: 30 90 CW 30 90 CW
xv.default.huemap3: 90 150 CW 90 150 CW
xv.default.huemap4: 150 210 CW 150 210 CW
xv.default.huemap5: 210 270 CW 210 270 CW
xv.default.huemap6: 270 330 CW 270 330 CW
xv.default.whtmap: 0 0 1
xv.default.satva1: 0
xv.default.igraf: S 4 : 0,O : 64,64 : 192,192 : 254,254
xv.default.rgraf: S 4 : 0,O : 64,64 : 192,192 : 254,254
xv.default.ggraf: S 4 : 0,O : 64,64 : 192,192 : 254,254
xv.default.bgraf: S 4 : 0,O : 64,64 : 192,192 : 254,254

These lines completely describe one state of the xv color editorcontrols. There are five different
states that you can specify via X resources. The 'default' state (as shown) holds the settings used
whenever the program is first started, and whenever the Reset command is used. You can also
store settings in one of the four xvpresets (accessed via the '1'-'4' buttons in the xv color editor)
by changing the string 'default' in the above lines to 'presetl', 'preset2', 'preset3', or 'preset4'
respectively.

There are four types of resource described in these lines: huemap, whtmap, satval, and graf.

Section 9.9.1 : Huemap Resources

The huemap resources describe the state of the hue remapping dials. There are six huemap
resources per state of the xv color editor. These huemap resources are numbered 'huemapl ',
'huemap2', ... 'huemap6', and correspond to the '1'-'6' radio buttons under the hue remapping
dials.

Each huemap resources takes six parameters:
1 . The 'starting' angle of the From range, in degrees (integer).
2. The 'ending' angle of the From range, in degrees (integer).
3. The direction of the From range. Either 'cw' (clockwise) or 'ccw' (counterclockwise).
4. The 'starting' angle of the To range, in degrees (integer).
5. The 'ending' angle of the To range, in degrees (integer).
6. The direction of the To range. Either 'cw' or 'ccw'.

Section 9.9.2: Whtmap Resources

The whtmap resource describes the state of the white remapping control. There is one whtmap
resource per state of the xv color editorcontrols. The whtmap resource takes three parameters:

1 . The hue to remap 'white' to, in degrees (integer).
2. The saturation to give to the remapped 'white', in percent (integer).
3. A boolean specifying whether the white remapping control is enabled. If '1', the control is

enabled. If 'O', the control is disabled.

Section 9.9.3: Satval Resource

The satval resource describes the value of the Saturation dial. There is one satval resource per
state. The satval resource takes a single integer value, in the range k100, which specifies how
much to add or subtract to overall image color saturation.

Section 9.9.4: Graf Resources

The graf resources describe the state of the four 'graph' windows in the xv color editorwindow
(Intensity, Red, Green, and Blue). The graf resources can be in one of two formats, 'gamma' and
'splinelline'.

In 'gamma' format, the graf resource takes two parameters:
1 . The letter 'G', specifying 'gamma' mode
2. A single floating point number specifying the gamma value.

In 'splineAine' mode, the graf resource takes a variable number of parameters:
1 . The letter 'S' specifying 'spline' mode, orthe letter 'C specifying 'line' mode.
2. An integer number indicating the number of handles (control points) that this graph

window will have. (Must be in the range 2-1 6, inclusive.)
3. For each handle, there will be a ':', and the x and y positions of the handle, separated by a

comma. The x and y positions can be in the range 0-255 inclusive.

Section 10: Credits

Thanks go out to the following wonderful folks:

First and foremost, John Hagan, friend, primary beta-tester, and driver of the Winnebago.
The major difference between the xvthat you see today, and the xgifof two years ago, is
the years of continual harrassment I've had to put up with because of alleged (read: actual)
weakness in xgif. XV probably never would've been written, were it not for his input.
Many of the features in the code were his idea. Centered Tiling (aka, "hagan-style tiling")
is one of his.

Thanks also go out to my auxilliary backup beta-tester, Robert Potter. He's been a source
of many good ideas over the past year. Mirrored tiling was one of his.

Helen Anderson has provided several fine ideas over the years, and also proofread this
document.

Filip Fuma, my supervisor, deserves some thanks for seeing the value of xv, and allowing,
if not actually encouraging, me to write it.

Myra Vanlnwegen gets a nod for cluing me in to merits of Floyd-Steinberg dithering.

Patrick J. Naughton (naughton@wind.sun.com) provided 'gif2ras.c1, a program that
converts GIF files to Sun Rasterfiles. This program provided the basis for the original xgif,
which eventually grew into xv. As such, it's safe to say that he "started it all." This code,
slighly modified, is still in use in the module xvgif . c.

Michale Maudlin (mlm @cs.cmu.edu) provided a short, understandable version of the GIF
writing code. This code, essentially unmodified, is in the module xvgi f wr . c.

Dave Heath (heath@cs.jhu.edu) provided the Sun Rasterfile ilo support in the module
xvsunras . c. Ken Rossman (ken@shibuya.cc.columbia.edu) fixed it up somewhat.

Markus Baur (s-baur@iravcl.ira.uka.de) provided the interface code between the JPEG
software and xv, that allows xvto read JPEG files. This module (xv j peg . c) was modified
by Tom Lane (Tom~Lane@g.gp.cs.cmu.edu), one of the few people who really
understand the JPEG software.

Of course, many thanks go out to Tom and all the rest of the folks in the Independent
JPEG Group for providing a freely-distributable version of the JPEG software, and thereby
providing the rest of us with the newstandard graphics format (finally replacing GIF).

Jef Poskanzer (jef@well.sf.ca.us) is responsible for coming up with several cool/whizo
general image formats (pbm, pgm, ppm), and a package of programs for image
manipulation and format conversion. While this isn't actually a part of xv, it's darned useful.
Everyone reading this should probably go and get a copy of pbmplus from your favorite
anonymous ftp site.

