
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

March 1993

DNA Workbench DNA Workbench

James Tisdall
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
James Tisdall, "DNA Workbench", . March 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-38.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/279
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76360195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/279
mailto:repository@pobox.upenn.edu

DNA Workbench DNA Workbench

Abstract Abstract
In this paper we describe DNA Workbench, a program for working with DNA, RNA, and protein sequences.
It is designed to solve several problems that arise in two domains. The first domain is that of the
algorithm designer and implementor who is working in the emerging field of computational biology. The
second domain is that of the worker in a genetics laboratory, who needs frequently to turn to the
computer to perform analysis on existing or newly acquired nucleotide or protein sequences. The
problems encountered in these two domains overlap to a considerable extent. The problems, and how
they are addressed by DNA WorkBench, are discussed within.

DNA WorkBench addresses both of these groups with one program. In this way, new problems that
require new algorithms can be quickly brought from a theoretical solution to an implementation and to the
laboratory workbench. This rapid transfer from research to development to the field is essential in a fast
moving area such as biotechnology, by which term I mean to encompass such specialties as molecular
biology, genetics, human gene therapy, and the current large-scale international sequencing and mapping
of human DNA which has been organized as the Human Genome Project in the United States.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-38.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/279

https://repository.upenn.edu/cis_reports/279

DNA WorkBench

MS-CIS-93-38
LOGIC & COMPUTATION 61

James Tisdall

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

March 1993

DNA WORKBENCH

James Tisdall
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

email: tisdall@cbil.humgen.upenn.edu
Advisor: S angut hevar Raj asekaran

Technical Report MS-CIS-93-38
Logic and Computation 61

March 12, 1993

Abst rac t

In this paper we describe DNA Workbench, a program for working with DNA, RNA, and protein
sequences. It is designed to solve several problems that arise in two domains. The first domain
is that of the algorithm designer and implementor who is working in the emerging field of com-
putational biology. The second domain is that of the worker in a genetics laboratory, who needs
frequently to turn to the computer to perform analysis on existing or newly acquired nucleotide
or protein sequences. The problems encountered in these two domains overlap to a considerable
extent. The problems, and how they are addressed by DNA WorkBench, are discussed within.

D N A WorkBench addresses both of these groups with one program. In this way, new prob-
lems that require new algorithms can be quickly brought from a theoretical solution to an imple-
mentation and to the laboratory workbench. This rapid transfer from research to development
to the field is essential in a fast moving area such as biotechnology, by which term I mean to
encompass such specialties as molecular biology, genetics, human gene therapy, and the current
large-scale international sequencing and mapping of human DNA which has been organized as the
Human Genome Project in the United States.

Introduction

Genetics and molecular biology are in the midst of an explosive growth in the power of their tech-
niques, and in the applicability of their results to medicine and industry. [Watson et all Computer
science is playing an increasingly important role in this growth. [Gilbert]

To put this development in perspective, one can reflect on the nature of evolution and the history
of the Earth. Biotechnology reflects the emerging ability of life on Earth t o begin consciously to
affect the evolution of life on Earth. This is a revolution for which it is difficult to find a parallel.
It is fascinating to reflect that this revolution is concurrent with the beginnings of the spread of
life from the Earth to the rest of the solar system, as the Space Age and the Age of DNA overlap.

The con~puter tools that are coming online to address this challenge a.re of course strongly
influenced by the nature of the genetics data. Human DNA can be represented by a string of
approximately three billion characters. Each character can be one of 4 possible choices. It is quite
probable that this entire sequence will be available within ten years. [Genome Project] There are
important differences between the DNA of different individuals; such differences are critical in the
detection and treatment of diseases, and in criminology, for example. Many other organisms are
also being studied, and knowledge of their DNA is essential for the proper study of human DNA,
as well as in existing and emerging industries. Thus, the data that must be nlaintained will soon
be of very high volume and of critical importance. At present, a gigabyte disk or two is sufficient
to store all of the major databases.

