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Posture Interpolation with Collision Avoidance

Abstract
While interpolating between successive postures of an articulated figure is not mathematically difficult, it is
much more useful to provide postural transactions that are behaviorally reasonable and that avoid collisions
with nearby objects. We describe such a posture interpolator which begins with a number of pre-defined static
postures. A finite state machine controls the transactions from any posture to a goal posture by finding the
shortest path of required motion sequences between the two. If the motion between any two postures is not
collision free, a collision avoidance strategy is invoked and the posture is changed to one that satisfies the
required goal while respecting object and agent integrity.
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potential fields, self-collision, computer animation
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Posture Interpolation with Collision Avoidance 

Norman I. Badler. Raiiiamaiii Bindiganayale. .John P. Granieri, Susanna WeiT Xinmin Zhao 
Center for Human hlodeliiig and Simulation 

I’niversity of Pennsylvania 
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Abstract 
Whale znterpolatzng between succmszw posturc s of 

an artzculated figure as not mathemalzcally dzf lcul l ,  
at 2s much  inore useful t o  provide po6tuia1 transatzons 
that are behauzorally reasonable and that aaozd collz- 
saons wath nearby objects W e  describe such a posture 
znterpolator which begins ulzth a number of pre-defined 
statzc p o s i i i r e s  A f iniie s i a i e  machzije coiiirols t h e  
transztzons f r o m  any posture t o  a goal posture b y  find- 
ing the shortest  path of requared motion sequences b t -  
tween the two.  I f  the  motaon between any two postures 
zs not collaszon f r e e ,  a collzszon avoidance strategy 1 5  

znvoked and the posture zs changed t o  one that satis- 
f ies the required g o a l  whale respectzng object and agent 
antegraty 

Keywords 
Human figure animation, motion control, posture 

interpolation, goal-directed behavior, collision avoid- 
ance, potential fields, self-collision, computer anima- 
tion. 

1 Introduction 
Postlures are a very important aspect of human fig- 

ure simulation. A static and recognizable posture such 
as stand, sit,  crawl, prone, or supine can be defined by 
the relative positioning of various parts of t,he body. 
When simulating human motions. an animation sys- 
tem must create suitable motions between these static 
postures. Most “classical” animation syst,ems use key- 
frame or key-pose animation [l] for moving an object 
from one posture l o  another. An int,eractive posit,ioii- 
ing program is used tmo define t,he location and oririi- 
tation of parts of the object a t  various key times. Thc 
in-between frames are then calculat,ed by interpolat, 
ing t,he individual joint, angles. Key based techniques, 
though satisfactory for some kinds of animat,iori, do 
not direct,ly address ot,her important human motion 
factors such as balance and collision avoidance. Wit,li 
keys alone, the aniniat,or must be willing and able to 
devote considerable care and at,tention to the hand- 
crafting of suitable in-between key poses. 

Real-time graphical manipulation and display has 
accelerated research into the control and animat,ion of 
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liunian-like characters [ 2 .  31. Among the newer ani- 
mation techniques are those based on physics [4, 5 , 
dynamics [6, 71, optimization [8], cost functions [9], 
bchavioral nctworks[lO], control theoretic state-spaces 
[ l l ,  12, 13, 141, and strength [15]. In many of these 
approaches, postures of a human-like figure are spec- 
ified in advance ~ often as key poses or goal con- 
figurat,ions ~ and then animated by applying forces, 
energy minimization, geometric constraints, or just 
straightforward joint angle interpolation. The  “in- 
between” postures are thus determined by physics 
or mathematics rather than psychomotor considera- 
tions. Realistic motion (to be distinguished from just 
~‘sinootli” motion) requires that the movements into 
or between given postures be biomechanically moti- 
vatcd, cognizant of physical stability, and free from 
intersections with self as well as nearby objects. 

We present here a computational model for 
collision-free postural transitions that are behaviorally 
reasonable. The posture interpolator begins with a 
number of pre-defined static postures. A finite state 
machine controls the transitions from any posture to  
a goal posture by finding the shortest path of required 
(but  pre-determined) motion sequences between the 
two. If the motion between any two postures is not 
collision free. a collision avoidance strategy is invoked 
and the posture is changed to  one that satisfies the re- 
quired goal while respecting object and agent integrity. 
Since post#ures are treated as goal states based on 
constraints and othcr gcomctric relationships, pertur- 
bations caused by collision avoidance are seamlessly 
managed by the constraint satisfaction process. 

