
University of Pennsylvania
ScholarlyCommons

Database Research Group (CIS) Department of Computer & Information Science

January 1999

Taming Web Sources with "Minute-Made"
Wrappers
Fabien Azavant
École Nationale Supérieure des Télécommunications

Arnaud Sahuguet
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/db_research

Database Research Group.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/db_research/39
For more information, please contact libraryrepository@pobox.upenn.edu.

Azavant, Fabien and Sahuguet, Arnaud, "Taming Web Sources with "Minute-Made" Wrappers" (1999). Database Research Group
(CIS). 39.
http://repository.upenn.edu/db_research/39

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fdb_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/db_research?utm_source=repository.upenn.edu%2Fdb_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fdb_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/db_research?utm_source=repository.upenn.edu%2Fdb_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/db_research/39?utm_source=repository.upenn.edu%2Fdb_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/db_research/39
mailto:libraryrepository@pobox.upenn.edu

Taming Web Sources with "Minute-Made" Wrappers

Abstract
The Web has become a major conduit to information repositories of all kinds. Today, more than 80% of
information published on the Web is generated by underlying databases and this proportion keeps increasing.
In some cases, database access is only granted through a Web gateway using forms as a query language and
HTML as a display vehicle. In order to permit inter-operation (between Web sources and legacy databases or
among Web sources themselves) there is a strong need for Web wrappers.

Web wrappers share some of the characteristics of standard database wrappers but usually the underlying data
sources offer very limited query capabilities and the struc- ture of the result (due to HTML shortcomings)
might be loose and unstable. To overcome these problems, we divide the architecture of our Web wrappers
into three components: (1) fetching the document, (2) extracting the information from its HTML
formatting, and (3) mapping the information into a structure that can be used by applications (such as
mediators).

Comments
Database Research Group.

This working paper is available at ScholarlyCommons: http://repository.upenn.edu/db_research/39

http://repository.upenn.edu/db_research/39?utm_source=repository.upenn.edu%2Fdb_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages

Taming Web sources with "minute-made" wrappers

Arnaud Sahuguet

Department of Computer and Information Science

University of Pennsylvania

sahuguet@saul.cis.upenn.edu

Fabien Azavant
�Ecole Nationale Sup�erieure des T�el�ecommunications

Paris, France

fabien.azavant@enst.fr

1 A need for Web wrappers

The Web has become a major conduit to information repos-
itories of all kinds. Today, more than 80% of information
published on the Web is generated by underlying databases
and this proportion keeps increasing. In some cases, database
access is only granted through a Web gateway using forms
as a query language and HTML as a display vehicle. In
order to permit inter-operation (between Web sources and
legacy databases or among Web sources themselves) there
is a strong need for Web wrappers.

Web wrappers share some of the characteristics of stan-
dard database wrappers but usually the underlying data
sources o�er very limited query capabilities and the struc-
ture of the result (due to HTML shortcomings) might be
loose and unstable. To overcome these problems, we divide
the architecture of our Web wrappers into three components:
(1) fetching the document, (2) extracting the information
from its HTML formatting, and (3) mapping the informa-
tion into a structure that can be used by applications (such
as mediators).

W4F is a toolkit that allows the fast generation of Web
wrappers. Given a Web source, some extraction rules and
some structural mappings, the toolkit generates aWeb wrap-
per (a Java class) that can be used as a stand-alone program
or integrated into a more complex system.
W4F provides a rich language (HEL: HTML Extraction
Language) to express declaratively extraction rules and map-
pings, as well as a wysiwyg interface that allows the creator
of the wrapper to pick relevant pieces of information just by
clicking on them, as he sees them in his Web browser.

As an illustration, we present the TV-Guide Agent that
allows users to query TV movie listings by time scheduled
(date, time, channel) and program content (movie genre,
rating, year, cast, country, etc.). This example demon-
strates real inter-operability between TV-listing information
(http://tv.yahoo.com) and movie information (Internet Movie
Database).

2 The architecture

The architecture of our wrapper \factory" identi�es three
separate components: retrieval, extraction and mapping.
This structure is motivated both by the particularities of
Web data sources and by the desire to take advantage of
re-usable functionalities. For example, wrappers for Web
sources that use the same query form or that feed into the
same application could reuse the same components.

As presented in Figure 1, an HTML document is �rst
retrieved from the Web according to one or more retrieval
rules. Currently, a retrieval rule simply consists of the url1

of the remote document.
Once retrieved, the document is fed to an HTML parser that
constructs a corresponding parse tree. Given the permissive-
ness of HTML, the parser has to recover from badly-formed
documents.
Extraction rules are then applied on the parse tree and
the extracted information is stored in an internal format
based on nested string lists (NSL), the datatype de�ned by
NSL = null + string + listof (NSL).
Finally, NSL structures are mapped to structures exported
by the wrapper to the upper-level application, according to
mapping rules.