The following folks have contributed to the developement of xv. See the CHANGELOG file for
specifics:

Satoshi Asami
Markus Baur
Richard Bingle
David Boulware
Jon Brinkmann
Kevin Brown
Paul Close
Jan D.
Anthony Datri
David Elliot
Stefan Esser
Bob Finch
Robert Goodwill
Dave Gregorich
Charles Hannum
Dave Heath
Mark Horstman
Tetsuya l k d a
Kjetil Jorgensen
Jonathan Kamens
Bill Kucharski
Tom Lane
Arthur Olson
Mike Patnode
Daniel Pommert
Robert Potter
Eric Raymond
Hitoshi Saji
Mark Snitily
Greg Spencer
Matthew Stier
And reas Stolcke
Steve Swales
Bill Turner
Doug Washburn
Drew Watson
Chris Weikart

asami@is.s.u-tokyo.ac.jp
s-baur@ iravcl.ira.uka.de
bingle@cs.purdue.edu
dgb@Iandau.phys.washington.edu
jvb7uO astro.virginia.edu
brown@ hpbsrn15.boi.hp.com
pdc@ lunch.wpd.sgi.com
jhd@irfu.se
datri @convex.com
dce@ srnsc.sony.com
se@ikp.uni-koeln.de
bob@gli.com
robert@earth.cs.jcu.edu.au
dtg @csula-ps.calstatela.edu
mycroft @gnu.ai.rnit.edu
heath @cs.jhu.edu
mh2620@sarek.sbc.com
tetsuya @ is.s.u-tokyo.ac.jp
jorgens @lise.unit.no
jik@pit-manager.mit.edu
kucharsk@ sol bourne.com
Tom.Lane@ g.gp.cs.crnu.edu
ado@ elsie.nci .nih.gov
mikep@sco.com
daniel@uxl .cso.uiuc.edu
rpotter@grip.cis.upenn.edu
eric@ snark.thyrsus.com
saji G2is.s.u-tokyo.ac.jp
mark@zok.uucp
greg @longs.lance.colostate.edu
matthew @ sunpix.east.sun.com
stolcke@icsi.Berkeley.edu
steve@ bat.lle.rochester.edu
bturner@cv.hp.com
washburn @ hpmpea2.cup.hp.com
dwatson @encore.com
weikart@ prl .dec.com

I'd also like to thank all the people from the GRASP Lab for serving as (unwilling) beta-testers
of all the versions of xvyou didn't see.

And finally, thanks to all the folks who've written in from hundreds of sites wo~ld-wide. You're
the ones who've made xva real success. Thanks!

Appendix A: Command Line Options
-
- axl imi t
- aspect w:h
- b g color
-b l ack color
- b w width
- c e geomet ry g e m
- c emap
- c geometry g e m
- c l e a r
- c map
- c u r s o r curs
- DEBUG level
- d i e p l a y disp
- d i t h e r
- expand exp
- f g color
- f ixed
-geometry geom
- h e l p
- h i color
-hev
- i geometry g e m
-imap
- keeparound
- l o color
-max
-maxpect
-mono
- n c o l s num
-nglobal
- n i n s t a l l
-nopos
-noqcheck
- owncmap
- p e r f e c t
- q u i t
- r bg color
- r f g color
- r g b
- r mode num
- r o o t
- r w
- s low2 4
-smooth
- v i s u a l type
-wa i t sec
-whi te color
-wloop

Tells xvto read an image from <stdin>.
Allow image windows to be twice the size of the screen.
Sets the default ratio used by the Aspect command.
Sets the background color.
Sets the 'black' color used in BNV dithering.
Sets the border width of the windows.
Sets the initial position of the xv color editor.
Automatically open the xv color editor on startup.
Sets the initial position of the xv controlswindow.
Clears out the root window and exits.
Automatically open the xvcontrolswindow on startup.
Sets the cursor used in the image window.
Displays debugging information.
Specifies which X display to use.
Automatically dither images on initial load.
Automatically expand or contract images by the given factor.
Sets the foreground color.
Sets 'fixed aspect ratio' mode.
Specifies initial size and position of image window.
Prints a list of valid command-line options.
Sets the 'highlight' color used by the buttons.
Puts the colormap editing dials into HSV mode.
Specifies initial position of xv infowindow.
Automatically open xvinfowindow on startup
Don't quit after deleting last image in list.
Sets the 'lowlight' color used by the buttons.
Make the image as large as possible.
Make the image as large as possible, preserving aspect ratio.
Display all pictures in greyscale.
Specifies maximum number of different colors to use.
Don't 'borrow' colors from other programs.
Don't 'install' colormaps. Have the WM do it for us.
Don't automatically position the xvwindows.
Don't take shortcut in 24-bit to 8-bit color compression code.
Always use and install a private colormap.
Use and install a private colormap if necessary.
Exit after displaying first image.
Root background color, used on some root display modes.
Root foreground color, used on some root display modes.
Puts colormap editing dials in RGB mode.
Use specified display mode when using root window.
Display images on root window.
Use readlwrite color cells for faster color editing.
Use alternate 24-bit to &bit color compression algorithm
Automatically smooth image on initial load.
Use a non-default visual of your X display.
Specifies time delay in slide show.
Sets the 'white' color used in BNV stippling.
When in slide show mode, loop to start after last image.