Our collision avoidance system is based on a dis- 
t,ributed sensor model. On a modern workstation it 
can avoid collisions during interactive manipulation 
of a human figure model with 136 degrees of freedom. 
Pnlike traditional motion planning approaches [16], 
our system‘s collision avoidance is built as a reactive 
behavior of the agent [a]. It detects imminent col- 
lisions and reacts by establishing instantaneous con- 
straints which are t,lien solved together with other hu- 
iiian behavior constrairik. As there are often several 
alternative movements that can be executed to  avoid 
collisions, the algorithm can consider the agent’s com- 
fort level (required joint. torques, balance, etc.) a t  
different, post.ures and choose a motion sequence that 
minimizes discomfort. 

In the following sections we discuss onr motion sys- 
tem. the posture representation and interpolation pro- 
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cess, and real-time collision avoidance. We conclude 
with methods to  avoid local minima (getting "stuck") 
and improving the human-like qualities of the motion. 

2 Motion System 
The human figure used in our  syst,em, Jack@), can 

be controlled through a set of kinematic constraints 
that  make the figure behave in a certain way [a]. In 
the motion system, we animate goals and behavioral 
parameters, and let the behavior functions and con- 
straints create the motion on the joint angles. Jack 's  
motion system is built of several layers of functional- 
ity, which all work together to  produce desired motion: 
a database, geometric constraints, behaviors, and mo- 
tion control. 

Database: There is a language for defining the 
3D articulated human figure's joint structure and seg- 
ment geometry, along with proper joint limits, seg- 
ment mass, moment of inertia, and joint strength. 

Constraints: A constraint defines a desired ge- 
ometric relationship (such as point-to-point) be- 
tween two objects (the end  efleclor and the goal) in the 
environment. I t  also specifies which variables (a set of 
joints) may be changed to  achieve the relationship. We 
use a variety of methods to solve the constraints, but 
mostly depend on iterative inverse kinematics [17]. 

Behaviors: Layered on top of the constraint,s, are 
behaviors [18]. Behaviors manage and coordinate t,he 
underlying constraints which, in turn, control the po- 
sition and posture of the figure. The behaviors are 
grouped around the major body parts: the torso, arms 
and hands, legs and feet, and head. The behaviors 
can also interact. For example, the balance behav- 
ior (which controls the location of the center of mass) 
must work with the feet behaviors, in case the feet 
need to  be moved to  maintain balance. 

Each behavior has a set of control param- 
eters. For example, the arm and hand be- 
havior has these parameters: (1) t,he type of 
control ("hold global  location",  "hold r e l a t i v e  
location",  "release") (2) the end-effector location 
("palm", "lower arm", "attached object") (3) the 
joints involved, "to  shoulder", "to  waist", and (4 )  
a reference object (or just a homogeneous transform) 
in the environment. 

Each behavioral control has a corresponding inter- 
active manipulation primitive which usually takes the 
same parameters as the behavioral control, but allows 
the user to  interactively adjust the goal of the behav- 
ior. For example, the user can manipuhte  an arm by 
dragging a 3D reach site in space; the arm will move 
according to  the parameters in effect, for that arm's 
behavior (e.g. include spine in the reach if using the 
"to  waist" parameter). 

Motion control: The motion system extends the 
interactive manipulation and behavioral control prim- 
itives by expressing movement of a part of the body 
from one place to  another over a specific time inter- 
val. The movement is specified in terms of the final 
position, or goal, and the parameters of how to get 
there (similar to  the parameters used for the behav- 
ioral control, with additional parameters for velocity). 

The 17lZtZa/ position of the motion, however, is im- 
plicit ~ wherever the body part is when the motion 
starts. This fact is exploited in the collision avoidance 
functions described later. 

Each motion control has 3 major functions: (1) a 
preact ion function which is executed at the starting 
time of the motion and usually picks up the current 
position of t,he body part, (2) an apply function, exe- 
cuted on every frame of the motion, which controls the 
interpolation of the goal as well as the other behavioral 
parameters of the motion, and finally (3) a postaction 
function, executed after the last apply, which sets the 
final behavior of the body part in question. Since the 
behavioral parameters are all ultimately implemented 
via constraints, the constraint solving process has the 
ability to blend overlapping motions to  create a fi- 
nal solution for the posture of the body part. (There 
are several blending parameters used in each motion 
t,ype.) Of course, we also have the ability to  perform 
forward kinematic joint mot,ions which just interpolate 
a joint angle over time. 