���������	�
���

�����	�
���

��� �����

�
�
�
�
�
�

�
�
�
�
� +70/ WUHH+70/ GRFXPHQW

�����

������

���

����������	�
���

�����	�� ���!

Figure 1: W4F information ow

This process is repeated for each Web document.

3 Extracting information

In this section, we glimpse at HEL, the language used in
W4F for declaring extraction rules. Full details can be found
in [12].
A declarative speci�cation of the wrapper for the movie

1Both GET and POST methods are supported.

database is presented in Figure 2 and will be used in this
section to illustrate some features of the language.

3.1 Building the HTML parse tree

Each Web document is parsed into a parse tree correspond-
ing to its HTML hierarchy. The parse tree follows the Doc-
ument Object Model [13].
A tree consists of a root2, some internal nodes and some
leaves. Each node corresponds to an HTML tag (text chunks
correspond to PCDATA nodes). A leaf can be either a PC-
DATA or a bachelor tag3. Given this, it is important to note
that there is a 1-to-1 mapping between a valid HTML doc-
ument and its tree. Non-leaf nodes have children that can
be accessed by their label (the label of the HTML tag) and
their index (the order of appearance).

3.2 Two ways to navigate the tree

Navigation along the abstract tree is performed using path-
expressions [4, 1].

The �rst way is to navigate along the document hier-

archy with the "." operator.
The path 'html.head[0].title[0]' will lead to the node
corresponding to the <TITLE> tag, inside the <HEAD> tag, in-
side the <BODY> tag. This type of navigation o�ers a "canon-
ical" way to reach each information token.

The second way is to navigate along the ow of the

document, with the "->" operator.
The path 'html->table[0]' will lead to the �rst <TABLE>

tag found in the depth-�rst traversal of the abstract tree
starting from the <HTML> tag. This operator increases con-
siderably the expressivity of HEL, since it permits to cope
with irregularities of structure. It is also useful to create
navigation shortcuts.

Both operators apply to an internal node of the tree and
return one (or more) child according to a label name (e.g.
html, title, etc.) and an index value. Index ranges can
also be used to return array of nodes, like [1,2,3], [7-] or
the wild-card [*]. When there is no ambiguity, the index
value can be omitted and is assumed to be zero.

3.3 Extracting node information

Extraction rules do not operate on the nodes themselves but
on the information they carry.
From a tree node, we can extract its text value ".txt". The
text content of a leaf is empty for a bachelor tag and cor-
responds to the chunk of text for PCDATA. For internal
nodes, the text value corresponds to the recursive concate-
nation of the sub-nodes, in a depth-�rst traversal.
The underlying HTML source is extracted using ".src".
Some properties of the node like the value of some attributes
as well as the number of children can be retrieved using
"getAttr" and "numberOf".

The detail of node information is presented in Table 1.

3.4 Using regular expressions

The relevant information might not be entirely captured by
the HTML structure (e.g. an enumeration inside a table
cell): that's where regular expression patterns can be useful.

2The root is labeled html.
3A bachelor tag is a tag that does not require a closing tag, like

 or
.

Root Int. nodes Bachelor tags PCDATA

.txt
p p

N/A
p

.src
p p p p

.getAttr N/A
p p

N/A
.numberOf

p p
N/A N/A

Table 1: Tree nodes and their properties

SCHEMA ::

RETRIEVAL_RULES ::

getMovie(String title)

{

METHOD: GET ;

URL: "http://us.imdb.com/M/title-substring/title=$title$";

}

EXTRACTION_RULES ::

movie = html.body (

->h1.txt, match /(.*)[(](19[0-9]{2})[)]/ /* title, year */

->table[i:0].tr[j:*].td[0].txt /* cast */

WHERE html.body->table[i].tr[0].td[0].txt =~ "cast"

AND html.body->table[i].tr[j].getNumberOf(td) = 3;

Figure 2: A W4F wrapper for the Internet Movie Database

HEL provides two operators match and split that follow
the Perl syntax (see [14]).
The match operator takes a string and a pattern, and returns
the result of the matching. Depending on the nature of the
pattern4, the result can be a string or a list of strings.
The split operator takes a string and a separator as inputs
and returns a list of substrings.

These operators can be used in cascade: the operator is
applied to each element of the previous result.

3.5 Enforcing constraints

As mentioned in 3.2, array elements can be speci�ed using
wild-cards or index values. They can also be de�ned using
variables to which conditions can be attached by introducing
a WHERE clause. Conditions cannot involve nodes themselves
but only their properties. Various comparison operators are
o�ered by the language. Constraints are another feature of
HEL that gives a lot of freedom to the user when he writes
wrappers; it also permits to deal with irregularities in the
structure of the document.