Appendix B:

aspect string
2 x 1 im i t boolean
autoDither boolean
autosmooth boolean
background string
black string
borderwidth int
ctrlGeometry string
ctrlMap boolean
cursor int
expand float
fixed boolean
foreground string
geometry string
ceditGeometry string
cedi t Map boolean
h s vMode boolean
high1 ight string
inf oGeometry string
i n f oMap boolean
keepAround boolean
low1 ight string
mono boolean
ncols int
ng 1 o b a 1 boolean
ninstall boolean
nopo s boolean
noqcheck boolean
owncmap boolean
perfect boolean
root Background string
rootForeground string
rootMode int
rwCo 1 or boolean
s 1 ow2 4 boolean
visual string
white string

Resources

Sets the default ratio used by the Aspect command.
Allow image M,ndows to be twice the size of the screen.
Automatically dither images on initial load.
Automatically smooth images on initial load.
Sets the background color.
Sets the 'black' color used in BNV dithering.
Sets the border width of the windows.
Sets the initial position of the xv controlswindow.
Automatically open the xv controlswindow on startup.
Sets the cursor used in the image window.
Automatically expand or contract images by factor.
Sets 'fixed aspect ratio' mode.
Sets the foreground color.
Specifies initial position and size of image window.
Sets the initial position of the xv controlswindow.
Automatically open the xv color editoron startup.
Puts the colormap editing dials into HSV mode.
Sets the 'highlight' color used by the buttons.
Specifies initial position of xv info window.
Automatically open the xv infowindow on startup.
Don't quit after deleting last image in list.
Sets the 'lowlight' color used by the buttons.
Display all pictures in greyscale
Specifies maximum numbers of different colors to use,
Don't 'borrow' colors from other programs.
Don't 'install' cdormaps. Have the WM do it for us.
Don't automatically position the xvwindows.
Don't take shortcut in 24-to-8-bit color compression code.
Always use and install a private colormap.
Use and install a private colormap if necessary.
Root background color, used on some root display modes.
Root foreground color, used on some root display modes.
Use specified display mode when using root window.
Use readhrite color cells for faster color editing.
Use alternate 24-bit to 8-bit color compression algorithm.
Use a nondefault visual of your X display.
Sets the 'white' color used in BNV dithering.

Appendix C: Keyboard Shortcuts

u!
<tab>,<space>

<return>
<bs>,<de I>

cctrl-D>
<ctrl-L>
<ctrl-Sz

'i'
'e '
'4 '
'7'
% '
'U '
'A'
'n '
'm'
'M'
'> '
I< '
I ,

I 1

9

'4 '
'a '
'r'
'd '
's'
Y'
7'
'h'
'v'
'R'
'P'
'C'

Command
Next
LoadIReload selected image.
Previous
Delete
Load
Save
Info
ColEdit
Quit
OpenIClose the xv controlswindow
Crop
UnCrop
AutoCrop
Normal
Max S lze
Maxpect
DblSize
Half Size
+ l o %
-1 0%
4x3
Aspect
Raw
Dither
Smooth
RotateClockwise
Rotate Counter-Clockwise
Fl ip H
Fl ipV
R e s e t (the xv color editor)
Apply
MaxCn

Appendix D: RGB and HSV
Colorspaces

Both the RGB and HSV Colorspaces provide a system of uniquely specifying colors via three
numbers.

The RGB colorspace is the more commonly used of the two. For example, most color monitors
operate on RGB inputs. In RGB colorspace, each color is represented by a three number 'triple'.
The components of this triple specify, respectively, the amount of red, the amount of green, and
the amount of bluein the color. In most computer graphics systems (and in xvj, these values are
represented as 8-bit unsigned numbers. Thus, each component has a range of 0-255, inclusive,
with 0 meaning 'no output', and 255 meaning 'full output'.

The eight 'primary' colors in the RGB colorspace, and their values in the standard 8-bit unsigned
range are:

Black (0, 0, 0)
Red (255, 0, 0)
Green (0,255, 0)
Yellow (255,255, 0)
Blue (0, 0,255)
Magenta (255, 0,255)
Cyan (0,255,255)
White (255,255,255)

Other colors are specified by intermediate values. For example, orange is chromatically between
red and yellow on the color spectrum. To get an orange, you can simply average red (255,0,0)
and yellow(255,255,0) on a component-by-component basis resulting in (255,127,0), which will
be some orange-ish color.

You can change the brightness of the colors by raising or lowering all of their components by
some factor. For example, if (0,255,255) is cyan (it is), then (0,128,128) would be a darkcyan.

Saturation of a color is a measure of how 'pure' the color is. Desaturated colors will appear
'washed-out', or pastel, whereas fully saturated colors will be 'bold', the sort of colors you'd paint a
sports car. In the RGB colorspace, you can desaturate colors by adding white to them. For
example, if you take red(255,0,0), and add a mediumgreyto it (128,128,128), you'll get a shade
of pink (255,128,128). Note that the component values are 'clipped' to remain in the range
0-255.

The HSV colorspace works somewhat differently. It is considered by many to be more intuitive to
use, closer to how an artist actually mixes colors.

In the HSV colorspace, each color is again determined by a three-component 'triple'. The first
component, Hue, describes the basic color in terms of its angular position on a 'color wheel'. In
this particular implementation, Hue is described in terms of degrees.

Unfortunately, since this document isn't printed in color, it is not possible to show this 'color wheel'
in any meaningful way. Here is where the 'primary' colors live:

Red 0"
Yellow 60"

Green 120"
Cyan 180°
Blue 240'
Magenta 300O

The colors appear in the same order that they do on a standard color spectrum, except that they
form a circle, with magenta looping back to red.

As with the RGB space, in-between colors are represented by in-between values. For example,
orangewould have a Hue value of 30°, being situated roughly halfway between redand yellow.

The second component of the HSV triple is Saturation, which, as described above, can be
thought of as "how pure the color is". In this implementation, saturation can range between 0 and
100, inclusive. Colors with a saturation of 100 are fully-saturated, whereas colors with a saturation
of 0 are completely desaturated (in other words, grey).