The emerging field of computational biology addresses the intersection of biotechnology with
computer science. Aside from the data storage and retrieval aspects, there are also many significant
algorithms. The most common algorithms now used by biologists are those that compare two or
more sequences for similarities. Many current and anticipated data analysis and experimental
design tasks require both theoretical work on algorithm design, and engineering work in systems
building.

DNA WorkBench is a small, fast, distributed, portable, free program for genetics laboratory
workers and algorithm designers for computational biology. In its first release, described here,
it is a convenient environment for algorithm design and implementation. It provides an easy
interface to niultiple sequence file formats; very rapid and general database search and retrieval; a
suite of standard sequence manipulation routines; and a simple and convenient data structure and
operators, that provide the programmer with an interface to files, databases, users, and processes.

In addition, DNA WorkBench is an interactive tool for the working laboratory geneticist, in
which great care has been taken to provide the simplest, fastest, and most easily learned user
interface possible.

Database Retrieval

Database search and retrieval is fast and powerful in DNA I,Vorl;Be~zch. Queries for locus id,

accession number, organism, and keyword return instantly. (These are the most common fields on
which searches are desired against the major databases.) Other searches, such as for arbitrary text
or sequence, are accomplished by parallel scans of the database in its entirety.

There are several genetic databases in common use. In the discussion which follows, the database
used for examples is GenBank (Genetic Sequence Data Base), maintained by NCBI (National Center
for Biotechnology Information) [GenBank] and considered to be a standard. DNA WorkBench

also uses PIR (Protein Identification Resource), SwissProt (Swiss Protein Database), and several
specialized databases. Other databases have been configured, such as EMBL (European Molecular
Biology Laboratory) but are not currently installed, as they essentially overlap with GenBank.
Adding new databases to the system has been quite straightforward.

GenBank is composed of over 100 thousand records of sequences mixed with textual data,
requiring about 350 MBytes of disk storage in its uncompressed "flat file" form. It is freely available
from public ftp sites. The records include severa.1 fields of text, including ID numbers, authors,
known features of the DNA, translations to protein, and more. The sequence is presented as a
string over a standard alphabet, formatted with whitespace and counts.

For purposes of the most common data retrieval tasks, DNA WorkBench can return instantly
with the requested information. This is accon~plished by using DBM files and precomputing the
file and offset as the value for each keyword. The location data is colnpressed into the minimal
possible number of bits (four bytes per record), and accessed via an associative array interface
to the keyword-value(s) hash table. Upon retrieval, the locations are decoded, and then the files
are opened via a local or NSF symbolically linked file, the offsets are applied with a seek system
call, and an entire record is retrieved with one read system call. In interactive mode, instead of
immediately returning the record, the compressed pointer is added to the user's array of found
sequence, to be actually fetched when the user requests some operation on it.

Programming the DBM interface presented some problems. The SUN workstations we use
provide the NDBM version of the software (the main advantage over the original DBM software
being the ability for multiple DBM files to be opened simultaneously.) Although most of the
keywords need to store only a single record pointer of four bytes, some require very much more.
(For instance, doing an ORGANISM lookup on the keyword "sapiens" requires storing pointers
to over 25 thousand records, a 100 thousand byte-long vector.) NDBM begins returning error
messages at about the 1000 byte range, but still stores the values, overwriting the data for other
keywords. This led to recompiling the Per1 implementation 1angua.ge with the Gnu distribution
GDBM package, which permits arbitrarily long values. However, once a very long value has been
stored, GDBM begins preallocating very long buffers for new values, making it unusable.

Several additional alternatives were considered, such as the SDBM package, and using values
that were pointers to blocks of vectors. The fina.1 solution adopted was to create two GDBM
indexes when necessary, one for the common short-valued case, and one for the keywords with
long value fields. In practice, the user cannot detect the difference between one or two DBM file
lookups: both seem to exhibit instant response. The current indexes require about 20 Mbytes for
350 Mbytes of data; they handle several kinds of ID numbers, genus and species information, and
keyword information.

Searches for arbitrary text or sequence over all of GenBank or other databases take about five
minutes using a single Sun SPARCstation 2 UNIX workstation; we use a network of 10 worksta-
tions to bring this time down to about 30 seconds. (This considerably outperforms the standard
commercial software, by a factor of over 100; in fact, unrestricted search is often not possible.)