3.6 Creating nested structures

The language also provides the fork operator "#" to con-
struct NSLs by following multiple sub-paths at the same
time. This is particularly useful when information spread
across the page need to be put together. For a movie (see
Figure 2), we put together the title and the cast.

4 Mapping information

The information obtained from the execution of the extrac-
tion rules is stored as a NSL. The structure of the NSL
(levels of nesting, etc.) is fully de�ned by the rules them-
selves. The use of an index range or a split in a rule will
result in one extra level of nesting for the result.

4The number of parenthesized sub-patterns indicates the number
of items returned by the match. In the example (see Figure 2), the
match will return a pair (title, year).

SCHEMA ::

Movie movie;

public class Movie

{

String title; String [] cast; int year;

public Pointer(NestedStringList nsl)

{

title = nsl[0][0];

year = (int) nsl[0][1];

cast = nsl[1];

}

}

Figure 3: User-de�ned mapping for IMDB wrapper

The philosophy of W4F is to return anonymous NSLs
that can be freely consumed by some upper-level applica-
tions. The default mapping consists of mapping NSL into
Java base types (string, int, oat) and their array exten-
sions. W4F performs the conversion automatically. In Fig-
ure 2, there is no speci�ed mapping and the default mapping
is used.

The user can also de�ne his own mappings. In the cur-
rent implementation, this means to provide a Java class with
a proper constructor. A possible mapping for the movie
database wrapper is presented in Figure 3.

As of today, W4F o�ers a generic mapping to the K2
object model [6]; the XML mapping is almost achieved.

5 Wysiwyg interface

The real work in the creation of a Web wrapper is in the
speci�cation of the extraction rules. An expert could write
them down by just looking at the HTML source. However,
in order to increase accessibility, W4F o�ers an interface in
which the user is presented with the document and he sim-
ply clicks on the pieces of information he wants to collect.
The system then \magically" returns the corresponding ex-
traction rule (as shown in Figure 4).

Figure 4: The Wysiwyg interface

The Wysiwyg interface takes a URL as an input, parses
the corresponding HTML document and returns a new \an-
notated" HTML document. The following annotation is per-
formed: each PCDATA leaf corresponding to an outer tag is
transformed. Basically, a new tag is inserted within

the outer tag. The bene�t of it is that the chunk of text can
now be given a speci�c behavior that can be used by the
HTML browser.

Assuming that the path-expression corresponding to this
tag in the HTML abstract tree is "html.tag[n].txt", we
have the following transformation:

<TAG> stuff </TAG> becomes

<TAG> stuff </TAG>

The new tag created now carries some informa-
tion about the path that leads to this speci�c piece of infor-
mation.

It is important to note that the path-expressions used
for ID (i.e. returned by the interface) are canonical and only
use the "." operator. This extraction rule might not be the
most robust one 5, but it is a good start anyway.

6 Examples of applications

For the TV-Guide Agent service, the TV-listing information
is �rst extracted from http://tv.yahoo.com. Then for each
movie title, a query is sent to the Internet Movie Database to
retrieve information about the movie (see �gure 5). Because
of title mismatches, we have �rst to get a list of matching
titles before proceeding to the movie itself.

The service uses one wrapper for the TV-listings and two
wrappers for the movie database (one for matching titles,
one for the movie itself).

From a declarative description like the one presented in
Figure 2, a Java class is generated and compiled in order to
be directly used by the main application.

Even if a lot of inter-operation mismatches still have to
be resolved by program code, the extraction part is now fully
declarative.

The W4F toolkit has been successfully used to build var-
ious kinds of applications (data-warehousing of Web data
sources, Web agents, etc.), extracting information very di-
verse and versatile sources (CIA World Factbook, Med-Line,
on-line stores).

7 Conclusion and future work

Wrapper construction is a key issue in the implementation
of mediator-based architectures [15]. Several approaches to
wrapper generation use procedural descriptions (eg. [8] using
con�gurable extraction programs) or grammars [9], but none
of them \speaks" HTML and therefore they must rely on ad-
hoc approaches to Web sources. Web-OQL [3] maps HTML
documents generically to an object-oriented data model and
then uses OQL to extract information.
The extraction per-se often requires considerable expertise
and maintenance is poorly supported. Strategies that use
machine-learning techniques like [10] aim at solving this lat-
ter issue.

In W4F, we do not address problems that are speci�c
to mediators but we believe that our wrappers can be easily
included into existing integration systems like TSIMMIS [8],
Kleisli [7], Garlic [11], YAT [5], etc.