The third component of the HSV triple is Value, which really should be called Intensity. It is a
measure of how 'bright' the the color is. In this implementation, Value can range between 0 and
100, inclusive. A color with a Value component of 100 will be as bright as possible, and a color
with a Value component of 0 will be as dark as possible (i.e., black).

Appendix E: Color Allocation in XV

Allocating colors on an X I 1 display is not as trivial a matter as it might seem on first glance. XV
goes to a lot of trouble to allocate colors from what is essentially a scarce resource. This appendix
is provided for those inquisitive types who'd be interested in learning how to successfully 'argue'
with an X server.

Note: If you're using a TrueColor display, you can safely ignore this appendix, as none of the
following actually happens on your system. On a TrueColor system, there is no colorrnap. Pixel
values directly correspond to displayed color values. For example, in a common 24-bit TrueColor
display, each pixel value is a 24-bit unsigned number, which corresponds to an 8-bit Red
component, an &bit Green component, and an 8-bit Blue component, bitwise shifted and OR-ed
together to form a 24-bit number. As a result, all displayable colors are alwaysavailable for use.

Section E.l: The Problem with PseudoColor Displays

Most color X displays use a 'visual' model called PseudoColor. On a PseudoColor display, pixel
values are small unsigned integers which point into a 'colormap', which contains an RGB triple for
each possible pixel value. As an example, on a typical &bit color X display, pixel values can range
between 0 and 255, inclusive. There is a 256-entry colormap which contains an RGB triple for
each possible pixel value. When the video display hardware sees a pixel value of '7, for instance,
it looks up color #7 in the colormap, and sends the RGB components found in that position of the
colormap to the video monitor for display.

In the X Window System, entries on the display's colormap (called colorcells) are a scarce
resource. At any time, out of the 256 colors available (in an &bit PseudoColor system), several of
these colors may already be in use by your window manager, the cursor, and other applications.
As such, xvcannot assume that it has 256 colors at its disposal, because it generally doesn't.

A word on the xv color allocation policy: The overall goal is to "make this one image being
displayed right now look as good as possible, without changing the colors of any other
applications." You can modify this goal slightly to suit your purposes, on the off chance that your
goal isn't the same as my goal. See sections 9.4 and 9.5 for details.

Section E.2: XV's Default Color Allocation Algorithm

By default, xvwill allocate 'read-only' colorcells. Since these colorcells cannot be changed by the
application, they can be freely shared among applications. This is the default behavior because it
is the most likely to succeed in getting the colors it needs. It does, however, slow down any color
changes made in the xv color editor window. If you intend to be doing any serious color
modification, you should probably run xvwith the '-rw' option.

When allocating read-only colorcells, xvuses a four-step process to acquire the colors it wants.

The first step is to sort the desired colors by order of 'importance', so that we ask for the most
'important' colors first. See 'Appendix F: The Diversity Algorithm" for more details on this step.

The next step (Phase 1 Color Allocation) is to ask for each color in the list. Colors that we failed to

get (presumably because there are no more entries available in the colormap) are marked for use
in the Phase 2 and Phase 3 Color Allocation steps.

If we successfully allocated all the desired colors in Phase 1, the algorithm exits at this time.
Otherwise, it goes on to Phase 2. In Phase 2, the display's colormap is examined. For each color
that went unallocated in Phase 1, the program looks for the color in the display's colormap that is
the 'nearest' match to the originally desired color. It then tries to allocate these 'nearest' colors as
read-only colorcells. The number of successful allocations in Phase 2 will be displayed in the
string "Got ## 'close' colors.", visible in the xvinfowindow.

If all the colors have been successfully allocated by this point, the algorithm exits. Otherwise, it
continues on the Phase 3. In Phase 3, the display's colormap is once again examined. For each
color that went unallocated in Phase 1 and Phase 2, the program looks for the color in the
display's colormap that is the 'nearest' match to the desired color, as in Phase 2. In Phase 3,
however, these 'nearest' colors are simply used, with no attempt made to allocate them. The
number of colors 'acquired' in this step is displayed in the string "'Borrowed' ## colors.", visible in
the xv infowindow.

Note that xvdoesn't actually 'own' these colors. These colors can change without warning "out
from under" the program. As such, this 'allocation' method is only good for short-term image
display. You wouldn't want to use this third phase if you wanted to put up an image for long-term
display, such as in the root window. In fact, whenever you display an image in the root window, xv
automatically turns off the Phase 3 color allocation. The '-nglobal' option also turns the Phase 3
color allocation off.

When the Phase 3 color allocation code is turned off, any colors left unallocated after Phase 1 and
Phase 2 are mapped into the 'nearest' colors that were allocated in Phase 1 or Phase 2. This may
produce slightly worse effects than what you'd get if you used the Phase 3 code, but it does have
the advantage that all the colors are 'owned' by xv, and therefore can't be changed by another X
program.

Section E.3: 'Perfect' Color Allocation

If you'd like the image displayed "as nicely as possible on this display, and everything else be
damned, you can run xvin 'perfect' mode, by specifying the '-perfect' option on the command
line.

In 'perfect' mode, color allocation proceeds much like it does in 'imperfect' mode. The colors are
sorted in decreasing order of 'importance'. Each of these colors is then requested, as in the
Phase 1 color allocation code described above.

The big change comes on a failed allocation request. If a color is not successfully allocated in
Phase 1, and this is the first failed request, we assume that the colormap is full. The program frees
all the colors allocated so far, creates and installs a completely new colormap. When a new
colormap is installed, everything else on the screen (including other xvwindows) will go to hell.
Only the image window will look correct. Generally, the colormap will remain installed as long as
your mouse is inside 'the image window or the xvcoloreditorwindow: It is, however, up to your
particular window manager.