The network search is done by a client program opening Berkeley sockets and sending one request
to each server process to initiate the servers, and then reading the sockets and processing the hits.
The servers are standard internet TCP/IP concurrent connection-oriented sta.teless servers. D N A
WorkBench uses the "inetd" service as the master server, which simplifies the code and reduces
the overall process load on the systems. A subroutine called "DBcalln handles all network requests

and service. Alternate configurations are provided as plug-in's in place of the standard DBcall
subroutine; these are 1) a version that is designed to be started as a daemon at boot time, as from
the /etc/rc.local file; 2) a version that uses rsh instead of sockets; 3) and a non-network version for

a single CPU. Since both the client and the server code are contained in one subroutine, alternate
configuration is fast, and configuring DNA WorlcBench to utilize a network is quite easy. At the
top of the program the location of the database files are specified by machine and pathname; it is
only necessary to put the files on various machines and to specify their locations for the program

to run the searches on the various machines in parallel. Reconfiguring the program to use different
servers, or t o change the order in which the client controls the servers, is accomplished by just

editing the list of machines and pathnames.
Database searches may include regular expressions. The regular expression package includes

quite sophisticated features, which make it easy to construct a very powerful query on the text fields,

especially if the user has some familiarity with the format of the database entries; a familiarity that
is attainable by means of the online help system. The implementation language is optimized for
regular expression operations; the operations are based on Henry Spencer's regular expression

package.
Regular expressions are of particular interest t o students of DNA, since the most common use

of computers, aside from data storage and retrieval, is in searching for similarities in a database.
Regular expressions are sometimes of more value t11a.n searches that find all similar sequences, since
more specific queries are possible. For example, "point mutations" are frequently of interest, where
some particular base (represented as one letter in the string) has changed to another. As another
example, deletions or insertions of substrings model a common type of DNA mutation.

Other, more powerful automata are also extremely useful, and the author hopes to add a
subroutine which runs on a networked parallel machine for context-free language searching in the

future. Of course, the programmer has a Turing machine available for arbitrary computations via
the implementation language.

Data Storage

As mentioned in the previous section, the genetic data is stored as ASCII "flat files", requiring over
350Mbytes for GenBank. Simply reading these files from disk on a single CPU requires about 3
minutes in our environment. Clearly, some form of data compression could significantly decrease

the I/O time.
The implementation language provides a full set of operators for working with various forms of

data compression. Significantly, most DNA sequence data is over a four letter alphabet, permitting
a fourfold compression from the ASCII representation.

Certain compression formats are de facto standards in the genetics community. One is that
provided by the BLAST software, which is further discussed below. This achieves very small space
requirements by discarding most of the text, and using an efficient compression on the sequence.

An emerging standard is ASN1, the IS0 presentation layer protocol format, which has been

adopted by NCBI.
Also in common use is the GCG format that comes with the Genetics Computer Group software

package.

In addition, other data compression schemes suggest themselves. However, it is probably most

practical to attempt to integrate the system with compressed data that already exists on disk,
rather than introducing yet another new compression scheme, unless significant benefits can be
shown to accrue.

Our plans are to explore the use of data compression formats. There will clearly be a tradeoff
between compression and processing time; plus there is the issue of discarded data with BLAST. It
is not inconceivable, however, that we may achieve comparable time performance with significantly
reduced disk storage requirements. This is the next major task we expect to undertake on the
system.

User Interface

Once sequences have been loaded by reading a file or performing a database search or retrieval,
the user prompt shows how many sequences have been loaded, and which of them is the "current
sequence". One moves to a different sequence by giving a number or displacement from the current
sequence, after the style of the UNIX "ed" or "vi" editors. One can also specify ranges of sequences
to operate on.

Most commands act upon the current sequence by default. Thus once a desired sequence has
been loaded and verified, typing a short command will run the desired algorithm on that sequence,
saving the user the trouble of continually remembering and specifying filenames. The simple user
interface requires few keystrokes, due to a shortest distinguishable command abbreviation facility.