3 Posture Transition 
As humans, we automatically move from one pos- 

ture to another without giving any thought to  the ex- 
act sequence of motions involved. But when these pos- 
ture transitions have to  be simulated, explicit knowl- 
edge about these motions must be supplied. For exam- 
ple, when moving from a standing posture to  a squat- 
ting posture, we need to  lower our upper body and 
bend our knees a little. What we are effectively doing 
is just lowering our center of mass. If we instruct Jack 
to lower his center of mass, he automatically tries to  
maintain balance by bending the knees a little thus 
resulting in the desired posture. When we want to 
change postures from squatting to  kneeling on both 
knees, we first lower our upper body and bend the 
knees slightly. Then, keeping one foot planted firmly 
on the ground for support, we lower our body till the 
other knee rests completely on the ground. Lastly, we 
move the first leg until that knee rests on the ground, 
too. This sequence is more complex than just squat- 
ting, so to  make Jack do it we need to  provide these 
intermediate postural transitions. Each posture tran- 
sitmion involves a number of motions (in the motion 
control sense described above) which may overlap and 
must be synchronized in time. 

Postural transitions are effected by using a Finite 
State Machine (FSM) in which each state is a key pos- 
ture. First, a set of goal postures - standing, sitting, 
squatting, kneeling, prone, etc. - have to  be identi- 
fied, These form the static postures (Fig. 1). Next, 
a system has to  be built which enables posture tran- 
sitions between any two of these postures. The sim- 
plest method is by considering each posture transition 
to consist of simpler posture transitions. As a FSM, 
the static postures form the nodes and the motion se- 
quences form the arcs (Fig. 2). For every posture, all 
its adjacent static postures are identified, where adja- 
cent postures can be defined to  be two nodes in the 
transition graph connected together by a single arc. 
For example, in Fig. 2 ,  the only adjacent static pos- 
t,ure for Stand is Squat. But the adjacent postures 
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d l a  

Figure 1: Static Postures 

of Squat are Stand,  S i t  on Chair ,  S i t  on Ground, 
and Kneel on One Knee. 

The number of motions involved in the posture 
transition between any two adjacent postures is usu- 
ally very small. These simple transitions are easy 
to  define and can be combined together to  form a 
complex posture transition. For example, the pos- 
ture transition from Stand  to  Supine (lying down 
on back) would consist of three smaller posture tran- 
sitions, namely S tand  to  Squat ,  Squat to S i t  on 
Ground, and S i t  on Ground to  Supine.  This same 
set of posture transitions from Stand to Supine can 
be obtained from the transition graph by tracing the 
shortest path between the Stand and Supine nodes. 
Thus the problem of complex posture transitions re- 
duces to  finding (and executing) the shortest path in 
the transition graph between the start and goal pos- 
tures. The FSM makes this easy. The complete set of 
posture transitions thus derived can be compactly rep- 
resented by a matrix as shown in Fig. 3. A straightfor- 
ward algorithm (Fig. 4) can then be used to  generate 
the motions along this shortest path. 

4 Collision Avoidance for Human Mo- 
tions 

One possible limitation to  direct implementation of 
posture transitions arises from impossible or inappro- 
priate movements caused by blind achievement of the 
posture goals. In real life, if there is any obstacle in 
our path either when we are walking or moving from 
one position to another, we automatically avoid it and 
try to  reach our goal position by circumventing the oh- 
stacle. The posture transitions in the FSM cannot ex- 
plicitly represent all conceivable environmental obsta- 
cles. We have therefore augmented the posture tran- 
sition interpreter to  include collision avoidance during 
any posture transition. If any obstacle is present 111 

a Kneel On One 
C - 
- 

f 

------ 
Sit on - Chair 3 

0 Prone 

Figure 2: Posture Transition Graph 

0 Stand 5 Kneel on One Knee 
1 Squat 6 Kneel on Both Knees 
2 Sit on Chair 7 Crawl 
3 Sit on Ground 8 Prone 
4 Supine 

Figure 3 :  Posture Transition Matrix 

Transit (x:posture,y:posture,M:Matrix) 

1. If M(x,y)  = -1 then stop. 

2. If M(x,y) contains a motion sequence (denoted by 
lower-case characters), then execute the sequence 
and stop. 

3. If M(x,y) contains posture x ,  t,hen execute M(x,z) 
followed by M(z,y). 

Figure 4: Posture Transition Algorithm 

15 



behavior functions collision detection 

collision 

behavior 

Figure 5: The architecture of the system 

the path,  the motion is changed to avoid the collision 
while still reaching the goal post,ure (if possible) in t,lie 
best possible way. 