After the colormap has been installed, the program starts Phase 1 over again, allocating colors
from the new, empty colormap. If any color allocation requests still fail, they are marked and dealt
with in Phase 2. (It is possible for allocation requests from the new, empty colormap to fail, as the
program may be asking for more colors than are available in a colormap. For example, you could

be tunning xv on a 4- or &bit display, which only would have 16 or 64 colors (respectively) in a
colormap.)

Phase 2 operates as described above, except that it looks for 'nearest' matches in the newly
created colormap. Also, since xvalready owns every color in this colormap, we don't technically
have to 'allocate' any of them in this Phase. We already haveallocated them once.

When you use 'perfect' mode, the Phase 3 allocation code is automatically turned off. There's no
point in searching the colormap for 'near' matches and 'borrowing' these colors, as xv already
owns all of them. Instead, any colors unallocated after the Phase 1 and Phase 2 allocation code
are simply mapped into the closest colors that wereallocated.

Note that 'perfect' mode only creates and installs a new colormap if it was necessary. If all the
Phase 1 color allocation requests succeeded, a new colormap will not be created.

Section E.4: Allocating Read-Write Colors

It is sometimes desirable to allocate read-write colorcells instead of read-only colorcells. Read-
write colorcells cannot be shared among programs. As such, unless you use 'perfect' mode as
well, you are likely to successfully allocate fewer colors. That's the disadvantage. The advantage
is that, since xv completely owns these colorcells, it can do what it wishes with them. Color
changes (as controlled by the xv color editor window) will happen almost instantaneously, as the
program only has to store new RGB values in the colorcells.

To allocate read-write colorcells, start xvwith the '-rw' option. Colorcells are allocated one at a
time. If an allocation request fails, the code stops allocating new colorcells. (Unless you've also
specified 'perfect' mode. In 'perfect' mode, the first time an allocation request fails, all allocated
colors are freed, a new, empty colormap is created and installed, and all colors are reallocated. If
there is an allocation error in this second pass, the code stops allocating new colorcells.)

If there are still unallocated color remaining, these colors are simply mapped into the closest colors
that were allocated.

For further information, and actual code that does everything described in this appendix, see the
functions '~lloc~olors () 'and '~lloc~~colors () ', both of which can be found in the source
module 'xvcolor . c'.

Appendix F: The Diversity Algorithm

The problem: You want to display an image that has n colors in it. You can only get m colors,
where men. What colors do you use?

As explained in Appendix E, colors on a non-Truecolor X display are a scarce resource. You can't
guarantee that you'll get as many colors as you might like. You can't even know ahead of time how
many colors you will succeed in getting. As such, the first step of all of the color allocation
algorithms (described in Appendix E) is to sort the colors in order of decreasing 'importance'. The
colors are then allocated in this order, so that if the color allocation fails after mcolors, then at least
we allocated the mmost 'important' colors.

This sorting algorithm is called the Diversity Algorithm, and is described in detail here. While the
algorithms described in Appendix E are probably only of use to other X programmers (or
programmers using other windowing systems with shared colormap resources), the Diversity
Algorithm should be of use to anyone who has to display an image using fewer colors than they'd
like to have. As far as I know, the Diversity Algorithm is an original for this program.

Section F.l: Picking the Most 'Important' Colors

There are many different criteria that one could use to define which colors in an image are
'important'.

The most naive approach would be to simply ignore the question, and just use the first m colors
from the colormap. This is clearly unacceptable. The entries in a colormap are generally not
sorted in any order whatsoever. Even when the colors are sorted in some order, it's not likely that
it will be a useful order.

For example, in a normal greyscale picture, there is an implied colormap consisting of a continuous
collection of greys, with black at the beginning, and white at the end. If a program were to only use
the first few colors from this colormap, it would have several shades of 'black', but no 'whites', or
even middle 'greys'.

A method of determining a color's importance to the overall picture quality is needed.

A color's 'importance' is defined by asking the question 'If we can only use one of these two
colors, which one would make the picture look better?". The goal is to have the picture be
recognizable with very few colors, say 8 or so. Colors beyond the first few should smooth out
color gradation, but should not add significant detail, nor change the color balance of the overall
picture.

Picking colors in this order is not a trivial task, and is open to some degree of subjectivity. One
method might involve calculating a histogram of the data to find out which colors are used the
most often (i.e., which colors have the greatest number of pixels associated with them), and using
those colors first. This is certainly a valid approach, but it places too much emphasis on large,
uniformly colored regions, such as backgrounds. This is not generally where the 'interesting'
portion of the picture is found.

For example, assume a picture that consists of a blue background, with a relatively small red
square on it. Furthermore, suppose that the background isn't just one solid shade of blue, but is

actually made up of three shades of blue (light blue, dark blue, and medium blue, to give them
names). Finally, assume that a histogram has been computed, and light blue has been found to
be the most prevalent color, followed by medium blue, dark blue, and red, in that order.

Now, attempt to display this picture using only two colors. Which two should be used? If the
selection criteria is simply 'in order of decreasing usage', light blue and medium blue would be
picked. However, if this is done the red square will disappear completely (red being mapped to
one of the two blues).

Clearly the solution is to use red and one of the blues. Which blue, though? It could be argued
that since there are three blues and only one of them can be used, middle blue should be
selected, since it is the 'average' blue. Instead, the Diversity Algorithm would pick light blue, since
it is used more than the others. When possible, the algorithm will try to maximize the number of
pixels that are 'correct' (i.e. exactly what was asked for), rather than trying to minimize the total error
of the picture. This way, additional colors smooth out gradations, rather than changing the overall
color balance of the picture.

Suppose that a small yellow circle is added to the picture described above. If the problem is still
'display this picture using only two colors', then it cannot be resolved in any satisfactory method.
There are no two colors that will adequately display red, yellow, and blue simultaneously . No
matter what colors are used, one of the three major colors is lost. As this is now a no-win scenario,
it is no longer very interesting. It doesn't matter what colors are picked, since it will look bad
regardless. If, however, the problem is changed, and three colors can now be selected, it is
intuitively obvious that yellow, red, and one of the blues should be selected.