There is only one menu, available by a single keystroke. Most commands siniply return to the
main loop if a useful response is not given to a prompt, so that aborting a procedure only requires
one to hit RETURN one or two times.

No additional user documentation beyond the on-line menus and help is necessary or provided.
Approximately five minutes self-training time has been shown to be sufficient for the laboratory
worker to use the program effectively. Users are advised of the most common system commands
by examples, and the on-line system manual pages are referred to when necessary.

No special graphics terminal is required. In future, XWindows, Mac, and Windows N T graphics
are planned, but in a simple, modular fashion that will not unduly complicate using and program-
ming in the system.

Sequence File Formats

The genetics programming community has developed an unfortunate number of alternate file for-
mats for essentially the same purpose, that of presenting sequence data with relevant textual
information. This causes significant impediments to the effective use of computer tools in the
laboratory. DNA WorkBench addresses this problem with a comprehensive set of subroutines for
sequence recognition, extraction, and formatting in all of the most common sequence file formats.
These are integrated into the system so that the user rarely need be aware of them. Most files are
read with no user intervention required.

Files that are to be read are by default analyzed for their format, so that user intervention only
becomes necessary when the file is in an uncommon format, or has become garbled. Reformatting
for editing or output is easy. The user can reformat any entry into any forinat by specifying the
desired output format; DNA WorkBench determines the existing format, reformats, and either

loads the newly formatted sequence into the work space, or writes it out. Files with entries in

mixed formats are also handled. The user can specify a default output format for bulk reformats
and writes to files. All functions included in the package take similar actions to hide the formatting
problem from the user.

The low-level formatting routines are packaged into alternate higher-level subroutines for read-
ing, writing, display, and sequence and text extraction. The programmer can build an application
calling these subroutines for all common nucleotide and protein sequence file format 110.

It is an interesting observation about our implementation language, that our format-handling
subroutines are a fraction of the size of functionally equivalent C code, and are much easier to
amend or extend. This highlights the programming efficiency of using a string-oriented interpreted
language to deal with string data.

Commands

Besides database retrieval, DNA WorkBench can also perform all standard sequence manipulation
tasks.

It can take the reverse complement, adding the opposing strand of DNA as a new entry in
the work space.

It can perform translations from nucleotides to proteins, and report on reading frames, trans-
lations of C'codons", groups of three nucleotides that specify an amino acid, that do not contain
a "stop codon". (This is the "genetic code".)

It can edit sequence in your choice of editor, 1oa.ding the changes into the workspace auto-
matically when the editor is exited.

It can x-out undesired bases specified as ranges.

It can apply regular expressions globally and present the result as a report and a choice of
actions to take.

r It can submit commands to the local database management system (DBMS). At our location
this takes the form of a general SQL command interface to our Sybase data system, and as a
single comn~and that extracts all 1oca.lly entered sequence a,nd performs similasity comparisons
on it.

It can enter the running program in a.n interpreter mode to perform arbitrary commands not
available through the menus. (See below.)

It can easily submit sequence for BLAST or FASTA similarity searches against several general
and specialized sequence databases.

It can call the PRIMER program to study a sequence preparatory to laboratory cloning.

a New algorithms and commands are easy to a.dd, a.nd are being a.dded as practice dictates.

Commands not special to DNA WorkBench are passed directly to the computer's command
interpreter system ("shell"). Thus the user can interact with the colnputer in the normal fashion,

while maintaining an additional environment of sequence and commands. The advantage of this
approach is that it maintains the accessibility of the normal command environment, while adding
an array of sequence and commands that can be easily manipulated without a lot of file reading,
writing, and naming overhead. The functional result is similar to having a special-purpose "genetics
shell" command interpreter.

Providing access to FASTA and BLAST proved to be slightly non-trivial. BLAST, the popular
favorite among genetics researchers due to its very fast calculation of sequence similarities, is an
1/0 bound program. It was necessary to execute the program on the remote system that houses

the compressed databases in order to achieve the speed for which the program is noted. This is
exactly the type of task at which the implementation language excels.