Collision avoidance has been an active research 
topic in Robotics. In general there have been t,wo cli- 
rections in this area: motion planning and reactive 
behavior. In motion planning, a collision-free path is 
planned and the agent is instruct,ed to follow the path 
[16, 191. In the latter approach, collision avoidance is 
built as a reactive behavior of the agent. When the 
agent is close to  an obstacle, it produces a repulsive 
force which will push the agent away and thus avoid 
collision [2O]. 

Both approaches have advantages and disadvaii- 
tages. The reactive behavior approach has a clear ad- 
vantage in performance. In most cases it  can be done 
in real time or near real time, even when the number of 
DOFs involved is large (e.g. ,  over 5).  Reactive metli- 
ods can even avoid moving obstacles. These methods 
suffer, however, from the local minima problem: tlie 
agent may get trapped in a local minima posture and 
fail to  reach the goal posture, even if t,he goal posture 
is reachable. 

While the motion planning approach does not, suf- 
fer the local minima problem in general, it is usually 
too slow to be used in an interactive (changing) envi- 
ronment, especially when t,he number of DOFs is large 
(e.g., 5 or more). 

Collision avoidance for hurnaii niotioiis has a d d -  
tional stringent requirements. First of all, t,he human 
body has many DOFs ( J a c k  has over 130), comparcd 
to  the few DOFs in a typical robot arm.  So t,he method 
used must be able to  handle a large number of DOFS’. 
Second, balance is not, usually a problem in robot pa th  
planning’. In human motion this and other motion 
constraints are very important, considerations. Third. 
in human motion, we usually require the motion t,o he 
natural, where in robo1,ics t,liis is not. an issue. 

4.1 The Collision Avoidance Subsystem 

‘The significance of this fact is that naive joint space or 
“configuration space” planning methods are esponential in  the 
number of DOFs! 

’Since the robot is either bolted to  a stable ikJ0r where i t  
can provide a suitably large reaction force to counterbalance 
any manipulable load, or else is mobile on a s t  able multi-legged 
or wheeled base. 

Fig. 5 depicts the functionality of our reactive be- 
havior approach. First, Jack produces incremental 
motions using the posture transitions to  invoke hu- 
man behavior functions interpreted by the motion sys- 
t,em. (To distinguish intermediate figure configura- 
tions from the postures in the transition matrix, we 
will call them poses.) Each pose is sent to  the colli- 
sion avoidance module which checks for self-collisions 
and collisions with environment obstacles. If there is 
no collision, the pose is sent on for display. If there 
is a collision, the collision avoidance system will re- 
solve it and produce a new pose. This new pose, even 
though collision-free, may not satisfy human motion 
constraints (keeping balance, etc.), so it will be sent 
back to  the behavior system for processing. This pro- 
cedure iterates until the final pose is collision-free and 
satisfies human motion constraints. Then the pose can 
he  sent on for display. 

As Jack’s posture transitions are goal-directed 
rather than path-directed, any changes in pose still 
allow Jack to find its way t.o the goal posture. For 
this reason. it is very natural to implement collision 
avoidance as one of Jack’s reactjive behaviors. This 
makes t,he integration of collision avoidance and other 
human behaviors extremely simple, an impossibility 
in a key-frame based system. 

4.2 Determining Collisions using Poten- 
tial Fields 

Each obst,acle is modeled as an artificial potential 
field. The potential energy will be maximum a t  the 
obstacle center and will decrease t>o zero on the surface 
or outside t.he obstacle. When there is no collision, the 
human bady will have zero potent’ial energy and no re- 
pulsive force acting on it. When collisions occur, some 
part,s of t,he body are inside the obstacle (and thus in- 
side its pot,ential field), which in t,urn will produce a 
repulsive force t.o push them away. In order to have 
good performance, we use a kinematics approach in- 
stead of dynamics. Instead of simulating the effects of 
the repulsive force on the human body, we use an op- 
t,iinizat,ion procedure to minimize potential energy on 
t,he human body. Given a pose, t,he optimization rou- 
t,ine finds a pose with minimal pot,ential energy and 
which is similar t,o t,he original pose. This minimized 
potential energy pose is collision-free providing that, 
tlie total energy is zero. 