So, the question is, "what is being maximized when colors are selected in this manner?" Certainly,
since the blue regions are so much larger than the red and yellow regions, any rule based on the
number of pixels satisfied by the color choice is irrelevant. What is being maximized is the
diversityof the colors. By picking colors that are as unlike each other as possible, we wind up
covering the 'inhabited' portion of the RGB color space as quickly as possible.

As a general rule, this tends to bring out the major details (such as objects) in the picture first,
since the details are likely to involve contrasting colors. As more colors are picked, gaps in the
RGB space are filled in. This smoothes out the color gradations, and brings out lesser detail (such
as texture).

Section F.2: The Original Diversity Algorithm

The algorithm operates as follows:

1. Run a histogram on the entire picture to determine 'pixel counts' for each desired color in
the colormap. Important point: throw away any colors that have a 'pixel count' of 0. These
colors are never actually used in the image, and it's important that we not waste valuable
colorcells allocating useless colors.

2. Pick the color with the highest pixel count. This is the 'overall' color of the picture.

3. Run through the list of un-picked colors, and find the one with the greatest 'distance' from
the first color. This is the color that is most diverse from the 'overall' color.

Note: For speed, use the 'Manhattan' distance formula:

rather than the slower and more accurate 'geometric' distance formula:

d = [(r l - r ~) ~ + (g l -gq2+(bl -b$l1l2

rl,g 1,b 1 are the RGB components of one color, and r2,g2,b2 are the RGB components
of another color. dis the 'distance' between the two colors.

4. For each color remaining in the 'unpicked' list, compute the distance from it to each of the
colors in the 'picked' list. Find the color in the unpicked list that is furthest from all of the
colors in the picked list. Pick this color. Repeat until all colors have been picked.

Section F.3: The Modified Diversity Algorithm

Tom Lane of of the Independent JPEG Group came up with a couple of improvements to the
Diversity Algorithm, resulting in the Modified Diversity Algorithm, which is what xvcurrently uses.
He rightly pointed out that, on displays with an intermediate number of colors (-64), too much
emphasis was being placed on getting 'different' colors, and not enough emphasis was placed on
getting the 'correct' colors.

His idea was to modify the sorting criteria slightly, to better balance the allocation between diverse
colors and 'popular' colors (colors with high 'pixel counts'). His solution to the problem was to
alternate between picking colors based on diversity and based on popularity.

In the Modified Diversity Algorithm, as implemented in xv, the first color picked is the most-popular
color. The second color picked is the color furthest away from the first color. The third through
tenth colors picked are all picked using the normal Diversity Algorithm. The eleventh color picked
is picked on popularity, (the un-picked color with the highest 'pixel count' is chosen). The twelfth
color is once again picked on diversity. The thirteenth color is chosen on popularity, and so on,
alternating, until all the colors have been picked.

It should be pointed out that there's a fair amount of subjectivity here. Tom originally had the
algorithm pick colors alternately based on diversity and popularity right from the first color. (The
first color picked on popularity, the second on diversity, the third on popularity, etc.) I felt that this
broke the algorithm for displays with very few colors (<16), and proposed the strategy described
above. (First color picked on popularity, the next ten colors picked on diversity, remaining colors
alternately picked on popularity and diversity.)

Tom's other major modification to the Diversity Algorithm was to rewrite it so that 'diverse' colors are
picked in O(rP)time, instead of O(n3)time.

For further information, consult the source code. (The function ' ~ o r t c o l o r s () ' in the file
'xvcolor . cl.)

Appendix G: Adding Other
Image Formats to XV

This appendix is split up into two sections, one for reading a new file format, and the other for
writing a new file format. Note that you do not necessarily have to read andwrite a new file format.
For example, xvcan write Postscript files, but it can't read them.

The following instructions were written as I added PBMIPGMIPPM capability to the program, so
they're likely to be fairly accurate. For example purposes, I'll be talking about the PBMIPGMIPPM
code specifically. (See the file xvpbm . c for full details.)

Section G.l: Writing Code for. Reading a New File Format

Note: Despite the wide variety of displays and file formats xv can deal with, internally it only
manipulates 8-bit colormapped images. If you're loading an &bit colormapped image, such as a
GIF image, no problem. If you're loading an 8-or-less-bits format that doesn't have a colormap
(such as an 8-bit greyscale image, or a 1-bit BMI bitmap) your Load () routine will have to generate
an appropriate colormap. And if you're loading a 24 bit RGB file, you'll have to compress it down to
8 bits by calling Conv2 4 to 8 () .

Make a copy of xvpm . c, calling it something appropriate. I'm adding PBM capabilities, so I think
xvpbm . c is a fine file name.

Edit the Makef ile andlor the Imakef ile so that your new module will be compiled. In the
Makef ile, add "xvpbm.~" to the "OBJS = ..." macro definition. In the Imakefile, add
"xvpbm . o" to the end of the "OBJS~ = ..." macro definition.

Edit the new module.

You'll need to #include "xv. h", of course.

The module should have one externally callable function that does the work of loading up the file.
The function is called with two arguments, a filename and the number of colors available on this
display, like so:

.
int LoadPBM (f name, nc)

char *fname; int nc;
.

The file name will be the complete file name (absolute, not relative to any directory). Note: if xvis
reading from stdin, don't worry about it. stdin is always automatically copied to a temporary file.
Your Load () routine is guaranteed that it will be reading from a real file, not a stream. This lets you
use routines such as f seek (1 , and such.

The number of colors argument is either going to be 2", where n is the number of bitplanes on
your display, or 'ncols', if specified on the command line. In either case, this number will only come
into play if you have to do a 24-to-8 bit conversion. More on that later.