FASTA similarly runs much faster on the CPU that controls the storage disk. In addition,
there is a peculiarity about FASTA that had to be overcome. At present, FASTA is optimized
to run from its own FASTA-formatted version of the GenBank database, which we do not store.
Therefore, we configure FASTA to use the GenBank flat files. However, although this is an option

provided by FASTA, the program then does not allow for command-line, non-interactive execution.
Once again, the implementation language provided convenient mechanisms by which FASTA could
be executed and controlled on a remote ma.chiae by a local process, appearing to the user as a

function to be called by a few keystrokes.

Programming Environment

DNA WorkBench offers an attractive programming environment. With a simply designed and
convenient interface to sequence, files, databases, and users, it supports rapid program development
and use. Existing and new functions ca.n be called and are callable from such other languages as

C, FORTRAN, and Prolog.
The entire code is only, as of this writing, 15 printed pages, under 2000 lines, in one file.

Almost half of the code comprises the file handling and help subroutines. This brevity eases the

reading and modifying of the code. All functions, including client, server, and index making, are
packaged together, which helps integrate the package and promotes porting to new systems. DNA
WorkBench has been written with portability in mind, although it ha.s not yet been ported.

DNA WorkBench is written entirely in the Perl language. [Wall] Thus the code bears much
resemblance to C, Shell, and AWI< program syntax. Perl is an excellent language for string ma-
nipulation and for the other tasks for which DNA WorkBench has been designed, such as internet
programming, user and program interfaces, string manipulation, file format handling, and ease of
modification. In addition, Perl is free, well documented, and has an active and rapidly growing
international community of users. Perl has been ported from its UNIX birthplace to Macintosh,
DOS, DOS/Windows, Windows NT, and VMS systems. Although it may at some point be desirable
to recode some of the "most inner" loops in C, so far this has not proved to be necessary.

One command option in DNA WorkBench is to enter the running program as a command inter-
preter. Thus the entire program state can be examined, and all functions are accessible interactively

to the programmer. By using the Perl "require" program loader, it is easy to add specialized func-
tions interactively, and to perform customized computations without altering the existing program
code.

Conclusion

DNA WorkBench began as a question: How far can we take Per1 to solve problems in computational
biology program development and in meeting the computer needs of genetics laboratory workers?

The answer has far exceeded our expectations, producing a system that matches or outperforms
the standard commercial software packages in several key areas, such as database retrieval and
search, user interface, sequence file format handling, programming environment, and the use of
multiple processors.

As a rough measure of performance, we note that doing a regu1a.r expression search for se-
quence over all of GenBank takes about 30 seconds using a network of 10 CPU's; the popular

BLAST program, running on a single CPU (as it is written to do) takes over a minute to per-
form a similarity search in our environment. Of course, these are different kinds of searches, and
one is multiprocessing while the other is not; yet this comparison does provide some measure of

performance.
DNA WorkBench has a small size, is easily reconfigurable, and took one person three months

of part-time work to write. It is in daily use in genetics la.boratories, and has begun service as a
programming environment for algorithm developmeilt for colnputational biology.

REFERENCES

a Watson,J.D., Gilman,M., Witkowski,J., and Zoller,M. Recombinant DNA 2nd Edition
New York, Scientific American Books, 1992

a Walter Gilbert Towards a paradigm shift in biology Nature Vol 349 10 Jan 1991 p.99

a U.S. Department of Health and Human Services and U.S. Department of Energy Under-
standing Our Genetic Inheritance-The U.S. Human Genome Project: The First
Five Years FY 1991-1995 National Technical Information Service, U.S. Department of

Commerce, Springfield, Virginia, 1990

a GenBank Release 75 National Center for Biotechnology Information, National Library of
Medicine, National Institutes of Health, Bethesda, Maryland, March, 1993

a Wall,L. and Schwartz,R.L. Progralnming per1 O'Reilly and Associates, Sebastopol, Cali-
fornia, 1990

	DNA Workbench
	Recommended Citation

	DNA Workbench
	Abstract
	Comments

	tmp.1184684065.pdf.n6uET