Fig. G gives an exaiiiple pot,entia.l function for a 
cylinclrical obstacle. The pot,ential field of the obstacle 
generat,rs a repulsive poteiit,ial force t,o push any end- 
ef€ect,or out of it,self. For any given point r in space, 
t,he potential energy generated by the cylindrical ob- 
staclr at r can be defined as follows: 

if 11r - roll >= D 
otherwise; (D)’ - (r - r O ) . ( r  - rO) 

(1) 
(“ P(r)  = 

where 1-0 is the projection of r on t,he center line of 
t,he cylinder, and D is t,he length of t,he vector from rO 
t,o t,he boundary of t,he cylinder which goes through r.  
The gradient, of this field is needed by the optimization 
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elliptical cylinderical 
obqtacle 

2 

potential = D*D - (I - 10) ( r  10) 
giadient = 2*(10 I 

Figure 6: An example potential f u n d o n  for cylindri- 
cal obstacles 

procedure [a] : 

( 2 )  
0 if 111. - rO(1 >= D 

vrp(r) = { -2(r - rO) otherwise. 

Note tha t  if rO lies beyond the center line segment of 
the cylinder (i.e., past the ends), both the potential 
and gradient are 0. 
4.3 Using Sensors to Simplify the Evalu- 

ation of Potential Functions 
To prevent the hand from colliding with an ob- 

stacle, all points on the hand must stay outside of 
the obstacle. Thus the function which evaluates the 
handpotent ia l  should have the following properties: 

if outside the obstacle 
if inside the obstacle. > 0; handpotent ia l  = 

Potential functions, however, are defined on points in 
space. Since hands are complex 0bject.s ( in one version 
of Jack’s human model each hand has 16 polyhedra, 
3 for each finger and 1 for t’he palm), and the hand- 
shape can change, there would seem to be no easy 
way t o  compute handpotent ia l  from obst,acle potential 
functions. 

Our solution is t o  place “sensors” on the hand 
(Fig. 7). The  potential from an  obstacle detected by a 
sensor represents the potential felt by the area on the 
hand surrounding the sensor. 

Let pi (1 5 i 5 n )  be the position vector of the 
ith-sensor on the hand, and the potential detected by 
the ith-sensor be p o t e n t i a l ( p i ) .  Then 

handpotent ia l  = ma2 ( p o t e n t i w l ( p i ) )  

In the case of hand-hand collisions, the potential is 
calculated using the minimum distance between any 
two sensors on different hands. 

Similarly, we also put sensors on the arms and other 
parts of the body and evaluate the potential in t,he 

Figure 7: Sensors on the hand 

same way. Since we model body part potential fields 
as elliptical cylinders, it is possible to  calculate arm 
potential directly without using sensors, i.e. we can 
use the minimum distance between two elliptical cylin- 
ders to compute the potential. Although analytic coni- 
put,at,ion of the distance between two bounding vol- 
umes can extend the set, of geometric, shapes consid- 
ered for collision avoidance, arbitrarily shaped objects 
may not offer such a convenient route. The  sensor- 
hasrd method, however, is quite suitable for general 
ohjeck. 
4.4 Escaping Local Minima 

Even though it is much more efficient compared 
to other methods, the potential field approach suf- 
fers from the local minima problem: the agent may 
be trapped in a local minimum pose, although there 
is a pose that has even lower potential energy. 

We provide two ways to handle the local minima 
problem. A simple but powerful way is the random- 
walk approach [19] which perturbs the figure slightly 
when it is trapped in a local minima pose. If the sizes 
and numbers of local minimum wells are not too great, 
chances are good that the agent can escape from them 
efficiently. 

If the space is less well-behaved, a systematic search 
may be necessary. We use an incremental search 
method that, builds the configuration-space (C-space) 
incrementally during searching instead of in advance. 
Pre-computing a C-space is impractical for the num- 
ber of DOFs in our model. For example, for a C-space 
of only 4 DOFs with each dimension discretized into 
‘LO regions, the size of the space is 204 = 16 x lo4 and 
so requires 16 x lo4 collision detections to  create. To 
detect so many collisions in a complex human environ- 
ment is too costly (if each detection takes lOms, the 
total collision detection time would be over 26 min- 
utes). Besides, many of the detections may not be 
used in the motion plan a t  all. So incremental search 
will work best under these circumstances. 