The Load () function returns '0' on success, non-zero on failure.

This function is expected to load up the following global variables:

byte *pic;
this is a wide*high array of bytes, one byte per pixel, starting at the
top-left comer, and proceeding in scan-line order. There is no
padding of any sort at the end of a scan line. The Load () function is
expected to ma1 loc () the memory for this image.

int pWIDE, pHIGH;
these variables specify the size of the image that has been loaded, in
pixels.

byte r[256], g[256], b[2561;
the desired colormap. As specified above, 'pic' is an 8-bits per pixel
image. A given pixel value in pic maps to an RGB color through these
arrays. In each array, a value of 0 means 'off', and a value of 255
means 'fully on'. Note: the arrays do not have to be completely filled.
Only RGB entries for pixels that actually exist in the 'pic' need to be
set. For example, if the pic is known to be a BiW bitmap with pixel
values of 0 and 1, you'd only have to set entries '0' and '1' of the r,g,b
arrays.

char *formatStr;
a short character string describing the format and size of the image.
For example, '320x200 PBM".

The function should also call 'S~~ISTR(ISTR-FORMAT, fmt, args) ' to set the "Format:"
string in the xv infowindow. It should call the function as soon as possible (i.e., once it knows the
format of the picture, but before it has tried to loadlparse all of the image data.) Note that the
"Format:" string in the xv info window should be set to a somewhat more vetbose version of
f ormatst r. See the source code for examples.

The Load () function should also call ' Set~irRBut t (F-FORMAT, ...) ' to Set the default format
(in the xvsave window) to the format of the loaded file. This, of course, is only relevant if you will
also be able write files in your new format. If you aren't planning to have a write () function for
this format, you won't havea listing for this format in the xvsavewindow.

Section G.l.l: Error Handling

Non-fatal errors in your Load () routine should be handled by calling set ISTR (ISTR-WARNING,
fmt, args ...) , and returning a non-zero value. The error string will be displayed in the xv
controls and xv info windows.

Non-fatal errors are considered to be errors that only affect the success of loading this one image,
and not the continued success of running xv. For instance, "can't open file", 'premature EOF',
"gatbage in file", etc. are all non-fatal errors. On the other hand, not being able to allocate memory
(unsuccessful returns from ma1 loc ()) is considered a fatalerror.

Fatal errors should be handled by calling 'FatalError (error-string) '. This function prints
the string to stderr, and exits the program with an error code.

Section G.1.2: Loading 24-bit RGB Formats

If (as in the case of PPM files) your file format has 24 bits of information per pixel, you'll have to get
it down to 8 bits and a colorrnap for xv to make any use of it. Conveniently, a function
'Conv24to8 (pic24, w, h, nc)' is provided, so don't wony about it.

To use it, you'll have to load your picture into a ~WIDE*~HIGH*~ array of bytes. (You'll be
expected to ma1 loc () this array.) This array begins at the top left comer, and proceeds in scan-
line order. The first byte of the array is the red component of pixel0, followed by the green
component of pixel0, followed by the blue component of pixel0, followed by the red component
of pixell, etc ... There is no padding of any kind.

Once you've got this image loaded, call conv2 4to8 () with a pointer to the 24bit image, the width
and height of the image, and the number of colors to 'shoot for' in the resulting 8-bit picture. This
is the same parameter that was passed in to your Load () routine, so just pass it along.

If successful, Conv2 4to8 () will return '0'. It will have created and generated the pic m y , and
filled in the pWIDE and pHIGH variables, and the r [I , g [I , b [I arrays. You should now free ()
the memory associated with the 24-bit version of your image and leave your Load () function.

Read the source in xvpbm. c for further info on writing the Load () routine.

Once you have a working Load () routine, you'll want to hook it up to the xvsource.

Edit xv. h and add two function prototypes for any global functions you've written (presumably
just LoadPBM () in this case). You'll need to add a full function prototype (with parameter types) in
the #if def S T D C - section (near the bottom), and a function reference (just the return type)
in the #else / * non-A~s1 * / section at the bottom.

Edit xv . c:

Add a filetype #define near the top. Find the following section:

/ * file types that can be read * /
#define UNKNOWN 0
#define GIF 1
#define PM 2

and add one more to the list, in this case: "#define PBM 3"

Note: I only added one filetype to this list, despite the fact that I'm really adding three (or
six, really) different file formats to the program (PBM, PGM, and PPM, in 'raw' and 'ascii'
variations). This is because all of these file formats are related, and are handled by the
same Load () function.

Now tell the openpic () routine about your Load () routine:

find the following (in openpic()):

filetype = UNKNOWN;
if (strncmp (magicno, "GIF87aa', 6) ==0 I I

strncmp (magicno, "GIF89aa', 6) ==0) f iletype = GIF;

else if (strncmp(magicno,"VIEW",4)==0 I I
strncmp (magicno, "WEIV", 4) ==0) f iletype = PM;

Add another 'else' case that will set f i letype if the file appears to be in your format:

else if (magicno[O] == 'P' && magicno[l]>='l' &&

magicno[l]i='6') filetype = PBM;

And add another case to the switch statement (a few lines further down)

switch (filetype) {
case GIF: i = LoadGIF(filename,ncols); break;
case PM: i = LoadPM(filename,ncols); break;
1

add:

case PBM: i = LoadPBM(filename,ncoIs); break;

That should do it. Consult the files xvpm . c or xvpbm . c for further information. Remember: do as
I mean, not as I say.

Section G.2: Adding Code for Writing a New File Format

Note: Despite the wide variety of displays and file formats xv deals with, internally it only
manipulates &bit colormapped images. As a result, writing out 24-bit RGB images is a horrible
waste (unless your format does some clever file compression), and is to be avoided if your file
format can handle colortable images.