We try to make the most out of the implicit HTML hi-
erarchy through the use of the Document Object Model
(like in [2]) but we also provide regular expression opera-
tors to capture �ner granularity. This design permits the

5As a matter of fact, the extraction rule presented in Figure 5 is
a re�nement of the one proposed by the interface in �gure 4.

Figure 5: W4F in action, extracting movie information

semi-automatic generation of robust extraction rules that
relate perspicuously to the navigation of the HTML parse
tree. Moreover, it provides, essentially for free (!), a true
wysiwyg interface that returns a default path for any piece
of information identi�ed by the user. In order to o�er re-
usability, the result of the extraction is stored in an anony-
mous structure that can be mapped into various user-de�ned
structures, some of them already built into the system.
We think that the splitting of Web wrappers into indepen-
dent components (layers) and the use of declarative speci�-
cations will make it easier to design such wrappers in order
to make Web sources inter-operate with one another.

Our future work will focus on a default mapping to a
data-model for querying, on an improvement of the user in-
terface to deal with more complicated retrieval methods, and
on the notion of Web services in terms of interface, caching
and object identity.

The W4F toolkit has been developed under JDK-1.1.5, using
JavaCC6 to generate the the HTML parser and the parser
for the HEL language; regular expressions are evaluated us-
ing PAT7. The footprint of the toolkit is less that 200kb.

On-line examples of W4F applications (including the TV-
Guide Agent presented here) can be found at the Penn
Database Research Group web site8.

Acknowledgements:
We would like to thank J�erôme Sim�eon and Val Tannen for
some early comments on a draft of this paper.

6http://www.suntest.com/JavaCC
7PAT, the regular expression package: http://www.javaregex.com
8http://db.cis.upenn.edu.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L.
Wiener. The lorel query language for semistructured
data. Journal on Digital Libraries, 1997.

[2] Charles Allen. WIDL: Application Integration with
XML. World Wide Web Journal, 2(4), November 1997.

[3] Gustavo Arocena and Alberto Mendelzon. WebOQL:
Restructuring Documents, Databases, and Webs. In
Proc. ICDE'98, Orlando, February 1998.

[4] Vassilis Christophides. Documents structur�es et bases
de donn�ees objet. PhD dissertation, Conservatoire Na-
tional des Arts et Metiers, October 1996.

[5] Sophie Cluet, Claude Delobel, J�erôme Sim�eon, and
Katarzyna Smaga. Your Mediators Need Data Con-
version! In Proc. SIGMOD Conference, Seattle, 1998.

[6] Johnatan Crabtree, Scott Harker, and Val Tannen. An
OQL interface to the K2 system. Technical report, Uni-
versity of Pennsylvania, Department of Computer and
Information Science, 1998. To appear.

[7] Susan Davidson, Christian Overton, Val Tannen, and
Limsoon Wong. Biokleisli: A digital library for biomed-
ical researchers. Journal of Digital Libraries, 1(1):36{
53, November 1996.

[8] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,
and A. Crespo. Extracting Semistructured Informa-
tion from the Web. In Proceedings of the Workshop on
Management of Semistructured Data. Tucson, Arizona,
May 1997.

[9] G. Mecca, P. Atzeni, P. Merialdo, A. Masci, and G. Sin-
doni. From Databases to Web-Bases: The ARANEUS
Experience. Technical Report RT-DIA-34-1998, Uni-
versita Degli Studi Di Roma Tre, May 1998.

[10] Naveen Ashish and Craig A. Knoblock. Semi-automatic
Wrapper Generation for Internet Information Sources.
In Proc. Second IFCIS Conference on Cooperative In-
formation Systems (CoopIS), Charleston, South Car-
olina, 1997.

[11] Mary Tork Roth and Peter Schwartz. A Wrapper Ar-
chitecture for Legacy Data Sources. Technical Report
RJ10077, IBM Almaden Research Center, 1997.

[12] Arnaud Sahuguet and Fabien Azavant. W4F: the Wysi-
Wyg Web Wrapper Factory. Technical report, Univer-
sity of Pennsylvania, Department of Computer and In-
formation Science, 1998. To appear.

[13] W3C. The Document Object Model, 1998.
http://www.w3.org/DOM.

[14] Larry Wall, Tom Christiansen, and Randal L. Schwartz.
Programming Perl. O'Reilly & Associates, 1996.

[15] Geo Wiedehold. Intelligent integration of information.
In ACM Sigmod, Washington, DC, USA, 1993.

	University of Pennsylvania
	ScholarlyCommons
	January 1999

	Taming Web Sources with "Minute-Made" Wrappers
	Fabien Azavant
	Arnaud Sahuguet
	Taming Web Sources with "Minute-Made" Wrappers
	Abstract
	Comments

	val.dvi