When the agent is trapped in a local minima po- 
sition and a random-walk has failed to  free him, a 
search begins in the vicinity of the local minima pose 
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of the discretized C-space. Each time we start with 
the most promising neighbors in the (:-space (by eval- 
uating each posture’s promiszng-index, see below). In- 
stead of building the C-space in advance, each time 
we search for the next posture. collision detection is 
executed to  determine if it is collision-free. In most, 
cases, the incremental method only searches a small 
fraction of the C-space. In the example given below, 
only 35 out of 1000 C-space cells are searched to find 
a collision-free path. 

This method gives good performance when the 
number of DOFs is small (e.g., 5 or less) and the 
resolution is rather coarse. But this is possible with 
posture transitions because each posture transition in- 
volves a few DOFs. The incremental search method 
can help the agent escape from local minima postures 
easily. 

This incremental search method can also produce 
more realistic human motions by controlling the search 
direction. The promising-indez of a pose represents 
the likelihood that  this pose will lead the agent to 
the goal posture collision-free along a natural motion 
path. Factors which can be taken into consideration 
to  evaluate the promising-index are: the pose comfort 
level, the distance to the goal posture, the freedom of 
movement in its neighborhood, etc. All these factors 
are added using a weighted sum (where the weight 
given to  each factor depends on the application): 

promising-index = f 1 * com f ort-evel+ 
f2 * distance-to-goal+ 
f 3  * free-space-factor, 

where f l  + f2 + f 3  = 1.0 

When exploring from the current pose, all of its 
neighbor pose’s promising-indexes are evaluated and 
the pose with the highest value is chosen as the next 
candidate posture. Note that  if a given pose involves 
collision, its promising-index will be 0 and it will never 
be chosen. 

The comfort level of each posture is computed by 
its balance factor (well balanced or not), stress factor 
a t  all joints, maximum torque required if the motion is 
executed (from current posture to  the evaluated neigh- 
bor posture), preference to  some groups of joints dur- 
ing a particular motion, etc. The free space factor is 
the ratio of number of free (non-obstacle) neighbors to  
the total number of neighbors of the evaluated pose. 

5 Examples 
The following example (Fig. 8) shows the incremen- 

tal search results involving 3 DOFs - two at  the shoul- 
der and one at the elbow. The task is to compute 
a collision-free reach motion of the hand from above 
the table to  below the table. In this example, we al- 
ways prefer to  move the shoulder joint by setting its 
preference factor higher than that  of the elbow joint 
(in this example, only preference factor and distance 
to  goal posture are used to  evaluate the promising- 
index). Fig. 8 shows the resulting motion, which was 
computed in less than 1 second on a graphics work- 
station. 

Figures 10 and 11 show an example of posture tran- 
sition with collision avoidance. Initially the agent is 
sitting on a chair and is instructed to  stand up. This 
involves two posture transitions, S i t  to Squat and 
Squat to Stand. If there were no obstacles, he would 
have been able to stand up straight as shown in Fig. 9. 
However, since there is an obstacle over his head, he 
t,ries to stand up as straight as possible while avoiding 
collisions at  the same time. Fig. 10 shows the pos- 
ture transition without collision avoidance, and Fig. 
11 shows the same transition with collision avoidance. 
Notice that the collision avoidance behavior and other 
human hehaviors work together to provide a transition 
which is not only collision-free, but is also a natural- 
looking motion. 

6 Conclusions 
At the present time the only major weakness in the 

posture interpolation system is the control of timing. 
Manual adjustment of timing on postural transitions 
is under animator control through in interactive inter- 
face in Jack .  If a collision is imminent, however, there 
is no effective strategy to predict the new timing of the 
transitional motion. We are investigating some possi- 
ble strategies based on torque availability [15, 211 or 
Fit,ts’ Law timing predictions [22] 

We have demonstrated an integrated animation sys- 
tem for the postural control of a human-like agent. 
The system uses constraints and behaviors to  guide 
postural changes toward goals. The intermediate pos- 
tures comprising a complex postural change may be 
explicitly stored in a transition network. The indi- 
vidual postures in the network may be characterized 
by any constraints or behaviors available in the sys- 
tem. While transitioning from one posture to  another, 
a real-time collision avoidance mechanism is invoked. 
This component creates additional constraints or be- 
haviors that augment the existing ones, and so seam- 
lessly integrates with the postural interpolation. The 
collision avoidance mechanism avoids self as well as 
environmental collisions, and is able to  accommodate 
a number of measures to  tune the naturalness of the 
resulting motions. 
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