If you haven't already done so (iftwhen you created the Load () function):
Make a copy of xvpm . c, calling it something appropriate. I'm adding PBM capabilities, so I
think xvpbm . c is a fine file name.

Edit the Make f i le and/or the Imake f i le so that your new module will be compiled.
Add 'xvpbm. o' to the OBJS macro in the Makef ile, and to the OBJsl macro in the
Imakef ile.

Edit the new module.

You'll need to #include "xv. h", of course.

The module should have one externally callable function that does the work of writing the file.
The function is called with a virtual plethora of arguments. At a minimum, you'll be given a FILE *
to an already open-for-writing stream, a pointer to an &bits per pixel image, the width and height of
that image, pointers to 256-entry red, green, and blue colormaps, the number of colors actually
used in the colormaps, and the 'color style' from the xvsavewindow.

You may pass more parameters, since you're going to be adding the call to this function later on.
For example, in my PBM code, I pass one moB parameter, 'raw' (whether to save the file as 'raw' or
'ascii') to handle two very similar formats. (Rather than having to write WritePBMRaw () and
WritePBMAsc i i () functions.)

Your function definition should look something like this:

int WritePBM(fp,pic,w,h,rmap,gmap,bmap,
numcols,colorstyle,raw)

FILE *fp;
byte *pic;
int w, h;
byte *rmap, *gmap, *bmap;
int numcols, colorstyle, raw;

.

Write the function as you deem appropriate.

Some Notes:
your function should retum '0' if successful, non-zero if not
don't close 'f p'
pic is a w*h byte array, starting at top-left, and proceeding in normal scan-line order
colorstyle can (currently) take on three values:

F-FULLCOLOR : This could mean efther 24-bii RGB, or an &bit colormap or any other
color format. r[pix],g[pix],b[pix] specify the color of pixel 'pix'.

F-GREYSCALE: preferably 8 bits. Two caveats: you must use the colormap to
determine what grey value to write. For all you know, pixel value '0' in pic could
map to white, '1' could map to black, and '2' could map to a half-intensity grey. You
cannot make the assumption that pixel values of '0' are black, and pixel values of
'255' are white.

The other note: unless the original picture was a greyscale, (which shouldn't be
tested for), the colormap is going to have actual colors in it. You'll want to map
RGB colors into greyscale values using 'the standard formula' (roughly .33R + .5G
+.17B). The following code shows how to quickly write a raw greyscale image:

if (colorstyle == F-GREYSCALE) [

byte rgb[2561 ;
for (i=O; iinumcols; i++)
rgb[il = MONO(rmap[i] ,gmap[i] ,bmap[i]) ;

for (i=O, p=pic; i<w*h; i++, p++)
putc(rgb[*pI, fp) ;

I

F-BWDITHER: The stippling algorithm will have already been performed by the time
your function is called. pic will be an image consisting of the pixel values '1'
(white) and '0' (white). pic will still be organized in the same way (i.e., one byte
per pixel).

Note: for F-FULLCOLOR or F-GREYSCALE images, you will be guaranteed that all
pixel values in pic will be in the range [0 - numcols-1] (inclusive).

That done, edit 'xv. h' and add a pair of function declarations for your new function (one full ANSI-
style prototype, and one that just declares the retum type). Copy the declarations for

Also find the block:
#define F-GIF 0
#define F-PM 1

and add another line (or two, in this case)
#define F-PBMRAW 2
#define F-PBMASCII 3

These numbers must be contiguous, as they are used as indices into the f ormatRB array.

Edit 'xvdir . c'. This is the module that controls the xvsavewindow.

Add another format type to the 'format RB' button list:

In the function 'Create~irw () ', find the block that (starts like):

copy the last 'RBCreate' call in the list, add '18' to the 'y+**' argument, and stick in an
appropriate format type name. In this case, I'm adding two formats (PBM raw and PBM ascii) so
I'll add these two lines:

RBCreate(formatRB, dirW, 26, y+36,
"PBM (raw) ", infofg, infobg) ;

RBCreate (f ormatRB, dirW, 26, y+54 ,
"PBM (ascii) ", infofg, infobg) ;

Note: The RBCreate () calls must be done in the same order as the F-GIF, F-PM, etc. macros
were defined in xv . h.

In the function DoSave () , find the following block:
switch (fmt) {
case F-GIF:
rv = WriteGIF(fp,thepic,w, h, r, g, b,nc,col); break;

case F-PM:
rv = WritePM (fp,thepic,w, h, r, g, b,nc,col); break;

and add cases for your function(s), like so:

case F-PBMRAW:
rv = WritePBM(fp,thepic,w, h, r, g, b,nc,col,l); break;

case F-PBMASCII:
rv = WritePBM(fp,thepic,w, h, r, g, b,nc,col,O); break;

That should do it!

Section G.2.1: Writing Complex Formats

If your format requires some additional information to specify how the file should be saved (such

as the 'quality' setting in JPEG, or positionlsize parameters in Postscript), then your task is
somewhat more difficult. You'll have to create some sort of pop-up dialog box to get the additional
information that you want.

This is not recommended for anyone who doesn't understand Xlib programming.

The more adventurous types who wish to pursue this should take a look at the xvjpeg. c code,
which implements an extremely simple pop-up dialog. A considerably more complicated dialog
box is implemented in xvps . c. In addition to writing a module like these for your format, you'll also
have to add the appropriate hooks to the DoSave (1 function (in xvdir .c) and the
HandleEvent () function (in xvevent . c). 'grep PS * . c' will be helpful in finding places where
the xvps . c module is called.

	Interactive Image Display for the X Window System
	Recommended Citation

	Interactive Image Display for the X Window System
	Abstract
	Comments

	tmp.1186596474.pdf.KGz8t

